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Summary 

Mononuclear aromatic compounds are degraded 

anaerobically through pathways that are basically dif

ferent from those used in the presence of oxygen. 

Whereas aerobic degradation destabilizes the aro

matic 7t-electron system by oxidative steps through 

oxygenase reactions, anaerobic degradation is most 

often initiated by a reductive attack. The benzoyl-CoA 

pathway is the most important metabolic route in this 

context, and a broad variety of mononuclear aromat

ics, including phenol, cresols, toluene, xylenes and 

ethylbenzene, are channelled into this pathway 

through various modification reactions. Multifunc

tional phenolic compounds are metabolized via the 

reductive resorcinol pathway, the oxidative resorcinol 

pathway with hydroxyhydroquinone as key interme

diate, and the phloroglucinol pathway. Comparison 

of the various pathways used for modification and 

degradation of aromatics in the absence of oxygen 

indicates that the strategies of breakdown of these 

compounds are largely determined by the redox 

potentials of the electron acceptors used, and by the 

overall reaction energetics. Consequently, nitrate 

reducers quite often use strategies for primary attack 

on aromatic compounds that differ from those used 

by sulfate-reducing, iron-reducing or fermenting 

bacteria. 

Introduction 

Aromatic compounds are widespread in nature as struc

tural polymers (lignin), as functional units in biochemistry 
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(amino acids, coenzymes), and as secondary metabolites 

of plants, fungi and bacteria. Aromatic compounds also 

make up a major part of petrol and are applied on a broad 

basis in chemical industry. Despite their often unusual 

structure, only few of these synthetic compounds appear 

to cause environmental problems due to incomplete 

degradation. Especially bacteria have developed an 

impressive adaptative capacity to successfully degrade 

synthetic compounds, even those which show only little 

resemblance to pre-existing templates among natural 

compounds. 

Aerobic degradation of aromatic compounds employs 

molecular oxygen for substrate activation in oxygenase 

reactions, leading to catechol, protocatechuate and gen

tisate as key intermediates. These phenolic intermediates 

are subject to ring cleavage in a further oxygenase

dependent step, either between or vicinal to the hydroxy 

groups of the aromatic ring (Vaillancourt et al., 2006) 

leading to an unsaturated, open-chain carboxylic acid 

which undergoes further degradation, typically to an 

acetyl and a succinyl derivative. 

In anoxic environments, oxygenases cannot operate, 

and anaerobic degradation of aromatics, if possible at all, 

has to take alternative, oxygen-independent paths. Mainly 

through the 1970s and 1980s (Healy and Young, 1978; 

1979), anaerobic breakdown of numerous mononuclear 

aromatics was documented in detail, leading to the iden

tification of three different key intermediates through 

which mononuclear aromatic compounds are channelled, 

i.e. benzoyl-CoA, resorcinol, and phloroglucinol (Schink 

et al., 1992; Boll et al., 2002). The common feature of 

most of these pathways is that the aromatic nucleus is 

destabilized via a reductive rather than an oxidative 

attack. The benzoyl-CoA pathway appears to be the most 

important one because a broad variety of compounds 

enters this path, including phenol, various hydroxyben

zoates, phenylacetate, aniline, cresols and alkylbenzenes 

(Schink et al., 1992; Heider and Fuchs, 1997; Harwood 

et al., 1999). 

Nonetheless, the chemical constraints of microbial 

activities in anoxic environments differ with the respective 
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electron acceptor system available. Reduction of nitrate 

(through nitrite, NO, N20) to N2 operates at an average 

standard redox potential (Eo') of +750 mV (close to that of 

02/H20 at +810 mV), reduction of Fe(OHh to Fe2
+ 

(pH 7.0) at c. +100 mV (Widdel etal., 1993), sulfate 

reduction to sulfide at Eo' = - 218 mV, and finally metha

nogenesis at - 244 mV. Thus, it appears plausible that 

also the biochemical strategies taken in anaerobic degra

dation of aromatics should differ within anoxic environ

ments, depending on the respective electron acceptor 

system in use. 

The field of anaerobic degradation of aromatic com

pounds has been discussed in several other reviews in 

the recent past (Schink et al., 2000; Boll et al., 2002; 

Gibson and Harwood, 2002; Boll and Fuchs, 2005; Boll, 

2005a,b; Heider, 2007; Fuchs, 2008; Garmona et al., 

2009). In the following overview, we want to focus on the 

different strategies taken in anaerobic microbial degra

dation of aromatic compounds by different metabolic 

types of bacteria, depending on the electron acceptor 

available for substrate oxidation. It turns out that, beyond 

the mere non-availability of oxygen, also the overall reac

tion energetics and the redox potential of the electron 

acceptor system in use have a profound influence on 

the biochemical strategies employed in degradation of 

aromatics. 

Benzoate 

Benzoate is degraded anaerobically by nitrate-reducing, 

sulfate-reducing, iron(III)-reducing and also by ferment

ing bacteria, which cooperate with methanogenic part

ners in a syntrophic manner. In all these cases, 

benzoate is first activated by a ligase enzyme to form 

benzoyl-GoA; this reaction consumes two ATP equiva

lents. In the nitrate. reducer Thauera aromatica, the sta

bility of the aromatic ring structure is overcome by a 

reduction reaction which forms cyclohexadiene carboxyl

GoA as the first identifiable product (class I benzoyl-GoA 

reductase, Fig. 1 A; Koch and colleagues 1993; Boll and 

Fuchs, 1995) and consumes further two ATP equiva

lents. This energy is required to overcome the reso

nance energy of the benzene ring to form the 

cyclohexadiene derivative; the standard redox potential 

(Eo') of the benzoyl-GoAicyclohexadiene carboxyl-GoA 

couple is at - 620 mV (SchOcke and Schink, 1999) and 

the reaction is irreversible. 

In the iron-reducing bacterium Geobacter metallire

ducens (Fig. 1 B) the reduction of benzoyl-GoA involves 

an enzyme (class II benzoyl-GoA reductase), which con

tains tungsten, zinc (Wischgoll et al., 2005; Boll, 2005b) 

and selenocysteine (Peters et al., 2004). The primary 

reaction product is cyclohexadiene carboxyl -GoA as with 

the nitrate reducers (Peters et al., 2007a; Kung et al., 
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Fig. 1. Key steps in anaerobic degradation of benzoyl-GoA. 
A. Benzoyl-GoA reduction by the nitrate-reducing bacterium 

Thauera aromatica strain K 172. 

B. Benzoyl -GoA reduction by the iron-reducing bacterium 

Geobacter metallireducens. 

2009), and the electrons for this reduction are supplied by 

a ferredoxin. The purified enzyme has no binding site for 

ATP, and ATP is not required (Fuchs, 2008; Kung et al., 

2009). The ferredoxin electrons are dismutated through a 

'bifurcation' mechanism (Herrmann et al., 2008; Thauer 

et al., 2008) to the level of benzoyl-GoA reduction 

(- 620 mV) and that of NAD(P)H (- 320 mV); the NAD(P)H 

electrons have to be pushed again to the ferredoxin level, 

probably through an Rnf-like reversed electron transport 

system. The reaction equilibrium is shifted further by a 

subsequent highly exergonic dismutation of the dienoyl

GoA product to benzoyl-GoA and monoenoyl-GoA 

(A. Schmidt, pers. comm.). Thus, the overall reaction can 

be written as: 

Benzoyl-GoA + 4e- + 4W ~ Gylohex-1-ene carboxyl GoA 

The redox potential of this reduction is at - 350 mV 

(Sch6cke and Schink, 1999). It was shown recently that 

the entire reaction chain is fully reversible (Kung et al., 

2010), thus demonstrating that it operates close to the 

thermodynamic equilibrium. 

Iron reducers gain substantially less energy in the 

further oxidation of the carbon skeleton than nitrate reduc

ers do. Thus, it appears plausible that they employ an 

enzyme system for ring de-aromatization that operates 

with far less ATP expenditure than nitrate reducers do. 

The energetiC situation of benzoate-degrading sulfate 

reducers is similar to that of iron reducers, and it is even 

worse with syntrophically fermenting benzoate degraders. 

To balance the overall energetiCS of benzoate fermenta

tion by the syntrophically fermenting Syntrophus genti-



Fig. 2. Initial steps in anaerobic degradation of ethylbenzene. 

A. Degradation by the nitrate-reducing bacterium 'Aromatoleum 

aromaticum', leading to (S)-1-phenylethanol. 

B. Degradation by the sulfate-reducing bacterium strain EbS7, 

forming phenylethyl succinate as intermediate. 

anae it was suggested earlier that it reduces benzoyl-GoA 

in a four-electron transfer step to a cyclohex-1-ene deriva

tive (SchOcke and Schink, 1999). Recent evidence 

(Peters et al., 2004; 2007b; Loffler et al., 2011) indicates 

that sulfate reducers and syntrophically fermenting ben

zoate degraders use an ATP-independent reductase 

system similar to that described above for G. metal/ire

ducens. This view is supported by the observation that 

with the syntrophically fermenting Syntrophus aciditrophi

cus the pathway from benzoyl-GoA to fatty acid deriva

tives appears to be fully reversible as well (Mouttaki et al., 

2007). 

Ethylbenzene 

For the initiating reaction in anaerobic degradation of eth

ylbenzene, two alternative strategies have been reported. 

The denitrifying bacteria 'Aromatoleum aromaticum' strain 

EbN1 (Kniemeyer and Heider, 2001) and Azoarcus sp. 

strain EB1 (Johnson et al., 2001) initiate degradation of 

ethyl benzene by hydroxylation to (S)-1-phenylethanol 

(Fig. 2A). Both enzymes contain molybdenum; the basic 

mechanism of oxygen-independent hydroxylation is prob

ably analogous to that of other hydroxylating molybdenum 

enzymes (Hille et al., 1999; Boll et al., 2005). Further 

degradation leads via oxidation to acetophenone and 

carboxylation to benzoyl acetate (Heider, 2007). In con

trast, the sulfate-reducing bacterium strain EbS7 initiates 

ethylbenzene degradation by fumarate addition, a reac

tion mechanism which was originally discovered in 

sulfate-dependent degradation of toluene (Biegert et al., 

1996; Beller and Spormann, 1997). Fumarate addition to 

ethyl benzene forms (1-phenylethyl) succinate (Fig. 2B), 

which is further degraded via rearrangement to 

4-phenylpentanoyl-GoA (Kniemeyer et al., 2003). Regard

less of the different strategies for initiating the conversion, 
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the ethyl benzene residue is channelled into the benzoyl

GoA pathway in both cases. Since the redox potential for 

the hydroxylation is rather positive (- 12 mY, Johnson and 

Spormann, 1999; or +30 mY; Kniemeyer and Heider, 

2001), this reaction would be difficult to perform by 

sulfate-reducing bacteria (Kniemeyer et al., 2003). 

Cresols 

Gresols (methyl phenols) are anaerobically degraded 

through different pathways, depending on the position of 

the hydroxy group. p-Gresol is hydroxylated by a nitrate 

reducer at the methyl group by an oxygen-independent 

reaction, possibly through a quinomethide intermediate 

as suggested earlier for an aerobic Pseudomonas strain 

(Fig. 3A; Hopper, 1978). The redox potential of this oxi

dation reaction is in the range of +100 mV (calculated 

after Thauer et al., 1977) and the reaction is therefore 

easy for a nitrate-reducing bacterium that couples this 

oxidation, e.g., with the reduction of a c-type cytochrome 

at +232 mV (Hopper et al., 1991). Recently, a p-cresol 

methylhydroxylase of G. metallireducens has been 

shown to be a peri plasmic enzyme with two haem cofac

tors and one FAD cofactor (Peters et al., 2007b; 

Johannes et al., 2008). A sulfate-reducing bacterium 

uses an entirely different pathway for p-cresol degrada

tion, which activates the substrate at the methyl group 

by fumarate addition (MOiler et al., 2001). o-Gresol can 

be carboxylated by fermenting and by nitrate-reducing 

bacteria to 3-methyl-4-hydroxybenzoate and degraded 

further analogous to phenol, producing 3-methyl 

benzoyl-GoA (Fig. 3B; Bisaillon et al., 1991; Rudolphi 

et al., 1991). In enrichment cultures with m-cresol plus 

sulfate, indications of a' carboxylation as primary activa

tion reaction were obtained (Roberts et al., 1990; 

Ramanand and Suflita, 1991), but it was never proven 

that the 4-hydroxy-2-methyl benzoic acid detected was 

really a degradation intermediate rather than a side 

product. Degradation of m-cresol by the sulfate-reducing 

bacterium Desulfobacterium cetonicum follows a 

pathway similar to sulfate-dependent p-cresol oxidation, 

including fumarate addition to the methyl group (MOiler 

et al., 1999). Activation and ~-oxidation lead to succinyl

GoA and 3-hydroxybenzoyl-GoA (Fig.3G). Thus again, 

oxidative activation reactions are used by nitrate reduc

ers whereas sulfate reducers prefer the addition of 

fumarate to the methyl group. 

Resorcinol and resorcylic acids 

There are two different pathways for anaerobic degrada

tion of resorcinol (1,3-dihydroxybenzene), which can be 

attacked either reductively or oxidatively. Reduction of 

resorcinol was found with the fermenting Clostridium 
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co-culture KN 245 (Tschech and Schink, 1985), which 

harbours a resorcinol reductase catalysing the reduction of 

resorcinol to 1,3-cyclohexadione (Fig. 4A; Kluge et al., 

1990). This intermediate is hydrolytic'ally cleaved to 

5-oxocaproic acid which is further fermented to acetate 

and butyrate. The resorcinol reductase is a homo

multimeric enzyme consisting of 49.5 kDa sUbunits 
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Fig. 4. Initial steps in anaerobic degradation of resorcinol. 

A. Resorcinol degradation by a fermenting bacterium, Clostridium 
strain KN245. . 

B. Degradation of resorcinol and a -resorcylate by the denitrifying 

bacte ria Azoarcus anaerobius and Thauera aromatica strain AR-1 

respectively. 

Fig. 3. Initial steps in anaerobic deg radation 

of cresols. 
A. Degradation of p-cresol. 

B. Degradation of o-cresol. 

C. Degradation of m-cresol. 

each with FAD as a co-factor (Schuler, 1997). The reduc

tion of resorcinol resembles the analogous reactions 

with phloroglucinol (1,3,5-trihydroxybenzene; Haddock 

and Ferry, 1989) and hydroxyhydroquinone (1,2,4-

trihydroxybenzene; Reichenbecher et al., 2000; see 

below). In all these cases, the aromatic 1t-electron 

system is sufficiently destabilized to form 1 ,3-dioxo 

tautomers and thus to allow ring reduction without prior 

activation. 

An entirely different pathway of resorcinol degradation 

was found with a nitrate reducing bacterium, Azoarcus 

anaerobius strain LuFRes1 . This pathway proceeds via 

oxidative steps (Philipp and Schink, 1998), and the 

respective genes have been identified by heterologous 

expression in the T. aromatica strains AR-1 and K172 

(Darley et al., . 2007). In the first step, resorcinol is 

hydroxylated by a membrane-bound enzyme to hydroxy

hydroquinone (1,2,4-trihydroxybenzene; HHQ) (Fig. 48). 

The resorcinol-hydroxylating enzyme is encoded by 

two genes named rhLS, which show high sequence 

identities to the subunits of pyrogallol-phloroglucinol 

transhydroxylase of Pelobacter acidigallici, a well 

studied molybdoenzyme (Reichenbecher et al., 1994; 

Messerschmidt et al., 2004). Thus, resorcinol hydroxyla

tion is likely catalysed by a molybdenum-containing 

enzyme. In the second step, HHQ is further oxidized to 

hydroxybenzoquinone by a membrane-bound HHQ

dehydrogenase. 

Hydroxybenzoquinone, the product of the oxidative 

de-aromatization, is a very reactive compound which is 

further converted in cell-free extracts to acetate, malate, 

and succinate (Darley et al., 2007). The first products 

of ring cleavage are probably aldehydes or ketones 



since such compounds could be trapped with 

2,4-dinitrophenylhydrazine (J. Hellstern, unpubl. results). 

This reaction sequence is most probably catalysed by 

enzymes which, according to the gene sequence informa

tion, show structural similarity to components of the mul

tienzyme complex pyruvate dehydrogenase. Cleavage of 

the HBQ ring through an oxidative splitting between the 

two oxo carbon atoms would be compatible with an enzy

matic system analogous to a pyruvate dehydrogenase 

complex . 

Azoarcus anaerobius strain LuFRes1 can also grow 

with the resorcylic acids 2,4-dihydroxybenzoate and 

2,6-dihydroxybenzoate, which both are prone to sponta

neous decarboxylation and are degraded most likely via 

resorcinol (Gorny et al., 1992). The third isomer 3,5-

dihydroxybenzoate is chemically stable. T. aromatica 

strain AR-1 can grow with this compound (Gallus and 

Schink, 1998) and degrades it via hydroxylation to a tri

hydroxybenzoate, which is decarboxylated to HHQ 

(Fig. 4B). HHQ-dehydrogenating activity was detected in 

membrane fractions of this strain as well (Philipp and 

Schink, 2000). 

The HHQ-pathway for degradation of aromatic com

pounds has so far been found only in nitrate-reducing 

bacteria, probably because the oxidation of resorcinol to 

HHQ requires electron acceptors of a positive redox 

potential (about +100 mV). Also the oxidation of HHQ to 

HBQ has a standard redox potential of + 180 mV (Philipp 

and Schink, 1998), which could explain why this strategy 

is used only by nitrate-reducing bacteria but - as far as we 

know - not by sulfate-reducing or fermenting bacteria. 

Trihydroxybenzenes 

Among the three trihydroxybenzene isomers, pyrogallol 

and phloroglucinol are degraded quickly by fermenting 

bacteria, and were actually the first aromatic compounds 

degraded by fermentation in pure culture (Schink and 

Pfennig, 1982). Phloroglucinol (1,3,5-trihydroybenzene) 

degradation has been studied in detail with Eubacterium 

oxidoreducens and P. acidigallici. It is reduced by an 

NADPH-dependent reductase to dihydrophloroglucinol 

(Haddock and Ferry, 1989; Brune and Schink, 1992). 

HydrolytiC ring cleavage leads to 3-hydroxy-5-

oxohexanoic acid, which is thiolytically cleaved and oxi

dized to three acetate residues (Brune and Schink, 1992). 

This pathway is easy to conceive because the 1 ,3,5-

arrangement of the three hydroxyl groups on the aromatic 

ring allows tautomerization to 1,3,5-trioxocyclohexane to 

a certain degree which favours a nucleophilic attack on 

the oxo-carbon groups. The second trihydroxybenzene 

isomer, pyrogallol (1,2,3-trihydroxybenzene), cannot be 

hydrolysed or reduced di~ectly but is isomerized to 

phloroglucinol through a transhydroxylation reaction 
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Fig. 5. Degradation of hydroxyhydroquinone. 

A. Degradation by fermenting bacteria. 

B. Degradation by nitrate-reducing bacteria. 

C. Degradation by sulfate-reducing bacteria. 

(Krumholz and Bryant, 1988; Brune and Schink, 1990). 

The reaction requires 1,2,3,5-tetrahydroxybenzene as a 

cosubstrate, and the enzyme transfers a hydroxyl group 

from the tetrahydroxybenzene to pyrogallol, thus releas

ing phloroglucinol as product and the tetrahydroxyben

zene as a co-product (Brune and Schink, 1990; 

Messerschmidt et al., 2004). The transhydroxylase 

enzyme contains an iron- sulfur centre and a molybdop

terin cofactor (Reichenbecher et al., 1996). 

The third trihydroxybenzene isomer, hydroxyhydro

quinone (HHQ; 1,2,4-trihydroxybenzene), is converted 

by the fermenting bacterium Pelobacter massiliensis 

to three acetate as well (Schnell et al., 1991; Fig. 5A), 

indicating that also this pathway leads through phloro

glucinol. The isomerization to phloroglucinol requires 

three subsequent transhydroxylation reactions analo

gous to the pyrogallol-phloroglucinol transhydroxylation 

(Brune et al., 1992). 

Alternative to the strategy of isomerization to phloroglu

cinol, we found different pathways of HHQ degradation 

with nitrate-reducing and sulfate-reducing bacteria. Oxi

dative degradation of HHQ by nitrate-reducing bacteria 

(Fig. 5B) was mentioned above in the context of nitrate

dependent degradation of resorcinol and resorcylic acids. 

A further alternative of HHQ degradation was found with 

the sulfate-reducing bacterium Desulfovibrio inopinatus. 

This bacterium metabolizes HHQ to two acetates and two 

CO2 (Fig. 5C). In the first step, HHQ is destabilized by 

reduction to dihydro-HHQ, and later acetate and a so far 
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non-identified 4-carbon derivative are formed (Reichen

becher et a/., 2000). Since D. inopinatus cannot oxidize 

acetyl residues, the final products are two acetates and 

two CO2 , and 1 mol of sulfate is reduced concomitantly to 

sulfide. Thus, the strategies of substrate exploitation by 

the three different metabolic types of anaerobic bacteria 

are mirrored in their metabolic products: The fermenting 

bacterium releases all substrate carbon as acetate, and 

recovers a net amount of 2 ATP per mol HHQ via phos

photransacetylase and acetate kinase, following one 

hydrolytic and two thiolytic cleavage reactions. The sulfate 

reducer which cannot oxidize acetate produces two 

acetates and uses the additional electrons for sulfate 

reduction to gain some additional energy through sulfate 

respiration. The nitrate reducer gains most of its energy in 

the oxidation of acetyl residues and forms only CO2 as 

terminal product. 

Phenol, hydroquinone, catechol and aniline 

Different from the cases treated so far, anaerobic degra

dation of other aromatics, such as phenol, hydroquinone 

and catechol, appears to take similar paths, no matter 

which electron acceptor is used. 

Phenol degradation has been investigated into most 

detail with the denitrifying bacterium T. aromatica strain 

K172. It is carboxylated to 4-hydroxybenzoate (Tschech 

and Fuchs, 1989) via phenylphosphate (Lack and Fuchs, 

1992), which is formed by an ATP-dependent reaction 

yielding phenylphosphate, AMP and inorganic phosphate 

(Lack and Fuchs, 1994; Schmeling et a/., 2004). The 

subsequent carboxylase forms 4-hydroxybenzoate plus 

phosphate (Schuhle and Fuchs, 2004). Thus, the car

boxylation of phenol to phenylphosphate is accomplished 

with the expenditure of two ATP equivalents. The further 

degradation of 4-hydroxybenzoate proceeds via activa

tion with coenzyme A and reductive dehydroxylation to 

benzoyl-GoA; this compound is further degraded via 

reactions described before (8011 et a/., 2002). Also other 

nitrate reducers such as Magnetospirillum spp. and 'Aro

mato/eum aromaticum' and even the iron-reducing strict 

anaerobe G. metalfireducens, although energetically far 

less favoured, all carboxylate phenol via phenyl phos

phate at the expense of two ATP equivalents (Schleinitz 

et a/., 2009; Schmeling and Fuchs, 2009). The same 

appears to be true for the sulfate-reducing Desulfobac

terium anilini (Ahn et a/., 2009). So far, the biochemistry 

of phenol carboxylation in fermenting phenol degraders 

(Gallert et a/., 1991) has not been studied; the high 

energy expenditure of phenol carboxylation and hydroxy

benzoic acid activation described above may ask for dif

ferent biochemical strategies in these bacteria. 

Hydroquinone is degraded by sulfate-reducing and fer

menting bacteria via carboxylation to gentisate. This car-

boxylation could never be studied in cell-free extracts and 

the energetization of this reaction is unknown. Gentisate 

is activated to gentisyl-CoA through a CoA-ligase reaction 

(Gorny and Schink, 1994a,b). In S. gentianae, gentisyl

GoA is reductively dehydroxylated to benzoyl-GoA which 

enters a modified benzoyl-GoA pathway (Gorny and 

Schink, 1994b). 

Degradation of catechol has been studied with 

a sulfate-reducing Desulfobacterium strain, which car

boxylates catechol to protocatechuate (Gorny and 

Schink, 1994c). Protocatechuate is activated to form 

protocatechuyl-GoA, which is subsequently dehydroxy

lated to benzoyl-GoA. A similar pathway appears to be 

used by the nitrate reducer T. aromatica (Ding et a/., 

2008). In this case, the initia.1 carboxylation proceeds via 

activation of catechol to catechylphosphate. 

Aniline is degraded anaerobically by the sulfate reducer 

D. anilini through a pathway analogous to phenol degra

dation. It is initially carboxylated to 4-aminobenzoate 

which is subsequently activated to 4-aminobenzoyl-GoA, 

with subsequent reductive deamination to benzoyl-CoA 

(Schnell and Schink, 1991). The carboxylation reaction 

has not been studied so far, and nothing is known about 

an activated intermediate to provide the necessary energy 

for the carboxylation reaction. A primary phosphorylation 

as in the case of phenol degradation (see above) appears 

unlikely, but no reliable biochemical studies have been 

performed on this system yet. Aniline degradation by 

nitrate reducers or other anaerobes has never been 

reported yet. 

Conclusions 

In this survey, we have shown that the degradation of 

aromatic compounds by anaerobic bacteria can follow 

rather different strategies with every substrate, indicating 

that anaerobic degradation of aromatic compounds is 

apparently more diverse with respect to the possible 

intermediates and reaction routes than the aerobic 

degradation of aromatics. Gomparison of fermenting, 

sulfate-reducing, and nitrate-reducing bacteria exempli

fies that the respective strategy applied in the absence 

of oxygen appears to be largely influenced by the ener

getic situation of the respective organism and the redox 

potentials of the electron acceptors it can use. In the 

benzoyl-GoA pathway, two different strategies are used 

to overcome the resonance energy barrier to destabilize 

the 1t-electron system: nitrate reducers invest a major 

amount of ATP into the reduction to the energy-rich 

cyclohexadiene derivative. Iron-reducing, sulfate

reducing and fermenting bacteria do the same without 

ATP, but shift and pull this reaction by bifurcation of 

ferredoxin electrons and subsequent dismutation to 

benzoyl-GoA and the cyciohexene derivative, which is 



energetically more feasible. Thus, the net reduction of 

benzoyl-CoA to cyclohex-1-ene carboxyl-CoA with four 

electrons may require only fractions of an ATP equiva

lent which has to be invested into a reversed electron 

transport from NAD(P)H to ferredoxin. 

In degradation of ethylbenzene and cresols, nitrate 

reducers start with oxidative steps with standard redox 

potentials around 0 to +100 mV. Electrons at these poten

tials are difficult to dispose of by sulfate reducers or other 

strict anaerobes; iron reducers are just able to handle 

such electrons as the case of p-cresol degradation shows. 

Sulfate reducers prefer the addition of fumarate to alkyl 

residues which is nearly an equilibrium reaction 

(~Go' = - 15-25 kJ mol-1
). Of course, the problem of elec

tron disposal follows then later, in the reoxidation of a 

succinyl to a fumaryl residue (Eo' = +30 mV) to complete 

the reactio'n cycle. Sulfur- and sulfate-reducing bacteria 

couple succinate oxidation with a reversed electron trans

port, which consumes a fraction of an ATP equivalent 

(Paulsen et al., 1986; Thauer, 1988). 

With resorcinol, two entirely different pathways were 

identified in fermenting versus nitrate-reducing bacteria, 

the one starting with a reductive, the other one with an 

oxidative strategy. The HHQ pathway may gain major 

importance in the transformation of phenolic compounds 

by nitrate-reducing bacteria, because they may prefer this 

pathway over the parallel pathways used by fermenting or 

sulfate-reducing bacteria. Degradation of HHQ takes 

even three different directions, isomerization to phloroglu

cinol in fermenting bacteria, primary reductive destabiliza

tion in sulfate reducers, and oxidative attack in nitrate 

reducers . 

Nonetheless, some compounds are degraded through 

similar primary activation reactions, no matter which elec

tron donor is used. This applies to phenol, hydroquinone 

and catechol, at least according to our present knowl

edge. All these substrates start (after phosphorylation of 

the respective substrate) with a carboxylation reaction , 

which is not directly coupled to redox processes and is 

therefore rather independent of the electron acceptor 

system. 

Finally, some open questions remain with respect to the 

diversity of anaerobic pathways for degradation of aro

matics. Whereas some aromatics, e.g., benzoate, can be 

degraded under any redox condition discussed, others 

are degraded only under certain conditions. It appears 

enigmatic why, e.g., aniline is degraded so far only by 

sulfate reducers although its degradation with nitrate 

should be much more feasible . The same applies to 

anaero~ic naphthalene degradation which was shown 

reliably so far only with sulfate as electron acceptor 

(Galushko et al., 1999; Musat et al., 2009). Perhaps some 

key steps in the activation of these substrates interfere 

with the high reactivity of redox intermediates of nitrate 
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reduction (nitrite, NO, N20), which preclude those reac

tions to proceed. 

One may ask why there are different strategies taken 

for anaerobic degradation of aromatic compounds in the 

anoxic world. Since fermenting bacteria, sulfate reducers 

and iron reducers are supposed to have evolved their 

metabolic capacities far before aerobes and nitrate 

reducers entered the scene, one may argue that these 

bacteria could have used the same biochemical strate

gies as their strictly anaerobic predecessors. However, 

nitrate reduction was developed probably even after 

aerobic respiration as a secondary anaerobic lifestyle, 

and both oxygen and the various redox intermediates of 

denitrification (nitrite, NO, N20) are aggressive oxidants, 

which probably preclude the employment of highly 

oxygen-sensitive, often radical-catalysed reactions that 

the strict anaerobes handle with such impressive virtu

osity. Therefore, nitrate reducers had to develop novel 

oxygen-independent strategies, at least in those cases in 

which rather delicate radical-catalysed reactions are 

used by the strict anaerobes. 
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