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Abstract

A major aim of invasion ecology is to identify characteristics of successful invaders. However, most plant groups studied in
detail (e.g. pines and acacias) have a high percentage of invasive taxa. Here we examine the global introduction history and
invasion ecology of Proteaceae—a large plant family with many taxa that have been widely disseminated by humans, but
with few known invaders. To do this we compiled a global list of species and used boosted regression tree models to assess
which factors are important in determining the status of a species (not introduced, introduced, naturalized or invasive). At
least 402 of 1674 known species (24%) have been moved by humans out of their native ranges, 58 species (14%) have
become naturalized but not invasive, and 8 species (2%) are invasive. The probability of naturalization was greatest for
species with large native ranges, low susceptibility to Phytophthora root-rot fungus, large mammal-dispersed seeds, and
with the capacity to resprout. The probability of naturalized species becoming invasive was greatest for species with large
native ranges, those used as barrier plants, tall species, species with small seeds, and serotinous species. The traits driving
invasiveness of Proteaceae were similar to those for acacias and pines. However, while some traits showed a consistent
influence at introduction, naturalization and invasion, others appear to be influential at one stage only, and some have
contrasting effects at different stages. Trait-based analyses therefore need to consider different invasion stages separately.
On their own, these observations provide little predictive power for risk assessment, but when the causative mechanisms
are understood (e.g. Phytophthora susceptibility) they provide valuable insights. As such there is considerable value in
seeking the correlates and mechanisms underlying invasions for particular taxonomic or functional groups.
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Introduction

Species introduced to areas outside their natural dispersal

ranges need to overcome various barriers to establish, persist,

proliferate and spread [1,2]. Because some invasive species present

a major threat to global biodiversity [3] it is important to

understand the full suite of drivers of invasion to mitigate species

impacts and prioritize management efforts.

Identifying traits correlated with invasiveness is a central goal in

invasion ecology, the success of which has direct application for

the prediction and prevention of future invasions [4]. Although

consistent determinants of plant invasiveness are elusive, several

general predictors have emerged [5,6,7]. Across a large range of

plant taxa invasive species tend to have short juvenile periods,

short reproduction intervals, small seed masses and large native

range sizes [8,9,10]. Such generalizations are based on associations

identified between particular traits and the position of species

along the introduction-naturalization-invasion (INI) continuum,

and where possible are linked to the underlying mechanisms

[9,11,12,13,14,15]. Such studies are important because introduced

species are influenced by different factors at each stage of the INI

continuum and these interacting factors and processes determine

the fate of introduced species [2,16]. However, taxonomic groups

vary markedly in the proportion of species that are invasive [17]

and most groups systematically studied, with respect to invasive

traits, have many invasive taxa.

Among woody plants, pines (genus Pinus L.) and Australian

acacias (sensu [18]) have been proposed as model groups for

elucidating the determinants of invasiveness [18,19]. These taxa

contain many species, have a long history of introduction to many

parts of the world, and contain many species at different stages of

the INI continuum [8,20,21,22]. We argue that Proteaceae is an

excellent group to test whether findings in these model groups are

generally applicable. Unlike for Pinus and Australian acacias,

Proteaceae species have been moved primarily for flower

production or horticulture, though like the two model groups

many species have had a long history of introduction [23]. Despite

the large number of introduced species in Proteaceae, only a few

species have become invasive, but the interest in Proteaceae for the

production of cut flowers and in other forms of horticulture is
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increasing in many parts of the world [24], and so it is important

to understand the determinants of invasiveness in the group to

prevent future invasions.

Proteaceae is a large family of flowering plants occurring

predominantly in the Southern Hemisphere with its greatest

diversity in Australia and southern Africa [25,26,27]. The family is

typically associated with nutrient-poor soils and many species have

adaptations for surviving in these conditions, such as proteoid

roots [28,29]. Species of Proteaceae should thus, arguably, be

more likely to establish in novel environments than species of pines

or acacias which are reliant on mycorrhizal or rhizobial mutualists

to facilitate growth [30]. Many Proteaceae are also serotinous,

having woody follicles that open after fires to release seeds into

low-competition environments [31], facilitating establishment and

spread.

The horticultural trade is an important pathway for introducing

invasive alien plants [32,33,34]. Therefore, one would expect

there to be several invasive Proteaceae species since many species

are cultivated as horticultural plants which contributes to a high

propagule pressure and therefore a high probability of establish-

ment. The main genera used for floriculture are Banksia L.f.,

Leucadendron R.Br., Leucospermum R.Br. and Protea L.. Species in the

genera Aulax Berg., Grevillea R.Br. ex Knight, Isopogon R.Br. ex

Knight, Mimetes Salisb., Paranomus Salisb., Serruria Salisb. and

Telopea R.Br. are used to a lesser extent [35]. In addition to

ornamental uses, species of Grevillea, Hakea Schrad. & J.C.Wendl.,

and Macadamia F.Muell are grown for food production, as barrier

plants or windbreaks, and as landscape plants.

In this study, we aimed to identify whether the factors

underlying invasion success identified for model groups like pines

and Australian acacias apply to another less frequently invasive

group of woody plants. Specifically we ask: which Proteaceae have

been introduced worldwide? what is the invasion status of these

introduced species? are there any taxonomic biases in invasion? is

there a general set of traits associated with naturalization or

invasion that are similar to findings from research on acacias and

pines, or are such traits specific to Proteaceae?

Methods

Global proteaceae inventory
We developed a global list of Proteaceae species from many

sources (listed in Table S1 and S2). We based the number of

genera in this family according to the list compiled by Weston and

Barker (80 genera and 1702 species; [25]), updated with several

recent changes, e.g. the merging of Banksia and Dryandra ([36]; see

Table S2a for reference to the complete species list). Synonyms

were taken into account during searches and name changes were

documented (See Table S2b for more details).

Status as introduced species
We conducted extensive surveys of databases, floras, published

sources and corresponded with experts (for lists of sources

consulted see Table S1) to develop lists of the status of species

along the INI continuum. Species were recorded as introduced if

they were recorded from a biogeographical region outside their

native range, naturalized if they were known to form self-replacing

populations, and invasive if they formed self-replacing populations

at considerable distances from parent plants and showed the

potential to spread over long distances (i.e..100 m in ,50 yrs for

taxa spreading by propagules; discussion in [37]). Species were

only recorded as naturalized or invasive if this was clearly

mentioned in the literature or when this could be confirmed

through communication with experts.

Taxonomic patterns
To assess how invasiveness differs across the genera of

Proteaceae, we plotted the proportion of species in each genus

that were of a particular status (introduced, naturalized, or

invasive) against the species richness of that genus. We generated a

random expectation for how the proportion of species of a

particular status should change with genus size using the

hypergeometric distribution [38]. Genera falling between the

95% confidence intervals (after correcting for multiple compari-

sons using the false detection rate test (p.adjust in R)) were

considered similar to that of a random expectation. Genera above

or below the intervals were significantly over- or underrepresented

respectively.

Selection of traits
We collated species trait information (Table 1; see Table S3 for

reference sources used) for traits that have been shown to be useful

for predicting invasiveness in previous studies [15,21,39,40,41,42].

In addition, because Proteaceae species are mainly introduced for

horticulture, we assessed whether inflorescence size and use (i.e.

purpose for species introductions) are important for promoting the

likelihood of introduction.

Analysis of traits important at various stages
To explore the relationship between the explanatory variables

(i.e. the traits listed in Table 1) and response variables (i.e. the

status of species, Table S4) we used boosted regression trees (BRT).

This is a machine learning approach which builds a multitude of

simple tree models independently and then produces one

combined model based on their predictive performance [43].

This method makes use of two powerful techniques, boosting and

regression trees [43]. The boosting component of this method

increases the predictive performance of the model and reduces

over-fitting [43]. BRT models generate an index of relative

influence of all variables; this is calculated by summing the

contribution of each variable. This meant we could assess the

importance of factors at each stage in the invasion process using

the relative influence of the explanatory variables and the amount

of variance explained by the model. All analyses were carried out

in R (version 2.15.1, R Development Core Team, 2012) using the

gbm package for BRT [44].

As few trait data are available for species that have not been

introduced, and the availability of these data are likely to be from a

biased subset of species, we only constructed two BRT models,

introduced (but not yet naturalized) vs. naturalized; and natural-

ized (but not yet invasive) vs. invasive. Before constructing the

BRT models we tested for co-linearity between the predictor

variables using the Kendall rank correlation coefficient. Since

there was no strong correlation in the data between any two

variables (max r2 = 0.64, Figure S1) we included all variables in the

analyses. BRT models were then fitted with Bernoulli error

distributions since the response variables are binary (naturalization

model: 0 = introduced (but not yet naturalized) species and

1 = naturalized species; invasion model: 0 = naturalized (but not

yet invasive) species and 1 = invasive species).

For each stage, we selected the optimum model settings based

on recent guidelines [43]. We specifically aimed to achieve a

model with at least 1000 trees with minimum predictive deviance.

Height, seed mass and range size were log transformed for the

analyses. The results are plotted as fitted functions which

represents the effect of each predictor variable on the response

variable, while taking into account the effect of all other variables

in the model [43]. The fitted BRT naturalization and invasion

models comprised the following parameter settings: a two-way

Traits Correlated to Invasiveness in Proteaceae
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interaction model (tree complexity = 2) with a slow learning rate of

0.0005 and a bag fraction of 0.5. Tree complexity limits the

number of nodes allowed for each tree in the boosting sequence to

main effects only (tree complexity = 1) or interaction of variables

(e.g. tree complexity = 2); the learning rate specifies the weight of

each successive tree added to the prediction model; and the bag

fraction parameter specifies the proportion of data selected at each

iteration which improves predictive performance [43]. The final

models comprised an optimal number of 2600 trees for the

naturalization model, while the loss function was minimized at

5500 trees for the invasion model.

We initially performed the analysis using the full dataset

comprising 14 predictor variables (Table 1). The model showed

native range size to be one of the important variables determining

naturalization (Figure S2). Since most of the naturalized species

and all invasive species are from Australia, and native range sizes

differed for the different bio-geographic regions, we decided to

restrict the rest of the analysis to Australian taxa (Table S5). This

also allowed the inclusion of the range sizes of non-introduced

species as this data is available for almost all Australian taxa (Atlas

of Living Australia’s online database, http://www.ala.org.au.,

accessed June 2012; and the Global Biodiversity Information

facility database, http://data.gbif.org, accessed June 2012). To test

the importance of range size along the INI continuum we used

independent Mann-Whitney Wilcoxon tests.

Results

At least 402 species (24%) out of the 1674 species recognized here

have been introduced outside their native ranges (Figure 1; Table

S4). Out of these 402 species introduced globally, 336 species (84%)

have not yet naturalized, 58 species (14%) are considered

naturalized, but not invasive, and 8 species (2%) are invasive.

Australia is home to 1121 Proteaceae species and at least 206 species

(18%) are known to have been introduced to other regions (Figure 1;

Table S4). Out of these 206 species, we recorded 147 Australian

species (71%) that have been introduced out of their native range

but which have not yet naturalized, 51 naturalized species (25%)

which are not yet invasive, and 8 invasive species (4%). All invasive

species and ,90% of the naturalized species are native to Australia,

and all invasive species are present in South Africa.

Of the 79 Proteaceae genera, most have a similar number of

naturalized or invasive species to that expected from a random

distribution (Figure 2), but eight genera are over-represented and

seven are under-represented in the list of introduced Proteaceae

(Figure 2A). Moreover, 29 genera contain species which have

naturalized, with three Australian genera (Macadamia, Hakea and

Grevillea) over-represented on the lists and three South African

genera (Leucadendron, Leucospermum and Protea) under-represented

(Figure 2B). Hakea is the only genus over-represented in terms of

invaders (Figure 2C).

Table 1. Traits used in the analyses for separating introduced vs. naturalized and naturalized vs. invasive Proteaceae species.

Trait Methods of measuring
No. of species in
the full dataset

No. of
Australian species Categories

Inflorescence size Horticultural trait: Small inflorescences (,100 mm in width
or length) coded 0; large inflorescences ($100 mm in width
or length) coded as 1

359 200 Categorical, binary

Use Horticultural trait: Agro-forestry, barrier plants, ornamental
plants, forestry, fuel, land rehabilitation. Species used for
tanning and medicinal purposes were not included in these
groups, since we found no confirmation during surveys that
these species were introduced specifically for these purposes

352 196 Categorical

Height (m) Maximum height reported in literature 365 (0.1–40; 2.5) 202 (0.1–40; 3) Continuous

Life-form Based on whether species were reported as trees or shrubs 369 207 Categorical

Maturity The number of years a species takes to first flowering 181 (1–9; 2) 28 (1–9; 3.5) Continuous

Flowering duration The number of months in a year that species are in flower
(calculated from the start and end of flowering months)

366 (1–12; 4) 204 (1–12; 4) Continuous

Regeneration
mechanism

Species regeneration method: re-seeder coded 1; resprouter
coded 0.

343 187 Categorical, binary

Serotiny Seeds retained on the plant coded 1, non-serotinous
(i.e. stored in the soil) coded 0

357 195 Categorical, binary

Dispersal Vector of seed dispersal: Unspecialized dispersal, wind, water,
mammals, ants and birds

309 154 Categorical

Bird pollinated Pollination primarily by birds coded 1; pollination by other
vectors coded 0

305 150 Categorical

Compatibility Self-compatible coded 1; self-incompatible coded 0 114 39 Categorical, binary

Range size (km2) Total area a species occupies in its natural range calculated
using minimum convex polygons

375 (2–3516000; 29190) 204
(131–3516000; 82360)

Continuous

Phytophthora Degree of susceptibility to root rot fungus. Resistant (Res):
unaffected species; susceptible (Sus): diseased plants with
a lower chance of death; & very susceptible (VS): plant death

120 81 Categorical

Seed mass (g) Seed weight reported in the database 197 (2.02–504.70; 19.34) 100 (2.74–501.80; 20.17) Continuous

The range and median values for continuous variables are shown in parentheses.
doi:10.1371/journal.pone.0075078.t001

Traits Correlated to Invasiveness in Proteaceae
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Transition from introduction to naturalization for
Australian Proteaceae

The BRT naturalization model accounted for 12% of the mean

total deviance (1-mean residual deviance/mean total deviance).

The six most influential variables predicting naturalization of

Australian species are native range size, dispersal vectors,

susceptibility to Phytophthora, fire regeneration mechanisms, seed

mass and the number of flowering months (Table 2; Figure S2).

Transition from naturalization to invasion for Australian
Proteaceae

The BRT invasion model accounted for 36% of the mean total

deviance. Barrier plants, plant height, native range size, seed mass,

serotiny and fire regeneration mechanisms comprised the six most

influential variables predicting invasion (Table 2; Figure S3).

Influential variables predicted from the BRT models
The source pool of 1121 Australian species encompasses a large

geographic distribution. Native range size differed significantly

across stages in the invasion continuum (Figure 3A). Introduced

species had larger native ranges than non-introduced species

(W = 55874, p,0.05, 95%CI = 259378 to 230957), naturalized

species had larger ranges than the pool of introduced species

(W = 2954, p,0.001, 95%CI = 2146446 to 225971), and,

although invasive species had the largest native ranges on average

(447688 km26136193, mean 6 SE), they did not have signifi-

cantly different native range sizes compared to naturalized species

(W = 136, p = 0.13, 95%CI = 2370985 to 61624).

Several other variables were important. The level of Phytophthora

susceptibility prominently influences naturalization success (Figure

S2). Only a few susceptible species managed to survive and

establish, and, although not significant, only resistant species

progressed to become invasive (Figure 3B).

Species response to fire differed between the stages of invasion.

Resprouters were more likely to become naturalized (Figure S2)

but re-seeders (serotinous species) had a greater chance of

becoming invasive (Figure S3).

Seed mass was an important predictor of naturalization and

invasion, but in contrasting ways. For naturalization, large seeds

(34.48 g65.79) are important (Figure S2). Conversely, small

seeded plants (23.21 g63.47) are more likely to invade (Figure

S3). Dispersal vector was also important for naturalization. Species

dispersed by mammals are more likely to naturalize and wind

dispersal also comprises an important vector for a large proportion

of species (Figure S2; Table S6).

Species that flowered for longer periods had a higher probability

of successfully naturalizing (Figure S2). The length of a long

flowering period varied from four months to all year round.

Australian Proteaceae species have been introduced worldwide

for many uses, but the pool of introduced species mainly

comprised species used as barrier plants and for ornamental

purposes (Table S4). Many introduced species have multiple uses.

For example, Banksia ericifolia is used for ornamental purposes, as a

barrier plant and for cut flowers. The BRT invasion model

predicted the use as barrier plants to be the most important trait

conferring invasiveness (Figure 3C; Figure S3).

Finally, plant height is an important correlate of invasiveness for

Proteaceae, with tall species having a significantly (W = 108,

p = 0.03) higher tendency to become invasive (Figure 3D).

Discussion

We found analysing the Proteaceae family a useful exercise for

testing emerging generalizations in plant invasion ecology.

Specifically this study revealed that: a) human usage determines

the extent to which different Proteaceae genera are introduced,

but a range of traits are associated with the different stages of the

invasion process; b) some traits (e.g. native range size) show effects

consistent with those seen in model groups; c) for some traits there

was a clear mechanism for the association of the trait to invasion

success (e.g. the level of susceptibility to Phytophthora); d) some traits

show differing responses at the different stages of invasion (e.g.

seed mass); and e) some traits are linked to the context in which a

species is planted (e.g. barrier plants), which creates greater

opportunities for invasion rather than directly affecting population

growth rate or spread rate.

Within Proteaceae, unsurprisingly, species that are useful to

humans have been introduced more often than those with less

obvious attractiveness or utility, e.g. genera with showy flowers are

overrepresented in the introduced species (e.g. Protea, Figure 2A).

Once the introduction barrier is overcome, different variables are

important for naturalization and invasion, and the genera that are

overrepresented tend to be those used for food production or as

Figure 1. The number of Proteaceae species that are introduced, naturalized or invasive. Out of the 1674 species in the family at least 402
species have been introduced worldwide. Out of the 402 species, 336 species have not yet naturalized, 58 species are naturalized but not recorded as
invasive and 8 species are invasive. In the same manner, out of the 1121 Australian species at least 206 species have been introduced, of which 147
have not yet naturalized, 51 are naturalized but not invasive and 8 are invasive. Numbers of genera in each category are shown in parentheses.
doi:10.1371/journal.pone.0075078.g001

Traits Correlated to Invasiveness in Proteaceae
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barrier plants (e.g. Hakea and Macadamia; Figure 2B). Therefore,

we see a taxonomic bias of species that are attractive and useful to

humans being introduced worldwide.

The effect of native range size is similar to that seen in many other

taxonomic groups [9,10,41]. Proteaceae species with large native

ranges are more likely to be introduced, naturalize, and become

invasive (Figure 3A). There are a few potential explanations for this.

Firstly, humans are more likely to encounter widespread species and

introduce them to other regions [45]. Secondly, wide-ranging species

are inherently more tolerant of a wider range of environmental

conditions than species with smaller ranges - increasing their

probability of becoming established in a new area [45]. Lastly,

species with larger ranges can more easily be matched to suitable

climates prior to introduction to ensure successful establishment.

The mechanistic explanation is much clearer for susceptibility to

Phytophthora. Few very susceptible species have naturalized, and only

resistant species are invasive (Figure 3B). A number of Phytophthora

species are known to affect Proteaceae, the most common being P.

cinnamomi and P. nicotianae [46]. These fungi cause a range of effects,

notably root-rot, which often kill infected plants [46]. Resistant

species therefore require more attention due to their risk of becoming

naturalized and invasive, while highly susceptible species pose a very

low invasion risk (though might be equally hard to cultivate).

For both Phytophthora susceptibility and native range size the

direction of the effect was the same at both the naturalization and

invasion stages, but this was not the case for other traits. Plant height

was only found to influence one stage (i.e. invasion success (Figure

3D)). Plant height has been shown to be correlated with invasiveness

in many studies [5]. Many Proteaceae species have wind-dispersed

seeds, tall plants can therefore disperse their seeds further. This will

increase spread rates, and therefore also invasiveness, but will not

necessarily increase the rate of successful naturalization.

In contrast, seed size influenced both naturalization and invasion,

but the direction of the effect differed. Large-seeded species had a

higher chance of becoming naturalized, whereas small-seeded plants

were more likely to invade. The success of naturalization could be

due to large seeds having greater nutrient reserves favouring

establishment. But if a species can establish, small-seeds are

beneficial for long-distance dispersal and therefore favour invasive

spread [47]. Seed size is known to be an important determinant of

invasiveness [8,48], and these findings are similar to other plant

groups where large seed size promotes the growth of introduced

species and small seed size favours successful invasions [11,49].

Similarly, we found resprouters were more likely to naturalize

while reseeders were more likely to invade. Vegetative reproduc-

tion has been shown to be a common predictor of invasiveness

[6,50,51]. Species that reproduce vegetatively are ideal for cut

flowers and hedges because they are tolerant to heavy harvesting.

These plants need to allocate resources into coppicing and thus

less into fruit production (i.e. low propagule pressure). Because of

their smaller propagule pressure resprouting plants can take longer

to spread, but they will likely be more persistent and harder to

control [52]. The observed trend could merely be an artefact of

recent introductions (i.e. resprouters require more time to progress

along the INI barriers) and is therefore only recognized as

important for naturalization in Proteaceae and not invasion. All

eight invasive species were either introduced for cut flowers, as

ornamentals, or as hedge/barrier plants. These uses require

plants to be nurtured from the time of planting which possibly

explains how reseeders overcame the initial survival barriers and

naturalized. Regeneration from seeds is an ideal mechanism for

driving invasions when recruitment events are favourable [52].

Proteaceae tend to occur in fire-prone environments. Therefore,

an investment in producing seeds rather than allocating resources

Figure 2. Taxonomic distribution of Proteaceae genera world-
wide. Patterns depict A) introduced, B) naturalized and C) invasive
species. Each point represents a genus (to avoid clutter only selected
genus names are included) with lines indicating expectations from a
hypergeometric distribution (median and 95% confidence intervals).
Genera falling between the lines are not significantly over- or
underrepresented. Genera above or below the intervals are significantly
over- or underrepresented respectively. To assess how invasiveness
differs across the genera of Proteaceae.
doi:10.1371/journal.pone.0075078.g002
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to vegetative reproduction will be more advantageous in

environments with short fire-return intervals, such as in fynbos.

Fire regimes potentially explain why introduced South African

Proteaceae (83% of which are reseeding species, Table S4) have

failed to invade Australian ecosystems (long fire-return intervals

delay recruitment) whereas introduced Australian serotinous

species have been so successful in South African fynbos (short

fire-return intervals provide favourable conditions for recruitment

and dispersal of seeds). In addition, reseeders produce higher seed

loads which increases propagule pressure and thus the likelihood

of invasion [52]. Propagule pressure, widely shown to be a major

determinant of naturalization and invasion success [53,54], is also

important for successful invasion of Proteaceae species.

Finally, one of the most striking results was that all but one of

the invasive species are used as barrier plants – although less than

a quarter (24.7%) of introduced Proteaceae are used mainly for this

purpose (Figure 3C). We believe this is due to an interaction

between the location of plantings and the occurrence of fires.

Plants in gardens and orchards (80.1% are planted for ornamental

purposes) are generally protected from fires and because many

species are serotinous, there is limited release of seeds in the

absence of fires. Other uses (e.g. species planted for forestry, fuel

and land rehabilitation) expose plants to fires, but these factors

were not predicted as important determinants of invasiveness

probably because there are just a few species introduced for these

purposes. Species used as barriers or hedges are typically planted

on the edge of farms or homesteads and in some cases adjacent to

natural vegetation. These land-use practices often increase the risk

of spread [55]. For example, Banksia ericifolia when cultivated for

flower production showed signs of naturalizing but not spreading.

However, these cultivated plantings were protected from fire.

When plantings are exposed to natural fire regimes, the species

can spread quickly and invade natural vegetation [56]. These

observations support predictions that, based on its life history, B.

ericifolia was a high-risk alien plant in the region [57,58], suggesting

there is considerable value in conducting trait-based assessments

for specific groups [59]. This example also illustrates that invasion

success is determined by several factors; species traits (e.g.

serotinous woody follicles), habitat characteristics (e.g. an area

that burns regularly) and the context in which a species is planted

(e.g. hedge plant). Therefore, a combination of traits must be taken

into account when seeking to explain invasion success or failure.

Conclusions

There are already a few serious Proteaceae invaders, but since

many species have only recently been widely planted, there are

potentially many more major invaders ‘‘waiting in the wings’’. The

traits correlated with Proteaceae introductions and invasion

highlight intriguing similarities as well as differences between

invasion stages and with the generalizations drawn from other

model groups. Therefore, to gain a better insight on the

determinants driving invasions we need to examine each invasion

stage separately since it is likely that different traits will become

important across different stages of the invasion process. On their

own, these observations provide little predictive power for risk

assessment, but when the causative mechanisms are understood

valuable management insights can be drawn. By understanding

which traits are correlated to introduction, naturalization and

Table 2. Summary of the boosted regression tree models of factors associated with naturalization (a) and invasion (b) in
Proteaceae species.

Trait Percentage contribution Range of fitted values (min, max) Description of effect

a) Naturalization

Range size 26.5 21.30, 20.63 Species with larger native ranges are more likely to
naturalize (Figure 3A)

Dispersal 18.4 21.22, 20.89 Although wind dispersal is the most common, species
that are dispersed by mammals tend to naturalize (Table
S6)

Phytophthora 16.5 21.41, 20.80 Less susceptible species are more likely to naturalize
(Figure 3B)

Regeneration mechanism 11.6 21.17, 20.96 Species that survive fires by resprouting are more likely
to naturalize

Seed mass 8.2 21.18, 20.98 Species with larger seed sizes are more likely to
naturalize

Flowering duration 6.3 21.20, 21.06 Species flowering over longer periods are more likely to
naturalize

b) Invasion

Barrier 33.4 22.79, 21.42 Barriers plants are more likely to invade (Figure 3C)

Height 22.1 22.76, 21.62 Taller species are more likely to invade (Figure 3D)

Range size 16.1 22.56, 21.92 Species with larger native ranges are more likely to
invade (Figure 3A)

Serotiny 8 22.49, 22.03 Species with canopy-stored seed banks are more likely to
invade

Seed mass 8 22.38, 22.11 Species with small seeds are more likely to invade

Regeneration mechanism 6.3 22.50, 22.08 Species that regenerate from seed are more likely to
invade

Only traits contributing at least 5% to the models are shown; traits that explained at least 15% of either model are shown in Figure 3 and Table S6. Data range includes
the minimum and maximum values from the fitted functions and is representative of effect size.
doi:10.1371/journal.pone.0075078.t002
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invasion success; what the mechanisms behind such correlations

are; and under which conditions invasions are favoured we can go

a long way to providing accurate predictive risk assessments.

Supporting Information

Figure S1 Correlation (r) tests between all predictor
variables using the global dataset.

(PDF)

Figure S2 Plots of fitted functions for each term in the
BRT naturalization model. This model only includes species

native to Australia. Fitted functions depict the effect of each

predictor variable after accounting for the effects of the other

predictors in the model. Plots are ordered by the contribution of

each variable, in parentheses.

(DOCX)

Figure S3 Plots of fitted functions for each term in the
BRT invasion model. This model only includes species native

to Australia. Plots are ordered by the contribution of each variable,

in parentheses.

(DOCX)

Table S1 The furthest point along the introduction-
naturalization-invasion continuum that Proteaceae spe-
cies are recorded as having reached using different
datasets.

(XLS)

Table S2 Reference list of species names and syno-
nyms.
(XLS)

Table S3 Seventy-four literature sources and online
databases that were used, in combination, to collate
information on the explanatory variables.
(XLS)

Table S4 Raw data of all introduced, naturalized and
invasive species and the fourteen traits that were
measured. See Table 1 for metadata.
(XLS)

Table S5 Significance of native range size (km2) in the
linear regression model fitted to species regions of
origin. Native range size differed significantly between Australia

and other regions of origin.
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Figure 3. Factors associated with introduction, naturalization, and invasion in Australian Proteaceae species. A) native range size; B)
the number of susceptible and resistant species to Phytophthora; C) use as barrier plants; and D) plant height (m). Different letters indicate groups
that differed significantly at p,0.05. For barrier plants and susceptibility to Phytophthora, Fisher’s exact test for count data was used. Only factors that
explained at least 15% of either model are shown.
doi:10.1371/journal.pone.0075078.g003
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1. Richardson D, Pyšek P, Rejmánek M, Barbour M, Panetta F, et al. (2000)

Naturalization and invasion of alien plants: concepts and definitions. Divers
Distrib 6: 93–107.
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