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Different perceptions of social dilemmas: Evolutionary multigames in structured populations
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Motivated by the fact that the same social dilemma can be perceived differently by different players, we
here study evolutionary multigames in structured populations. While the core game is the weak prisoner’s
dilemma, a fraction of the population adopts either a positive or a negative value of the sucker’s payoff, thus
playing either the traditional prisoner’s dilemma or the snowdrift game. We show that the higher the fraction
of the population adopting a different payoff matrix the more the evolution of cooperation is promoted. The
microscopic mechanism responsible for this outcome is unique to structured populations, and it is due to the
payoff heterogeneity, which spontaneously introduces strong cooperative leaders that give rise to an asymmetric
strategy imitation flow in favor of cooperation. We demonstrate that the reported evolutionary outcomes are
robust against variations of the interaction network, and they also remain valid if players are allowed to vary
which game they play over time. These results corroborate existing evidence in favor of heterogeneity-enhanced
network reciprocity, and they reveal how different perceptions of social dilemmas may contribute to their
resolution.
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I. INTRODUCTION

Social dilemmas are situations in which individuals are
torn between what is best for them and what is best for
the society. If selfishness prevails, the pursuit of short-term
individual benefits may quickly result in loss of mutually
rewarding cooperative behavior and ultimately in the tragedy
of the commons [1]. Evolutionary game theory [2–6] is the
most commonly adopted theoretical framework for the study
of social dilemmas, none of which has received as much
attention as the prisoner’s dilemma game [7–24]. Each instance
of the game is contested by two players who have to decide
simultaneously whether they want to cooperate or defect. The
dilemma is given by the fact that although mutual cooperation
yields the highest collective payoff a defector will do better if
the opponent decides to cooperate.

Since widespread cooperation in nature is one of the most
important challenges to Darwin’s theory of evolution and
natural selection, ample research has been devoted to the
identification of mechanisms that may lead to a cooperative
resolution of social dilemmas. Classic examples reviewed in
[25] include kin selection [26], direct and indirect reciprocity
[27,28], network reciprocity [29], as well as group selection
[30]. Recently, however, interdisciplinary research linking
together knowledge from biology and sociology as well
as mathematics and physics has revealed many refinements
to these mechanisms and also new means by which the

*szolnoki.attila@ttk.mta.hu
†matjaz.perc@uni-mb.si

successful evolution of cooperation among selfish and unre-
lated individuals can be understood [31–37].

One of the more recent and very promising developments in
evolutionary game theory is the introduction of so-called multi-
games [38,39] or mixed games [40] (for earlier conceptually
related work see [41]), where different players in the popula-
tion adopt different payoff matrices. Indeed, it is often the case
that a particular dilemma is perceived differently by different
players, and this is properly taken into account by considering
a multigame environment. A simple example to illustrate the
point entails two drivers meeting in a narrow street and needing
to avoid collision. While the first driver drives a cheap old car,
the second driver drives a brand new expensive car. Obviously,
the second driver will be more keen on averting a collision.
Several other examples could be given to illustrate that, when
we face a conflict, we are likely to perceive differently what we
might lose in case the other player chooses to defect. The key
question then is how the presence of different payoff matrices,
motivated by the different perceptions of a dilemma situation,
will influence the cooperation level in the whole population?

Multigames have thus far been studied in well-mixed
systems, but since stable solutions in structured populations
can differ significantly—a prominent example of this fact
being the successful evolution of cooperation in the prisoner’s
dilemma game through network reciprocity [29]—it is of
interest to study multigames also within this more realistic
setup. Indeed, interactions among players are frequently not
random and best described by a well-mixed model, but rather
they are limited to a set of other players in the population
and as such are best described by a network [31,32,34,36,42].
With this as motivation, we here study evolutionary multi-
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games on the square lattice and scale-free networks, where
the core game is the weak prisoner’s dilemma while at
the same time some fraction of players adopts either a positive
or a negative value of the sucker’s payoff. Effectively, we
thus have some players using the weak prisoner’s dilemma
payoff matrix, some using the traditional prisoner’s dilemma
payoff matrix, and also some using the snowdrift game payoff
matrix. Within this multigame environment, we will show
that the higher the heterogeneity of the population in terms
of the adopted payoff matrices the more the evolution of
cooperation is promoted. Furthermore, we will elaborate on
the responsible microscopic mechanisms, and we will also test
the robustness of our observations. Taken together, we will
provide firm evidence in support of heterogeneity-enhanced
network reciprocity and show how different perceptions of
social dilemmas contribute to their resolution. First, however,
we proceed with presenting the details of the mathematical
model.

II. EVOLUTIONARY MULTIGAMES

We study evolutionary multigames on the square lattice
and the Barabási-Albert scale-free network [43], each with
an average degree k = 4 and size N . These graphs, being
homogeneous and strongly heterogeneous, represent two
extremes of possible interaction topology. Each player is
initially designated either as cooperator (C) or defector (D)
with equal probability. Moreover, each instance of the game
involves a pairwise interaction where mutual cooperation
yields the reward R, mutual defection leads to punishment P ,
and the mixed choice gives the cooperator the sucker’s payoff
S and the defector the temptation T . The core game is the weak
prisoner’s dilemma, such that T > 1, R = 1, and P = S = 0.
A fraction ρ of the population, however, uses different S values
to take into account the different perceptions of the same social
dilemma. In particular, one half of the randomly chosen ρN

players uses S = +�, while the other half uses S = −�,
where 0 < � < 1. We adopt the equal division of positive
and negative S values to ensure that the average overall payoff
matrices return the core weak prisoner’s dilemma, which is
convenient for comparisons with the baseline case. Primarily,
we consider multigames where, once assigned, players do not
change their payoff matrices, but we also verify the robustness
of our results by considering multigames with time-varying
matrices.

We simulate the evolutionary process in accordance with
the standard Monte Carlo simulation procedure comprising
the following elementary steps. First, according to the random
sequential update protocol, a randomly selected player x

acquires its payoff �x by playing the game with all its
neighbors. Next, player x randomly chooses one neighbor y,
who then also acquires its payoff �y in the same way as did
player x. Importantly, at each instance of the game the applied
payoff matrix is that of the randomly chosen player who
collects the payoffs, which may result in an asymmetric payoff
allocation depending on who is central. This fact, however, is
key to the main assumption that different players perceive
the same situation differently. Once both players acquire their
payoffs, then player x adopts the strategy sy from player y

with a probability determined by the Fermi function:

W (sy → sx) = 1

1 + exp[(�x − �y)/K]
, (1)

where K = 0.1 quantifies the uncertainty related to the
strategy adoption process [31,44]. In agreement with previous
works, the selected value ensures that strategies of better-
performing players are readily adopted by their neighbors,
although adopting the strategy of a player that performs
worse is also possible [45,46]. This accounts for imperfect
information, errors in the evaluation of the opponent, and
similar unpredictable factors.

Each full Monte Carlo step (MCS) consists of N elementary
steps described above, which are repeated consecutively, thus
giving a chance to every player to change its strategy once
on average. All simulation results are obtained on networks
typically with N = 104 players, but larger system size is
necessary on the proximity to phase transition points, and
the fraction of cooperators fC is determined in the stationary
state after a sufficiently long relaxation lasting up to 2 × 105

MCSs. To further improve accuracy, the final results are
averaged over 200 independent realizations, including the
generation of the scale-free networks, at each set of parameter
values.

III. RESULTS

Before turning to the main results obtained in structured
populations, we first briefly summarize the evolutionary
outcomes in well-mixed populations. Although the subpop-
ulation adopting the T > 1, R = 1, P = 0, and S = +�

parametrization fulfills T > R > S > P , and thus in principle
plays the snowdrift game where the equilibrium is a mixed
C + D phase, cooperators in the studied multigame actually
never survive. Since there are also players who adopt either the
weak (T > R > P = S) or the traditional (T > R > P > S)
prisoner’s dilemma payoff matrix, the asymmetry in the inter-
actions renders cooperation evolutionary unstable. In fact, in
well-mixed populations the baseline case given by the average
overall payoff matrices is recovered, which in our setup is the
weak prisoner’s dilemma, where for all T > 1 cooperators are
unable to survive. More precisely, cooperators using S = −�

die out first, followed by those using S = 0 and +�, and this
ranking is preserved even if the subpopulation using S = 0 is
initially significantly larger than the other two subpopulations
(at small ρ values). Although in finite well-mixed populations
the rank of this extinction pattern could be very tight, it does
not change the final fate of the population to arrive at complete
defection.

In structured populations, as expected from previous expe-
rience [31,32,34,36,42], we can observe different solutions,
where cooperators can coexist with defectors over a wide
range of parameter values. However, more importantly, the
multigame environment, depending on ρ and �, can elevate
the stationary cooperation level significantly beyond that
warranted by network reciprocity alone. We first demonstrate
this in Fig. 1(a), where we plot the fraction of cooperators fC as
a function of the temptation value T , as obtained for ρ = 1 and
by using different values of �. It can be observed that the larger
the value of � the larger the value of T at which cooperators are
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FIG. 1. (Color online) Evolution of cooperation (top panel) and
the average payoff of the population (bottom panel) in the multigame
environment on the square lattice. Depicted results were obtained for
ρ = 1 and different values of �, as indicated in the legend. Here ρ = 1
means that all players use either S = +� or −� (none use S = 0).
Larger values of � allow cooperators to survive at larger values of
T . Importantly, this improvement in fC is also accompanied by a
suitable increase in the average payoff of the population, as shown in
the bottom panel.

still able to survive. Indeed, for � = 0.8 cooperation prevails
across the whole interval of T . Since some players use a
negative value of S, it is nevertheless of interest to test whether
the elevated level of cooperation actually translates to a larger
average payoff of the population. It is namely known that
certain mechanisms aimed at promoting cooperative behavior,
for example, punishment [47], elevate the level of cooperation
but at the same time fail to raise the average payoff accordingly
due to the entailed negative payoff elements. As illustrated in
Fig. 1(b), however, this is not the case at present since larger
values of fC readily translate to larger average payoffs of the
population.

In the light of these results, we focus solely on the fraction
of cooperators and show in Fig. 2 how fC varies in dependence
on ρ and � at a given temptation value T . Presented results
indicate that what we have observed in Fig. 1(a), namely, the
larger the value of � the better, actually holds irrespective
of the value of ρ. More to the point, larger ρ values support
cooperation more strongly, which corroborates the argument
that the more heterogeneous the multigame environment the
better. Results presented in Fig. 2 also suggest that it is better
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FIG. 2. (Color online) Evolution of cooperation in the multigame
environment on the square lattice, as obtained in dependence on ρ

and �. The color map encodes the stationary fraction of cooperators
fC . It can be observed that the dependence of fC on both ρ and
� is monotonous and that it is thus beneficial for the population to
be in the most heterogeneous state possible. Depicted results were
obtained for T = 1.1, but qualitatively equal evolutionary outcomes
can be observers also for other values of T .

to have many players using higher S values, regardless of
the fact that the price is an equal number of players in the
population using equally high but negative S values. These
observations hold irrespective of the temptation T , and they fit
well to the established notion that heterogeneity, regardless
of its origin, promotes cooperation by enhancing network
reciprocity [35,48–57].

To support these arguments and to pinpoint the microscopic
mechanism that is responsible for the promotion of cooperation
in the multigame environment, we first monitor the fraction
of cooperators within subgroups of players that use different
payoff matrices. For clarity, we use ρ = 1, where only two
subpopulations exist (players use either S = +� or −�, but
nobody uses S = 0), and where the positive effect on the evo-
lution of cooperation is the strongest (see Fig. 2). Accordingly,
one group is formed by players who use S = +�, and the other
is formed by players who use S = −�. We denote the fraction
of cooperators in these two subpopulations by fC+ and fC− ,
respectively. As Fig. 3(a) shows, even if only a moderate �

value is applied, the cooperation level among players who use
a positive S value is significantly higher than among those
who use a negative S value. Unexpectedly, even among those
players who effectively play a traditional prisoner’s dilemma
(T > R > P > S), the level of cooperation is still much higher
than the level of cooperation that is supported solely by
network reciprocity (without multigame heterogeneity) in the
weak prisoner’s dilemma (T > R > P = S). This fact further
supports the conclusion that the introduction of heterogeneity
through the multigame environment involves the emergence
of strong cooperative leaders, which further aid and invigorate
traditional network reciprocity. Unlike defectors, cooperators
benefit from a positive feedback effect, which originates
in the subpopulation that uses positive S values and then
spreads toward the subpopulation that uses negative S values,
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FIG. 3. (Color online) The top panel depicts the level of coop-
eration in the two subpopulations on the square lattice, where fC+
denotes the fraction of cooperators among those who use S = +�,
while fC− denotes the fraction of cooperators in the group where
S = −� is used. For reference, we also plot the cooperation level
in the corresponding homogeneous population, where every player
uses S = 0. Expectedly, the level of cooperation is largest in the
subpopulation where players use S = +�. Much more surprisingly,
however, the level of cooperation in the subpopulation where players
use S = −� still significantly exceeds the baseline outcome of
the homogeneous weak prisoner’s dilemma game. The bottom
panel depicts the difference between the level of cooperation in
the homogeneous and the heterogeneous multigame environment
�fC , along with the difference in the strategy invasion flow �γ

between the two “+” and “−” subpopulations (see main text
for details). These results were obtained with ρ = 1 and � =
0.2, but remain qualitatively identical also for other parameter
values.

ultimately giving rise to an overall higher social welfare [see
Fig. 1(b)].

This explanation can be verified directly by monitoring the
information exchange between the two subpopulations. More
precisely, we measure the frequency of strategy imitations
between players belonging to the two different subpopulations.
The difference �γ is positive when players belonging to the
“−” subpopulation adopt the strategy from players belonging
to the “+” subpopulation more frequently than vice versa.
Results presented in Fig. 3(b) demonstrate clearly that the
level of cooperation is increased only if there is significant

asymmetry in the strategy imitation flow in favor of the “+”
subpopulation. Such symmetry breaking, which is due to the
multigame environment, supports a level of cooperation in the
homogeneous weak prisoner’s dilemma that notably exceeds
the level of cooperation that is supported solely by traditional
network reciprocity.

We proceed by testing the robustness of our observa-
tions and expanding this study to heterogeneous interaction
networks. First, we consider the Barabási-Albert scale-free
network [43], where influential players are a priori present
due to the heterogeneity of the topology. Previous research,
however, has shown that the positive impact of degree
heterogeneity vanishes if payoffs are normalized with the
degree of players, as to account for the elevated costs of
participating in many games [58–61]. We therefore apply
degree-normalized payoffs to do away with cooperation
promotion that would be due solely to the heterogeneity of
the topology. Furthermore, by striving to keep the average
overall payoff matrices equal to the weak prisoner’s dilemma,
it is important to note that the heterogeneous interaction
topology allows us to introduce only a few strongly connected
players into the S = +� subpopulation, while the rest can
use only a moderately negative S value. Specifically, we
assigned S1 = +� to only 2% of the hubs, while the rest used
S2 = −0.0204S1 to fulfill 0.02S1 + 0.98S2 = 0 (average over
all S in the population equal to zero to yield, on average, the
weak prisoner’s dilemma payoff ranking). As results depicted
in Fig. 4 show, even with this relatively minor modification
that introduces the multigame environment, the promotion of
cooperation is significant if only � is sufficiently large (see
legend). Evidently, � = 0 returns the modest cooperation level
that has been reported before on scale-free networks with
degree-normalized payoffs, but for � = 0.8 the coexistence
of cooperators and defectors is possible almost across the
whole interval of T . It is also important to note that the
positive effect could be easily amplified further simply by
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FIG. 4. (Color online) Evolution of cooperation in the multigame
environment on the scale-free network with degree-normalized
payoffs. Depicted results were obtained when only 2% of the hubs
(high-degree players) used S = +�, while the rest of the population
used a moderately negative S value (see main text for details). As on
the square lattice (see top panel of Fig. 1), larger values of � (see
legend) allow cooperators to survive at larger values of T .
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introducing more players into the S = +� subpopulation
and letting the remainder use accordingly even less negative
values of S. These results indicate that the topology of the
interaction network has only secondary importance, because
the heterogeneity that is introduced by payoff differences
already provides the necessary support for the successful
evolution of cooperation. Consequently, in the realm of
the introduced multigame environment, we have observed
qualitatively identical cooperation-supporting effects when
using the random regular graph or the configurational model
of Bender and Canfield [62–64] for generating the interaction
network.

Last, we present results obtained within a time-varying
multigame environment to further corroborate the robustness
of our main arguments. Several examples could be provided
as to why players’ perceptions might change over time. The
key point is that players may still perceive the same dilemma
situation differently, and hence they may use different payoff
matrices. Our primary goal here is to present the results
obtained with a minimal model, although extensions toward
more sophisticated and realistic models are of course possible.
Accordingly, unlike considerations thus far, players do not
have a permanently assigned S value, but rather they can
choose between S = +� and −� with equal probability
at each instance of the game. Naturally, this again returns
the S = 0 weak prisoner’s dilemma on average over time
and, as shown in [40], in well-mixed populations returns
the complete defection stationary state. In structured popu-
lations, however, for � > 0, we can again observe promotion
of cooperation beyond the level that is warranted solely
by network reciprocity. For simplicity, results presented in
Fig. 5 were obtained by using the square lattice as the
underlying interaction network, but in agreement with the
results presented in Fig. 4 qualitatively identical evolutionary
outcomes are obtained also on heterogeneous interaction
networks. Comparing to the results presented in Fig. 1(a),
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FIG. 5. (Color online) Evolution of cooperation in the time-
varying multigame environment on the square lattice. Depicted results
were obtained when players could choose between S = +� and −�

with equal probability at each instance of the game (see legend for
the applied � values). As on the square lattice with time invariable
subpopulations (see top panel of Fig. 1), larger values of � allow
cooperators to survive at larger values of T , although in this case the
positive impact on the evolution of cooperation is less strong.

where the time invariable multigame environment was applied,
we conclude that in the time-varying multigame environment
the promotion of cooperation is less strong. This, however, is
understandable, since the cooperation-supporting influential
players emerge only for a short period of time, but on
average the overall positive effect in the stationary state is
still clearly there. To conclude, it is worth pointing out that
time-dependent perceptions of social dilemmas open the path
toward coevolutionary models, as studied previously in the
realm of evolutionary games [34,65–69], and they also invite
the consideration of the importance of time scales [70] in
evolutionary multigames.

IV. DISCUSSION

We have studied multigames in structured populations
under the assumption that the same social dilemma is often
perceived differently by competing players and that thus they
may use different payoff matrices when interacting with their
opponents. This essentially introduces heterogeneity to the
evolutionary game and aids network reciprocity in sustaining
cooperative behavior even under adverse conditions. As
the core game and the baseline for comparisons, we have
considered the weak prisoner’s dilemma, while the multigame
environment has been introduced by assigning to a fraction
of the population either a positive or a negative value of the
sucker’s payoff. We have shown that, regardless of the structure
of the interaction network, and also irrespective of whether the
multigame environment is time invariant or not, the evolution
of cooperation is promoted more the larger the heterogeneity in
the population. As for the responsible microscopic mechanism
behind the enhanced level of cooperation, we have identified
an asymmetric strategy imitation flow from the subpopulation
adopting the positive sucker’s payoffs to the population adopt-
ing the negative sucker’s payoffs. Since the subpopulation
where players use the positive sucker’s payoffs expectedly
features a higher level of cooperation, the asymmetric strategy
imitation flow thus acts in favor of cooperative behavior also
in the other subpopulations, and ultimately it raises the overall
level of social welfare in the population.

The obtained results in structured populations are in con-
trast to the results obtained in well-mixed populations, where
simply the baseline weak prisoner’s dilemma is recovered re-
gardless of multigame parametrization. Although it is expected
that structured populations support evolutionary outcomes
that are different from the mean-field case [31,32,34,36],
the importance of this fact for multigames is of particular
relevance since interactions among players are frequently not
best described by a well-mixed model, but rather they are
limited to a set of other players in the population and as
such are best described by a network. Put differently, although
sometimes analytically solvable, the well-mixed models can
at best support proof-of-principle studies, but otherwise have
limited applicability for realistic systems.

Taken together, the presented results add to the exist-
ing evidence in favor of heterogeneity-enhanced network
reciprocity, and they further establish heterogeneity among
players as a strong fundamental feature that can elevate the
cooperation level in structured populations past the boundaries
that are imposed by traditional network reciprocity. The rather
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surprising role of different perceptions of the same conflict
thus reveals itself as a powerful mechanism for resolving
social dilemmas, although it is rooted in the same fundamental
principles as other mechanisms for cooperation promotion
that rely on heterogeneity. We hope this paper will motivate
further research on multigames in structured populations,
which appears to be an underexplored subject with many
relevant implications.

ACKNOWLEDGMENTS

This research was supported by the Hungarian National
Research Fund (Grant No. K-101490), European Social
Fund (Grant No. TAMOP-4.2.2.A-11/1/KONV-2012-0051),
the Slovenian Research Agency (Grants No. J1-4055 and No.
P5-0027), and the Fundamental Research Funds for Central
Universities (Grant No. DUT13LK38).

[1] G. Hardin, Science 162, 1243 (1968).
[2] J. Maynard Smith, Evolution and the Theory of Games (Cam-

bridge University, Cambridge, 1982).
[3] J. W. Weibull, Evolutionary Game Theory (MIT, Cambridge,

1995).
[4] J. Hofbauer and K. Sigmund, Evolutionary Games and Popula-

tion Dynamics (Cambridge University, Cambridge, 1998).
[5] M. Mesterton-Gibbons, An Introduction to Game-Theoretic

Modelling, 2nd ed. (American Mathematical Society, Provi-
dence, 2001).

[6] M. A. Nowak, Evolutionary Dynamics (Harvard University,
Cambridge, 2006).

[7] D. Fudenberg and E. Maskin, Econometrica 54, 533 (1986).
[8] M. A. Nowak and K. Sigmund, Nature (London) 364, 56

(1993).
[9] F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104

(2005).
[10] L. A. Imhof, D. Fudenberg, and M. A. Nowak, Proc. Natl. Acad.

Sci. USA 102, 10797 (2005).
[11] F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad.

Sci. USA 103, 3490 (2006).
[12] J. Tanimoto, Phys. Rev. E 76, 021126 (2007).
[13] F. Fu, L.-H. Liu, and L. Wang, Eur. Phys. J. B 56, 367 (2007).
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