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Different scaling of linear models and deep
learning in UKBiobank brain images versus
machine-learning datasets
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Jakob N. Kather9,10,11, Konrad Kording 12, Blake Richards 13,14,15,16 & Danilo Bzdok 16,17,18,19✉

Recently, deep learning has unlocked unprecedented success in various domains, especially

using images, text, and speech. However, deep learning is only beneficial if the data have

nonlinear relationships and if they are exploitable at available sample sizes. We system-

atically profiled the performance of deep, kernel, and linear models as a function of sample

size on UKBiobank brain images against established machine learning references. On MNIST

and Zalando Fashion, prediction accuracy consistently improves when escalating from linear

models to shallow-nonlinear models, and further improves with deep-nonlinear models. In

contrast, using structural or functional brain scans, simple linear models perform on par with

more complex, highly parameterized models in age/sex prediction across increasing sample

sizes. In sum, linear models keep improving as the sample size approaches ~10,000 subjects.

Yet, nonlinearities for predicting common phenotypes from typical brain scans remain largely

inaccessible to the examined kernel and deep learning methods.
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F
ollowing genetics and other biological domains, imaging
neuroscience recently started to become a big data science.
The brain sciences have been proposed to be one of the most

data-rich medical specialties1 due to amassing high-resolution
imaging data.

Several data collection initiatives stand out in the brain-
imaging landscape2,3, including the Human Connectome Project
(HCP), the UKBiobank (UKBB) imaging study, and the Enhan-
cing NeuroImaging Genetics through Meta-Analysis (ENIGMA)
consortium. The UKBB is today perhaps the most compelling, as
this resource includes genetic profiling and an extensive variety of
phenotyping descriptors. The data aggregation set out around
2006 to gather genetic and environmental data of ~500,000
volunteers and is currently the world’s largest biomedical dataset.
In 2014, UKBB launched its brain-imaging extension, aiming to
gather several magnetic resonance imaging (MRI) modalities of
~100,000 subjects by 20224. UKBB is specifically designed for
prospective population epidemiology. Instead, the ambition of
HCP lies in functional and anatomical connectivity in healthy
subjects, whereas ENIGMA places a premium on genetic profiling
in combination with brain scanning in psychiatric and neurolo-
gical disease. The creation, curation, and collaboration of large-
scale brain-imaging datasets with thousands of subjects promises
to enable more advanced quantitative analytics than are currently
the norm.

An important benefit of such large-scale data collections is that
they may allow for more expressive models that could more
powerfully isolate and describe phenomena in the brain—models
that can capture complicated nonlinear interactions dormant in
commonly analyzed, now abundant brain scans. Spurred by
increasing data availability, analysis of brain-imaging data is more
and more endorsing sophisticated machine learning algorithms5–7.
A core step in such data analysis approaches has always been the
identification of the most relevant variables to be included and how
these candidate variables should be encoded or built into newly
designed features, often called “manual feature engineering.”

Linear models have long dominated data analysis, as complex
transformations into rich high-dimensional spaces were historically
computationally infeasible5,8,9. Towards the end of the twentieth
century, kernel embeddings10 were devised to efficiently map data
to rich high-dimensional spaces in a computationally efficient
manner. Kernel methods can perform data analysis within an
enriched, potentially infinitely dimensional representation of the
original input variables. This extension of many classical linear
methods towards capturing more complicated nonlinear patterns
in data enabled enhanced prediction accuracy in a large variety of
applications, including many areas of biomedicine.

“Preprogrammed” kernel methods operating on predefined
similarity functions, in turn, have recently been superseded by the
renaissance of artificial neural networks under the umbrella term
“deep learning11.” One key aspect of this even more flexible class
of algorithms is the cascade of successive nonlinear transforma-
tions from the input variables. A deep neural network (DNN)
automatically learns to combine image pixels into basic shapes
such as circles or edges, which get combined by further trans-
formation layers into objects such as furniture, which eventually
compose whole scenes and other abstract concepts such as a
kitchen, represented in the highest layers. Going beyond kernel
methods, deep methods have enabled “automatic feature engi-
neering” and even richer representations and abstractions of
patterns in data. In a sense, deep learning methods can be thought
of as kernel methods that also learn the kernel12.

This upgrade has unlocked unprecedented prediction success
in a number of application domains, especially those involving
the processing of natural images, text, or speech data—areas
where DNNs can leverage some of their strengths: compositional

representations and a hardcoded assumption of translation
invariance. Whether deep learning will be equally successful in
images from brain scanning, specifically in predicting phenotypes
from structural and functional MRI (sMRI/fMRI), remains yet
unclear13. An impartial evaluation of deep learning in brain
imaging is urgently required. However, deep learning models are
highly flexible and new varieties are constantly developed. This
rank growth of deep learning models makes it almost impossible
to comprehensively benchmark deep learning models, one-by-
one, for brain imaging. Here we attempt to address this need by
first principles. Our study brings into sharp focus the pre-
condition that is most likely to limit the success of deep learning
on brain-imaging data: the extent to which nonlinear relation-
ships in brain images are exploitable for phenotype prediction at
currently available sample sizes.

In particular, an ingredient in the success of deep learning for
image processing have been convolution operations, which
introduce the additional assumption of translational invariance11.
To use a geography analogy, representational features of traffic
jams could be detected from satellite images by convolution layers
no matter in which city the traffic jams are located and irre-
spective of their extent and form. These traffic events can then be
picked up by higher-level convolution layers into state, country,
and then continent summaries of global traffic patterns (i.e.,
compositionality), ignoring where the traffic information was
aggregated from. This propagation would be made possible,
because convolution layers assume that if image information is
useful for quantifying traffic in one location, the same features
will also be useful in other distant locations (i.e., translational
invariance). However, despite the success of deep learning for
many image-processing applications, it is still unclear to what
extent MRI brain scans yield nonlinear structure exploitable for
phenotype prediction that requires both compositionality and
translational invariance. Are there higher-level features of an MRI
scan that are composed of lower-level features in a nonlinear
manner? Can phenotype prediction benefit from capturing irre-
gular anatomical shapes such as those of brain ventricles? Do the
same informative features appear in any part of an MRI image? If
not, then the performance improvements that deep convolutional
neural networks achieve in some image-processing domains may
not directly port over to the analysis of MRI brain scans.

In short, from a historical perspective, kernel-based models
have outperformed linear models in many applications. Deep
learning models have again refined pattern extraction and thus
further boosted prediction accuracy in structured data such as
natural images. Our study systematically delineates the scaling
behaviors of these three modeling regimes on brain-imaging data
and compared to the performance profiles on standard machine
learning datasets. Our quantitative findings provide some careful
skepticism as to the question: do emerging large-scale brain-
imaging datasets contain nonlinear information to better predict
common phenotypes that can be exploited by currently available
kernel and deep models?

Results
Rationale and summary of workflow. The aim of our study was
to assess how much the analysis of brain-imaging data can benefit
from using nonlinear methods or even deep learning for pre-
dicting important demographic or lifestyle phenotypes. For
results to be generalizable, we wished to shed light on the general
types of information in brain-imaging data and whether those
properties demand more complicated models making the most
out of increasing sample size. Gaining such important intuitions
would allow us to not only observe that a specific analy-
tical approach works well on brain-imaging data, but provide
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indicators why that might be the case to allow for conclusions
about broader classes of methods.

To this end, we evaluated how the prediction performance scales
with increasing sample sizes for model classes with increasing
prediction capacity and datasets of increasing prediction difficulty.
We considered the achieved prediction performance as a function
of the available sample size to obtain a principled empirical
assessment of sample complexity (cf. “Methods”). Analyzing the
empirical sample complexity allows for insight into the informa-
tion content of data as perceived through the assumptions of a
given model class. For example, linear models are blind to
nonlinear patterns in data by construction. Nonlinear kernel
methods assume that a certain type of nonlinear interaction (i.e.,
the kernel) is best suited to identify decision boundaries for
accurate classification. Going another step up, DNNs also expect
nonlinear interactions in the data, but, intuitively, this class of
models learns the kernel rather than pre-assuming this input
variable expansion.

We employed three classes of learning algorithms to evaluate
cross-validated phenotype prediction performance on reference
datasets (Fig. 1) as follows: (a) classical (regularized) linear models
are used for several decades in various empirical domains14,
(b) kernel support vector machines (SVMs) that were among the
most competitive approaches from the late 1990s to ~2010, and

(c) common DNN algorithms that have now come to dominate
areas where powerful empirical predictions are key and large
amounts of structured (e.g., images) training data are available.
For each model class, we chose three representative algorithms,
attempting to cover the plurality of approaches in a given regime
of quantitative analysis. For the class of linear methods, we elected
linear discriminant analysis (LDA), logistic regression, and linear
SVMs (without kernelization). For shallow-nonlinear models, we
profiled extensions of linear models with the popular radial-basis-
function (RBF), polynomial, and sigmoidal kernels. For deep-
nonlinear models, we used fully connected and convolutional
DNNs with and without global average pooling (GAP). We thus
juxtaposed several analysis methods that recapitulate important
periods in the recent data science evolution.

Model performance on machine learning reference datasets. To
verify that we can obtain empirical estimates of sample com-
plexity differences between linear, kernel, and deep models, we
initially examined two reference datasets that have been perva-
sively used in the machine learning community. This setup
did not only validate our approach to chart the scaling behavior
of predictive performance with increasing sample size, but also
established a point of comparison for performance differences for
the three model classes when applied to brain-imaging data.

The MNIST dataset (Modified National Institute of Standards
and Technology dataset15) is an important classical benchmark
datasets in the machine learning community. This resource
consists of greyscale images of handwritten digits with the digit
value (0–9) to be classified from the raw pixel information. To
quantitatively characterize the effects of a more challenging
prediction goal, we also analyzed Zalando’s Fashion dataset16.
The sometimes-called Fashion-MNIST dataset consists of grays-
cale images of fashion products, designed for classification of ten
categories of clothing. This resource was created to pose a more
difficult prediction problem than MNIST while retaining the
same number of targets (i.e., 10 categories), dimensionality (i.e.,
28 × 28= 768 variables), and sample size (i.e., 70,000 images).

To make sure that our model implementations work as would
be expected from the technical literature, we replicated several
current-best prediction performances on the MNIST dataset. On
the full dataset comprising 60,000 training observations, our
logistic regression model achieved 91.32 ± 0.90% classification
performance (out-of-sample prediction accuracy mean ± SD
across 20 resampling iterations), which is very similar to earlier
machine-learning studies (91.7% reported in ref. 16). The more
modern SVMs with a RBF kernel (RBF-SVM) achieved 96.79 ±
0.65% accuracy (98.6% in ref. 17). Finally, standard convolutional
DNN model achieved 99.03 ± 0.39% prediction accuracy—in line
with the 98.9% reported by LeCun et al.15 based on a similar deep
learning architecture. Our model performances thus replicated
state-of-the-art classification accuracies that were reported in
previous research in the technical communities.

To carefully quantify the degree to which nonlinear structure
can be exploited in MNIST and Fashion datasets, we compared
the performance of linear models and nonlinear kernel SVMs
with gradually increasing number of training images. Systematic
improvements in prediction accuracy when elevating from linear
models to nonlinear models consistently indicated the existence
of exploitable nonlinear information that was predictive of the
digit category in the dataset. On the MNIST dataset (Fig. 2a),
linear and kernel models performed indistinguishably for low
sample sizes. Yet, we observed that linear models and kernel
models have diverged in prediction accuracy starting at around
1000 example images. Exceeding this sample size, the worst
among the three kernel models (RBF-SVM) outperformed the
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Fig. 1 Workflow and experimental design. We directly compared the

properties of machine learning datasets to brain-imaging datasets based on

performance curves of three classes of predictive models. a Well-

understood benchmark datasets from the machine learning community

were elected to replicate previous results and serves as a reference point

for the scaling behavior in relation to imaging neuroscience: the MNIST

images were to be classified into different handwritten digits and Zalando’s

Fashion images were to be classified into different types of clothing. Several

representations of brain structure and function were obtained from the

UKBiobank resource: region volumes and whole-brain slices from structural

MRI, as well as functional connectivity strengths from resting-state

functional MRI. Brain-image data were used to predict the subjects’ age and

sex in 10 subgroups to match the ten target categories of MNIST and

Fashion. b Prediction performance for each dataset was profiled using

predictive models that have capacity for successively increasing predictive

power: linear models (red tone), shallow-nonlinear kernel SVMs (green

tone), and deep-nonlinear neural network algorithms (blue tones). c For

each combination of dataset and model, we systematically varied the

number of data points available for the training the model. The resulting

empirical estimates of sample complexity allow to extrapolate conclusions

to always larger sample sizes.
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best among the three linear models (logistic regression). In the
Fashion dataset (Fig. 2c), the worst kernel model (sigmoid-SVM)
began to outperform the best linear model (logistic regression)
starting from 4000 observations. This difference in performance
scaling grew to 4.03 percentage points (p.p.) and 1.76 p.p. at 8000
observations for MNIST and Fashion, respectively.

That is, we show a less prominent gap between linear and
shallow nonlinear methods in one of two comparable datasets
with a more complicated prediction goal (i.e., detect clothing
rather than handwritten digits). For sufficiently large sample sizes
available for model training, kernel methods outperformed linear
models in both the MNIST and Fashion datasets. Hence, kernel
SVMs could readily exploit nonlinear structure in the examined
datasets that is inaccessible to simpler linear models by principle.

Next, we examined more closely how the difference in the ten-
class prediction problem scales with steadily growing sample sizes
in the MNIST and Fashion datasets. The sample size necessary to

saturate the prediction performance of a classifier relates to the
complexity of patterns that can be reliably derived from the
amount and dimensionality of observations available for model
training. The out-of-sample prediction performance of both linear
and kernel models saturated with increasing sample size in MNIST.
Performance of linear models (logistic regression) improved by
14.67 p.p. from 71.64 ± 2.62% to 86.31 ± 1.06% when the data
availability increased from 100 to 1000 observations, whereas the
performance for shallow nonlinear models (i.e., RBF-SVM)
improved by 15.60 p.p. from 72.58 ± 2.34% to 88.23 ± 1.11%.
Improvements reduced to 3.50 p.p. (5.62 p.p. for RBF-SVM) from
1000 to 8000 image observations. This saturation of prediction
accuracy was less pronounced when applying the same learning
algorithms to images of the Fashion dataset: linear models (logistic
regression) improved by 10.22 p.p. from 69.34 ± 2.95% to 79.55 ±
1.67%, from 100 to 1000 observations, but only 4.31 p.p. from 1000
to 8000 observations. Shallow nonlinear models (SVM-RBF)
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Fig. 2 Classification performance gains with more powerful algorithms in two machine learning datasets. Shows performance scaling of prediction

accuracy (y axis) as a function of increasing sample size (x axis) for generic linear models (red tones), kernel models (green tones), and deep neural

network models (blue tones). All model performances are evaluated on the same independent test set. a In handwritten digit classification on the MNIST

dataset, the classes of three linear, three kernel, and three deep models show distinct scaling behavior: linear models are outperformed by kernel models,

which are, in turn, outperformed by deep models. The prediction accuracies of most models start to exhibit saturation at high sample sizes, with

convolutional neural network models approaching near perfect classification of ten digits. c As a more difficult successor of MNIST, the Fashion dataset

is about classifying ten categories of clothing in photos. Similar to MNIST, linear models are outperformed by kernel models, which are outperformed

by deep models. In contrast to MNIST, the performances of the model classes are harder to distinguish for low sample sizes and begin to fan out

with growing sample size. In the Fashion dataset, more images are necessary for kernel and deep models to effectively exploit nonlinear structure to

supersede linear models. b, d Image-derived brain phenotypes (IDPs) provided by the UKBiobank were used to classify subjects into ten subject groups

divided by sex and age. The number of categories is equivalent to and the feature number p is similar to MNIST and Fashion. In both commonly acquired

structural (sMRI) and functional (fMRI) brain images, linear, kernel, and deep models are virtually indistinguishable across all examined training image sets

and prediction accuracies do not visibly saturate. Moreover, using different tree-based high-capacity classifiers did not outperform our linear models as

well (Supplementary Fig. 1). To the extent that complex nonlinear structure exists in these types of brain images, our results suggest that this information

cannot be directly exploited based on available sample sizes. The number of input variables in a modeling scenario is denoted by p. IDP= image-derived

phenotype. Error bars=mean ± SD across 20 cross-validation iterations (all panels).
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improved by 11.08 p.p. from 69.50 ± 2.89% to 80.58 ± 1.57%, from
100 to 1000 observations, but only by 5.78 p.p. when growing
training sample size from 1000 to 8000 observations.

In sum, consistent with our expectations, nonlinear methods
such as kernel SVMs progressively outperformed linear models
such as logistic regression as the number of observations available
for model building grew larger. In addition, the prediction
performance slowly saturated when increasing the number of
observations beyond 1000 example images. Both effects were more
pronounced for the simpler prediction goal of digit classification
(MNIST) than in the more complex clothing classification
(Fashion). That is, in the more challenging prediction problem,
the richer nonlinear models could learn even more as the amount
of available image data grew. More complex classification tasks
needed a higher number of samples to saturate the models. Our
empirical scaling results confirm that these standard machine
learning datasets contain nonlinear structure that our nonlinear
kernel models can take always more advantage as the numbers of
training observations grows.

Performances on brain images scales similar to linear models.
To assess how the performance of common linear models and
nonlinear kernel models behaves on brain-imaging data, we cre-
ated a range of classification scenarios using a currently largest
brain-imaging dataset—the UKBB Imaging. We tried to specifically
design the classification problems to be similar to key properties of
MNIST and Fashion to facilitate comparison of the results between
brain-imaging and machine learning reference datasets. As a
classification target, we constructed a ten-class target variable based
on subjects’ age and sex in analogy to the data shape in MNIST
and Fashion. Our UKBB data provided structural and func-
tional MRI simultaneously available in 9,300 subjects. We eval-
uated different views of the underlying brain data, corresponding
to distinct and often-used forms of brain-imaging data analysis:
UKBB provides high-level imaging-derived phenotypes (IDPs) of
resting-state functional brain MRI (independent component
analysis-based functional connectivity) and structural brain MRI
(regional gray and white matter features), which brought the
>100,000 gray matter voxels per brain scan to a dimensionality that
is akin to the dimensionality of MNIST and Fashion: p= 1485
variables for functional MRI and p= 164 variables for structural
MRI. In addition, to explore data analysis scenarios focused on
voxel-level statistics (e.g., general linear model such as imple-
mented in Statistical Parametric Mapping and other common
brain-imaging analysis software packages), we reduced the raw
sMRI voxels to MNISTs dimensionality of 784 variables by dif-
ferent feature selection and dimensionality-reduction techniques.
Finally, in preparation of our analysis of modern convolutional
neural networks, we extracted central two-dimensional sMRI slices
for each anatomical plane.

Although we have made an effort to tackle brain-imaging
classification problems with properties similar to MNIST and
Fashion in terms of number of classes, features, and sample size,
we recognize that the brain-imaging classification problems are
still more complex (e.g., age relates to the brain features in a
continuous way and people’s brain age differently so there might
be high overlap between the classes). We therefore ran additional
control analyses on binary (sex) classification and continuous
(age) regression (Figs. 3 and 4), as well as more complex
prediction targets, such as fluid intelligence, household income,
and number of people in the household (Fig. 5).

In our analyses of brain-imaging data (Figs. 2b, d, 4, and 5), we
observed different scaling behavior compared to benchmark
machine learning datasets for common linear models and nonlinear

kernel methods. Across the different views of the brain scans, model
performance converged on the same pattern of observations:
for each sample size, accuracies for all examined models were
mostly statistically indistinguishable. In this example of the currently
largest brain-imaging dataset, we did not observe signs of accuracy
saturation. That is, doubling the sample size yielded stable, mostly
indistinguishable gains in accuracy. For instance, for sMRI IDPs
(Fig. 2b) at a full training set of 8000 observations, the best kernel
model (polynomial-SVM: 37.58 ± 2.08%) performed indistinguish-
ably from the worst linear model (LDA: 38.26 ± 1.46%). Perfor-
mance of linear models (logistic regression) grew by 5.78 p.p. from
26.02 ± 1.98% to 31.80 ± 1.92% (7.23 p.p. from 24.92 ± 1.81% to
32.14 ± 2.44% for RBF-SVM), from 100 to 1000 observations,
indistinguishable from the 4.97 p.p. (5.29 p.p. for RBF-SVM) for
1000 to 8000 observations.

Qualitatively equivalent results were observed for different
dimensionality-reduction techniques (Fig. 3a–c) in regression and
binary classification settings (Fig. 4), and, importantly, for
different prediction targets—sex, age, fluid intelligence, household
income, household size, and the combined ten-class variable
(Figs. 2, 4, and 5). These findings were invigorated by additional
analyses that showed several high-capacity tree estimators (i.e.,
random forests, extremely randomized forests, and gradient
boosting trees) could also not outperform our linear models based
on brain images (Supplementary Fig. 1). In contrast to the
examined machine learning reference datasets, brain images from
the examined UKBB subjects revealed neither saturation of
accuracy in our phenotype predictions with increasing sample
size nor performance gains from kernel models with higher
expressive capacity.

Performance of DNN models. Finally, we compared the per-
formance of DNN models on our brain-imaging data. Both fully
connected neural network architectures and common variants of
convolutional neural networks systematically differed in the
performance on the machine learning benchmark datasets com-
pared to accuracy profiles in brain-imaging data. We initially
carried out a positive test to confirm that our convolutional
neural network architectures, as expected18, successfully out-
performed kernel and linear models in cancer classification from
histological tissue slices (Supplementary Fig. 2).

Fully connected neural networks outperformed all linear
models and all but the best performing kernel model on the
MNIST and Fashion datasets (Fig. 2a, c). The same observations
were not made for any examined representation of brain-imaging
data. Regarding sMRI and fMRI IDPs (Fig. 2b, d), sMRI voxels
(Fig. 3a–c) and whole sMRI slices (Fig. 3d–f), fully connected
neural networks performed indistinguishably from both kernel
and linear models. The same observation held true for our control
analyses of the regression and the binary classification (Fig. 4).

Convolutional neural networks showed analogous scaling
behavior. On both MNIST and Fashion datasets, convolutional
neural networks outperformed the best performing kernel model by
2.93 p.p. from 95.63 ± 0.79% to 98.56 ± 0.36% and by 3.44 p.p. from
85.63 ± 1.32% to 89.07 ± 1.20%, respectively, at 8000 observations
(Fig. 2a). In contrast, on sMRI brain slices, convolutional neural
networks outperformed neither linear nor kernel models (Fig. 3d–f).
Central axial, coronal, and sagittal slices yielded comparable
prediction accuracy for logistic regression (36.09 ± 1.38%, 37.58 ±
1.81%, 37.35 ± 1.21%, respectively) and convolutional neural net-
works (34.74 ± 1.65%, 36.52 ± 1.83%, and 36.15 ± 1.82%, respec-
tively). Thus, machine learning reference datasets and brain-imaging
data differed in that convolutional neural networks excel on the
former, but fail to improve over simpler methods on the latter.
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Taken together, we described three important ways in which
predictive models performed systematically differently between the
machine learning reference datasets MNIST and Fashion on the
one hand and brain-imaging data on the other hand. First,
performance of linear models saturated with increasing sample size
on MNIST and Fashion (less so kernel and deep models), but not
in predicting key phenotypic differences from brain-imaging data.
Second, kernel models consistently outperformed linear models in
MNIST and Fashion, which was not the case in our analyses of
brain-image-based prediction of interindividual demographic and
lifestyle indicators. Third, deep models clearly outperformed linear
and kernel models on MNIST and Fashion, but not in the analyses
we have carried out here on brain images. Our quantitative
investigation can therefore be taken to argue that the largest brain-
imaging dataset currently at our disposal still does not reliably
enable phenotype prediction by exploitation of complex config-
urations in data using modern pattern-learning algorithms.

Performance of 3D convolutional DNN models. As part of the
revision process, we have added a direct comparison to a state-of-
the-art three-dimensional (3D) convolutional neural network19,
which was estimated based on our full set of training sMRI scans
(n= 8000) using our identical cross-validation splits. This neural

network architecture has won the first place in the 2019 predictive
analytics competition on brain-imaging data (https://www.
photon-ai.com/pac2019). In our binary classification setting
(male vs. female), the 3D convolutional architecture here
achieved 98.93 ± 98.02/99.70% (confidence interval capturing
sampling variation effects with 95% coverage) and our simple
linear model achieved 98.02 ± 96.77/99.08% (L2-penalized logistic
regression based on 1024 principal components). In our regres-
sion setting (age prediction), the 3D convolutional architecture
here achieved R2= 0.61 ± 0.56/0.66 (coefficient of determination)
and our linear model achieved R2= 0.61 ± 0.54/0.67 (L2-pena-
lized linear regression based on 1024 principal components). The
additional results with an established fully convolutional neural
network algorithm did not change our pattern of results.

Impact of noise on nonlinear classification. Finally, brain images
measured using MRI are probably influenced by several noise
sources, including thermal noise, system noise from the imaging
hardware, and noise from unrelated physiological processes such as
breathing, as well as other factors unrelated to brain structure or
function. As such, the signal of interest from actual brain tissue
represents only a part of the total measurement. In comparison to
the information-dense images from MNIST and Fashion, brain
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Fig. 3 Powerful predictive algorithms fail to improve classification accuracy for several views on brain images. a–cWhole-brain gray matter information

from structural brain images (sMRI, UKBiobank) was summarized by three widely used feature selection/engineering techniques. The original tens of

thousands of gray matter voxel volumes were reduced to 784 variables for comparability to the dimensionality of MNIST and Fashion (Fig. 1), as a basis for

learning predictive patterns for classifying ten sex/age groups. Prediction accuracies achieved using univariate feature selection (relevance tests

independent for each variable) are outperformed by recursive feature elimination (accounting for conditional effects between variables), which in turn is

superseded by random projections (low-rank transformations of all original variables). None of these dimensionality-reduced brain images lead to

systematic differences between linear (red tones), kernel (green tones), and deep (blue tones) model classes. In particular, fully connected deep neural

networks did not visibly outperform the examined classical linear or kernel methods. d–f Axial, coronal, and sagittal slices of whole-brain gray matter

images (sMRI) were used for a ten-group categorization. In contrast to classifying 2D images of digits and clothing into ten categories (Fig. 2a, c),

classifying 2D images of brain anatomy into ten age/sex groups does not exhibit obvious performance differences between linear, kernel, and deep models.

These analyses again indicate scarcity of easily exploitable nonlinear structure in common sMRI brain scans for the present sample sizes. The number of

input variables in a modeling scenario is denoted by p. Error bars=mean ± 1 SD across 20 cross-validation iterations (all panels).
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images can be expected to have a substantially poorer signal-to-
noise ratio.

We wondered whether a high level of noise can provide some
explanations for the observed differences in sample complexity
between brain-imaging and machine learning reference datasets.
For this purpose, we analyzed how the sample complexity of
MNIST changes with increasing contamination of the digit
images with additive noise. We extracted the eight leading
principal components that capture most variance in the MNIST
data, as this led to the largest performance differences between
linear and nonlinear models (Supplementary Fig. 3). We added
separate sources of independent and identically distributed
Gaussian noise to each of the latent embedding variables and
used the thus noise-corrupted embedding projections as input
variables into our otherwise identical classification pipeline.

Increasing the amount of injected noise from σ= 0.5 up to σ=

5.0 showed two key effects (Figs. 6 and 7): First, intentionally
adding random noise led to gradual narrowing of the gap between
nonlinear kernel models and linear models. Second, the increasing

level of noise reduced the extent to which prediction performance
saturated with growing sample size. At σ= 5.0, the sample
complexity curves (with otherwise identical analysis workflows) of
MNIST data yielded a prediction performance curve that appeared
reminiscent of the scaling curves from brain-imaging data, in both
these aspects (Fig. 2): kernel and linear models performed
indistinguishably well and prediction performance did not visibly
saturate. These observations were also made when adding noise to
brain images when omitting or carrying out preliminary Gaussian
smoothing of the brain data (Supplementary Fig. 4). These
quantitative findings would be compatible with the view that MRI
brain images carry too much noise to exploit nonlinear relation-
ships for powerful phenotype predictions using learning algorithms
at currently available sample sizes.

Discussion
Do today’s kernel methods or DNN algorithms provide advan-
tages for phenotype predictions from brain images by drawing
on shallow-nonlinear or deep-nonlinear information? Can the
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Fig. 4 Exploitable nonlinearity is apparent in different open datasets but not in functional brain images. To complement our classification of ten age/

sex-stratified groups (Figs. 2 and 3), we decoupled the stratified prediction goal by separately examining continuous age regression and categorical sex

classification using linear (red tones), kernel (green tones), and deep (blue tones) models. In the superconductivity benchmark dataset (a), critical

temperature was predicted based on 82 physical properties like thermal conductivity, atomic radius, and atomic mass53. Here, kernel and deep models

clearly outperform linear models as measured by out-of-sample explained variance (R2, coefficient of determination). In contrast, in age prediction based

on functional brain scans (b), the best performing linear model (Ridge regression) has scaling behavior virtually identical to kernel and deep models. This

age prediction using fMRI scans is conceptually similar to previous analyses on brain maturity that reported 55% explained variance on 238 subjects aged

7–30 years70. These investigators noted “asymptotic maturation toward a predicted population mean maximum brain age of ~22 years […] The fitted

models mainly differed in their predictions for younger ages.” In our much older UKBiobank subjects (62.00 ± 7.50 years), we reach ~40% explained

variance, whereas the learning curves suggest further performance gains as more brain data become available. We identify a similar discrepancy between

machine learning and brain-imaging datasets in the binary classification setting. In even (0, 2, 4,…) vs. odd (1, 3, 5,…) digit classification on MNIST (c),

kernel and deep models diverge from linear models in classification accuracy as the sample size increases. However, the kernel and deep models are not

superior in sex classification based on fMRI data (d), where all examined models showed virtually identical prediction performance. The number of input

variables in a modeling scenario is denoted by p. IDP= image-derived phenotype. Error bars =mean ± SD across 20 cross-validation iterations (all panels).
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triumphs of kernel and deep methods in datasets from the
machine learning community be mimicked in currently available
brain-imaging population datasets?

Our study initiates principled answers to these increasingly
important questions. We have profiled the degree to which
complex nonlinear relationships can be extracted and exploited to
improve phenotype prediction accuracy over linear models in
structural and functional brain images from the UKBB. Our
careful analyses have delineated the scaling behavior of prediction
performance with increasing number of training observations for
three key classes of learning algorithms: linear, kernel, and deep
models. Importantly, we initially replicated performance gains
escalating to nonlinear and then to hierarchical nonlinear models,
as reported in performance benchmarks from machine learning.
Such improvements in phenotype prediction by taking advantage
of increasing model complexity were not consistently apparent in
the currently largest population brain-imaging cohort.

A central finding from our analyses pertains to the perfor-
mance trajectory of linear models with gradually growing sample
size (i.e., empirical sample complexity). Our prediction outcomes
from brain-imaging data and reference datasets from machine
learning differed in the way that the prediction accuracy increased
with the availability of data from additional observations. In the
machine learning datasets, we expected and indeed observed
saturation of prediction performance of linear models. This effect
was most prominent when carrying out digit classification on
MNIST by means of logistic regression and LDA: the prediction

performance increased rapidly as we grew the sample size for
model building from 100 to 1000 available images. Subsequently,
the prediction accuracy approached a plateau. We noticed hardly
any additional improvement in prediction accuracy when dou-
bling the sample size from 4000 to 8000 example images.

In contrast, in our analyses of brain scans, this step up in the
number of images available for model building yielded con-
tinuous gains in prediction performance for all examined brain-
imaging modalities and data representations. Across different
MRI protocols to measure brain tissue, we determined that
increasing the number of subjects from 4000 onward entailed
steady performance gains in prediction accuracy. Importantly, the
size of the largest currently available brain-imaging repositories
was insufficient to saturate the learning capacity of even simple
linear models. These linear models were here applied in a mul-
tivariate fashion pooling brain information from many parts of
the brain for phenotype prediction20,21. Our findings suggest that,
approaching brain scans obtained from up to 10,000 subjects, the
prediction capacity of common linear models is not yet fully
exhausted.

We deem the uncovered prediction reserve for the linear mod-
eling regime important in several ways. This scaling behavior pro-
vides new arguments for the common criticism that there may be
limited information contained in brain-imaging data like MRI that
can be usefully exploited for prediction in real-world applications21.
For instance, in the case of fMRI, blood flow and oxygenation do
not provide an immediate read out of neuronal activity, and operate
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Fig. 5 More difficult prediction goals show no evidence of exploitable nonlinear relationships in brain images. To complement the easily predictable

targets of age and sex, we reiterated our benchmarking analyses on more complex demographic indices and lifestyle factors, including IQ, socioeconomic

status, and household size. Ridge and ElasticNet regression provide a linear baseline that performed on par with more powerful kernel and deep neural

network models in the prediction of complex target variables (R2, coefficient of determination). Lasso approached comparable performance at higher

sample sizes. Moreover, the performance of linear models did not consistently saturate. Especially the sample complexity curves for predicting fluid

intelligence from fMRI and household size from sMRI show that we do not appear to be close to fully exploiting the predictive information contained in

brain MRI data. Please note that some prediction targets (fluid intelligence, household size, and income) were not available for all subjects, which is why

the n= 8000 results are missing in some cases. Our observation that powerful machine learning models so far fail to beat linear baselines on brain-

imaging data is not limited to the prediction of sex or age, but extends to more complex prediction targets. Error bars=mean ± 1 SD across 20 cross-

validation iterations (all panels).
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at coarser-grained temporal and spatial scales than actual electro-
chemical information processing in neuron populations. Some
authors have claimed that “fMRI is as distant as the galvanic skin
response or pulse rate from cognitive processes22.” Despite these

caveats, there have been a number of encouraging findings. For
instance, functional brain connectivity could be shown to provide a
neural fingerprint to make accurate predictions of interindividual
differences in cognitive performance23. Yet, such promising reports
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Fig. 6 Adding noise to MNIST images leads to scaling behavior similar to that of brain images. We extracted the eight leading principal components

from the digit images (MNIST) and added Gaussian noise to each principal component. The principal component embeddings were then used as input

variables for the models (see Supplementary Information for details) to predict the class label (i.e., digits). Increasing the amount of noise from σ= 0.5 up

to σ= 5.0 entailed two effects: first, gradual diminishing of the performance difference between nonlinear kernel models and linear models. Second, the

increasing level of noise in the images reduced the extent to which prediction performance saturated with increasing sample size. At σ= 5.0, the sample

complexity curves of MNIST data followed the same pattern as we observed on brain images (Fig. 2): kernel and linear models performed indistinguishably,

and prediction performance did not visibly saturate. Our quantitative findings invite the tentative speculation that MRI brain-imaging data may be too noisy

to allow capturing nonlinear relationships for phenotype prediction at currently available sample sizes. Error bars=mean ± 1 SD across 20 cross-validation

iterations (all panels).
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Fig. 7 Gaussian noise can lead to linearization of decision boundaries. Shows a simple nonlinear binary classification problem consisting of two mixtures

of Gaussians in 2D space with identical isotropic covariance (σ). Samples of the first class are generated by the two Gaussians marked with red crosses;

samples of the second class are generated by the three Gaussians marked with green crosses. The first row indicates the overall probability density for the

generating mixtures. The second row indicates equiprobability—i.e., f(x, y)= |Pred(x, y)− Pgreen(x, y)|—areas in which both red and green classes are

equally likely (black). The resulting black margin separating the red and green mixtures represents the ideal decision boundary. Adding Gaussian noise—

i.e., increasing σ—gradually turns the decision boundary from a highly nonlinear U-shape (σ < 2) to a linear decision boundary (σ > 2). Hence, in certain

data scenarios, high levels of Gaussian noise can linearize an irregular decision boundary.
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are controversially discussed in the neuroscience community and
have been flagged as hard to replicate by some investigators24.

Our results favor the more optimistic interpretation scenario.
We suggest that neuroscientists are not yet fully exploiting pre-
dictively useful information in brain-imaging data. Not even
simple linear models have reached plateaus of performance in our
predictions of sex, age, and other phenotypes from common MRI
measurements at present sample sizes. As such, we are likely to be
far from reaching the limits of single-subject prediction accuracy
by leveraging brain-imaging data.

Our finding of unexhausted linear modeling reserve may have
considerable ramifications. This is because systematic evaluations
of modern machine learning in brain imaging13,25,26 and a large
amount of studies applying complex nonlinear models in brain
imaging often have operated under the implicit assumption that
linear effects are already sufficiently characterized with their
prediction scaling as sample size increases. Typically, carefully
characterizing linear effects provides a solid basis to compare
against more complex nonlinear models. Many elaborate machine
learning methods can be viewed as extensions of classical linear
regression. If there is insufficient data to estimate the parameters
of a simple linear model, then it is even less likely that the
parameters of even more data-hungry nonlinear models can be
estimated with satisfaction. The recommendation emerging from
the present investigation is that regularized linear predictive
models are likely to serve as a formidable starting point27 for
single-subject prediction in larger future brain-imaging datasets
in health, and potentially also disease, for the foreseeable future.

If nonlinear intervariable relationships exist in a given dataset
and are exploitable for a specific prediction goal and available
sample size, we expect a step up in prediction performance as we
upgrade classical linear models to always more expressive models.
In a set of analyses, we confirmed the expected increase in pre-
diction performance with growing capacity to represent compli-
cated patterns in one of the most widely endorsed machine
learning benchmark datasets (digit image classification in
MNIST), as well as a more difficult companion dataset (clothing
image classification in Fashion). In particular, kernel methods
consistently outperformed commonly used linear models, with
accuracy gains of 4.03 and 1.76 p.p. on MNIST and Fashion,
respectively, on average.

Our ability to quantify the detection of nonlinear intervariable
configurations in MNIST and Fashion to distinguish ten cate-
gories of images (ten digits or types of clothing) corroborates our
application of kernel SVMs as a viable and effective tool to test for
the existence of predictive nonlinear patterns in data from the
brain-imaging domain. If information carried in these brain
measurements are related to the prediction goal in complicated
ways, an SVM with a nonlinear kernel extension is expected to
reliably outperform linear models when provided with brain
scans from enough subjects.

However, we did not observe systematic performance gains in
prediction accuracy when we examined brain images from UKBB,
although our study empirically replicated them in our analyses on
the MNIST and Fashion datasets. We found that none of the
three nonlinear kernel models clearly outperformed linear models
on structural or functional brain scans. This finding is particularly
apparent in the fMRI data widely used for computing functional
connectivity between brain regions and networks, where all
examined models perform nearly identically across the sample
sizes empirically simulated in our study. In fact, kernel and linear
methods performed virtually indistinguishably in a wide range of
phenotype prediction analyses of brain-imaging data from the
currently largest biomedical dataset—the UKBB—designed to be
approximately representative of the UK general population. A
similar conclusion on fMRI data has been drawn years ago by

Cox et al.28. These investigators noted that “in spite of many
conceivable sources of nonlinearity in neural signals, the non-
linear […] SVMs used did not significantly outperform their
linear counterparts.”

Limited gains in phenotype prediction performance from
adopting always more elaborate nonlinear models may turn out
to be a common property of several brain-imaging analysis set-
tings with sample sizes in the order of thousands of subjects. We
therefore examined different neurobiological measurements as
obtained by 3T MRI scanning lending insight into brain anatomy
and intrinsic functional coupling between brain regions and
large-scale brain networks. We further assessed different repre-
sentational windows into the brain scans, from the application of
various data representation methods to handcrafted features to
raw (one-dimensional) voxel data to feature engineering/selection
applications to whole-brain features. Moreover, we have con-
sidered different prediction goals—such as age, sex, and stratified
age/sex groups—known to explain large amounts of variability in
brain MRI data4. Nevertheless, in our analyses of canonical
machine learning datasets, but not in brain-imaging data, linear
models were reliably outperformed by all examined nonlinear
kernels. Even easy-to-predict phenotypes, such as age and sex,
failed to show reliably improved prediction performance
when escalating to current nonlinear models for sample sizes in
the order of thousands of subjects. Thus, we are enticed to
speculate that even harder to define and trickier to measure
concepts, such as IQ, social cognition capacity, and mental health
diagnoses, may seldom achieve performance gains from deploy-
ing more complex models at similar sample sizes.

Our benchmark study thus provides new quantitative evidence
bearing on an increasingly important question: how well can
demographic and lifestyle factors be derived from commonly
acquired brain scans? The fact that most analyses showed highly
comparable prediction accuracies between linear models and
models with kernel extensions in brain images allows for several
possible interpretations. On the one hand, it may be the case that
there exist few salient nonlinear relationships in the examined
types of brain data that are useful for forecasting interindividual
differences in phenotypes. In this case, linear models would be
expected to be more data-efficient and effective at extracting the
crucial patterns that are instrumental for the prediction goal. On
the other hand, our noise-inducing empirical simulations speak
more to the possibility that nonlinear configurations may truly
exist in our brain-imaging data, but cannot be easily used to serve
the examined phenotype prediction goals given the size of cur-
rently available brain-imaging repositories. The nonlinear inter-
actions in brain-imaging data could be so intricate or noisy that it
would take a substantially larger sample size to reliably capture
and leverage them in practice. In addition, the lens through which
the here charted nonlinear methods “see” general patterns in the
data may not be aligned well with the kind of nonlinearity present
in these types of brain scans (i.e., mismatch of inductive bias). As
a limitation of the present investigation, we cannot provide a
definitive answer as to which of these possibilities is more
pertinent.

As a practical consequence, the scarcity of exploitable non-
linear structure in our brain-imaging data suggests that linear
models will continue to play a central role as bread-and-butter
approach to analyzing brain scans like MRI measurements, at
least over the next years2,8,13. The additional representational
expressivity that modern nonlinear models provide comes at the
cost of a more serious risk of overfitting29 and typically added
challenges in interpretability of the modeling solutions8,30–32.
Our empirical results suggest that, for sample sizes available
today, the added costs of implementing one of the current more
complex models in computational requirements and technical
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knowledge may rarely be justified by the theoretical potential of
achieving better prediction accuracy on regular MRI brain scans.

Finally, we contemplate our findings regarding the value
of contemporary DNN algorithms for the imaging neu-
roscience community. Three trends appear to stand out in the
existing brain-imaging literature. First, it is noteworthy that there
is still a suspicious scarcity of published MRI or positron emission
tomography studies that unambiguously demonstrate substantial
gains from applying deep learning techniques. In line with this,
Vieira and colleagues25 noted that “despite the success of [deep
learning] in several scientific areas, the superiority of this analy-
tical approach in neuroimaging is yet to be demonstrated.” In
domains such as computer vision or natural language processing,
DNNs have already dramatically improved state-of-the-art pre-
diction performances11,33. However, in the application of neu-
roimaging data analysis, a similar revolution has not materialized
for most common prediction goals, despite investment of con-
siderable research efforts. However, a few successful exceptions
have shown advantages of deep learning applied to neuroimaging
data over conventional approaches, such as for the specific goals
of image segmentation18,34–37 and image registration38,39.

Second, deep learning approaches have repeatedly been
found to perform worse or indistinguishably well compared to
simpler baseline models when predicting demographic or
behavioral phenotypes13,40. For instance, Cole et al.40 showed
that deep convolutional neural networks did not outperform
Gaussian process models when predicting brain age from sMRI
brain scans in ~2000 healthy subjects. Consistently, He et al.13

found that three different DNN architectures did not outper-
form kernel regression models at predicting a variety of phe-
notypes, including age, fluid intelligence, and pairs-matching
performance from whole-brain connectivity profiles derived
from fMRI brain scans. Moreover, in the 2019 ABCD challenge,
kernel ridge regression outperformed deep learning approaches
in predicting fluid intelligence from sMRI data41. The four best
predictive modeling approaches did also not utilize deep
learning in the TADPOLE challenges to predict progression in
Alzheimer’s disease42. In general, even many reports of modest
improvements from using DNNs are controversially discussed
in the brain-imaging community.

Third, contrary to many scientists’ expectations, gains from
machine learning algorithms with the ability to represent com-
plicated nonlinear relationships in brain-imaging appear to
decrease or stagnate when incorporating data from more sources
or acquisition sites. This recurring observation suggests over-
fitting or possible publication bias. The general expectation is that
improving model building with additional training observations
should improve prediction performance of complex nonlinear
models, especially when moving from dozens or few hundreds to
thousands of subjects. In contradiction with this plausible intui-
tion, Arbabshirani et al.43 pointed out that “the reported overall
accuracy decreases with sample size in most disorders.” Specifi-
cally, in the context of deep learning, Vieira et al.25 noted that
“the pattern of difference in performance did not seem to vary
systematically with sample size.”Woo et al.21 concluded that their
“survey reveals evidence for such [publication] bias in predictive
mapping studies.” These circumstances were speculated to reflect
increasing heterogeneity of larger patient samples and inter-site
differences in the process of data acquisition. However, these
considerations also cast some healthy doubt on the high expec-
tations about embracing DNN applications to the types and
amount of brain-imaging data that exist today.

Our findings from comprehensive model profiling dovetail
with these earlier reports and observations from previous imaging
neuroscience studies. Certain DNN models consistently out-
performed all kernel models and all linear models in our analyses

of MNIST and Fashion datasets. We did not witness similar
effects in our analyses of brain-imaging data. Here, the majority
of models performed statistically indistinguishably for several
investigated imaging modalities, data representations, and pre-
dicted target phenotypes. This lack of consistency in performance
differences between model classes—in the world’s currently lar-
gest biomedical dataset—is instructive. The present null result
lends credence to reports of the potential for overfitting or pub-
lication bias in the field of brain imaging.

In carefully controlled experiments, even null results can be
evidence of absence. However, due to the high flexibility of deep
learning, it is nearly impossible to fully explore all possible com-
binations of hyperparameters and model architecture choices11.
Hyperparameter search is computationally expensive. As such,
only a well-chosen subset of candidate hyperparameter combi-
nations can reasonably be evaluated in any given empirical study.
Thus, negative results in training DNNs are often disregarded as
these outcomes leave open the possibility of insufficient hyper-
parameter tuning. A common response to a negative result in deep
learning is to challenge the range or granularity of the hyper-
parameter grid or to question the model architecture or the data
preprocessing choices. We are aware that the same objections
could be raised with regard to our own results. However, the lack
of exploitable nonlinearity for phenotype prediction also holds
based on our linear and kernel model results on MRI brain scans
alone, disregarding our deep learning applications altogether.

Previous work from the neuroimaging community13 has made
similar claims in stating that DNNs did not successfully outper-
form kernel regression models in the case of behavior prediction
from functional connectivity. Yet, their experimental analysis
setup may not be able to fully dismiss the critique of insufficient
hyperparameter optimization in deep models. In this way, our
work provides a critical addition to the existing literature, by
lending some support to the idea that kernel models for
exploiting nonlinearity might not even be expected to outperform
simpler linear models3,30. As such, hurdles in exploiting even
more sophisticated hierarchical nonlinearity may have been
anticipated before the deep learning era in brain imaging.

Although still an active area of research, two theoretical
attempts are generally evoked to explain the exceptional perfor-
mance of DNNs on a variety of applications; besides the math-
ematical proofs that deep models are able to approximate
arbitrarily complex prediction rules given sufficient training
observations (i.e., universal approximation theorem). One view
states that the hierarchical, compositional nature of deep learning
allows for a particularly parsimonious representation of some
forms of nonlinear structure embedded in data44,45. In analogy to
a world map, the globe can be seen as compositional of con-
tinents, which split into countries, which split into provinces,
which split into cities, and so forth. This hierarchical structure
may be efficiently represented by multiple nonlinear processing
layers in artificial neural network models, where individual layers
correspond to streets, districts, cities, and so forth (but see ref. 46).
The same nested structure applies to human language and thus
written text and recorded speech data.

Based on this conceptualization, one should expect DNNs to
improve upon linear and kernel models in a given application
domain only if there exists exploitable hierarchical and nonlinear
information in the data. Compared to kernel methods, DNNs
tend to have orders of magnitude more parameters and often
require a correspondingly high number of training observations.
Many recent empirical successes of deep learning are largely
attributed to the growing availability of extremely large datasets,
especially in domains building on Internet-scale data of images
and natural language, as well as the availability and affordability
of computation11. DNNs appear to violate theorems of statistical
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learning theory in that some highly overparameterized models
still generalize unusually well to new observations47. Nevertheless,
we generally expect kernel methods to require fewer training
observations to extract useful nonlinear structure in data48. In
addition, kernel methods typically have only few hyperpara-
meters. A smaller number of complexity parameters allows for a
more comprehensive search of the optimal model subspace for
the data at hand. Given their possibly more efficient empirical
hyperparameter tuning, kernel methods thus have the practical
potential to select model instances that are better suited to
identify and exploit nonlinear interactions existing in the data in
smaller sample sizes than DNNs. However, common kernel
methods do not have the ability to take advantage of complex
hierarchies in representing patterns in the data effectively. Thus,
kernel methods are, arguably, preferable when the data do not
contain exploitable hierarchical structure13.

The second commonly evoked explanation for why DNNs may
outperform earlier quantitative methods is specific to convolu-
tional DNNs. This type of network was purpose-designed speci-
fically for processing natural images. Convolutional neural
networks were loosely motivated by the organization of the visual
cortex, in that individual neurons respond to stimuli in only a
limited receptive field. These biologically inspired models exploit
the locality of information in images—the way in which neigh-
boring image pixels describe the same phenomenon. In rough
analogy to the visual cortex, convolutional neural networks
consist of a hierarchy of layers of locally sensitive feature detec-
tors. In contrast to visual cortex biology, each feature detector is
recycled—convolved—for each position in the image. This reuse
of feature detectors at different positions leads to the inbuilt bias
called translation invariance. For example, a feature detector
sensitive to a cat would work independently of where the cat is
located in an image. This inductive bias for translation invariance
(cf. introduction) introduces a useful and domain-compatible
simplification in the analysis of natural images. This is because
translation invariance is an important property of the physical
world—a cat remains a cat independently of where in space the
animal is located.

However, in contrast to MNIST, Fashion, and most other
common computer vision datasets, the brain has a naturally
meaningful topography as captured by an MRI image. The
scanned individualsʼ head position in the scanner and the sub-
sequent mapping to standard atlas space is widely established. For
a majority of the possible prediction goals, there is no need for a
translation invariant feature detector to screen the whole volume
for a particular representational phenomenon—any given brain
region is located in a predefined, biologically meaningful space.
Some authors may therefore deem it unlikely that convolutional
neural networks can invariably improve performance in pheno-
type prediction based on standard-resolution brain images in
common reference space.

Importantly, the take-home message from our present work is
not that DNNs will never be a useful tool for the brain-imaging
field. For instance, we anticipate, deep convolutional neural net-
works should become particularly useful when modeling anomalies
that can be anywhere in the brain, such as for detecting brain
tumors or quantifying abnormal white matter lesions in multiple
sclerosis35,49. Deep convolutional neural networks should also be
valuable in servicing the neuroscience community by segmenting
brain data into biologically meaningful territories, such as outlining
the anatomy of cortical laminae in ultra-high-resolution brain
scans37. As another possible avenue towards more powerful brain-
behavior predictions, new neuroimaging repositories could target
much fewer subjects than the UKBB with many more brain mea-
surements for each subject in a precision mapping approach50–52.

Nevertheless, our collective results caution that for a variety of
brain-imaging applications, there may be little hard advantage to
using the latest convolutional DNN models for answering neu-
roscientific research questions at today’s sample sizes.

Methods
Three reference datasets. The MNIST dataset15 may be the most used reference
dataset for research and development in the machine learning community. Its
properties are well understood because a large number of models have been
benchmarked on MNIST. This classical dataset provided a convenient starting
point for the present study, allowing us to reproduce and quantitatively char-
acterize different properties of machine learning algorithms in a controlled setting.
MNIST provides 70,000 images of handwritten digits (“0”–“9”) to be classified
based on the raw pixel information. Each of these grayscale images consists of 28 ×
28 pixels, i.e., 784 intensity values in total per digit image.

To quantitatively characterize the effects of more complex data patterns with a
more challenging prediction goal, we also profiled our predictive models on
Zalando’s recent Fashion dataset (“Fashion-MNIST”16). Instead of handwriting,
the dataset consists of grayscale images of fashion products. Images are to be
classified into ten types of clothing (e.g., t-shirt, sweater, and dress). MNIST has
sometimes been found to be too easy to predict for very recent machine learning
methods. The Fashion dataset was created with the intention to provide a more
difficult pattern recognition problem than MNIST, while preserving the same
number of classes (10 clothing categories), feature dimensionality (784 pixel
intensities), and sample size (70,000 images). This setup conveniently allowed for
using the same model architectures on both machine learning benchmark datasets
and facilitated comparisons of model performance scaling.

Our aim was to compare the known properties of MNIST and Fashion datasets
to common types of brain images acquired in humans (rather than an exhaustive
benchmarking of deep learning in neuroimaging in general). Such direct
juxtaposition allowed identifying settings where model behavior extends from
machine learning datasets to brain-imaging datasets. In addition, these analyses
allow developing some first intuitions of the settings where extrapolation of effects
should not be expected. UKBB imaging was a natural choice for the motivation
behind our experiments. This resource is the largest existing biomedical dataset to
date. Our data request of the UKBB brain-imaging initiative provided structural
and fMRI data for ~10,000 subjects from the same scanning site (see this
illustration to get a sense of the scale of the brain-imaging challenges: https://www.
youtube.com/watch?v=DbPNscjIC6U, UKBB application number 25163,
information on the consent procedure can be found at biobank.ctsu.ox.ac.uk/
crystal/field.cgi?id=200). We centered our analysis on a complete set of UKBB
individuals who simultaneously provided the data from both imaging modalities of
brain structure (sMRI) and function (fMRI), which resulted in a total sample size of
9300 data points with brain images.

From the UKBB release, we compiled a multifaceted set of brain-imaging data,
representing different modalities and different views on a given modality. We
derived four working datasets based on the brain images as follows: (a) intrinsic
neural activity fluctuations measured by fMRI data, with pre-computed
independent component analysis yielding 100 spatiotemporally coherent neural
activity patterns, resulting in a feature space of 1485 connectivity strengths between
cleaned “network” components estimated using partial correlation analysis. (b)
One hundred and sixty-four atlas-derived features describing structural (T1-
weighted MRI) MRI gray and white matter regions, as well as fiber tract summary
statistics. For both region volume and fiber bundle microstructure estimates, the
biologically meaningful features were provided directly by UKBB as image-derived
phenotypes4. (c) Approximately 70,000 raw T1 voxel intensities, after gray matter
masking. (d) Finally, axial, sagittal, and coronal T1 slices at the origin with
resolutions of 91 × 109, 91 × 91, and 91 × 109 voxels, respectively. Further details
on data acquisition, data preprocessing, and IDPs are provided elsewhere4.

For the sake of comparability with the MNIST and Fashion datasets from
machine learning, we generated a prediction target of 10 classes from all possible
combinations of two sexes and five age quintiles. That is, the UKBB subjects were
divided into five male subgroups with four age cut-offs between 40 and 70 years,
and five female subgroups with these four age cut-offs. As our brain-imaging
dataset provided a total of 9300 individuals with multi-modal imaging information,
at the time of our analysis, we randomly subsampled the much larger MNIST and
Fashion datasets to the same sample size in our analyses.

In addition, we used the subjectsʼ age at scanning time and the UKBB variables
fluid intelligence (field 20016), number of people in household (field 709), and
household income (field 738) as prediction targets for regression analyses.
Although we have designed brain-imaging classification problems with a similar
number of classes, features, and example observations as the MNIST and Fashion
datasets, the brain-imaging classification tasks were still expected to be much more
complex than the classification problems posed in MNIST and Fashion.

Our main reference datasets, MNIST and Fashion, provide classification tasks.
To show that our results and conclusions transfer to the regression setting, we
additionally used the “superconductivity” dataset53 as a regression benchmark
dataset (i.e., with a continuous outcome prediction goal). Here, critical temperature
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needs to be predicted as a function of 82 physical properties such as thermal
conductivity, atomic radius, and atomic mass.

Preprocessing procedures. In all analysis scenarios, the input variables were
appropriately standardized by scaling variance to one and centering to zero mean
across observations. In the special case of convolutional DNN models (cf. below),
the images were standardized on the aggregate pixel statistics to keep all pixels on
the same scale54.

For sMRI images, we applied an additional dimensionality-reduction step for
the purpose of comparability with MNIST and Fashion. To keep the model
complexity comparable between datasets (related to the input variables and thus
the number of model parameters to be fitted when building a prediction model),
sMRI data were reduced to 784 features, such as MNIST/Fashion, by three
dimensionality-reduction methods. Each of these feature screening approaches
followed a popular, but distinct approach to perform feature selection/engineering
as follows11,55: (a) univariate feature selection (F-tests) selected input variables
under the assumption of statistical independence between variables. (b) Recursive
feature elimination was used in four steps of logistic regression, each discarding the
25% least predictive input variables of the current active variable set in each step56.
This dimensionality-reduction strategy selects features under joint consideration of
the current set of input variables. (c) Gaussian random projections were used to re-
express the original input variables in a set of latent factors that rely on underlying
low-rank structure across the whole set of input variables57.

Linear models. Conceptually, three classes of models—linear, kernel, and deep—
were used to comprehensively evaluate the prediction performance on each dataset
(i.e., MNIST, Fashion, and UKBB). Each level of model complexity represents the
state of the art of a key epoch in data analysis9: regularized linear models to handle
large numbers of input variables (~1990–2000), kernel SVMs became go-to
methods for many applications in bioinformatics and beyond from late 1990s
(~2000–2010), and DNN algorithms in turn became an exponential technology
very recently (~2010–2020). Within each of these distinct model classes, we used
three commonly employed representative models, attempting to cover the range of
approaches within each particular modeling class.

For the class of linear methods, we have selected LDA, logistic regression, and
linear SVMs (without kernel extensions). LDA is a popular generative classifier that
finds linear combinations of features that best serve to separate classes among the
observations, which is closely related to other covariance-based analysis methods
like PCA58. L2-regularized logistic regression59 and linear SVMs60 are commonly
used discriminative models, and represent frequently chosen instances of
generalized linear models and linear maximum-margin classifiers, respectively.
Penalty terms for regularization constraints were tuned by grid search.

Nonlinear models. In practice, many classification problems are not linearly
separable in the original variable space. The classes to be distinguished can become
separable after nonlinear transformation of the input data into a representationally
richer high-dimensional space. Solving a prediction problem in this high-
dimensional representation tends to be computationally prohibitive and became
more tractable in practice by means of the kernel methods.

Kernel methods10 are able to efficiently map to high-dimensional input spaces
by never explicitly computing coordinates of all data points in this enriched space,
but relying on the pairwise similarities between observations instead. Many linear
methods can be extended to the nonlinear regime by applying this so-called kernel
trick. Arguably, the most popular kernelized estimators are kernel SVM variants10.
These feature embedding extensions are still pervasively used today in many
application domains. Key reasons include their well-understood theoretical
properties, robust estimation, and often competitive real-world performance. The
class of kernel approaches was, and often remains, the go-to choice to identify and
use complex nonlinear interactions to the extent that these exist in the data.

We therefore decided to evaluate kernel SVMs with three of the most
commonly used kernel types as follows: (a) the RBF kernel, which maps the data to
bell curves centered around observations, and is popular partly because of its
universal approximation capacity61. (b) The polynomial kernel, which maps to
polynomial expansions of the original variables, which made these variable
enrichments popular in text processing using natural language processing as this
input expansion explicitly takes into account combinations of features62. (c) The
sigmoidal kernel, which maps to the hyperbolic tangent—analogous to the
activation function that introduce nonlinearity in the units of DNN architectures11

—and is popular due to its relation to the shallow “perceptron” artificial neural
networks63,64. These three instances of kernelization for nonlinear enrichment of
input variable information are probably the most frequently used and the ones
implemented in the dominant software packages (e.g., scikit-learn).

Hierarchically nonlinear models. In an increasing number of application
domains, single nonlinear enlargement of the input variables have been superseded
by DNN models. As an extension of linear and kernel methods, DNNs can extract
and represent even more complex patterns in data using an automatically derived
hierarchy of nonlinear operations on the set of input variables11. This nested design
principle allows the learning architectures to pick up on progressively more

abstract intermediate representations from the data themselves—a form of auto-
matic feature engineering that was static in kernel methods11. Even though more
exotic artificial neural network architectures exist, fully connected DNNs and the
more recent convolutional DNNs are among the most often employed types.

Analogous to our analyses based on linear and kernel models, we evaluated
several common DNN architectures as follows:

(a) Fully connected neural network algorithms: the input layer has p units for
p-dimensional input data. The input layer was followed by two fully connected
hidden layers of 800 units each, with rectified linear unit (ReLU) nonlinearities and
50% dropout probability. These consecutive nonlinear operations were followed by
a final fully connected layer of 10 units, followed by a softmax output function
corresponding to predicting the probability of the target classes to be discriminated.

(b) For the small (p= 28 × 28) MNIST and Fashion images, convolutional
DNNs consisting of two sets of convolutional and max-pooling layers (with 16 and
32 filters of 3 × 3 pixels respectively, a 2 pixel pooling size, and ReLU
nonlinearities), followed by a fully connected layer of 128 units with ReLU
nonlinearities, and a final fully connected layer of 10 units with softmax output
corresponding to the target classes. Most tutorials and examples (e.g., for
TensorFlow and PyTorch) use variations of these architectural building blocks.

(c) For completeness, we implemented a third architecture in which the final
max-pooling operation is replaced by GAP—a popular approach to avoid
overfitting by reducing the total number of model parameters65,66.

For the larger (p= ~100 × ~100) brain-image slices, we inserted two extra
convolutional and max-pooling layers to achieve a sufficient reduction in
dimensionality before connecting to the prediction-generating output layer.

The parameters of the deep models were trained with the ADAM optimization
algorithm67: 160 epochs, with 500 gradient updates per epoch, a batch size of 32,
learning rate reduction by 0.5 after 3 epochs without improvement, early stopping
after 10 epochs without improvement. All deep models were trained with training-
set-dependent levels of L2 regularization as the only hyperparameter.

As part of the revision process, we also performed a comparison to a state-of-
the-art 3D convolutional neural network19, which was trained on our full set of
sMRI scans (n= 8000) using the identical cross-validation splits. We used Peng’s
computer code to apply their algorithm architecture on the here examined sMRI
images. More details of Peng’s model can be found in their paper. Briefly, this
model architecture was motivated by VGGNet, but reduced to ~3 million model
parameters. Among seven model blocks, five blocks included 3 × 3 × 3 three-
dimensional convolutional layers, batch normalization, max pooling, and ReLU
activation layers. Block 6 included a 1 × 1 × 1 3D convolutional, batch
normalization, and ReLU activation layers. Block 7 included average pooling, 50%
training dropout, fully connected layers, and softmax output layers. The
unabridged technical details and full implementation of re-using this 3D
convolutional neural network for our brain images are open to any reader at
https://github.com/maschulz/deeperbrain/tree/master/subanalyses/3d.

It is important to note that the purpose of our study was not to benchmark
highly specialized DNN architectures from the recent neuroimaging literature.
Instead, we decided to rely on established best practices to implement simple,
straightforward architectures as representatives for commonly used deep learning
approaches.

Model selection and model evaluation. To estimate the prediction accuracy that
we expect to obtain in new observations sampled from the population, cross-
validation was computed as a gold-standard to obtain out-of-sample accuracies55.
We have repeatedly split the observations, sometimes called Monte-Carlo cross-
validation, into a training set, as well as a validation set used for model selection
(i.e., hyperparameter choice) and a test set used for model evaluation with 650
observations each in the sample complexity analyses (cf. below). In the UKBB, we
considered 9300 subjects with the brain images of interest. This random splitting
was repeated 20 times in each modeling scenario. Training, validation, and test set
were drawn exactly once per training sample size and per splitting iteration, such
that the different models operated on the exact same data splits.

To carry out model selection, hyperparameters were handled in a data-
dependent way by grid search11, separately for each dataset, model, training set
size, and splitting iteration. Hyperparameter grids were set up for each model based
on best practices from the literature, and chosen empirically based on relative
prediction accuracy on the validation set. LDA has no hyperparameters to tune.
For logistic regression and SVMs, the regularization parameter C and gamma were
distanced in powers of two. Regarding hyperparameter grids for kernel models,
coefficients of polynomial and sigmoidal kernels were −1, 0, or 1, and the degree of
the polynomial kernel was set to 2. After the best hyperparameter combination in
the grid of candidate choices had been determined, the actual absolute accuracy
was assessed on the unseen test set.

Although our linear and kernel models completed hyperparameter selection
and parameter estimation in the order of minutes, DNNs took orders of magnitude
longer. For computational feasibility, DNNs were tuned only with regard to the L2
penalty on their parameters (0.0, 1e− 3, 1e− 5, 1e− 7 for convolutional DNNs
and 1e− 4, 1e− 3.75,…, 1e− 0.5 for fully connected DNNs). Every architectural
choice, such as whether or not to use dropout, filter or unit numbers per layer,
learning rates, can be viewed as a form of hyperparameter choice for the model and
could potentially be fine-tuned. A focus on tuning the regularization strength is
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most often used as a middle ground between completeness and computational
feasibility in the literature11. Please note that all candidate sets of hyperparameter
choices were evaluated exclusively on validation set data. In addition, all multi-class
analyses were carried out as one-vs.-rest schemes for comparability55. In contrast to
other authors68, our investigation was not focused on benchmarking multi-task
learning in MRI data. Several classical and successful machine learning algorithms
(e.g., SVMs) are restricted to binary classification by construction, which frustrates
attempts to cleanly separate potential prediction performance gains from
exploitable nonlinearity and gains from multi-task learning. Moreover, our model
tuning scheme was consistent with a continuous Bayesian alternative to
hyperparameter search (Supplementary Fig. 5) and robust to more detailed
diagnostic tests (Supplementary Fig. 6).

Sample complexity analysis. To satisfy the core motivation behind the present
investigation, we quantified how a given model’s prediction success scales as a
function of the sample size at current disposal. For each model and dataset, we ran
separate cross-validated prediction analyses for increasing steps of training set
sizes: n= 100, 200, 500, 1000, 2000, 4,000, and 8000. The resulting prediction
estimates provided the basis to build a so-called learning curve11,69. We will call the
resulting relation between the available number of observations and prediction
performance the empirical sample complexity of a given model on a particular
dataset and a specific prediction goal.

Such learning curves of pattern-recognition algorithms typically follow an
inverse-power law. The accuracy often increases rapidly in the beginning and then
slowly saturates11. These diagnostic assessments are typically further characterized
by a saturation point and a saturation velocity. The saturation point provides a sense
of the maximal performance that the prediction algorithm can achieve as the sample
size keeps growing infinite to always more observations. The delineation of a
model’s scaling of predictive performance is directly tied to the signal-to-noise ratio
of the given dataset and the expressive capacity of the given model11. The saturation
velocity indicates how many observations are necessary to approach maximal
prediction performance and is further tied to the complexity of the target function
to be approximated by the model in the dataset. Different scaling behavior of
linear, kernel, and deep models can delineate the extent to which exploitable
nonlinear structure is present in the data, and at what sample sizes such nonlinear
information becomes practically relevant for realizing better phenotype predictions.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
MNIST and Fashion data are freely available at http://yann.lecun.com/exdb/mnist/ and

https://github.com/zalandoresearch/fashion-mnist. The brain data used in this work was

obtained from UKBiobank under Data Access Application 25163 and (as with all

UKBiobank data) are available to any bona fide researcher upon data access application

to UKBiobank (http://www.ukbiobank.ac.uk/register-apply/).

Code availability
Source code is available at http://github.com/maschulz/deeperbrain.
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