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Abstract – The objective of the CONFIDENCE project has been to identify, assess and communicate the
uncertainties that arise in managing and recovering from a nuclear accident. To do that, it is important to be
clear on what uncertainty means, how it arises and how we might analyse it. In fact, there are many forms of
uncertainty, some of which we can assess with current tools, but some of which are more nebulous and
difficult to deal with. Nonetheless, all need to be communicated to the emergency managers. Starting with a
review of different categories of uncertainties, and using examples from the CONFIDENCE project, this
paper discusses how the various uncertainties are manifested in nuclear emergency management. It
concludes with a simple framework for categorising and analysing them. The overall intention is that such a
framework could contribute to a broader discussion on identifying and handling uncertainties with nuclear
emergency management actors
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1 Introduction

Emergencies inevitably involve uncertainties; threatened
or actual offsite releases of radiation from nuclear facilities are
no exceptions. In the threat and early release phases, the source
term, its strength, time profile and composition are hugely
uncertain (Mathieu et al., 2018a). Meteorological and
hydrological uncertainties further confound predictions of
the dispersion of the contamination (Wellings et al., 2018).
Additional uncertainties enter into dose predictions from
external dose or via food chains, and the effectiveness of
countermeasures and their implementation including public
compliance increases the uncertainty further (Howard et al.,
2005; Nisbet et al., 2005). However, these are only some of the
uncertainties faced by emergency managers and recovery
teams in responding to a nuclear accident. The modelling and
analysis of dose, while reducing some of the uncertainties,
introduces further ones related to the model choices and the
computation (Haywood, 2010; Haywood et al., 2010). Then
there are ambiguities and value uncertainties that arise when
the managers try to contextualise emergency plans with their
imperatives to minimise the risk to “human health” or some
such objective to the specifics of the accident and those
affected (French et al., 2016). In short, many uncertainties
need to be addressed in the decision making.
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This paper builds on existing literature on uncertainty types
(French, 1997; Snowden, 2002; Walker et al., 2003), and
discusses various forms of uncertainty, how they arise and how
we might analyse them in the context of emergency
management. Examples from CONFIDENCE work are
included as to contextualise the challenges and possible
approaches to addressing different uncertainty types. We
believe that we need to be clearer in our understanding and
communication of uncertainties if we are to support emergency
managers in their tasks and decision making.

2 Uncertainties in nuclear emergency
management

The range of uncertainties that need be considered has
been in focus for decades (French, 1997), but until recently in
developing tools and procedures for nuclear emergencies,
they have not been addressed in a comprehensive sense.
Indeed, current decision procedures tend to ignore uncer-
tainties and focus on an expected or reasonable worst case
(French et al., 2016). The CONFIDENCE project had the
overriding aim of identifying, addressing and communicating
the myriad of uncertainties in a much more comprehensive
and effective way.

There are many ways of categorising uncertainty (see, e.g.,
Berkeley and Humphreys, 1982; French, 1995; Snowden,
2002), and no real agreement on how to do so. This was also
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apparent during early discussions within the CONFIDENCE
project. Some proposed that as scientists, we should use the
term more tightly, restricting it to contexts in which
probability modelling is appropriate. Recognising the many
dimensions of uncertainty, as well as the fact that emergency
managers and stakeholders use the term very widely (Perko
et al., 2019), we adopted a broader but pragmatic approach.
Drawing from existing literature on uncertainty categorisa-
tion, we briefly describe 9 types of uncertainty, recognising
that neither is the list exhaustive nor the categories mutually
exclusive.

2.1 Stochastic or aleatory uncertainty

Many uncertainties arise from randomness within many
physical behaviours or natural variations in populations and
are referred to as stochastic or aleatory uncertainties. In such
situation, we have some knowledge about the potential
outcomes, but we are not certain about which of these will be
realised. Whether the world is truly random or whether it is
so complex that the slightest variation in conditions can
dramatically affect the outcome of a deterministic behaviour
does not matter. What matters is that we cannot predict an
outcome with certainty: we need probability. There is
general agreement across the scientific and lay communities
that probability models are the appropriate means of
describing uncertain behaviours in physical systems
(Barnett, 1999). Similarly, probability is the accepted way
of modelling natural variation in a population, for instance
when estimating cancer risk from radiation exposure (Keil
and Richardson, 2018). Examples of such types of
uncertainties can be found throughout the CONFIDENCE
project, including meteorological conditions and dispersion
models, impact of soil parameters on food-chain transfer, as
well as the use of probability models within scenario based
assessments (Duranova et al., 2020a, 2020b; Beresford
et al., 2020).

2.2 Actor uncertainty

Decision makers need to consider how other actors will
behave. For instance, after a nuclear accident many
uncertainties relate to the behaviour and the compliance of
the local public. Within the CONFIDENCE project, examples
included whether or not affected communities would follow
the advice of authorities on countermeasure such as stable
iodine intake or sheltering (Turcanu et al., 2020a), as well as
consumer trust in food from affected areas (Duranova et al.,
2020a). It is possible to model human behaviour using
probability models, which assume that over a population,
variations in how people act can be described stochastically.
Simulation models, including agent-based modelling, do this.
So do many countermeasure models, perhaps forgetting the
variation and just using averages. However, humans think, and
their behaviour is not random. It is driven by their wants and
desires. There are models of human behaviour that may be
more useful than simply using a probability distribution to
predict the actions that people take: e.g. prospect theory
(Kahneman and Tversky, 1979; Mercer, 2005; Barberis, 2013).
Currently, there are developments in adversarial risk analysis,
which model interactions between individuals, allowing that
each may adopt different levels of “rationality” (Banks et al.,
2015), though such models need more investigation before
they might be applied. The mental model approach applied
within the CONFIDENCE project is another example
(Zeleznik et al., 2020). Ultimately, stakeholder engagement
processes, both in the preparedness and in the emergency and
recovery phase are essential to understand each actor’s
perspective, improve emergency and recovery plans and reach
effective decisions.
2.3 Epistemic uncertainties

Some uncertainties relate to our lack of knowledge and
have a different character to stochastic uncertainty. For
instance, we may have a number of possible source term
models but not know which represents the actual release better.
Another example relates to health effects of low radiation
doses: at present we do not have sufficient knowledge to
estimate who among the exposed population will be affected
and in which way. Such uncertainties are called epistemic.
Statistical theory, which articulates the process of scientific
inference or induction, has considered how epistemic
uncertainty should be introduced and dealt with in analyses.
Frequentist approaches, which once dominated statistical
methods, eschew full quantification of epistemic uncertainty
leaving the scientist to learn intuitively from the evidence
displayed to them in the analyses through p values, confidence
intervals and significance levels (Barnett, 1999). Bayesian
approaches, based on quantifying epistemic uncertainty
through probabilities (French and Rios Insua, 2000; Gelman
et al., 2013), now dominate statistical thinking. Probability is
taken as representing the uncertainty that an idealised rational
person beginning with an agreed body of knowledge would
hold in the light of the available empirical evidence. Bayesian
methods now provide a coherent foundation to machine
learning, decision modelling and artificial intelligence.

Sensitivity and uncertainty analysis have a role in
exploring and assessing the implications of epistemic
uncertainty for the support of specific decisions. If all plausible
explanations and models predict similar outcomes of potential
actions, any epistemic uncertainty will not be significant for
that decision (French, 2003).

Some uncertainties, particularly epistemic ones, may be
deep (French, 2015) or severe (Comes et al., 2011) in that we
know too little to assess them or build a probability model of
our uncertainty convincingly in the time available. Relevant
data may be sparse and there may be little agreement among
experts about neither what is happening nor how to model the
behaviour. The types of uncertainty prevalent during the early
phase of a nuclear emergency, especially related to the source
term, timing of release and future meteorological conditions
are well-recognised examples of epistemic uncertainties
(Mathieu et al., 2018b), but also include behavioural factors
(e.g. howmany people will self-evacuate and which routes will
they take; or will all people from the affected area have access
to iodine tablets timely) or factors impacting on long-term
consequences (deposition and dispersion, and health impacts)
of accidents are other examples epistemic uncertainties
(Duranova et al., 2020a).
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2.4 Judgemental uncertainties

In any analysis, there are many judgements to be made:
which model to use, what parameter values should be set,
among other. There may be many candidates (e.g. Galmarini
et al., 2008). For example, there are many atmospheric
dispersion models with many parameters, and little agreement
on which should be used. So choices have to be made, leading
to judgemental uncertainty. In some cases, this may be
assessed using Monte Carlo methods (Evans and Olson, 2002)
or a variety of more deterministic sensitivity analyses (Saltelli
et al., 2000a, 2000b; French, 2003; Saltelli et al., 2004). Model
intercomparison studies, such as the scenario comparisons
carried out in WP1 of the CONFIDENCE project are very
useful too, providing examples of the impact of parameter
choice on the predicted consequences during early release
phases such as the evolution of plumes and differences in
prognosis frequency maps for countermeasures in affected
regions (Hamburger et al., 2020; Duranova et al., 2020a).

2.5 Computational uncertainties

The algorithms that are used to analyse models and
evaluate their predictions are not perfect. Computer codes are
developed using approximations, iterations and enormous
numbers of arithmetical calculations based on finite mathe-
matics, inevitably introducing errors: e.g. computational
uncertainties. We may find that the computations are
intractable in feasible time, so further approximations may
be introduced to increase speed and hence computational
uncertainty. Statistical emulation may be used to fit a complex
model with a much simpler one, a sort of functional regression
(Craig et al., 2001; O’Hagan, 2006; Conti et al., 2009;
Goldstein, 2011), again increasing computational uncertainty.
Numerical analysis provides bounds on computational errors
in specific calculations; emulation algorithms provide some
assessment of their own accuracy. Recently Hennig et al.
(2015) have promoted probabilistic techniques for represent-
ing overall computational uncertainty.
2.6 Model uncertainty

However good the model and computations, the outputs
will not fit the real world perfectly: the only true model of
reality is reality itself. For instance, many radioecological
models use empirical transfer factors to estimate soil-to-plant
transfer of radionuclides and do not fully account for the
variation in root uptake caused by variation in soil properties
(Almahayni et al., 2019). Over the years, attempts have been
made to model the gap between a model and reality (Draper,
1995; Goldstein and Rougier, 2009; O’Hagan, 2012). But the
task, though informative in understanding the process of
modelling, is fruitless, creating an infinite regress of models
modelling errors of modelling error models. In some cases,
modelling error may be significant, the model only giving
broad indications behaviour. The cited papers provide some
techniques to allow for modelling error. However, in using
models for prediction, one has to rely on the user’s experience
and tests made on existing data to allow for “how good the
model is” (Kuhn, 1961).
There are considerable overlaps between judgemental,
computational andmodelling uncertainty.We did warn that our
categories were not mutually exclusive. The important point is
that modelling and analysis introduce uncertainties over and
above stochastic, actor and epistemic uncertainties.

2.7 Uncertainties resulting from ambiguity and lack of
clarity

While judgemental, computational, model, actor and even
stochastic uncertainties can be considered specific cases of
epistemic uncertainty, since they relate to a lack of knowledge,
ambiguity and lack of clarity are entirely different. They relate
to a lack of clear understanding about what is meant by some
wording or certain visual information. For instance, what is the
meaning of maximal permitted levels of radiation in food: does
this mean that food with radioactivity below these levels is safe
while food above is unsafe? (Charron et al., 2016). Other
uncertainties of this type relate to the description of a
consequence (French et al., 2017). Some researchers have
suggested modelling such uncertainty with fuzzy concepts
(Kacprzyk and Zadrozny, 2010), especially in natural language
processing. For decision-making, however, fuzzy methods are
not an appropriate way forward (French, 1995). When making
decisions, we do not need a model of some ambiguity or lack of
clarity; rather we need to think more deeply about what we
mean and resolve any lack of clarity by conscious deliberation.
A common approach to this is via facilitated workshops in
which the facilitator continually challenges participants to
explore and define much more clearly what is meant by phrases
such as “health effects” (Eden and Ackermann, 1998; O’Brian
and Dyson, 2007; French et al., 2009). Resolving ambiguity
and lack of clarity in modelling and analysis invariably
requires value judgements. Indeed, it requires value-focused
thinking Keeney (1992) in that we need to think about why we
need to undertake these. What do we want to learn from the
modelling and analysis that we are about to undertake? Work
within CONFIDENCE on different ways of calculating and
presenting radiation induced health effects provide a good
example of such ambiguities (Walsh et al., 2019), also
highlighted in discussions at the CONFIDENCE workshop of
how this might be communicated to the public (Duranova
et al., 2020a).

2.8 Value, social and ethical uncertainties

Some uncertainties relate to questions that require value
judgements in their resolution: e.g. how much to trade-off a
reduction in radiation exposure for an increase in cost, or at
what dose levels countermeasures should be initiated. These
differ from the judgmental uncertainties discussed above in
that they do not relate to the choice of parameters used in
models, but the decisions and choices made based on the
results of models and predictions. Such value uncertainties
stem mainly from value pluralism: an emergency affects
different stakeholders in different ways, and these stakeholders
may have different priorities. They are, however, important
enough to consider separately from ambiguity and lack of
clarity. Even if the science base were undisputable, the values
underlying the priorities of different stakeholders may be



Table 1. Broad categories of uncertainty types.

Stochastic or aleatory uncertainty
Actor uncertainty
Epistemic uncertainty

Knowledge of the
external world

Judgemental uncertainty
Computational uncertainty
Model uncertainty

Modelling and
analysis errors

Ambiguity and lack of clarity
Value, social and ethical Uncertainty
Depth of modelling uncertainty

Internal uncertainties
about ourselves
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conflict with each other. For instance, the authorities may set
their priority reducing the doses to population, below a certain
threshold, while for affected population the socio-economic
revitalisation of the area may be at least as important. Again,
modelling such uncertainties is unhelpful; they need to be
resolved by thoughtful deliberation, perhaps supported by
sensitivity analysis since precision is irrelevant when there is
no effect on the ultimate choice. Value uncertainties introduce
social responsibilities and ethical concerns, particularly when
acting on behalf of stakeholders. Social uncertainties in how
expert recommendations are implemented in society may refer
to public acceptance and compliance with protective actions
advice; social and economic consequences of the recommen-
dation and actions, and uncertainties in those consequences;
and the level of stakeholder and public engagement used or
planned (Turcanu et al., 2020b). Ethical uncertainties also
refer to whether members of a population feel that they have
control over or have given consent to being exposed to a
particular level of risk and the need to be sensitive to
inequalities in the distribution of risk (Oughton et al., 2004;
Tomkiv et al., 2020). Again debate and deliberation, when
possible with the engagement of affected stakeholders, are the
only useful way forward (Nisbet et al., 2010).

2.9 Uncertainty about the depth of modelling

When decisions are taken, a further uncertainty arises: are
the analyses sufficient to justify the actions being taken? Is it
requisite, e.g. “good enough”? Such uncertainty again can only
be resolved by judgement and deliberation (Phillips, 1984;
French et al., 2009); although in the emergency itself, the need
to make timely decisions may supersede this. Discussions on
the robustness of different food-chain models carried out
within CONFIDENCE (Beresford et al., 2020) illustrate the
importance of having this deliberation prior to an actual
emergency.

A related issue here is how confident the decision makers
feel when taking the decision. The analyses and results
presented to emergency managers and recovery teams are
based on long and complex model chains. Considerable
judgemental, computational and model uncertainties may have
accumulated in developing the analysis and results. Such
uncertainties, as we have indicated, are extremely difficult to
quantify and will not be fully represented in any uncertainty
bounds and plots produced. Yet they need to be communicated
to the decision makers so that they have as full as possible
understanding of the total uncertainty that they face. Within
CONFIDENCE, robustness indicators have been developed
which reflect the uncertainty level of different components and
inputs to the model chain (Nagy et al., 2020).

3 Conclusions and broader groupings

We emphasise again that the list of uncertainties above is
only one possible categorisation and that we make no claim
that it is comprehensive nor that the categories are non-
overlapping. We have, however, found it useful in discussing
how to handle uncertainties in nuclear emergency manage-
ment. In Table 1, we organise these types of uncertainty into
three groups. The first group relates to our knowledge of the
external world; it might be called scientific uncertainty. The
second relate to uncertainties and errors that are introduced by
the models and techniques that are used to analyse the risks
and possible interventions in an emergency. The third relates
to uncertainties that the emergency managers, experts and
stakeholders hold about themselves, their values and
responsibilities and how to account for these differences in
decision-making. In our experience, in the past most attention
and discussion has focused on the first and some of the third
group of uncertainties, but much less attention has been given
to the second. The CONFIDENCE project made an important
contribution to increasing reflection on, and communication
of, the many different types of uncertainty inherent within
nuclear emergency management, that to date had been poorly
communicated to the decision-making process. However, this
is only a start and there is a need for further discussions of the
different types of uncertainties, and how to handle them
within decision-making, perhaps with the aid of MCDA
within stakeholder engagement workshops (Hiete et al.,
2010). Both the categories and the groupings can act as a
check-list for the analysts to be sure that they have analysed
and communicated all major uncertainties involved in
predicting what might happen. Finally, extending the list of
uncertainties beyond the purely technical is an attempt to
adopt rather than correct the language used by actual
emergency managers, as well as to recognise the real
challenges faced by decision-makers.
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