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Abstract

We study the regularity of the flow X(t, y), which represents (in the sense of
Smirnov or as regular Lagrangian flow of Ambrosio) a solution ρ ∈ L∞(Rd+1) of
the continuity equation

∂tρ + div(ρb) = 0,

with b ∈ L1
t BVx . We prove that X is differentiable in measure in the sense of

Ambrosio–Malý, that is

X(t, y + r z)− X(t, y)

r
→
r→0

W (t, y)z in measure,

where the derivative W (t, y) is a BV function satisfying the ODE

d

dt
W (t, y) = (Db)y(dt)

J (t−, y)
W (t−, y),

where (Db)y(dt) is the disintegration of the measure
´
Db(t, ·) dt with respect to

the partition given by the trajectories X(t, y) and the Jacobian J (t, y) solves

d

dt
J (t, y) = (div b)y(dt) = Tr(Db)y(dt).

The proof of this regularity result is based on the theory of Lagrangian repre-
sentations and proper sets introduced by Bianchini and Bonicatto in [16], on the
construction of explicit approximate tubular neighborhoods of trajectories, and on
estimates that take into account the local structure of the derivative of a BV vector
field.
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1. Introduction

We consider a vector field b : R× R
d �→ R

d of class L1
t BVx , and a solution

ρ ∈ C([0, T ], L∞w (Rd)) to the continuity equation

∂tρ + div(ρb) = 0, (t, x) ∈ (0, T )× R
d . (1.1)

We assume that b and ρ are compactly supported. From the results of [16], it follows
that ρ has a unique representation is terms of characteristics, that is absolutely
continuous solutions to the ODE

d

dt
γ (t) = b(t, γ (t)), t ∈ (0, T ).

More precisely, there exists a unique flow X : [0, T ] × R
d → R

d , defined for
ρ(0, ·)Ld -almost everywhere y ∈ R

d , such that

ρ(t, ·) = X(t, ·)�(ρ(0, ·)Ld),

which means that, for every test function ϕ ∈ C∞c ((0, T )× R
d),

ˆ

Rd
ϕ(t, x)ρ(t, x) dx =

ˆ

Rd
ϕ(t, X(t, y))ρ(0, y) dy.

For the precise statement, see Theorem 3.5 of Section 3.2. The appropriate notion of
flow for ODEs driven by rough (non-Lipschitz continuous) vector fields, introduced
in the seminal papers [8,40], is the one of regular Lagrangian flow, which consists
of a measurable selection of characteristics such that X(t, ·)�Ld � CLd holds (see,
for example, [9,10] for further information).

The main result of this paper is the differentiability in measure of the flow X
(in the sense of Ambrosio–Malý, see [13]). Let (Db)y be the rescaled conditional
probabilities associated with the disintegration of Db along the trajectories of X ;
that is, if

F =
⋃

y∈F
X ((0, T ), y),

where F is a σ -compact set where ρ(0, ·) is concentrated, then (up to a negligible
(ρ(0, ·)Ld)-set)

Db�F=
ˆ

F
(Db)y(dt)Ld(dy),

or, equivalently, for every test function ϕ ∈ Cc(R
+ × R

d),
ˆ

F
ϕ(t, x)Db(dt dx) =

ˆ

F

( ˆ

R+
ϕ(t, X (t, y))(Db)y(dt)

)
Ld(dy).

Similarly, for the divergence div b, we can write

div b�F=
ˆ

F
(div b)y(dt)Ld(dy), (div b)y = Tr(Db)y .

Our main theorem is as follows:
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Theorem 1.1. (Differentiability in measure of the flow associated to a BV vector
field) The flow X : [0, T ] × R

d → R
d is differentiable in measure at any time

T > 0: that is, for every ε > 0, we have

lim
r→0

L2d
({

(y, z) ∈ R
d × Bd

1 (0) :
∣∣∣∣
X(T, y + r z)− X(T, y)

r
−W (T, y) · z

∣∣∣∣ > ε

})
= 0,

(1.2)

for some matrix valued function W (T, y). Moreover, the matrix W (t, y) satisfies
the ODE

d

dt
W (t, y) = (Db)y(dt)

J (t−, y)
W (t−, y), W (0, y) = y, (1.3)

and the Jacobian J (t, y) satisfies the ODE

d

dt
J (t, y) = (div b)y = Tr(Db)y(dt), J (0, y) = 1. (1.4)

In the statement W (t−, y), J (t−, y) are the left limits of W (·, y), J (·, y),
whose existence follows from the fact that they solve their respective ODE with
measure right-hand side and then are BV functions of time; we also notice that, in
general, W (·, y) and J (·, y) are discontinuous due to the singular measure (Db)y .
We remark that the convergence in measure expressed by formula (1.2) can be
written equivalently as

lim
r→0

ˆ

Rd

ˆ

Bd
1 (0)

1 ∧
∣∣∣∣
X(T, y + r z)− X(t, y)

r
−W (T, y) · z

∣∣∣∣ dy dz = 0.

1.1. Uniqueness and regularity of the flow associated to a rough velocity field

The study of the well-posedness of transport equations driven by rough velocity
fields started with the pioneering paper [40], where DiPerna and Lions introduced
the notion of renormalized solution and proved existence and uniqueness for (1.1)
in the case of Sobolev W 1,p vector fields (with p ∈ [1,∞]) with bounded diver-
gence (or divergence in a suitable L p space). Ambrosio extended the theory to
BV vector fields with bounded divergence in [8] (see also [32,48]). More recently,
Bianchini and Bonicatto proved a uniqueness result in the more general case of
nearly incompressible BV vector fields (see [16]), obtaining, as a consequence, a
positive answer to Bressan’s compactness conjecture (see [27]). We refer also to
the more recent [17] for a variation of the strategy in [27].

A locally integrable vector field is called nearly incompressible if there exists a
solution C−1 � ρ(t, x) � C for Ld−1-almost everywhere (t, x) ∈ (0, T )× R

d to
the continuity equation (1.1); such assumption is implied by the stronger condition
÷b ∈ L∞. We refer the reader to [9,10,37] and the references therein for a more
comprehensive overview of this area of research.
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In case b ∈ L1
t W

1,1
x and divergence-free (plus some growth assumptions), in

[46], Le Bris and Lions proved that, if X(t, y) is the unique regular Lagrangian
flow generated by b, then there exists a limit for the incremental ratio

X(t, y + εr)− X(t, y)

ε
→
ε→0

W (t, y, r) in measure,

and W (t, y, r) is a renormalized solution to

∂tW (t, y, r) = ∇yb(X(t, y))W (t, y, r), W (0, y, r) = r, Ẋ = b(t, X),

or, equivalently, any renormalized solution to

∂tϕ(t, x, w)+ b(t, x) · ∇xϕ(t, x, w)+ (∇b(t, x) · w) · ∇wϕ(t, x, w) = 0

is given by

ϕ(t, X(t, y),W (t, y, r)) = ϕ(0, y, r).

In [13], Ambrosio andMalý proved thatW (t, y, r) = W (t, y)r , and compared this
differentiability in measure to other notions of differentiability. As it turns out (see
[13, Section 5]), this property is much weaker than approximate differentiability
(see [11, Section 3.6]).

Approximate differentiability of regular Lagrangian flows generated by W 1,p

vector fields,with p > 1,wasfirst obtainedbyAmbrosio,Lecumberry andManiglia
in [12]. In [33], Crippa and De Lellis improved this result by proving a quantitative
estimate of Lusin–Lipschitz type for the flow generated by a L1

t W
1,p
x vector field

with bounded divergence, with p > 1: for every ε, one can remove a set of measure
ε and X(t = T ) on the remaining set coincideswith a Lipschitz continuous function
having Lipschitz constant eC/ε. Their approach is based on a priori estimates for
a functional measuring a “logarithmic distance” between two flows associated to
the same vector field (see also [21,24,34,44,45,49,53–55,57,58] for related results
that rely on this strategy). However, as noted in [31], this approach cannot be used
to prove a regularity result for the flow associated to a BV vector field.

A quantitative Lusin–Lipschitz regularity results for the flow X associated to
a vector field b implies lower bounds on the mixing scale of passive scalars driven
by b through the transport equation (1.1) (see [56]). In particular, extending the
result by Crippa and De Lellis to the case p = 1 would give a positive answer
to the well-known Bressan’s mixing conjecture proposed in [28] (see also [5–
7,15,29,30,35,36,41,43,47,50,51,59,62] for related results on both transport and
advection-diffusion equations).

For the special case of bounded autonomous divergence-free vector fields b ∈
BV(R2;R2)with compact support, in [23], Bonicatto andMarconi proved a Lusin–
Lipschitz regularity result and showed that the Lipschitz constant grows at most
linearly in time. In this setting, the analysis is facilitatedby theHamiltonian structure
of the vector fields (see [2–4,18,20,22]).

In the present paper, we establish the differentiability in measure for a nearly
incompressible vector field b ∈ L1

t BVx . Our approach is based on the localization
of the problem (which relies on the theory of proper sets introduced in [16]): we
exploit the local structure of the vector field b to prove differentiability in measure
locally; then, Theorem 1.1 is obtained by suitably combining the local estimates.
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1.2. Notations

For an integer d � 1, the d-dimensional Euclidean real vector space is de-
noted by R

d . We write the component of a d-dimensional point or vector as
x = (x1, . . . , xd); we also write x �i,� j,... to denote the point obtained by removing
the coordinate component i, j, . . . from x . The unit vector along the i-coordinate
is ei .

The d-dimensional ball in R
d of radius r centered at x is written as Bd

r (x).
Given a curve t �→ γ (t) ∈ R

d , we write
⋃

t

γ (t)+ Bd
R(0) =

{
(t, x) : t ∈ [0, T ], ∣∣x − γ (t)

∣∣ < R
}
.

The relative closure of the set A in the topological space B is denoted by
clos(A, B); we also write clos Awhen the ambient topological space is clear. Simi-
larly, the interior of a set A is written as int A or int(A, B). The boundary is denoted
by Fr A or Fr(A, B) or, sometimes, by the standard notation ∂A. We write A � B
if clos A is a compact set contained in B.

I is the identity matrix, the minimum between two quantities a, b is denoted by
a ∧ b, and the maximum by a ∨ b.

The d-dimensional Lebesgue measure is denoted byLd , and the k-dimensional
Hausdorff measure byHk .

If X is a set and A is a σ -algebra on X , we will call (X,A ) a measure space.
A measure μ is concentrated on a set C ⊂ X if |μ|(X\C) = 0. Let μ be a measure
on (X,A ) and A ∈ A . We define the restriction μ�A of μ to A as the measure on
A given by μ�A(E) := μ(A ∩ E) for any E ⊂ A .

The σ -algebra generated by open sets is called Borel σ -algebra and will be
denoted byB(X). Let X,Y be two metric spaces, μ a measure on (X,B(X)) and
f : X → Y a Borel function. We define the push-forward of μ with respect to f
as the measure on (Y,B(Y )) given by f�μ(B) := μ( f −1(B)) for all B ∈ B(Y ).
In particular, for a Borel map g : Y → R it holds that

ˆ

Y
g(y)( f�μ)(dy) =

ˆ

X
(g ◦ f )(x)μ(dx).

The disintegration of a measure μ with respect to a partition {Aα}α is written
as

μ =
ˆ

μα f�μ(dα),

where f is the partition function, that is f −1(α) = Aα (see [42, Section 452]).
The Lebesgue spaces L p(X, μ; Y ) are defined in the usual way; if X = R

d and
μ = Ld , we just write L p(Rd; Y ); if, moreover, Y = R, we write L p(Rd). We
use the standard notation for Sobolev spaces. We denote by [Mloc(X)]m and by
[M(X)]m , respectively, the space of R

m-valued Radon measures and the space of
R
m-valued finite Radon measures. The space [M(X)]m is a Banach space with the

norm ‖μ‖M := |μ|(X), where |μ| is the total variation of the measure μ. In the
casem = 1, we denote the set of signed Radon measures, positive Radon measures,
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and finite Radon measures byM(X),M+(X), andMb(X) respectively (see [11,
Chapter 1]).

We say that b ∈ L1(
;Rm) has bounded variation in 
, and we write b ∈
BV(
;Rm) if Db is representable by a R

m×d -valued measure with finite total
variation in 
. Endowed with the norm ‖b‖BV(
) =

´


|u| dx + |Db|(
) =

‖b‖L1(
)+‖Db‖M(
), the space BV(
;Rm) is a Banach space (see [11, Chapter
3]). We will use the notation

Db = Dcontb+ Djumpb = Da.c.b+ Dcantorb+ Djumpb

for the continuous, jump, absolutely continuous, and Cantor parts of Db.
Given a Banach space X , by L p([0, T ]; X) we denote the Lebesgue-Bochner

space of strongly measurable maps f : [0, T ] → X with ‖ f ‖pL p([0,T ];X)
:=

´ T
0 ‖ f ‖pX dt < ∞. For the sake of brevity, we often write L p

t Xx to indicate
L p([0, T ]; X). We add the subscript loc to denote properties which holds locally.

For a vector field b : R
d+1 → R

d , sometimes we also use the notation b(t) :
R
d → R

d ; moreover, for the vector field b ∈ L1
t BVx , we write Db to denote the

measure
ˆ

ϕ(t, x)Db(dt dx) =
ˆ [ ˆ

ϕ(t, x)Db(t, dx)
]
dt,

while Db(t) denotes the space derivative of b at time t . Similar notations are used
for |Db|.

We write f (x±) to denote the right/left limit of f in x (when such limit exists,
for example in case f ∈ BV(R), see [11]).

If A is a Borel set of positive measure, we write the average integral of f ∈
L1(μ) as

 

A
f (x)μ(dx) = 1

μ(A)

ˆ

A
f (x)μ(dx).

We say that γ : (t−, t+) �→ R
d is a characteristic of the vector field b :

R× R
d → R

d if it is an absolutely continuous function such that

d

dt
γ (t) = b(t, γ (t)) for L1-almost everywhere t ∈ (t−, t+). (1.5)

If the ODE above generates a flow, we use the notation X(t, s, y) for the solution to
(1.5) with initial data y at time s. The graph of X in a time interval (s, t) is denoted
by X((t, s), y), and when we restrict the curve to some open set 
 we will use the
notation X(t, t−(y), y), with y ∈ ∂
 and X (t−(y), t−(y), y) = y; the exit time
is denoted by t+(y). For the sets (perturbed proper sets) that we are considering
in this paper, all quantities (entering/exiting time t±(y) with respect to the regular
Lagrangian flow X) are well defined (cf. the discussion in [16]).

If K is a compact set of initial data, we use the notation K to denote the union
of its trajectories,

K =
⋃

y∈K
X((t+(y), t−(y)), y).
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2. Structure of the Paper

The proof of our main result is quite technical. In this section, we outline its
structure and the reason of the technicalities. Moreover, we provide a sketch of
the proof under the stronger assumption b ∈ L1

t W
1,1
x (which makes the argument

much easier) and show where the difficulties for the BV case lie.

In Section 3, we present some preliminary results that are needed in the proof of
our main theorem. In Section 3.1, we collect some technical results on the existence
of open sets 
 ⊂ [0, T ] × R

d with particularly nice properties for the vector field
(1, b), the so-called proper sets, introduced in [16]. Roughly speaking, these are
open sets where the problem can be meaningfully localized. Since the argument of
the proof is based on the analysis of local properties of the vector field b, the tool
of proper sets plays a fundamental role. The main results are Lemma 3.2, which
states that there are sufficiently many of them, and Theorem 3.4, which allows us
to perturb them so that there are finitely many “time-flat” boundary regions where
the majority of the flow of (1, b) is entering or leaving. The motivation for this
construction is that it is much easier to state the differentiability of the flow X when
it is parameterized by its crossing point y on a flat surface; we acknowledge that it
is also possible to avoid this, but we decided to use perturbed proper sets since this
tool has already been established in the literature (see [16]).

Section 3.2 deals with Smirnov’s decomposition of (1, b), which is stated in
Theorem 3.5: that is, thanks to the superposition principle, which has been estab-
lished by Ambrosio in [8] (see also [60] in the context of a general normal 1-current
and [61]), every non-negative (possibly measure-valued) solution to the PDE (1.1)
can be written as a superposition of solutions obtained via propagation along the
characteristics of b (such representation is also called a Lagrangian representation,
see [16, Section 5]). Theorem 3.5 is used to construct L∞ solutions ρ satisfying
(1.1) by considering the curves γa of the decomposition which start from 0 and
arrive to T , and such that the Jacobian of the transformation γa(0) �→ γa(t) is
uniformly bounded.

In Section 3.3, we observe that our main theorem also gives the differentiability
in measure of the Smirnov decomposition of (1, b): by a countable partition of the
set of curves {γa}a used in the Smirnov decomposition, one can find countably
many L∞-solutions ρiLd+1, i ∈ N, of (1.1) defined for t ∈ (t−i , t+i ) such that

∑

i∈N

ρi � 1 Ld+1-almost everywhere,

and apply Theorem 1.1 to this set of trajectories. Finally, in this section, we also
select the curves forwhichwe address the differentiability in order to have a uniform
control of the rescaled conditional probabilities (Db)y and (div b)y and to have
y �→ X(·, y) continuous in C0. The precise statement is in Proposition 3.6, which
is an application of Lusin’s theorem.
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2.1. Case b ∈ L1
t W

1,1
x

We sketch the proof of differentiability in measure for the case b ∈ L1
t W

1,1
x .

Under this assumption, we can directly estimate

lim
r↘0

ˆ

Rd

ˆ

Bd
1 (0)

1 ∧
∣∣∣∣
X(T, y + r z)− X(t, y)

r
−W (T, y)z

∣∣∣∣ρ(0, y) dz dy,

where W (t, y) solves the ODE

d

dt
W (t, y) = ∇b(t, X(t, y))W (t, y). (2.1)

Here we make use of the fact that the rescaled conditional probabilities (Db)y are
given by ∇b(t, X(t, y))J (t, y) due to the change of variable (t, x) �→ (t, X(t, y))
and Fubini’s theorem. We remark that, by Fubini’s theorem, we also have
∇b(t, X(t, y)) ∈ L1(0, T ), so that the ODE (6.1) is well-defined.

Being that W (t, y)z is a Lipschitz continuous function in z and an absolutely
continuous (a.c.) function in t , we can use the following estimate for Lipschitz
semigroups (see [25, Lemma 4] or [26, Theorem 2.9], applied here as in Corol-
lary A.2): for ρ(0, ·)Ld -almost everywhere y ∈ R

d , if t+(y, r z) ∈ [0, T ] is the
exit time of the trajectory X(t, y + r z) from the set

⋃

t

X(t, y)+ Bd
R(0) =

{
(t, x) : t ∈ [0, T ], ∣∣x − X(t, y)

∣∣ < R
}
,

then
∣∣∣X(t+(y, r z), y + r z)− X(t+(y, r z), y)−W (t+(y, r z), y)r z

∣∣∣

� e
´ T
0 |Db|(t,X(t,y)) dt

ˆ t+(y,r z)

0

∣∣b(t, X(t, y + r z))− b(t, X(t, y))

−∇b(t, X(t, y))
(
X(t, y + r z)− X(t, y)

)∣∣∣ dt.

(2.2)

This estimate follows from integrating of the infinitesimal error at time t > 0

b(t, X(t, y + r z))− b(t, X(t, y))−∇b(t, X(t, y))
(
X(t, y + r z)− X(t, y)

)
,

along the trajectory, and multiplying it by the Lipschitz constant e
´ T
0 |Db|(t,X(t,y)) dt

of the semigroup generated by (2.1). Since we are considering trajectories
{X(·, y)}y∈K such that

ˆ T

0
|∇b|(t, X(t, y)) dt � M, for all y ∈ K (2.3)

for some fixed M (this is part of the statement of Proposition 3.6, see discussion
above), we have the exponential factor in (2.2) is bounded by eM and the Jacobian
is controlled by

J (t, y) ∈ [1/C̄, C̄], (2.4)
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and then, integrating for all (y, z) ∈ K × Bd
1 (0), we obtain the bound

ˆ

K

ˆ

Bd
1 (0)

∣∣∣X(t+(y, r z), y + r z)− X(t+(y, r z), y)−W (t+(y, r z), y)r z
∣∣∣ dz dy

�
(2.2)

eM
ˆ

K

ˆ

Bd
1 (0)

ˆ t+(y,r z)

0

∣∣b(t, X(t, y + r z))− b(t, X(t, y))

−∇b(t, X(t, y))
(
X(t, y + r z)− X(t, y)

)∣∣∣ dt dz dy

�
(2.4)

Cd

(
R

r

)d

C̄2eM
ˆ

K

 

Bd
R(0)

ˆ T

0

∣∣b(t, x + w)− b(t, x)− ∇b(t, x)w
∣∣∣ dt dw dx

� Cd

(
R

r

)d+1
C̄2eMr

ˆ

Rd

 

Bd
R(0)

ˆ T

0

∣∣∇b(t, x + w)−∇b(t, x)∣∣ dt dw dx,

(2.5)

where Cd is a dimensional constant and

K =
⋃

y∈K
X([0, T ], y).

The last integral in (2.5) converges to 0 due to the continuity of translations in L1,
and this shows that the set of trajectories starting in Bd

r (y) and exiting the cylinder
X(t, y)+ Bd

R(0) with

R = 2eMr (2.6)

can be made arbitrarily small and, for the remaining ones, the double integral
converges to 0: more precisely, since by (2.1) and (2.3) one has |W (t, y)| � eM ,
then, by Chebyshev’s inequality,

L2d
({

(y, z) ∈ K × Bd
1 (0) :

∣∣∣X(t+(y, r z), y + r z)− X(t+(y, r z), y)
∣∣∣ � 2eMr

})

� L2d
({

(y, z) ∈ K × Bd
1 (0) :

∣∣∣X(t+(y, r z), y + r z)− X(t+(y, r z), y)

−W (t+(y, r z), y)
∣∣∣ � eMr

})

� 1

eMr

ˆ

K

ˆ

Bd
1 (0)

∣∣∣X(t+(y, r z), y + r z)− X(t+(y, r z), y)

−W (t+(y, r z), y)r z
∣∣∣ dz dy

� Cd
(
2eM

)d+1
C̄2

ˆ

Rd

 

Bd
2eM r

(0)

ˆ T

0

∣∣∇b(t, x + w)− ∇b(t, x)∣∣ dt dw dx →
r→0

0.

This yields the convergence in measure.
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2.2. Case b ∈ L1
t BVx .

The argument above also highlights what is the key difficulty of the BV case:
the dependence R

d � y �→ (Db)y ∈ M(R) is only weakly continuous, and then
(2.5) gives only a bound in terms of the constant |Db|y(0, T ) � M , and the last
integral of (2.5) does not converge to 0. The present paper deals precisely with how
to remove this difficulty.

The following diagram represents a general scheme of the proof and outlines
its various components as well as the relations among them:

Section 5: the general
argument on how to
prove differentiability in
measure from a local
approximate version of
differentiability in
measure.

Section 7: the local
differentiability for the
singular part Dsingb.

Section 8: the
construction of a
suitable partition into
proper sets by piecing
together the estimates
for the singular and a.c.
parts of Db.

Section 6: the local
differentiability for the
a.c. Da.c.b.

Section 4: the analysis of
the linearized ODE (1.3)
with useful estimates.

The sections are almost independent from each other, and their arrangement in the
paper could be altered. We first study the ODE (Section 4) to obtain some useful
bounds on W (t, y), and then present the local-to-global argument (Section 5), in
order to have a clear picture of the local estimates one has to prove. As one can
imagine, the most complex part of the paper is the one concerning local estimates
for the singular part Dsingb.

In the remaining part of this introduction, we present a detailed description of
these core sections. According to the notations of Section 1.2, we write (t−, t+) for
the interval of time a trajectory spends inside an open set 
 (and (t−i (y), t+i (y)) if
the trajectory is X(t, y) and the open set is 
i ). When we are considering a single
proper set 
, trajectories are parameterized by their entrance point y, and are
considered distinct after reentering. This is in accord with the property of proper
sets that the restriction of a Lagrangian representation to a proper set is still a
Lagrangian representation (see [16, Section 5]).
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In Section 4, we study the ODE (1.3) for the Jacobian matrix W (t, y), that is

d

dt
W (t, y) = (Db)y(dt)

J (t−, y)
W (t−, y), W (0, y) = y,

Since this is not the classical setting, we provide a constructive proof of the well-
posedness theorem (Theorem 4.1) based on the convergence of an Euler scheme.
An interesting observation (Remark 4.3) is that if we require the ODE for W to be
time invertible, that is that W (T − t, y) satisfies

d

dt
W (T − t, y) = − (Db)y(dt)

J (t+, y)
W (T − t+, y), W (0, y) = y,

the rank-one property of the vector field is needed (see [1]). This remark could be
used in the case of 2d-autonomous vector fields to have another proof of Alberti’s
rank-one theorem, because in this case the well-posedness does not require rank-
one (see [4]), although clearly there are much simpler proof of rank-one property
in the literature (see, for example, [38,39,52]).

The core of the proof is in the next four sections: in order, first, we present
the argument to prove the differentiability in measure if there exists a partition
into perturbed proper sets where suitable properties are satisfied (Section 5), then
these properties are proved for the a.c. part of the derivative (Section 6) and for the
singular part (Section 7), and finally the partition is constructed (Section 8).

The local-to-global argument is in Section 5: we prove that the existence of
a partition into (perturbed) proper sets where approximate local differentiability
assumptions are satisfied implies a global result on differentiability in measure. In
the beginning (page 18), the key assumptions on the partition into perturbed proper
sets are stated, which can be explained as follows: apart from the smallness of a
measureμP controlling the total error (Assumption (1)) and the fact that the trajec-
tories considered for the differentiability are sufficiently close (Assumptions (2) and
(3)), the key assumption is that there exists an approximate flow X̃(r, y; t, z)which
approximates both the perturbation X(t, y+ z)− X(t, y), when the latter quantity
hasR

d -norm smaller than r , and also the derivativeW (t, y)z (Assumptions (5) and
(7)). Moreover, the approximate flow X̃ has a controlled growth, as in Assump-
tion (6). The reason why we need to introduce this approximate flow X̃ is because
y �→ (Db)y is only weakly continuous, as we explained before in Section 2.1, so

we choose a flow X̃ that solves an ODE for which the convergence of ˙̃X to (Db)y
is in mass and not in the weak sense (or, equivalently, their difference in norm is
small). This comparison works only at the initial and final time (as shown also in
Assumption (7), where the comparison is directly between X(t, y + z) − X(t, y)
and W (t, y)z). There are some additional technical assumptions, in particular that
the estimates are valid only after removing some trajectories (Assumption (4)),
which is also the reason why we obtain only differentiability in measure (instead
of approximate differentiability).

The argument to pass from these local assumptions to a global differentiability
result is presented in Proposition 5.1. First, we remove all trajectories which do
not satisfy the previous estimates in some of the sets 
i of the partition: these
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are controlled by the measure μP , which is assumed to be small (Step 1–3 of the
proof). Second, we control the perturbations X(t, y + z) − X(t, y) which do not
remain close to 0 (that is X(t, y + z) not close to X(t, y)) for all t ∈ [0, T ] (Step
5-11 of the proof): the idea here is that, in order to exit the ball Bd

R(X(t, y)), a
trajectory has first to growth much more of the approximate flow X̃(R, y; t, z), and
a suitable choice of the initial distance r and of R yields a control on these runaway
trajectories (similar to (2.6)). For the remaining ones, a suitable comparison with
the linearized flowW (t, y)z holds. This yields the differentiability inmeasure (Step
12-13).

Sections 6 and 7 show that it is possible to construct proper sets where the local
estimates required at the beginning of Section 5 are satisfied. The analysis of the
absolutely continuous part is roughly the same as the one sketched in Section 2.1
for the b ∈ L1

t W
1,1
x case; as an additional error term, the mass of the singular

part Dsingb inside the proper set also appears. The analysis of the singular part is
instead the core of the paper, and requires many technical estimates. The first step
is to consider a small neighborhood of a Lebesgue point of the singular part of the
derivative (Section 7.1). This allows us to write Db � ξ̄ ⊗ η̄|Db| (by Alberti’s
rank-one theorem), and to use the latter measure to build an approximate vector

field whose flow is X̃ . The definition of the approximate vector field b̃
H

(r, y; t, w)

is in Section 7.2, and its explicit expression is in formula (7.5), namely assuming
η̄ = e1 and ξ̄ = ξ̄1e1 + ξ̄2e2,

b̃
H

(r, y; t, w) = ξ̄

Ld−1(QH (r))

{
−|Db|(t, X(t, y)+ [w1, 0] × QH (r)

)
if w1 � 0,

|Db|(t, X(t, y)+ [0, w1] × QH (r)
)

if w1 > 0,

where

QH (r) = [−Hr, Hr ] × Bd−2
r (0).

The choice of H follows the ideas of [8,16]. The parameter H needs to be suffi-
ciently large, while r � 1 in order to be inside the neighborhood of the Lebesgue

points of Dsingb. How close b̃
H
is to Db is estimated in Proposition 7.1. The choice

of b̃
H

is based on the following considerations. First, the derivative depends es-

sentially on first coordinate w1, so that b̃
H

depends only on the first coordinate.

Secondly, the solution X̃
H
to the ODE (7.11), that is

d

dt
X̃

H
1 (r, y; t, z) = b̃

H
1

(
r, y; t, X̃H

1 (r, y; t, z)),
has the property that the flux across the cylinder

⋃

t

X(t, y)+ [0, X̃H
1 (r, y; t, z1)] × QH (r),

is small (see Lemma 7.5). An important consequence of the control of the flux
across the boundary is that the quantity
ˆ t+(y)

t−(y)
b̃
H (

r, y; t, X̃H
1 (r, y; t, z1)

)
dt is close in mass to (Db)y(t−(y), t+(y)),
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where (t−(y), t+(y)) is the interval of time where the trajectory is inside the per-
turbed proper set 
. This is the main difference in using the approximate flow

X̃
H

(r, y; t, z) instead of the linearized flow W (t, y)z. The precise estimate is in
Proposition 7.7, Section 7.4.3.

The next step is to prove that the approximate vector field X̃
H

(r, y; t, w) is
close to the perturbation X(t, y + w)− X(t, y). The components not along ξ̄ are
the easiest ones to estimate (see Lemma 7.9). The component along η̄ = e1 is

analyzed in two steps. First we assume that ξ̄1 = η̄ · ξ̄ � 0, that is the flow X̃
H
is a

contraction (Lemma 7.2). In this case, the analysis relies again on the estimate (2.2)
and it is done in Proposition 7.3. The case η̄ · ξ̄ > 0 is studied in Section 7.8. The
key observation here is that the control on the Jacobian J ∈ [1/C̄, C̄] implies that
we can change coordinates from the initial point to the end point, so that reversing
time we come back to the contractive case: the key point is Point (4), page 45. The
main difficulty concerns the components along the direction of ξ̄ perpendicular to

η̄ (which we choose to be ξ̄ · e2 = ξ̄2): in this case, the approximate flow X̃
H
2

is not Lipschitz continuous, so that we cannot use estimate (2.2). The idea is to

exploit the fact that X̃
H

(r, y; t, x) depends only on w1, and we have a control on

X1(t, y + w) − X1(t, y) − X̃
H
1 (r, y; t, z): this allows to prove that removing a

small set of trajectories we still have that X2(t, y+ z)− X2(t, y)− X̃
H
2 (r, y; t, z)

is small (see Proposition 7.11). The final step is to show how X̃
H

(r, y; t, z) is close
to the W (t, y)z; this is analyzed in Section 7.6: first, we can replace (Db)y with
ξ̄ ⊗ η̄|Db|y with a controlled error; then, the explicit solution to the ODE

˙̃W (t, y) = ξ̄ ⊗ η̄|Db|y(dt) W̃ (t−, y)

J̃ (t−, y)
, where J̃ (t, y) = det(W̃ (t, y)),

is

W̃ (t, y) = I+ ξ̄ ⊗ η̄|Db|y(t−(y), t),

which turns out to be close to the perturbed flow X̃
H
. This concludes the estimates,

which are collected in Sections 7.7 and 7.8 .
Finally, Section 8 concerns the construction of a disjoint partition of [0, T ]×R

d

into perturbed proper sets as required in Section 5 and is based on the analysis of
the absolutely continuous part (Section 6) and the singular part (Section 7) of the
derivative Db. First, we cover a large portion of the singular part Dsingb with
disjoint perturbed proper sets so that the required estimates holds, and then the
remaining part. This is done in Theorem 8.1 and Proposition 8.2. The proof of our
main theorem is thus concluded.

In Appendix A, we give a proof of the estimate (2.2) in our setting.

3. Preliminaries and Setting of the Problem

In this section we collect some preliminary information on proper sets and the
decomposition of a BV vector field; then we present the setting of our problem.
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3.1. Proper sets

The analysis of open sets 
 such that b�
 maintains suitable regularity prop-
erties has been carried out in [16]. In this section, we present the main definitions
and results.

Definition 3.1. (Proper sets) An open bounded set 
 ⊂ R
d+1 is called ρ(1, b)-

proper if the following properties hold.

(1) ∂
 has finiteHd -measure and it can be written as

∂
 =
⋃

i∈N

Ui ∪ N ,

where N is a closed set with Hd(N ) = 0 and {Ui }i∈N are countably many
C1-hypersurfaces such that the following holds: for every (t, x) ∈ Ui , there
exists a ball Bd+1

r (t, x) such that ∂
 ∩ Bd+1
r (t, x) ⊂ Ui .

(2) If the functions ϕδ,± are given by

ϕδ,+(t, x) := max

{
1− dist((t, x),
)

δ
, 0

}
,

ϕδ,−(t, x) := min

{
dist((t, x), R

d+1\
)

δ
, 1

}
, (3.1)

then

lim
δ↘0

|ρ(1, b) · ∇ϕδ,±|Ld+1 = |ρ(1, b) · n|Hd�∂
, weakly-star in Mb(R
d+1).

where n is the outer normal to ∂
.

The condition (2) above can be seen as the requirement that the distributional
flow is actually crossing the boundary, for example there are no regions where the
flow is 0 but the trajectories hit the boundary: it requires indeed that the flux seen
by the functions ϕδ,± (which sees the trajectories next to ∂
) converges in norm
to the distributional flux. See [16] for a deeper discussion.

It is possible to prove that balls Br (t, x) and cylinders

Cylr,Lt,x =
{
(τ, y) : |τ − t | < Lr,

∣∣y − x − b(t, x)(τ − t)
∣∣ < r

}

are proper sets for almost everywhere r > 0 (see [16, Lemma 4.10]).

Lemma 3.2. For every (t, x) consider the family of balls {Bd+1
r (t, x)}r>0 and the

family of cylinders {Cylr,Lt,x }r>0 with L > 0 fixed. Then for L1-almost everywhere

r > 0 the ball Bd+1
r (t, x) and the cylinder Cylr,Lt,x are proper sets.

The finite union of proper balls and proper cylinders is proper. More generally,

it can be showed that, if 
1,
2 are proper sets with Hd
(
Fr

(
∂
1 ∩ ∂
2, ∂
1 ∪

∂
2
)) = 0, then their union
1∪
2 is a proper set (see [16, Proposition 4.11]) and

their difference
1\
2 is also a proper set. We prove the last claim in the following
lemma:
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Lemma 3.3. Let 
1, 
2 be proper sets such that

Hd
(
Fr

(
∂
1 ∩ ∂
2, ∂
1 ∪ ∂
2

)) = 0.

Then 
1\
2 is a proper set.

Proof of Lemma 3.3. If 
 is proper, so is int(Rd+1\
) since the conditions to be
proper are given on ∂
 = ∂(int(Rd+1\
)). Thus, by writing


1\
2 = int
(
R
d+1\( int(Rd+1\
1) ∪
2

))
, (3.2)

the result follows from [16, Proposition 4.11].

Furthermore, it is possible consider a perturbation
ε of a proper set
 in order
to have a large part of the inflow and outflow of ρ(1, b) across ∂
ε occurring on
finitely many time-constant hyperplanes, that is regions of the boundary ∂
ε such
that their outer normal is n = (±1, 0). We shall call S1 the union of the hyperplanes
of inflow and S2 the union of the hyperplanes of outflow. More precisely, the
following theorem holds true (see [16, Theorem 4.18]):

Theorem 3.4. (Perturbed proper sets) Let 
 ⊂ R
d+1 be a ρ(1, b)-proper set. For

every ε > 0 there exists a proper set 
ε such that

(1) 
 ⊂ 
ε ⊂ 
+ Bd+1
ε (0);

(2) if

∂
ε
1 =

{
(t, x) ∈ ∂
ε : n = (1, 0) in a neighborhood of (t, x)

}
,

then ∂
ε
1 is made of Lebesgue points of ρ(1, b) and

∣∣∣∣
ˆ

∂
ε
1

ρHd −
ˆ

∂


ρ[(1, b) · n]+Hd
∣∣∣∣ < ε;

(3) if

∂
ε
2 =

{
(t, x) ∈ ∂
ε : n = (−1, 0) in a neighborhood of (t, x)

}
,

then ∂
ε
2 is made of Lebesgue points of ρ(1, b) and

∣∣∣∣
ˆ

∂
ε
2

ρHd −
ˆ

∂


ρ[(1, b) · n]−Hd
∣∣∣∣ < ε.

Here, we denote by ρ[(1, b) · n]± the positive/negative part of the trace ρ(1, b) · n
respectively.
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3.2. Decomposition of BV vector fields

The following result summarizes [16, Main Theorem 1, p. 18] applied to the
PDE

divt,x (1, b) = ÷b(t) = μ,

μ ∈ M(Rd+1). The validity of the assumptions for proving [16, Main Theorem
1, pag. 18] are shown in [16, Theorem 11.6, p. 128; Theorem 8.9, p. 105; Main
Theorem 2, p. 18].

Theorem 3.5. (Partition via characteristics) Let b ∈ L1
t BVx be a compactly sup-

ported vector field in Bd+1
R (0). Then there exists a Borel map f : Rd+1 → A ⊂ R,

named a partition via characteristics of (1, b), such that

(1) f−1(a) is the graph of some characteristic γa : Ia → R
d of b, where Ia is an

open interval of R;
(2) f disintegrates Ld+1: for any a, there exists a positive function wa ∈ L1(Ia)

such that

Ld+1�Bd+1
R (0)=

ˆ
(I, γa)�

(
wa(dt)L1(dt)

)
m(da), m = f�Ld+1�Bd+1

R (0),

(3.3)

and wa�Ia> 0;
(3) when wa is extended to 0 outside Ia, then it is a BV function,

Dtwa = μa, μa ∈M(R), (3.4)

and

div b =
ˆ

(I, γa)�μam(da), | div b| =
ˆ

(I, γa)�|μa|m(da); (3.5)

(4) if ρ ∈ L∞((0, T )× R
d) satisfies the PDE

÷t,x
(
ρ(1, b)

) = ν,

where ν ∈M(Rd+1), then f is a partition via characteristics as above also for
ρ(1, b) (with the requirement ρ(t, γa(t))wa�Ia> 0), that is the same results as
above are true replacing

Dtwa = μa with Dt (ρ(t, γa(t))wa(t)) = νa

and μ, μa with ν, νa in (3.5).

A possible choice of f is to take countably many sets {t = ti }i∈N and define
f(γ ) = γ (ti ). This choice is more suitable when one wants to construct a flux from
the partition via characteristics. Indeed, with this choice, the function wa becomes
naturally the Jacobian J (t, y), where γ (ti ) = y and (3.4) is the equation for the
evolution of J .
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A corollary of formula (3.3) is that, given a proper set 
, we can estimate the
flux across its boundary as follows. Let γ−1a (
) = ∪i Ii,a, Ii,a ⊂ Ia open intervals
with a �→ Ii,a Borel. By [16, Proposition 5.11] the Lagrangian representation of
ρ(1, b)�
 iswritten as the sumof theLagrangian representationofρ(1, b) restricted
to the sets 
i = ∪a(I, γa)(Ii,a). Since γa�Ii,a is not crossing the boundary of 
,
we have

divt,x
(
ρ(1, b)�
i

) =
ˆ

Dt
(
ρ(t, γa(t))wa(t)χIi,a(t)

)
m(da)

=
ˆ

Dt
(
ρ(t, γa(t))wa(t)

)
χIi,a(t)m(da)

+
ˆ

ρ(t, γa(t))wa(t)DtχIi,a(t)m(da).

Summing up with respect to i and observing that the first integral in the last formula
above is the divergence of ρ(1, b) inside 
 while, being 
 proper, the last integral
becomes the trace of −ρ(1, b) on ∂
, we conclude that

ρ(1, b) · nHd + divt,x ρ(1, b)�
=
ˆ

Dt

(
ρ(t, γa(t))wa(t)χγ−1a (
)

(t)
)
m(da),

where n is the inner normal to 
. In particular, from [16, Theorem 6.8 and Propo-
sition 6.10], we obtain that, for N ⊂ ∂
,

m
({
a : Graph γa ∩ N �= ∅}) �

ˆ

N

∣∣ρ(1, b) · n∣∣Hd , (3.6)

that is the flux through N controls the measure of trajectories crossing N .

3.3. Setting of the problem

We consider the set of trajectories starting from t = 0 and arriving to t =
T living inside the ball of radius R0 and such that J (t, y) ∈ [1/C̄, C̄]. By an
elementary partition argument, the partition via characteristics of (1, b) can be
decomposed as a countable union of such a sets by varying C̄ and the initial and
final time (here for definiteness we have assume them to be 0, T , respectively). We
can define ρ = 1/J and obtain a solution to divt,x (ρ(1, b)) = 0 which is nearly
incompressible in [0, T ] × R

d .
We denote with K0 a compact set made of these trajectories, that is

K0 =
⋃

y∈K0

X([0, T ], y). (3.7)

Being y �→ X(·, y) a Borel function, the above sets are compact, and K0 can be
parameterized by the initial data, that is K0 = K0 ∩ {t = 0}.

Since the values of b outside (0, T ) are not important, we assume that b(t) = 0
for t /∈ (0, T ), and also outside the ball of radius 2R0. We will often write R

d+1
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in the estimates, even if we are working in the ball of radius 2R0. In the set K0 we
disintegrate

Db�K0(dt dx) =
ˆ

(Db)y(dt)m(dy), m = Ld + m⊥, m⊥ ⊥ Ld ,

according to the partition (3.7), and the uniqueness of the normalization for (Db)y
is assured by requiring ‖Db‖y = 1 for m⊥-almost everywhere y ∈ R

d . Hence the
measure

(
Db�K0

)r =
ˆ

(Db)y(dt)m⊥(dy)

is uniquely defined, and it corresponds to the part of Db�K0 whose image measure
is not absolutely continuous, and we have

Db�K0(dt dx) =
ˆ

(Db)y(dt)Ld(dy)+ (
Db�K0

)r
.

Being the flow defined for Ld -almost everywhere y ∈ K0, we can assume that
(Db�K0)

r = 0 by removing a negligible set of trajectories.
Since

‖Db‖ =
ˆ T

0
|Db|(Bd

R0
(0)) dt <∞,

then, for every M ,

MLd({y ∈ Bd
R0

(0) : |(Db)y |([0, T ]) > M
})

< ‖Db‖,
by Chebyshev’s inequality; so, if

εM = ‖Db‖
M

, (3.8)

then there exists a compact set K1 ⊂ K0 of trajectories such that

Ld(K0\K1) < εM and |Db|y([0, T ]) � M ∀y ∈ K1.

We also define K1 ⊂ K0 as the union of the graphs of the trajectories starting in
K1, as in (3.7).

We observe that, by the monotonicity properties of measures, if K′ is another
compact set of trajectories such that K′ ∩K1 = ∅, then

lim
r→0

|Db�K′ |
(K1 + Bd

r (0)
) = 0.

Summing up, we are in the following situation:

Proposition 3.6. We can restrict to a compact set of trajectories K1 ⊂ K0 such
that

(1) Ld(K0\K1) < εM;
(2) X�K1 is continuous;
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(3) we have

Db�K1(dt dx) =
ˆ

K1

(Db)y(dt)Ld(dy), |(Db)y |([0, T ])
= |(Db)y((0, T ))| � M,

(3.9)

where K1 = X([0, T ], K1);
(4) the Jacobian J (t, y) satisfies

J (t, y) ∈
(
1

C̄
, C̄

)
. (3.10)

for some constant C̄.

In Point (3) above we have observed that Db�K1= Db�K1∩(0,T ) because
Db({t ∈ N }) = 0 for every L1-negligible set N ⊂ R

1, which implies that
(Db)y�[0,T ]= (Db)y�(0,T ) for Ld -almost everywhere y.

4. The ODE Satisfied by the Derivative of the Flow

We consider the Cauchy problem

d

dt
W (t, y) = (Db)y(dt)

J (t−, y)
W (t−, y), W (0, y) = y, (4.1)

where the Jacobian J (t, y) satisfies

d

dt
J (t, y) = (div b)y(dt) = Tr(Db)y(dt), J (0, y) = 1, (4.2)

and, by assumption,

J (t, y) ∈
(
1

C̄
, C̄

)
. (4.3)

In this section the variable y is a fixed parameter.

Theorem 4.1. Then there exists a unique left continuous solution t �→ W (t, y) to
the Cauchy problem (4.1) such that

|W (t, y)| � eC̄ |Db|([0,t)), Tot.Var.(W (·, y), [0, t]) � C̄ |Db|([0, t))eC̄ |Db|([0,t)).

Moreover, it is the limit of every sequence of Euler scheme solutions W δt (t, y)
corresponding to a partition {[ti , ti+1)} of [0, T ) as δt = maxi |ti+1 − ti | → 0.
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Proof. For the sake of brevity, we use the notation

(̃Db)y(dt) = (Db)y(dt)

J (t−, y)
,

so that the ODE is
{

d
dt W (t, y) = (̃Db)y(dt)W (t−, y),

W (0, y) = y.

By the assumptions on the disintegration and near incompressibility, we have
∣∣(̃Db)y

∣∣((0, T )) � C̄M. (4.4)

As a first step, we prove existence of a solution to the ODE bymeans of an Euler
scheme (see [14]). Secondly, we prove uniqueness by a Gronwall-type argument.

Step 1. Construction of a solution. The construction of a solution is done by
the Euler method: for every partition of [0, T ) made of intervals {[ti , ti+1)}0�i�I ,
such that t0 = 0, tI = T , and δt = maxi {ti − ti−1}, we define the approximate
solution W δt as

W δt (t, y) =
�∏

ti�t

(
I+ (Db)y([ti−1, ti ))

J (ti−, y)

)

=
(

I+ (Db)y([ti−1, ti ))
J (ti−, y)

)
· . . . ·

(
I+ (Db)y([t1, t2))

J (t2−, y)

)
·
(

I+ (Db)y([0, t1))
1

)
,

(4.5)

where
�∏

1�i�I

Ai = AI AI−1 . . . A2A1

and we have used the fact that J (0, y) = 1. With an abuse of notation, we used
the apex δt (the maximal size of interval of the partition) to denote the partition
with point {ti }i , later we will also denote a sequence of functions depending on
the partitions {tni }i with the apex δtn (again the maximal size of the interval of the
partition).

The functionW δt is piece-wise constant, right continuous, and its jump at each
ti is given by

W δt (ti+, y) = W δt (ti , y) = W δt (ti−, y)+ (Db)y([ti−1, ti ))
J (ti−, y)

W δt (ti−, y).

We have that W δt is uniformly bounded. Indeed,

|W δt (t, y)| �
(4.5)

�∏

ti�t

∣∣∣∣I+
(Db)y([ti−1, ti ))

J (ti−, y)

∣∣∣∣ �
(4.3)

I∏

i=0

(
1+ C̄

∣∣(Db)y([ti−1, ti ))
∣∣
)

� e
∑I

i=0 C̄ |(Db)y([ti−1,ti ))| �
(3.9)

eC̄M .

(4.6)
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Moreover its total variation is controlled by

∑

i

∣∣W δt (ti , y)−W δt (ti−1, y)
∣∣ =

(4.5)

∑

i

∣∣∣∣
(Db)y([ti−1, ti ))

J (ti−, y)
W δt (ti−1, y)

∣∣∣∣

�
(4.6),

(4.3)

C̄eC̄M
∑

i

∣∣(Db)y([ti−1, ti ))
∣∣ �

(3.9)

C̄MeC̄M .

Therefore, by Helly’s Compactness Theorem (see [26, Theorem 2.3]), for ev-
ery sequence of intervals such that δt → 0 there is a subsequence δtn such that
W δtn (t, y) → W (t, y) for L1-almost everywhere t ∈ (0, T ), and the function
W (·, y) ∈ BV((0, T ), R

d×d).
By the estimate on the total variation, for every t < τ we have

∣∣W δt (τ, y)−W δt (t, y)
∣∣

=
∣∣∣∣

�∏

ti�τ

(
I+ (Db)y([ti−1, ti ))

J (ti−1−, y)

)
−

�∏

ti�t

(
I+ (Db)y([ti−1, ti ))

J (ti−1−, y)

)∣∣∣∣

�
∣∣∣∣

�∏

ti�t

(
I+ (Db)y([ti−1, ti ))

J (ti−1−, y)

)∣∣∣∣

∣∣∣∣
�∏

t<ti�τ

(
I+ (Db)y([ti−1, ti ))

J (ti−1−, y)

)
− I

∣∣∣∣

=
∣∣∣∣

�∏

ti�t

(
I+ (Db)y([ti−1, ti ))

J (ti−1−, y)

)∣∣∣∣

∣∣∣∣
∑

t<ti�τ

(Db)y([ti−1, ti ))
J (ti−1−, y)

( �∏

t<t j<ti

(
I+ (Db)y([t j−1, t j ))

J (t j−1−, y)

))∣∣∣∣

�
∏

ti�τ

(
1+

∣∣∣∣
(Db)y([ti−1, ti ))

J (ti−1−, y)

∣∣∣∣

)( ∑

t<ti�τ

∣∣∣∣
(Db)y([ti−1, ti ))

J (ti−1−, y)

∣∣∣∣

)

� C̄eC̄M |(Db)y |((t − δt, τ )),

(4.7)

where we have used the estimate

�∏

i

(I+ Ai )− I =
∑

i

Ai

�∏

j<i

(I+ A j ) (4.8)

in the third line, and the Jacobian bound (4.3) with the fact that maxi {ti − ti−1} � δ

in the last line. In particular, if W δtn (t, y) → W (t, y) for a fixed t , then

lim sup
δtn→0

∣∣W δtn (τ, y)−W δtn (t, y)
∣∣

= lim sup
δtn→0

∣∣W δtn (τ, y)−W (t, y)
∣∣ �

(4.7)

C̄eC̄M |(Db)y |([t, τ )). (4.9)
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As the set of times for which W δtn (t, y) is convergent dense in [0, T ], it follows
by letting t ↗ τ that the limit W δtn exists for every t and moreover t �→ W (t, y)
is left continuous by (4.9): clearly W (0, y) = I. A similar result can be stated for
J (t, y), defining

J δtn (t, y) = J (ti−1−, y) if t ∈ [ti−1, ti ),
then we have that

J δtn (t, y) →
δtn→0

J (t−, y). (4.10)

In this case, the proof is elementary.
Hence, we can pass to the limit to the approximate ODE for W δtn ; its equation

is

d

dt
W δtn =

(∑

ti

(̃Db)y([ti−1, ti ))δti (dt)
)
W δtn (t−, y) = (̃Db)y

δtn
(dt)W δtn (t−, y).

(4.11)

where, as in the previous equation, the matrix valued measure (̃Db)y
δtn

(dt) is
defined as

(̃Db)y
δtn

(dt) =
∑

ti

(Db)y([ti−1, ti ))
J (ti−1, y)

δti (dt).

We write the ODE (4.11) in integral form:

W δtn (t, y) = I+
ˆ

[0,t)
(̃Db)y

δtn
(ds)W δtn (s−, y)

= I+
ˆ

[0,max{ti ,ti<t}]
(Db)y(ds)

W δtn (s, y)

J δtn (s, y)

= I+
ˆ

[0,t)
(Db)y(ds)

W δtn (s, y)

J δtn (s, y)
− (Db)y([ti , t))W

δtn (ti , y)

J δtn (t, y)
.

(4.12)

Herewe observed thatW δtn (t, y) is equal toW δtn (ti−1, y) in every interval [ti−1, ti )
by (4.5) so that

(̃Db)y([ti−1, ti ))W δtn (ti−, y) = (Db)y([ti−1, ti ))W
δtn (ti−1, y)

J δtn (ti−1, y)

=
ˆ

[ti−1,ti )
(Db)y(dt)

W δtn (ti−1, y)
J δtn (ti−1, y)

, (4.13)

and we have to leave out the final interval for which t ∈ [ti−1, ti ).
From the pointwise convergence, we obtain that

ˆ

[0,t)
(Db)y(ds)

W δtn (s, y)

J δtn (s, y)
→

ˆ

[0,t)
(Db)y(ds)

W (s, y)

J (s, y)
,
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while, from δtn → 0 and the boundedness of W (t, y)/J (t, y),

(Db)y([ti , t))W
δtn (ti , y)

J δtn (ti , y)
→ 0.

Hence, for every δt → 0, there exists a subsequence converging to a solution.
Step 2. Uniqueness of the solution. The uniqueness of the solution can be

proved by observing that

d

dt
|W (t, y)| � |(̃Db)y |(dt)|W (t−, y)|,

which gives

Dt log |W (t, y)| = 1

|W (t, y)|D
cont
t |W (t, y)| +

∑

i

log

( |W (τi+, y)|
|W (τi−, y)|

)
δτi (dt)

� |(̃Db)y
cont|(dt)+

∑

i

( |W (τi+, y)|
|W (τi−, y)| − 1

)
δτi (dt)

� |(̃Db)y |(dt),
where we have allowed the initial data to be general, and the τi ’s denote the jump

set ofW (·, y), a subset of the set where the jump part of (̃Db)y(dt) is concentrated:
the first inequality follows from (4.1) for the a.c. part and log(x) � x − 1, the
second inequality again from (4.1) for the jump part.

Thus, we conclude that

|W (t, y)| � |W (t, 0)|e|(̃Db)y |([0,t)), (4.14)

which gives the uniqueness.

Remark 4.2. (Time reversibility of the ODE) We note that the ODE is time re-
versible. Being b(t) a BV function, by Alberti’s rank-one theorem we can write for
the singular part of (Db)y as follows:

(Db)singy = ξ(t, y) · ηT (t, y)|(Db)y |(dt),
ηT (t, y) · ξ(t, y)|(Db)y |({t}) = J (t, y)− J (t−, y). (4.15)

The ODE for W (T − t, y) is then

d

dt
W (T − t, y) = −Dcont

t W (T − t, y)−
∑

i

(
W (τi+, y)−W (τi−, y)

)
δT−τi (dt)

= − (Db)conty (T − t)

J (T − t, y)
W (T − t, y)

−
∑

i

ξ(τi , y) · ηT (τi , y)
|(Db)y |(τi )
J (τi−, y)

W (τi−, y).
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By (4.15), we have the relations
(

I+ ξ(t, y) · ηT (t, y)|Db|y({t})
J (t−, y)

)−1
=

(
I− ξ(t, y) · ηT (t, y)|Db|y({t})

J (t+, y)

)
,

J (t+, y) = J (t−, y)+ ηT (t, y) · ξ(t, y)|Db|y({t}),
so that

W (ti−, y) =
(

I+ ξ · ηT |(Db)y |(ti )
J (ti−, y)

)−1
W (ti+, y)

=
(

I− ξ · ηT |(Db)y |(ti )
J (ti+, y)

)
W (ti+, y),

which is

W (τi−, y)−W (τi+, y) = − (Db)y(τi )

J (τi+, y)
W (τi+, y) = − (Db)y(τi )

J (τi−, y)
W (τi−, y).

In particular, we have that

(Db)y(τi )
(
W (τi+, y)

J (τi+, y)
− W (τi−, y)

J (τi−, y)

)
= 0.

Substituting, we conclude that

d

dt
W (T − t, y) = −(Db)conty (T − y)W (T − t, y)

−
∑

i

ξ(τi , y) · ηT (ti , y)
|(Db)y |(τi )
J (τi+, y)

W (τi+, y),

which is the ODE
d

dt
W (T − t, y) = (Db)y(T − t)W ((T − t)+, y).

Remark 4.3. (Time reversibility and rank-one property) We remark that, in turn, the
invertibility of the ODE does not imply that the vector field satisfies the rank-one
property. The invertibility condition is that for the singular part

(
I+ A

J−

)(
I− A

J+

)
= I, J+ − J− = TrA, A = (Db)y(τi ),

which is equivalent to

A2 = (TrA)A. (4.16)

However, it turns out that the above condition is valid also for the matrix
⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
1 1 0 0

⎞

⎟⎟⎠ ,

which is not of rank one.
In the 2 × 2 case, on the other hand, where the proof of the existence of the

flow is independent from the rank one property (see [18]), condition (4.16) is a
characterization of rank-one matrices (since it is equivalent to detA = 0).
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5. Local-to-Global Argument

The key idea of our proof is to build the derivative in measure by patching
together local estimates. In this section,we showhow the existence of a partition into
(perturbed) proper sets where an approximate differentiability in measure property
is satisfied leads to a global estimate on the differentiability in measure.

We assume that there is a finite partition {
i } of [0, T ] × Bd
R0

(0) into disjoint
(perturbed) proper sets (up to the negligible set made of their boundaries) such that
the following local estimates hold true.

(1) Measure controlling the total error: there exists a measure μP with

μP (Rd+1) < εP

for some εP > 0.
(2) Removal of a small set of initial points: in each set 
i of the partition,

let Si,1, Si,2 be the part of the boundary where the outer normal is (∓1, 0)
respectively, as in the paragraph following Lemma 3.3. Then there exists a set
of initial point S′i,1 ⊂ Si,1 ∩K0 whose co-measure is

Hd((Si,1 ∩K0)\S′i,1
)

< μP (
i ). (5.1)

The set Si,1 is the boundary part of the (perturbed) proper set 
i defined in
Theorem 3.4, with ε = μP (
i ). Moreover, up to a Hd -negligible set, Si,2 is
contained in∪ j S j,1∪{t = 0, T } up to aHd -negligible set: this means that the
trajectories exiting one (perturbed) proper set from Si,2 are entering another
(perturbed) proper set trough S j,1 (or are initial-final points). An equivalent
way of expressing (5.1) is to say that the measure of trajectories we remove
is less than μP (
).

(3) Cylinders where the linear approximation is constructed: there exists Ri

such that for every yi ∈ S′i,1 the set X(t, t−i (yi ), yi )+ Bd
Ri

(0) is contained in


i for every t such that X(t, yi ) ∈ 
i (t
−
i (yi ) is the time coordinates of the

points on Si,1). In particular, yi + Bd
Ri

(0) ⊂ Si,1, and similarly for the exit

point X(t+i (y), y)+ Bd
Ri

(0) ⊂ Si,2, being t
+
i (y) the exit time of the trajectory

X(t, y) from 
i , so that t ∈ (t−i (yi ), t
+
i (yi )).

(4) Bad set of trajectories for the linear approximation: for every yi ∈ S′i,1
and ri � Ri there exists a set of initial points E1,i (ri , yi ) ⊂ Bd

ri (0)∩(K0− yi )
such that

ˆ

S′i,1
Ld(E1,i (ri , yi )) dyi < Ld(Bd

ri (0))μP (
i ).

(5) Error estimate for the flow generated by an approximate vector field:
for every yi ∈ S′i,1 and ri � Ri , there exists an approximated vector field

b̃i (ri , yi ; t, wi ) such that the flow X̃ generated by
⎧
⎨

⎩

d

dt
X̃ i (ri , yi ; t, z) = b̃i (ri , yi ; t, X̃(ri , yi ; t, z)), t ∈ (t−i (yi ), t

+
i (yi )),

X̃(ri , yi ; t−i (yi ), z) = z,
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satisfies
ˆ

S′i,1

ˆ

(Bd
ri

(0)∩(K0−yi ))\E1,i (ri ,yi )

∥∥∥X(·, t−i (yi ), yi + zi )− X(·, t−i (yi ), yi )

− X̃ i (ri , yi ; ·, zi )
∥∥∥
C0(t−i (yi ),t

+
i (yi ,zi ))

dzi dyi

< riLd(Bd
ri (0))μP (
i ),

(5.2)

where t+i (yi , zi ) is the exit time of the trajectory X i (·, t−i (yi ), yi + zi ) from
the cylinder X((t+i (yi ), t

−
i (yi )), yi )+ Bd

ri (0).

(6) Control on the approximate flow: the approximated solution X̃(ri , yi ; t, zi )
satisfies for r ′i � ri

ˆ

S′i,1

ˆ

Bd
r ′i

(0)

∥∥X̃(ri , yi ; ·, zi )− zi
∥∥
C0(t−i (yi ),t

+
i (yi ))

dzi dy

� Cr ′iLd(Bd
r ′i
(0))|Db|(
i ). (5.3)

(7) Comparison with the linearized flow: let E2,i (ri , yi ) be the initial set of the
trajectories starting in (X(t−i (yi ), yi )+ Bd

ri (0))∩K0 which exit before t
+
i (yi )

from X((t−i (yi ), t
+
i (yi )), yi )+ Bd

ri (0): then the remaining trajectories satisfy
ˆ

S′i,1

ˆ

(Bd
ri

(0)∩(K0−yi ))\(E1,i (ri ,yi )∪E2,i (ri ,yi ))∣∣∣∣X(t+i (yi ), t
−
i (yi ), yi + zi )− X(t+i (yi ), t

−
i (yi ), yi )

−W (t−i (yi ), t
+
i (yi ), yi )zi

∣∣∣∣ dzi dyi < riLd(Bd
ri (0))μP (
i ),

(5.4)

where W (t−i (yi ), t
+
i (yi ), yi ) is the solution W (·, t−i (y), y) to the linearized

ODE (4.1) with initial data W (t−i (y), t−i (y), y) = y.

With the above assumptions, we proceed to prove the differentiability in mea-
sure of the flow.

Proposition 5.1. Under Assumptions (1)–(7), the following properties hold:

(1) there is a set K2 ⊂ K1 of initial points of co-measure

Ld(K1\K2
)

� C̄εP ;
(2) for every y ∈ K2 there is a set Ey ∪ Fy ∪Gy ⊂ Bd

r (0)∩ (K0 − y) whose total
measure is

ˆ

K2

Ld(Ey ∪ Fy ∪ Gy) dy < O(1)ε1/(d+2)P Ld(Bd
r (0)),

where the factor O(1) depends only on M, C̄ and d;
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(3) in the remaining set, we have
ˆ

K2

ˆ

(Bd
r (0)∩(K0−y))\(Ey∪Fy∪Gy)

∣∣∣X(T, y + z)− X(T, y)−W (T, y)z
∣∣∣ dy dz

� O(1)ε1/(d+2)P rLd(Bd
r (0)).

Together with Point (1) of Proposition 3.6, this gives the differentiability in
measure of Theorem 1.1, under the assumptions (1)–(7) above. In the following
sections, we will show how to construct the partition and obtain the estimates.

Proof. The proof is organized into several steps. The idea is that one uses the
comparison with the linear flow when the perturbed trajectory X(t, y + z) is not
exiting the cylinder X(t, y) + Bd

r (0), while the estimate using the approximated
flow controls how many trajectories are exiting from X(t, y)+ Bd

R(0), 0 < r < R.
Then, a suitable choice of r, R allows to prove the claim.

(1) Removal of trajectories which are not inside S′i,1. We remove trajectories

of K0 for which X(t−i (y), y) /∈ S′i,1 (and we control also the trajectories not
entering in S1,i or leaving from S2,i , that is the ones which cross on the lateral
boundaries, because of the last part of Point (2) of the assumptions: by nearly
incompressibility and formula (3.6), the measure of trajectories we remove is
less than

C̄
∑

i

Hd((Si,1 ∩K0)\S′i,1
)

�
Point (2)

C̄
∑

i

μP (
i ) � C̄μP (Rd+1) <
Point (1)

C̄εP .

(5.5)

Thuswe restrict to a compact set K2 ⊂ K1 whose co-measure in K2 is bounded
by C̄εP . This set is the set of Point (1) of the statement.

(2) Choice of the radius of the cylinders and definition of the partition of sets
crossed by a trajectory. Let R̄ = mini Ri and, for each y ∈ K2, let iy be
the sequence of proper sets 
i which the trajectory X(t, y) is crossing. We
will abuse the notation, writing (i − 1)y for the predecessor of iy , 1y for the
initial iy , 0y = 0, and so on; we also note that one trajectory may cross a given

i several times, however from [16, Corollary 6.9] the number of crossings
is finite for Ld -almost everywhere y ∈ K2, so there are only finitely many
indexes iy . The exit time of a trajectory X(t, y) from 
iy will be denoted by
tiy .

(3) Removal of the set of perturbations which do not behave mildly. For every
y ∈ K2, remove all z ∈ Bd

R̄
(0) ∩ (K0 − y) such that

X(t(i−1)y , y + z)− X(t(i−1)y , y) ∈ E1,iy (R̄, X(t(i−1)y , y)). (5.6)

This means that at time t(i−1)y we remove the trajectories which do not satisfy
(5.2) while in 
iy . Here we have used the notation

(
t−iy (y), t

+
iy

(y)
) = (

t(i−1)y , tiy
)
. (5.7)
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The i ranges from 0y to ī y(z) corresponding to the index of the set 
i such
that the trajectory X(t, y+ z) is exiting for the first time from X(t, y)+ Bd

R̄
(0)

within 
i .
This new set

Ey =
{
z ∈ Bd

R̄
(0) ∩ (K0 − y) : ∃iy s.t. (5.6) holds

}

has measure bounded by (we use the nearly incompressibility property of the
map z �→ X(t, y + z) − X(t, y), which is the Lagrangian flow of the vector
field (t, z) �→ b(t, X(t, y)+ z)− b(t, X(t, y)))

ˆ

K2

Ld(Ey) dy �
(3.10)

C̄
ˆ

K2

[∑

iy

Ld(E1,iy (R̄, X(tiy , y))
)]

dy

(3.10) and Fubini � C̄2
∑

i

ˆ

S′i,1
Ld(E1,i (R̄, yi )

)
dyi

Point (4) < C̄2
∑

i

Ld(Bd
R̄
(0))μP (
i )

Point (1) < C̄2Ld(Bd
R̄
(0))εP .

(5.8)

(4) Change of coordinate for the disintegration. The disintegration formula of
(5.4), Point (7) of page 19, is computed in the coordinates yi on the surface
S1,i . When using instead the coordinates y at t = 0, we have to replace

W (t, t−y (yi ), yi ) �→ W (t, y), where yi = X(t−i (yi ), y). (5.9)

Indeed this is just the composition properties for the solution to (4.1).
(5) Estimate on the growth of the perturbation. We now use the estimate of

Equation (5.4) up to the last time t(ī−1)y (z) such that the trajectory remains

at distance R̄ from X(t, y), that is when crossing 
(ī−1)y . We define, for

1y � iy � (ī − 1)y ,

�iy (y, z) = X(tiy , y + z)− X(tiy , y), Wiy (y) = W (tiy , t(i−1)y , y).

Let us set the initial data as

�0y (y, z) = z,

and consider the difference equation

�iy (y, z) = Wiy (y)�(i−1)y (y, z)+
[
�iy (y, z)−Wiy (y)�(i−1)y (y, z)

]
.

By Duhamel’s formula for the difference equation, that is

an = bnan−1 + cn, an =
( n∏

j=1
b j

)
a0 +

n∑

k=1

( n∏

j=k+1
b j

)
ck, (5.10)
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we obtain

|�iy (y, z)| �
(5.10)

∣∣∣∣

iy∏

jy=1y
W jy (y)

∣∣∣∣|z| +
iy∑

ky=1y

∣∣∣∣

iy∏

jy=(k+1)y
W jy (y)

∣∣∣∣
∣∣∣�ky (y, z)

−Wky (y)�(k−1)y (y, z)
∣∣∣

(y ∈ K1) �
Thm. 4.1

eC̄M
(
|z| +

iy∑

ky=1y

∣∣∣�ky (y, z)−Wky (y)�(k−1)y (y, z)
∣∣∣
)

.

(5.11)

(6) Choice of the initial radius r . Let M ′ be a constant to be chosen later, and
set

r = e−C̄M−C̄M ′

4
R̄. (5.12)

(7) Estimate on the trajectorieswith large growth.Consider first the trajectories
such that

max
0y ,...,(ī−1)y(z)

∣∣�iy (y, z)
∣∣ � 2eC̄Mr = e−C̄M ′

2
R̄ = r ′, |z| � r. (5.13)

From (5.11), we obtain the estimate

(ī−1)y (z)∑

ky=1y

∣∣∣�ky (y, z)−Wky (y)�(k−1)y (y, z)
∣∣∣ � r = e−C̄M−C̄M ′

4
R̄. (5.14)

(8) Measure of trajectories with large growth. Thus, using (5.4), we get
ˆ

K2

Ld
({

z ∈ (Bd
r (0) ∩ (K0 − y))\Ey : |�(ī−1)y | � 2eC̄Mr

})
dy

�
(5.14)

1

r

ˆ

K2

ˆ

(Bd
r (0)∩(K0−y))\Ey

(ī−1)y (z)∑

ky=1y

∣∣∣�ky (y, z)−Wky (y)�(k−1)y (y, z)
∣∣∣ dz dy

Fubini, (3.10) � C̄2

r

∑

i

ˆ

S′i,1

[ ˆ

(Bd
R̄
(0)∩(K0−yi ))\(E1,i (R̄,yi )∪E2,i (R̄,yi ))

∣∣∣∣X(t+i (yi ), t
−
i (yi ), yi + zi )− X(t+i (yi ), t

−
i (yi ), yi )

−W (t+i (yi ), t
−
i (yi ))zi

∣∣∣∣ dzi
]
dyi <

(5.4)

C̄2

r

∑

i

R̄Ld(Bd
R̄
(0))μP (
i )

� C̄2
(
R̄

r

)d+1
Ld(Bd

r (0))μP (Rd+1)

<
(5.12)

C̄2(4eC̄(M+M ′))d+1εPLd(Bd
r (0)).
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In the third line, we have used that the trajectories under consideration are not
exiting X(t, y)+ Bd

R̄
(0) in
i , see the definition of E2,i (ri , yi ) in Assumption

(7).
Hence, we can remove a set Fy ⊂ (Bd

r (0) ∩ (K0 − y))\Ey such that
ˆ

K2

Ld(Fy)dy � C̄2(4eC̄(M+M ′))d+1εPLd(Bd
r (0)) (5.15)

and all trajectories in (Bd
r (0)∩ (K0− y))\(Ey ∪ Fy) remain inside X(t, y)+

Bd
r ′(0) up to (ī − 1)y(z), with r ′ defined in (5.13). In other words, for r, r ′

chosen as in (5.13), we have an estimate of the trajectories remaining inside
X(t, y)+ Bd

R̄
(0) and such that their distance from X(t, y) is actually bounded

by r ′ < R̄ up to the time t(ī−1)y(z). The rest of the growth needed to exit

X(t, y)+ Bd
R̄
(0) while in the set 
ī y(z) is studied in the next step.

(9) Estimate of the trajectories exiting at ī y(z). For the trajectories for which

∣∣�(ī−1)y(z)(y, z)
∣∣ < r ′ =

(5.13)

e−C̄M ′

2
R̄ (5.16)

and exit at ī y(z), we can write that

1

2
R̄ �

(
1− e−C̄M ′

2

)
R̄

�
(5.16)

R̄ − ∣∣�ī y−1(y, z)
∣∣

�
∥∥∥X(·, y + z)− X(·, y)−�(ī y−1)(y)(y, z)

∥∥∥
C0(t−

ī y
(y),t+

ī y
(y,�(ī y−1)(y)(y,z)))

,

(5.17)

where t+
ī y

(y,�(ī y−1)(y)(y, z)) is the exit time of the trajectory X(t, y+z) from

X(t, y)+ Bd
R(0).

(10) Measure of exiting trajectories. We have the estimate
ˆ

K2

Ld
({

z ∈ (Bd
r (0) ∩ (K0 − y))\(Ey ∪ Fy)

: ∥∥X(·, y + z)− X(·, y)∥∥C([0,T ]) � R̄
})

dy

�
(5.17)

2

R̄

ˆ

K2

ˆ

(Bd
r (0)∩(K0−y))\(Ey∪Fy)

∥∥∥X(·, y + z)− X(·, y)

−�(ī−1)y(z)(y, z)
∥∥∥
C0(t−

ī y (z)
(y),t+

ī y (z)
(y,�ī y−1(y,z)))

dz dy

�
(5.16),Fubini

2C̄2

R̄

∑

i

ˆ

S′i,1

ˆ

(Bd
r ′ (0)∩(K0−y))\E1,i

∥∥∥X(·, yi + zi )

−X(·, yi )− zi
∥∥∥
C0(t−i (yi ),t

+
i (yi ,zi ))

dyi dzi
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� 2C̄2

R̄

∑

i

ˆ

S′i,1

ˆ

(Bd
r ′ (0)∩(K0−y))\E1,i

∥∥∥X(·, yi + zi )− X(·, yi )

−X̃ i (R̄, yi ; ·, zi )
∥∥∥
C0(t−i (yi ),t

+
i (yi ,zi ))

dyi dzi

+2C̄2

R̄

∑

i

ˆ

S′i,1

ˆ

(Bd
r ′ (0)∩(K0−y))\E1,i

∥∥X̃ i (R̄, yi ; ·, zi )

−zi
∥∥
C0(t−(yi ),t

+
ī

(y,�ī y
(y,z))) dzi dyi

�
(5.2),(5.3)

2C̄2

R̄

∑

i

R̄Ld(Bd
R̄
(0))μP (
i )

+2C̄2

R̄

∑

i

r ′Ld(Bd
r ′(0))|Db|(
i )

�
(5.12),(5.13)

2C̄2(4eC̄(M+M ′))dLd(Bd
r (0))εP

+2dC̄2eC̄(dM−M ′)Ld(Bd
r (0))|Db|(
).

Choosing (see also (5.23))

e−C̄M ′ = (εP )1/(d+2), (5.18)

we obtain

ˆ

K2

Ld
({

z ∈ (Bd
r (0) ∩ (K0 − y))\(Ey ∪ Fy)

: ∥∥X(·, y + z)− X(·, y)∥∥C([0,T ]) � R̄
})

dy

� O(1)ε1/(d+2)P Ld(Bd
r (0)).

(5.19)

The factor O(1) depends only on M , C̄ and d.
(11) Final estimate of the exiting trajectories. Thus, we can remove the set of

trajectories

Gy =
{
z ∈ (Bd

r (0) ∩ (K0 − y))\(Ey ∪ Fy)

: ∥∥X(·, y + z)− X(·, y)∥∥C([0,T ]) � R̄

}

of measure

ˆ

K2

Ld(Gy)dy �
(5.19)

O(1)ε1/(d+2)P Ld(Bd
r (0)), (5.20)
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and the remaining trajectories lie inside X(t, y) + Bd
R̄
(0). The total set of

trajectories Ey ∪ Fy ∪ Gy we remove from (Bd
r (0)∩ (K0 − y)) has measure

ˆ

K2

Ld(Ey ∪ Fy ∪ Gy) dy �
(5.8),(5.15),(5.20)

C̄2Ld(Bd
R̄
(0))εP

+ C̄2(4eM+M ′
)d+1Ld(Bd

r (0))εP

+O(1)ε1/(d+2)P Ld(Bd
r (0))

< O(1)ε1/(d+2)p Ld(Bd
r (0)).

(5.21)

The factor O(1) depends only on M , C̄ and d. This proves Point (2) of the
statement.

(12) Comparisonwith linear flow.Weestimate now the difference of the trajectory
with the composition of the linear maps (I+ Bi ): we have

∣∣∣∣�iy −
( iy∏

jy=1y
W jy

)
z

∣∣∣∣ �
∣∣∣∣�iy −�(i−1)y −Wiy�(i−1)y

∣∣∣∣

+ |Wiy |
∣∣∣∣�(i−1)y −

( (i−1)y∏

jy=1y
W jy

)
z

∣∣∣∣.

Hence, using
∏iy

jy=1y Wiy = W (t+i (yi ), y), again the solution formula (5.10)
gives (note that in this case the initial data is 0)

∣∣∣�iy −W (tiy , y)z
∣∣∣ �

iy∑

ky=1y

( iy∏

jy=(k+1)y
|Wjy |

∣∣∣�ky −Wky�(k−1)y
∣∣∣
)

� eC̄M
( iy∑

ky=1y

∣∣∣�ky −Wky�(k−1)y
∣∣∣
)

.

(5.22)

(13) Estimate of the error with respect to the linear flow. Integrating as in the
previous points
ˆ

K2

ˆ

(Bd
r (0)∩(K0−y))\(Ey∪Fy∪Gy)

∣∣∣�iy −W (t jy , y)z
∣∣∣ dy dz

�
(5.22)

eC̄M
ˆ

K2

ˆ

(Bd
r (0)∩(K0−y))\(Ey∪Fy∪Gy)

iy∑

ky=1y

∣∣∣�ky −Wky�(k−1)y
∣∣∣ dz dy

Fubini, (4.3) � C̄2eC̄M
∑

i

ˆ

S′1,i

ˆ

(Bd
R̄
∩(K0−y))\(E1,i (R̄,yi )∪E2,i (R̄,yi ))

∣∣∣∣
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X(t+i (yi ), t
−
i (yi ), yi + zi )

−X(t+i (yi ), t
−
i (yi ), yi )−W (t+i (yi ), t

−
i (yi ), yi )zi

∣∣∣∣ dzi dyi

�
(5.4),(5.9)

C̄2eC̄M R̄Ld(Bd
R(0))εP

<
(5.12)

C̄24d+1eC̄((d+2)M+(d+1)M ′)rLd(Bd
r (0))εP

=
(5.18)

O(1)ε1/(d+2)P rLd(Bd
r (0)). (5.23)

The factor O(1) depends only on M , C̄ and d.

In particular we can choose iy as the last index i lasty , for which ti lasty
= T and

�i lasty
(y, z) = X(T, y + z)− X(T, y),

obtaining the last point of the statement.

Remark 5.2. We observe that the estimate gives some sort of differentiability in
measure even with iy depending on y. This is not surprising since the sets Si,1
are subsets of finitely many sets {t = const}. However, the set K2 depends on the
partition: indeed, the derivative W (t, y) has discontinuities; thus, at any time τi of
discontinuity, we have, in general,

ˆ

(Bd
r (0)∩(K0−y))\(Ey∪Fy)

∣∣∣X(τi , y + z)− X(τi , y)− Az
∣∣∣ dy dz = O(1)

for every linear map A. As an example one may consider the vector field in
(t, x1, x2) ∈ R× R× R

b(t, x) =
{

(1, 0) if x1 < 0,

(1, 1) if x1 � 0,
X(t, y) = y + (

t, [t + y1]+
)
,

so that at any time T the set of trajectories for which the differential cannot be
computed is y1 = −T .
Thus for every T the set of trajectories which have to be removed is different.

In next two sections we will show how to prove Assumptions (2)–(7) in two
cases:

(1) when one takes into account only the a.c. part of Db (Section 6);
(2) in the Lebesgue points of the singular part of Db (Section 7).

The choice of the measureμP will be obtained by piecing together these two cases.
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6. Local Estimate with the Absolutely Continuous Part

Wefix a perturbed proper set
i and in it we consider the following vector field:

b̃(t, yi , wi ) =
(Db)a.c.yi (t)

J (t, yi )
wi .

In order to make the notation lighter, going forward we will neglect the index i .
Define

μP = εP
(Ld+1 + |Db|),

where εP will be chosen at the end.

(1) Control of the derivative. First, for M > 0 chosen in Proposition 3.6, we
have

|(Db)a.c.y |(t−(y), t+(y)) � M,

because |(Db)a.c.y |�
i � |(Db)y |.
(2) Cylinders where the linear flow is constructed. By choosing R � 1, we can

also assume that the cylinder X(t, y) + Bd
R(0) has bases inside the entering

and exiting flat parts of 
i : again we can assume that we remove a set of
trajectories of measure smaller than εLd+1(
), where ε → 0 when R → 0.
Let S′1 ⊂ S1 be the set of initial data of the remaining trajectories: the choice
of R corresponds to Point (3) of page 18. In order to satisfy Point (2) of page
18, we will choose ε < εP/(2TLd(Bd

R0
(0)).

(3) Choice of the approximated flow. For the a.c. part we can use directly the
linearized flow as approximated flow X̃ i , because we have a good control on
the error. Inside the ball of radius Ri we compare the flow with the linear flow

{
Ẇ a.c.(t, y) = (Db)a.c.y (dt)

J (t,y) W a.c.(t, y),

W a.c.(t−(y), y) = y.
(6.1)

This flow has Lipschitz constant bounded by eM by Point (1) above and The-
orem 4.1, and moreover if W (t, y) is the solution to

{
Ẇ (t, y) = (Db)y(dt)

J (t−,y) W (t−, y),

W (t−(y), y) = y,

then, by Duhamel’s formula and the same estimate as in the proof of Theo-
rem 4.1, we have

∣∣W (t, y)−W a.c.(t, y)
∣∣ � C̄eC̄M |(Db)singy |(t−(y), t+(y)). (6.2)

Hence, (5.3) of Point (6) of page 19 holds with C = eC̄M for both W a.c.,W .
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(4) Comparison with Lipschitz flow. We can compare the evolution of a trajec-
tory with the evolution of the Lipschitz linear flow as follows:

∣∣∣X(t, y + r z)− X(t, y)−W a.c.(t, y)z
∣∣∣

� eC̄M
ˆ t

t−(y)

∣∣∣∣b(s, X(s, y + z))− b(s, X(s, y))− (Db)a.c.y (s)

(
X(s, y + z)− X(s, y)

)∣∣∣∣ ds,

(6.3)

where we have used the estimate for the Lipschitz flow z �→ W a.c.(t, y)z given
by Corollary A.2 and Point (1) of page 51.

(5) Estimate up to exit time. Integrating the above estimate with respect to the
initial data in the ball y + Bd

R(0) we obtain up to the exit time t+(y, z)
ˆ

Bd
R(0)∩(K0−y)

∥∥∥X(t+(y, z), t−(y), y + z)− X(t+(y, z), y)

−W a.c.(t+(y, z), y)z
∥∥∥
C0(t−(y),t+(y,z))

dz

�
(6.3)

eC̄M
ˆ

Bd
R(0)∩(K0−y)

ˆ t+(y,z)

t−(y)

∣∣∣∣b(s, X(s, y + z))− b(s, X(s, y))

− (Db)a.c.y (s)
(
X(s, y + z)− X(s, y)

)∣∣∣∣ ds dz

�
(3.10

C̄eC̄M
ˆ t+(y)

t−(y)

ˆ

Bd
R(0)

∣∣∣∣b(s, X(s, y)+ w)− b(s, X(s, y))

− (Db)a.c.y (s)w

∣∣∣∣ ds dw.

(6.4)

(6) Integral over all trajectories. The last integral can be evaluated after inte-
grating with respect to y as follows:

C̄eC̄M
ˆ

S′1

ˆ t+(y)

t−(y)

ˆ

Bd
R

∣∣∣∣b(s, X(s, y)+ w)− b(s, X(s, y))

− (Db)a.c.y (s, X(s, y))w

∣∣∣∣ ds dw dy

�
(3.10)

C̄2eC̄M
ˆ

Bd
R

|w|
ˆ 1

0

∥∥(Db)(t, · + λw)− (Db)a.c.(t, ·)∥∥M(
)
dλ dw

� C̄2eC̄M Rω(R)Ld (Bd
R(0))|Db|a.c.(
)+ C̄2eC̄M RLd (Bd

R(0))|(Db)sing|(
),

(6.5)

where ω is the modulus of continuity in L1 of the a.c. part of Db.

Conclusion. We now show that Assumptions (2)–(7) hold with the choice of

εP = C̄2eC̄Mω(R)+ 2C̄2eC̄M |(Db)sing|(
)

|Db|(
)
(6.6)

More precisely,
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(1) concerning Point (4) of page 18, we set

E1(r, y) = ∅;
(2) concerning Point (5) of page 19, by Point (3) and Point (6) above we have

ˆ

S′1

ˆ

Bd
R (0)

∥∥∥X(·, y + z)− X(·, y)−W (t, y)z
∥∥∥
C0(t−(y),t+(y,z))

dz dy

�
(6.4),(6.5)

C̄2eC̄M Rω(R)Ld (Bd
R(0))|Db|(
)+ C̄2eC̄M RLd (Bd

R(0))|(Db)sing|(
)

+
ˆ

S′1

ˆ

Bd
R (0)

∣∣W (t, y)−W a.c.(t, y)
∣∣|z| dz dy

<
(6.2)

C̄2eC̄M Rω(R)Ld (Bd
R(0))|Db|(
)+ 2C̄2eC̄M RLd (Bd

R(0))|(Db)sing|(
)

=
(6.6

RLd (Bd
R(0))μp(
),

(6.7)

which shows (5.2) if R � 1;
(3) the above estimate implies also estimate (5.4) of Point (7) of page 19, in

the Lebesgue points of the a.c. part of Db, if the diameter of 
 is sufficiently
small. Note that εP � 1 as R → 0 and |Db|(
)→ 0 if it is a Lebesgue point
for the a.c. part of |Db|.
This concludes the analysis of the a.c. part of Db.

7. Local Estimates with the Singular Part

The analysis of the singular part is more complicated and depends on the choice
of several parameters: in particular, we will need the set E1 of Point (4) of page 18,
which collects the perturbed trajectories which do not behave mildly. As before,
we will neglect the index i ; moreover, here we assume that the perturbed proper
set is in a small neighborhood of a Lebesgue point of the singular part Dsingb. We
will first compute our estimates in the case of “contracting” flow, that is div b < 0.
Then, we will show how to deduce the general case from this.

7.1. Localization and coordinates

Let ε̄ � 1 be given. For every Lebesgue point of the singular part Dsingb of
Db, we can choose 
 as follows.

(1) Entering and exiting sets: the (perturbed) proper set 
 is a proper small
perturbation of a ball centered in the Lebesgue point, such that the set of
trajectories N
 not entering from S1 and not leaving from S2 has η-measure

η(N
) < ε̄Ld+1(
), (7.1)

where η denotes the Lagrangian representation of ρ(1, b)Ld+1 as in [16, Def-
inition 3.1].
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(2) Lebesgue point of the derivative: by the rank-one property of the singular
part of the derivative of BV functions [1], there exist vectors ξ̄ , η̄ such that

∣∣Db− ξ̄ ⊗ η̄T |Db|∣∣(
) < ε̄|Db|(
).

We assume that ξ̄ = ξ̄1e1 + ξ̄2e2, η̄ = e1, by a linear change of coordinates.
With the above choice of ξ̄ , η̄ we have

∣∣∣Db− ξ̄ ⊗ e1|Db|
∣∣∣(
),

∣∣∣Db− ξ̄ ⊗ e1|D1b1,2|
∣∣∣(
) < ε̄|Db|(
). (7.2)

In particular almost all of the derivative occurs when moving along the 1-
direction, and the variation lies in the 1,2-directions. Hence the other compo-
nents have small derivative.

(3) Contraction in time: by reversing time if necessary, we assume that

η̄ · ξ̄ = ξ̄1 � 0. (7.3)

This implies that the flow is essentially contracting forward in time. However
the nearly incompressibility (3.10) yields that the contraction is controlled, as
we will see later on.

The proof of the needed estimates is divided into several subsections.

7.2. Construction of the approximate vector field

Let

H = 1√
ε̄
� 1, (7.4)

and define

QH (r) = [−Hr, Hr ] × Bd−2
r (0) = rd−1QH (1).

Sometimes will will consider it as embedded into R
d : in this case its definition

refers to the coordinates (x2, x �1,�2) ∈ R× R
d−2.

Let b̃
H
be the approximate vector fields defined by

b̃
H

(r, y; t, w) = ξ̄

Ld−1(QH (r))

{
−|Db|(t, X(t, y)+ [w1, 0] × QH (r)

)
if w1 � 0,

|Db|(t, X(t, y)+ [0, w1] × QH (r)
)

if w1 > 0.

(7.5)

Notice that it depends only on the first component w1.
In order to simplify the notation, we will often assume w1 � 0, mainly when

we need to integrate in intervals [0, w1]; the other case gives exactly the same
estimates, as one can check.

We begin with a series of estimates for the vector field b̃
H
.

Proposition 7.1. The following estimates hold:
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(1) there exists R
 > 0 and K
 ⊂ S1 compact such that

Hd((S1 ∩K0)\K


)
� O(ε̄)

(Ld+1(
)+ |Db|(
)
)
, (7.6)

and each trajectory starting in y ∈ K
 satisfies X(t, y) + Bd
R(0) ⊂ 
 for all

t ∈ (t−(y), t+(y)), and X(t+(y), y)+ Bd
R(0) ⊂ S2;

(2) if 2Hr < R it holds

ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣∣b(t, X(t, y)+ w)− b(t, X(t, y))

− b̃
H

(r, y; t, w)

∣∣∣ dw dt dy � 5C̄
√

ε̄rLd(Bd
r (0))|Db|(
);

(7.7)

(3) finally for r ′ � r

ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r ′ (0)

∣∣b̃H (r, y; t, w)
∣∣ dw dt dy � C̄r ′Ld(Bd

r ′(0))|Db|(
).(7.8)

In particular from the first point, since

√
2+ H2r < 2Hr < R that is r <

√
ε̄

2
R,

then the set

X((t−(y), t+(y)), y)+ [−r, r ] × QH (r) ⊂ 
. (7.9)

The choice of Ri of Point (3) of page 18 is done at this step by setting Ri = √εR/2.

Proof. The first point follows with the same reasoning as in Point (2) of page 24:
let K
 be a compact set of initial points y ∈ S1 ∩K1 with X(t, y)+ Bd

R(0) ⊂ 
,
t ∈ (t−(y), t+(y)) and X(t+(y), y)+Bd

R(0) ⊂ S2.We can assume that the amount
of trajectories we are neglecting is of order

Hd((S1 ∩K0)\K
)
|Db|(
)

M
� ε̄Ld+1(
)

for R � 1. This is (7.6).
For the second point of the statement, by (7.5) we can estimate

ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣∣b(t, X(t, y)+ w)− b(t, X(t, y))

−b̃H (r, y; t, w)

∣∣∣ dw dt dy

triangle ineq. �
ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣b�1,�2(t, X(t, y)+ w)

−b�1,�2(t, X(t, y))
∣∣ dw dt dy

+Ld(Bd
r (0))

ˆ

K


ˆ t+(y)

t−(y)

∣∣∣∣b1,2(t, X(t, y))
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−
 

QH (r)
b1,2(t, X(t, y)+ z) dz

∣∣∣∣ dt dy

+
ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣∣∣b1,2(t, X(t, y)+ w)

−
 

QH (r)
b1,2(t, X(t, y)+ w1e1 + z)dz

∣∣∣∣ dw dt dy

+
ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣∣∣
 

QH (r)

(
b1,2(t, X(t, y)+ w1e1 + z)

−b1,2(t, X(t, y)+ z)
)
dz

− sign(w1)ξ̄

Ld−1(QH (r))
|Db|(X(t, y)+ [0 ∧ w1, 0 ∨ w1]

×QH (r)
)∣∣∣∣ dw dt dy

bring aver. out �
ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣b�1,�2(t, X(t, y)+ w)

−b�1,�2(t, X(t, y))
∣∣ dw dt dy

+Ld(Bd
R(0))

 

QH (r)

[ ˆ

K


ˆ t+(y)

t−(y)

∣∣b1,2(t, X(t, y))

−b1,2(t, X(t, y)+ z)
∣∣ dt dy

]
dz

+
 

QH (r)

ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣∣b1,2(t, X(t, y)+ w)

−b1,2(t, X(t, y)+ w1e1 + z)
∣∣∣ dw dt dy dz

+ 1

Ld−1(QH (r))

ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣∣D1b1,2
(
t, X(t, y)

+[0 ∧ w1, 0 ∨ w1] × QH (r)
)

−ξ̄ |Db|(t, X(t, y)

+[0 ∧ w1, 0 ∨ w1] × QH (r)
)∣∣∣ dw dt dy

estim. transl. BV � C̄rLd(Bd
r (0))|Db�1,�2|(
)+ C̄ HrLd(Bd

r (0))|D2b1,2|(
)

+C̄(1+ H)rLd(Bd
r (0))|D2b1,2|(
)

+C̄Ld(Bd
r (0))ε̄r |Db|(
)

�
(7.2),(7.4)

2C̄rLd(Bd
r (0))ε̄|Db|(
)+ C̄√

ε̄
rLd(Bd

r (0))ε̄|Db|(
)

+ 2C̄√
ε̄
rLd(Bd

r (0))ε̄|Db|(
) � 5C̄
√

ε̄rLd(Bd
r (0))|Db|(
).
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This yields (7.7).
Finally, for a fixed w ∈ B1

r (0), w1 � 0, recalling that t±(y) are the enter-
ing/exiting times for the trajectory X(t, y) and using (7.5)

ˆ

K


ˆ t+(y)

t−(y)

∣∣b̃H (r, y; t, w)
∣∣dtdy

=
(7.5)

ˆ

K


ˆ t+(y)

t−(y)

|Db|(X(t, y)+ [0, w1] × QH (r)
)

Ld−1(QH (r))
dt dy

near. incompr. � C̄ |w1||Db|(
).

(7.10)

Thus integrating we get for every r ′ � r (|w1| � r )

ˆ

K


ˆ t+(y)

t−(y)

ˆ

Bd
r ′ (0)

∣∣b̃H (r, y; t, w)
∣∣ dw dt dy � C̄r ′Ld(Bd

r ′(0))|Db|(
).

This concludes the proof of (7.8).

7.3. Estimate on the first component e1

The ODE for the first component is

d

dt
X̃

H
1 (r, y; t, z) = b̃

H
1

(
r, y; t, X̃H

1 (r, y; t, z)), X̃
H
1 (r, y; t+(y), z) = z.

(7.11)

The first observation is that by the choice (7.3), it holds for z1 � z2

(
b̃
H
1 (r, y; t, z1)− b̃

H
1 (r, y; t, z2)

)
(z1 − z2)

=
(7.5)

ξ̄1

Ld−1(QH (r))
|Db|(X(t, y)+ [z1, z2] × QH (r)

)
(z1 − z2) �

(7.3)

0.

We have thus proved the following result.

Lemma 7.2. The first component X̃
H
1 (r, y; t, z) is a contraction with respect to the

initial data z, and X̃
H
1 (r, y; t, 0) = 0.

Hence in particular solutions with initial data w1 � 0 remain positive.

We can use thus Bressan’s estimate on Lipschitz flow to compare X̃
H
1 with the

real flow, Corollary A.2 and Point (2) of Page 2. For almost everywhere trajectory
X(t, y′), let ∪i (t−i (y, y′), t+i (y, y′)) be the set of time where it belongs to the
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cylinder X(t, y)+ Bd
r (0), so that for every t ∈ (t−i (y, y′), t+i (y, y′)) it holds

∣∣∣X1(t, y
′)− X1(t, y)− X̃

H
1

(
r, y; t, X1(t

−
i (y, y′), y′)

− X1(t
−
i (y, y′), y)

)∣∣∣

Corollary A.2, Lemma 7.2 �
ˆ t

t−i (y,y′)

∣∣∣b1(s, X(s, y′))− b1(s, X(s, y))

− b̃
H
1

(
r, y; s, X1(s, y

′)− X1(s, y)
)∣∣∣ ds

�
ˆ t+i (y,y′)

t−i (y,y′)

∣∣∣b1(s, X(s, y′))− b1(s, X(s, y))

− b̃
H
1

(
r, y; s, X1(s, y

′)− X1(s, y)
)∣∣∣ ds.

Integrating over all y′ ∈ K
 we obtain
ˆ

K


∥∥∥X1(t, y
′)− X1(t, y)− X̃

H
1

(
r, y; t, X1(t

−
i (y, y′), y′)

− X1(t
−
i (y, y′), y)

)∥∥∥
L∞(t−(y,y′),t+(y,y′))

dy′

�
ˆ

K


ˆ t+i (y,y′)

t−i (y,y′)

∣∣∣b1(s, X(s, y′))− b1(s, X(s, y))

− b̃
H
1

(
r, y; s, X1(s, y

′)− X1(s, y)
)∣∣∣ ds dy′

near. inc. as in (5.8) � C̄
ˆ

Bd
r (0)

ˆ t+(y)

t−(y)

∣∣∣b1(s, X(s, y)+ z)− b1(s, X(s, y))

− b̃
H
1 (r, y; s, z)

∣∣∣ ds dz.

Integrating over all y ∈ K
 and repeating the computations for (7.7) we obtain
ˆ

K


ˆ

K


∥∥∥X1(t, y
′)− X1(t, y)− X̃

H
1

(
r, y; t, X1(t

−(y, y′), y′)

− X1(t
−(y, y′), y)

)∥∥∥
L∞(t−i (y,y′),t+i (y,y′))

dy′ dy

� C̄
ˆ

K


ˆ

Bd
r (0)

ˆ t+(y)

t−(y)

∣∣∣b1(s, X(s, y)+ z)− b1(s, X(s, y))

− b̃
H
1 (r, y; s, z)

∣∣∣ ds dz dy

�
as in (7.7)

3C̄2
√

ε̄rLd(Bd
r (0))|Db|(
),

(7.12)

Note that since we are estimating only the first component the constant is improved.
We collect the above estimate in the following Proposition:
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Proposition 7.3. We have the following estimate: if X(t, y′) ∈ Bd
R(X(t, y)) for

t ∈ (t−i (y, y′), t+i (y, y′)), then
ˆ

K


ˆ

Rd

∥∥∥X1(t, y
′)− X1(t, y)− X̃

H
1

(
r, y; t, X1(t

−
i (y, y′), y′)

− X1(t
−
i (y, y′), y)

)∥∥∥
L∞(t−i (y,y′),t+i (y,y′))

dy′ dy

� 3C̄2
√

ε̄rLd(Bd
r (0))|Db|(
).

(7.13)

From Proposition 7.3, by means of the Chebyshev’s inequality, we obtain

Corollary 7.4. The set

E1
1(y, r) =

{
z ∈ Bd

r (0) ∩ (K
 − y) :
∥∥∥X1(·, y + z)− X1(·, y)− X̃

H
1 (r, y; t−i (y, y′), z)

∥∥∥
C0(t−i (y,y′),t+i (y,y′))

� (ε̄)1/4r
}

(7.14)

has measure bounded by

ˆ

K


Ld(E1(y, r)) dy

� 1

(ε̄)1/4r

ˆ

K

ˆ

Bd
r (0)

∥∥∥X1(·, y + z)

− X1(·, y)− X̃
H
1 (r, y; t−i (y, y′), x)

∥∥
C0(t−i (y,y′),t+i (y,y′)) dz dy

< 4C̄2(ε̄)1/4Ld(Bd
r (0))|Db|(
).

(7.15)

7.4. Comparison with the disintegration

Aim of this section is to compare b̃
H

(r, y; t, w) with the disintegrated measure
(Db1,2)yw1. Being these measures singular, the estimate is done by considering
their time integral: this reflects the fact that we want to compare the flow generated

by b̃
H
and (Db)y , not the vector fields themselves.

Here we need to consider the flow X̃
H
1 generated by the vector field (7.11). The

proof of the final theorem requires several steps, which are listed below.

7.4.1. Estimate of the flow across the lateral boundary We have the following

Lemma 7.5. The flow

�L(y) =
ˆ

∪t∈(t−(y),t+(y))X(t,y)+∂{[0,X̃H
1 (r,y;t,w1)]×QH (r)}

(1, b) · nHd ,
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across the lateral boundary of the set

⋃

t∈(t−(y),t+(y))

X(t, y)+ [0, X̃H
1 (r, y; t, w1)] × QH (r),

for every 0 � w1 � r , can be estimated as

ˆ

K


�L(y)dy � C̄

(
Cd
√

ε̄ + 4r
√

ε̄

|w1|
)
|w1|Ld−1(QH (r))|Db|(
), (7.16)

where Cd is a constant depending only on the dimension d of the space.

Proof. We write, as before,

K
 =
⋃

y∈K


X
(
(t−(y), t+(y)), y

)
,

and estimate

(1) the flow across the surface {0} × QH (r), whose normal is (0,−e1): by using
nearly incompressibility

ˆ

K


ˆ t+(y)

t−(y)

ˆ

QH (r)

∣∣b1(t, X(t, y)+ z)− b1(t, X(t, y))
∣∣ dz dy dt

� C̄
ˆ

K


ˆ

QH (r)

∣∣b1(t, x + z)− b1(t, x)
∣∣ dz dx

� C̄
ˆ

QH (r)

( ˆ




|D �1b1| dx dt
)
|z| dz

�
(7.2)

C̄ HrLd−1(QH (r))ε̄|Db|(
)

�
(7.4)

C̄
r
√

ε̄

|w1| |w1|Ld−1(QH (r))|Db|(
);

(7.17)

(2) the flow across the surface {(t, X̃H
1 (r, y; t, w1)), t ∈ (t−(y), t+(y))}×QH (r),

whose normal is (−b̃H1 (r, y; t, X̃H
1 (r, y; t, w1)), e1):

ˆ

K


ˆ t+(y)

t−(y)

ˆ

QH (r)

∣∣∣b1
(
t, X(t, y)+ X̃

H
1 (r, y; t, w1)e1 + z

)

−b1(t, X(t, y))− b̃
H
1

(
r, y; t, X̃H

1 (r, y; t, w1)
)∣∣∣ dz dy dt

�
(7.12)

ˆ

K


ˆ t+(y)

t−(y)

ˆ

QH (r)

∣∣∣∣b1
(
t, X(t, y)+ X̃

H
1 (r, y; t, w1)e1 + z

)

−
 

QH (r)
b1(t, X(t, y)+ X̃

H
1 (r, y; t, w1)e1 + z′)dz′

∣∣∣∣ dz dy dt
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+
ˆ

K


ˆ t+(y)

t−(y)

ˆ

QH (r)

∣∣∣∣b1(t, X(t, y))

−
 

QH (r)
b1(s, X(t, y)+ z′)dz′

∣∣∣∣ dz dy dt

+
ˆ

K


ˆ t+(y)

t−(y)

ˆ

QH (r)

∣∣∣∣
 

QH (r)
b1(s, X(t, y)

+X̃
H
1 (r, y; t, w1)e1 + z′)− b1(s, X(t, y)+ z′) dz′

− ξ̄1

Ld−1(QH (r))
|Db(s)|(X(t, y)+ [0, X̃H

1 (r, y; t, w1)]

×QH (r)
)∣∣∣∣ dz dy dt

� C̄
(|w1| + 2Hr

)Ld−1(QH (r))ε̄|Db|(
)

� C̄

(
ε̄ + 2r

√
ε̄

|w1|
)
|w1|Ld−1(QH (r))|Db|(
)

� C̄

(
3r
√

ε̄

|w1|
)
|w1|Ld−1(QH (r))|Db|(
); (7.18)

(3) the flow across the surface (0, X̃
H
1 (r, y; t, w1)) × [−Hr, Hr ] × ∂Bd−2

r (0): if
b⊥ is the component not 1 or 2, then, as above,

ˆ

K


ˆ t+(y)

t−(y)

ˆ

(0,X̃
H
1 (r,y;t,w1))×[−Hr,Hr ]×∂Bd−2

r (0)

∣∣b⊥(t, X(t, y)+ z)

− b⊥(t, X(t, y))
∣∣ dz dy dt

near. inc. � C̄
ˆ

K


ˆ

(0,X̃
H
1 (r,y;t,w1))×[−Hr,Hr ]×∂Bd−2

r (0)∣∣b⊥(t, x + z)− b⊥(t, x)
∣∣ dz dx dt

X̃1 contr. � C̄
ˆ

(0,w1)×[−Hr,Hr ]×∂Bd−2
r (0)

(ˆ




|Db⊥| dx dt
)
|z| dz

(|z| � 2Hr) � C̄(2Hr)2|w1|Hd−3(∂Bd−2
r (0))ε̄|Db|(
)

= 4C̄ H
rHd−3(∂Bd−2

r (0))

Ld−2(Bd−2
r (0))

|w1|
(
HrLd−2(Bd−2

r (0))
)
ε̄|Db|(
)

�
(7.4)

C̄Cd
√

ε̄|w1|Ld−1(QH (r))|Db|(
);

(7.19)

(4) the flow across the surface [0, X̃H
1 (r, y; t, w1)] × {Hr} × Bd−2

r (0), whose
normal is e2:

ˆ

K


ˆ t+(y)

t−(y)

ˆ

[0,X̃H
1 (r,y;t,w1)]×Bd−2

r (0)

∣∣b2(t, X(t, y)+ Hre2 + z)
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−b2(t, X(t, y))
∣∣ dz dy dt

X̃1 contr. �
ˆ

K


ˆ t+(y)

t−(y)

ˆ

[0,w1]×Bd−2
r (0)

∣∣b2(t, X(t, y)+ Hre2 + z)

−b2(t, X(t, y)+ Hre2)
∣∣ dz dy dt

+
ˆ

K


ˆ t+(y)

t−(y)

ˆ

[0,w1]×Bd−2
r (0)

∣∣b2(t, X(t, y)+ Hre2)

−b2(t, X(t, y))
∣∣ dz dy dt

near. inc. � C̄
ˆ

[0,w1]×Bd−2
r (0)

( ˆ




|Db2| dx dt
)
|z| dz

+C̄ Hr |w1|Ld−2(Bd−2
r (0))|D2b2|(
)

� C̄(|w1| + r)|w1|Ld−2(Bd−2
r (0))|Db|(
)

+C̄ Hr |w1|Ld−2(Bd−2
r (0))ε̄|Db|(
)

� C̄

(
1

H
+ ε̄

2

)
|w1|Ld−1(QH (r))|Db|(
)

� C̄Cd
√

ε̄|w1|Ld−1(QH (r))|Db|(
). (7.20)

The same for the surface [0, w1] × {−Hr} × Bd−2
r (0).

Summing up the estimates (7.17), (7.18), (7.19) and (7.20) we obtain the statement
(7.16).

7.4.2. First selection of initial point in order to have continuity of the flow
and disintegration Consider a compact set K
,1 ⊂ K
 of trajectories X(t, y),
where y �→ X(t, y) ∈ C([0, T ], R

d) is continuous in the C0-topology, and such
that the disintegration y �→ (Db)y is weakly continuous in the sense of measures
and m�K
,1= Ld�K
,1 , which means that the singular part of m has measure 0 on
K
1 .

Since we have
ˆ

N
|Db(t)|(Rd)dt =

ˆ

Rd
|(Db)y |(N )m(dy),

then it follows that if L1(N ) = 0,

|(Db)y |(N ) = 0 m-almost everywhere y.

In particularwecan assume that the initial and end sets {t−(y)}y∈K
,1 , {t+(y)}y∈K
,1

have measure 0 with respect to (Db)y , and thus in K
,1 it holds that

y �→ (Db)y((t−(y), t+(y)) is continuous with continuity modulus ωdis.

We can also take a second compact set K
,2 made of Lebesgue points of K
,1
and such that the limits

Ld
(
Bd
r (y) ∩ K
,1

)

Ld(Bd
r (0))

→ 1,
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Bd
r (0)∩K
,1

∥∥X(·, y + z)− X(t, y)
∥∥
C0((t−(y),t+(y))dz → 0,

 

Bd
r (0)

∣∣∣(Db)y+z((t−(y), t+(y)))− (Db)y((t−(y), t+(y)))
∣∣∣m(dz) → 0

are uniform with continuity modulus ωdis(r) (eventually changing ωdis of (7.22)).
The total error can be taken

Hd(K
\K
,2) < ε̄Ld+1(
)

by Egorov and Lusin Theorems.
We thus have proved the following lemma:

Lemma 7.6. There exist two compact sets K
,2 ⊂ K
,1 ⊂ K
 such that the
following holds:

(1) their difference in measure is small, that is

Hd(K
\K
,2) < ε̄Ld+1(
); (7.21)

(2) the maps K
,1 � y �→ X(t, y) ∈ C([0, T ], R
d) is continuous in the C0-

topology with modulus of continuity ωdis;
(3) for every y ∈ K
,1 it holds

(Db)y({t±(y)}) = 0

and

y �→ (Db)y((t−(y), t+(y)) is continuous with modulus ωdis; (7.22)

(4) the compact set K
,2 is made of Lebesgue points of K
,1 such that

∣∣∣∣
Ld

(
Bd
r (y) ∩ K
,1

)

Ld(Bd
r (0))

− 1

∣∣∣∣ � ωdis(r), (7.23a)

 

Bd
r (0)∩K
,1

∥∥X(·, y + z)− X(t, y)
∥∥
C0((t−(y),t+(y))dz � ωdis(r), (7.23b)

 

Bd
r (0)

∣∣∣(Db)y+z((t−(y), t+(y)))− (Db)y((t−(y), t+(y)))
∣∣∣m(dz) � ωdis(r).

(7.23c)
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7.4.3. Comparison of approximate flow with the disintegration Aim of this
part is to prove the following results:

Proposition 7.7. If r � r̂(ε̄), it holds that
ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H (

r, y; t, X̃H
1 (r, y; t, w1)

)
dt − (Db1,2)y((0, t))w

∣∣∣∣ dw dy

� CdC̄
√

ε̄rLd(Bb
r (0))

[Ld+1(
)+ |Db|(
)
]+ C̄ |Db|(
\K0

)
rLd(Bd

r (0)).

(7.24)

Proof. We estimate the difference of the approximate vector fields b̃
H
i (r, y; t, X̃H

1
(r, y; t, w1)) and the disintegration (D1bi )yw1 for a fixedw1 (> 0 for definiteness),
with i = 1, 2. The proof is given in several steps.
Step 1. By using (7.5)
ˆ

K
,2

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H
1,2

(
r, y; t, X̃H

1 (r, y; t, w1)
)
dt − (D1b1,2)y((t−(y), t+(y))w1

∣∣∣∣ dy

=
(7.5)

ˆ

K
,2

∣∣∣∣
ˆ t+(y)

t−(y)
ξ̄
|Db|(X(t, y)+ [0, X̃H

1 (r, y; t, w1)] × QH (r)
)

Ld−1(QH (r))
dt

−(D1b1,2)y((t−(y), t+(y))w1

∣∣∣∣ dy

�
ˆ

K
,2

∣∣∣∣
ˆ t+(y)

t−(y)

1

Ld−1(QH (r))

[
ξ̄ |Db|(X(t, y)

+[0, X̃H
1 (r, y; t, w1)] × QH (r)

)

−(Db)1,2
(
X(t, y)+ [0, X̃H

1 (r, y; t, w1)] × QH (r)
)]

dt

∣∣∣∣ dy

+|w1|
ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

[ ˆ t+(y)

t−(y)
(Db)1,2

(
X(t, y)

+[0, X̃H
1 (r, y; t, w1)× QH (r)

)
dt

−
ˆ

K0

(D1b1,2)z
(
∪t

{
X(t, y)+ [0, X̃H

1 (r, y; t, w1)] × QH (r)
})

dz

]∣∣∣∣ dy

+|w1|
ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K0

(D1b1,2)z
(
∪t

{
X(t, y)

+[0, X̃H
1 (r, y; t, w1)] × QH (r)

})
dz

−(D1b1,2)y((t−(y), t+(y))

∣∣∣∣ dy,

�
(7.2),(3.10)

ε̄|w1||Db|(
)+ C̄ |w1||Db|(
\K0
)

+C̄ |w1|
ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K0

(D1b1,2)z
(
∪t

{
X(t, y)
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+[0, X̃H
1 (r, y; t, w1)] × QH (r)

})
dz

−(D1b1,2)y((t−(y), t+(y))

∣∣∣∣ dy, (7.25)

where in the last step we use the definition of disintegration.
We estimate the integral

ˆ

K0

(D1b1,2)z
({ ∪t X(t, y)+ [0, X̃H

1 (r, y; t, w1)] × QH (r)
})

dz

by
ˆ

K0

[. . . ] dz =
{ˆ

K in

,1(y)

+
ˆ

K
\K in

,1(y)

}
[. . . ] dz, (7.26)

where K in

,1(y) are the trajectories in K
,1 which remain inside ∪tX(t, y) +

[0, X̃H
1 (r, y; t, w1)] × QH (r). Recall that we denote with K
 the union of the

graph of the trajectories starting in K
, and the same with K
,1.
Step 2. We write the last term of (7.25) as
ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K


[. . . ] dz − (D1b1,2)y((t−(y), t+(y)))

∣∣∣∣ dy

=
(7.26)

ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

{ˆ

K in

,1(y)

+
ˆ

K
\K in

,1

}
[. . . ]dz

− (D1b1,2)y((t−(y), t+(y)))

∣∣∣∣ dy

�
ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K in

,1(y)

[. . . ] dz − (D1b1,2)y((t−(y), t+(y)))

∣∣∣∣ dy

+
ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K
\K in

1

[. . . ] dz
∣∣∣∣ dy.

We have

(1) term K in

,1(y): in this set the measure (D1bi )z are continuous by (7.22) and the

trajectories remain inside the set by the definition of K in

,1(y), so that

ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K in

,1(y)

[. . . ]m(dz)

−(D1b1,2)y((t−(y), t+(y)))

∣∣∣∣ dy

traj. are inside =
m�K
,1�Ld

ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))
ˆ

K in

,1(y)

(D1b1,2)z((t−(y), t+(y))) dz
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−(D1b1,2)y((t−(y), t+(y)))

∣∣∣∣ dy

(D1b2)z continuous �
ˆ

K
,2

[ Ld(K in

,1(y))

|w1|Ld−1(QH (r))
ωdis(Hr)

+
∣∣∣∣(D1b1,2)y((t−(y), t+(y)))

( Ld(K in

,1(y))

|w1|Ld−1(QH (r))
− 1

)∣∣∣∣

]
dy

(D1b2)y bounded �
ˆ

K
,2

[ Ld(K in

,1(y))

|w1|Ld−1(QH (r))
ωdis(Hr)

+M

(
1− Ld(K in


,1(y))

|w1|Ld−1(QH (r))

)]
dy

see below �
ˆ

K
,2

[ Ld(K in

,1(y))

|w1|Ld−1(QH (r))
ωdis(Hr)

+M min

{
1,

ωdis(2Hr)Ld(Bd
2Hr (0))

|w1|Ld−1(QH (r))

}]
dy

+M
ˆ

K
,2

(exiting flow)

|w1|Ld−1(QH (r))
dy

K in

,1(y) ⊂ S1 ∩ Bd

2Hr (y) �
(7.16)

2M min

{
1,

ωdis(2Hr)Ld(Bd
2Hr (0))

|w1|Ld−1(QH (r))

}
Ld(K
,2)

+MC̄

(
Cd
√

ε̄ + 4r
√

ε̄

|w1|
)
|Db|(
),

where we have observed that

z ∈ [0, w1] × QH (r)\K in

,1

⊂ (
Bd
2Hr (0)\K
,1

) ∪ (
K
,1

∩ (trajectories exiting from
⋃

t

X(t, y)+ [0, X̃H
1 (r, y; t, w1)] × QH (r))

)
,

and, by (7.23a),

Ld(Bd
2Hr (0)\K
,1

)
� ωdis(2Hr)Ld(Bd

2Hr (0));

(2) term K
\K in

1
: these trajectories satisfy |(D1bi )z | � M and exit, so that

ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K
\K in

1

[. . . ]dz
∣∣∣∣ dy

� M

|w1|Ld−1(QH (r))

ˆ

K
,2

[
m-measure of exiting/entering trajectories

]
dy
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� M

|w1|Ld−1(QH (r))

ˆ

K
,2

[
flow on the boundary

]
dy

�
(7.16)

M

|w1|Ld−1(QH (r))

[
C̄

(
Cd
√

ε̄ + 4r
√

ε̄

|w1|
)
|w1|Ld−1(QH (r))|Db|(
)

]

� MC̄

(
Cd
√

ε̄ + 4r
√

ε̄

|w1|
)
|Db|(
);

Finally, collecting all estimates,

ˆ

K
,2

∣∣∣∣
1

|w1|Ld−1(QH (r))

ˆ

K


[. . . ]m(dz)− (D1b2)y((t−(y), t+(y)))

∣∣∣∣ dy

� 2M min

{
1,

ωdis(2Hr)Ld(Bd
2Hr (0))

|w1|Ld−1(QH (r))

}
Ld(K
,2)

+ 2MC̄

(
Cd + 4r

|w1|
)√

ε̄|Db|(
).

(7.27)

Step 3. We thus have

ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H (

r, y; t, X̃H
1 (r, y; t, w1)

)
dt

− (D1b1,2)y((t−(y), t+(y)))w1

∣∣∣∣ dw dy

�
(7.25),(7.27)

ˆ

Bd
r (0)

|w1|
[
ε̄|Db|(
)+ C̄ |Db|(
\K0

)

+ 2M min

{
1,

ωdis(2Hr)Ld(Bd
2Hr (0))

|w1|Ld−1(QH (r))

}
Ld(K
,2)

+ 2MC̄

(
Cd + 4r

|w1|
)√

ε̄|Db|(
)

]
dw

(|w1| � r) � 2M
ˆ

Bd
r (0)

min
{|w1|,Cdωdis(2Hr)Hd−1r

}Ld(K
,2) dw

+ 2MC̄(Cd + 4)r
√

ε̄|Db|(
)Ld(Bd
r (0))

+ r ε̄|Db|(
)Ld(Bd
r (0))+ C̄ |Db|(
\K0

)
rLd(Bd

r (0)).

(7.28)

Step 4. Observing that

ˆ

Bd
r (0)

min
{|w1|,Cdωdis(2Hr)Hd−1r

}
dw � CdLd(Bd

r (0))ωdis(2Hr)Hd−1r,

(7.29)
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we obtain
ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H (

r, y; t, X̃H
1 (r, y; t, w1)

)
dt

− (D1b2)y((t−(y), t+(y)))w1

∣∣∣∣ dw dy

�
(7.28)

2M
ˆ

Bd
r (0)

min
{|w1|,Cdωdis(2Hr)Hd−1r

}Ld(K
,2) dw

+ 2MC̄(Cd + 4)r
√

ε̄|Db|(
)Ld(Bd
r (0))

+ r ε̄|Db|(
)Ld(Bd
r (0))+ C̄ |Db|(
\K0

)
rLd(Bd

r (0))

�
(7.29)

2MCdLd(Bd
r (0))ωdis(2Hr)Hd−1rLd(K
,2)

+ 2MC̄(Cd + 4)r
√

ε̄|Db|(
)Ld(Bd
r (0))

+ r ε̄|Db|(
)Ld(Bd
r (0))+ C̄ |Db|(
\K0

)
rLd(Bd

r (0)).

(7.30)

Conclusion. For r < r̂ = r̂(ε̄) < r̄ such that

ωdis(2Hr̂)Hd−1Ld(K
,2) = ω

(
2r̂√

ε̄

)
1

(ε̄)(d−1)/2
Ld(K
,2) <

√
ε̄Ld+1(
),

(7.31)

we obtain
ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H (

r, y; t, X̃H
1 (r, y; t, w1)

)
dt

− (D1b2)y((t−(y), t+(y)))w1

∣∣∣∣ dw dy

(7.30), (7.31) � 2MCdr
√

ε̄Ld(Bd
r (0))Ld+1(
)

+ 2MC̄(Cd + 4)r
√

ε̄|Db|(
)Ld(Bd
r (0))

+ r ε̄|Db|(
)Ld(Bd
r (0))+ C̄ |Db|(
\K0

)
rLd(Bd

r (0))

� rLd(Bd
r (0))

√
ε̄

[
2MCdLd+1(
)+ 2MC̄(Cd + 6)|Db|(
)

]

+ C̄ |Db|(
\K0
)
rLd(Bd

r (0))

� CdC̄
√

ε̄rLd(Bb
r (0))

[Ld+1(
)+ |Db|(
)
]

+ C̄ |Db|(
\K0
)
rLd(Bd

r (0)).

(7.32)

We have removed a set of trajectories of measure

(7.6), (7.21) < 2ε̄Ld+1(
)

and the estimate holds for

r � r̂ = r̂(ε̄).
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This concludes the comparisonwith the disintegration, whichwill be usedwhen
analyzing the approximate flow with the linear one in Point (7) of page 19. Using
(7.2) we have also

Corollary 7.8. It holds that

ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H (

r, y; t, X̃H
1 (r, y; t, w1)

)
dt − (Db)y((0, t))w

∣∣∣∣ dw dy

� Cd(1+ C̄)rLd(Bb
r (0))

√
ε̄
[Ld+1(
)+ |Db|(
)

]

+ C̄ |Db|(
\K0
)
rLd(Bd

r (0)).

(7.33)

7.5. Estimates on the approximated flow

The approximated flow is defined by solving the ODE

d

dt
X̃

H
(r, y; t, z) = b̃

H (
r, y; t, X̃H

(r, y; t, z)),

in the time interval of interest for X(t, y), that is t ∈ (t−(y), t+(y)), with initial
data z at t−(y). We recall that

b̃
H

(r, y; t, z) =
(7.5)

ξ̄

Ld−1(QH (r))
|Db|(X(t, y)+ [0, w1] × QH (r)

)
.

The first component X̃
H
1 (r, y; t, z) has already been studied in Section 7.3.

7.5.1. The part not along e1, e2 The component of b̃ along the direction e�1,�2 is
clearly 0 because ξ̄ lies in the 1, 2-plane by assumptions, so that

X̃
H
�1,�2(r, y; t, z) = z �1,�2.

In particular this flow is perfectly 1-Lipschitz.
We can use Corollary A.2 to compare the real flow X �1,�2(t, y+ z)− X �1,�2(t, y)

with the approximate flow until the exit time t+(y; z) from the ball Bd
r (0).

Lemma 7.9. It holds
ˆ

K
,2

ˆ

Bd
r (0)

∥∥∥X �1,�2(·, y + z)− X �1,�2(·, y)− z �1,�2
∥∥∥
C0(t−(y),t+(y,z))

dz dy

< C̄2rLd(Bd
r (0))ε̄|Db|(
), (7.34)

where t+(y, z) is the exit time from the ball X (t+(y, z), y)+ Bd
r (0) or it coincides

with the final time t+(y).
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Proof. Corollary A.2 with b̃ = 0, L = 1 gives for all t ∈ [t−(y), t+(y; z)]
∣∣∣X �1,�2(t, y + z)− X �1,�2(t, y)− z �1,�2

∣∣∣

�
ˆ t

t−(y)

∣∣b�1,�2(s, X(s, y + z))− b�1,�2(s, X(s, y))
∣∣ ds. (7.35)

Let t (y, z) ∈ [t−(y), t+(y, z)] be such that
∣∣∣X �1,�2(t (y, z), y + z)− X �1,�2(t (y, z), y)− z �1,�2

∣∣∣

=
∥∥∥X �1,�2(·, y + z)− X �1,�2(·, y)− z �1,�2

∥∥∥
C0([t−(y),t+(y,z)]). (7.36)

Integrating with respect to z ∈ Bd
r (0) and y ∈ K
,2 we obtain

ˆ

K
,2

ˆ

Bd
r (0)

∥∥∥X �1, �2(·, y + z)− X �1, �2(·, y)− z �1, �2
∥∥∥
C0

dz dy

=
(7.36)

ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣X �1, �2(t (y, z), y + z)

− X �1, �2(t (y, z), y)− z �1, �2
∣∣∣ dz dy

�
(7.35)

ˆ

K
,2

ˆ

Bd
r (0)

ˆ t (y,z)

t−(y)

∣∣b�1, �2(s, X(s, y + z))

− b�1, �2(s, X(s, y))
∣∣ ds dz dy

t (y, z) � t+(y, z) �
ˆ

K
,2

ˆ

Bd
r (0)

ˆ t+(y,z)

t−(y)

∣∣b�1, �2(s, X(s, y + z))

− b�1, �2(s, X(s, y))
∣∣ ds dz dy

near. incompr. with respect to z � C̄
ˆ

K
,2

ˆ t+(y)

t−(y)

ˆ

Bd
r (0)

∣∣b�1, �2(s, X(s, y)+ w)

− b�1, �2(s, X(s, y))
∣∣ dw ds dy

near. incompr. with respect to y � C̄2
ˆ

Bd
r (0)

ˆ




∣∣b�1, �2(s, x + w)

− b�1, �2(s, x)
∣∣ ds dx dw

<
(7.2)

C̄2rLd (Bd
r (0))ε̄|Db|(
).

which is (7.34).

Corollary 7.10. If

E2
1(y, r) =

{
z ∈ Bd

r (0) : ∥∥X �1,�2(·, y + z)− X �1,�2(·, y)− z �1,�2
∥∥
C0 �

√
ε̄r

}

(7.37)

then
ˆ

K
,2

Ld(E2
1(y, r))dy < C̄2Ld(Bd

r (0))
√

ε̄|Db|(
). (7.38)
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Proof. Indeed, by Chebyshev,
ˆ

K
,2

Ld(E2
1(y, r))dy � 1√

ε̄r

ˆ

K
,2

ˆ

Bd
r (0)

∥∥∥X �1,�2(·, y + z)

− X �1,�2(·, y)− z �1,�2
∥∥∥
C0

dz dy

<
(7.34)

C̄2Ld(Bd
r (0))

√
ε̄|Db|(
),

which is the statement.

Defining

E1(r, y) = E1
1(r, y) ∪ E2

1(r, y) (7.39)

where E1
1(r, y) is defined in (7.14) and E2

1(r, y) in (7.37), we conclude that

ˆ

K
,2

Ld(E1(y, r))dy �
(7.15),(7.38)

5C̄2(ε̄)1/4Ld(Bd
r (0))|Db|(
) (7.40)

for ε̄ � 1.
The estimate (7.40) gives Point (4) of page 18.

7.5.2. The part along e2 The part along e2 satisfies the ODE

d

dt
X̃

H
2 (r, y; t, z) = b̃

H
2

(
r, y; t, X̃H

2 (r, y; t, z)).

Since b̃
H

depends only on z1, the solution is for t ∈ [t−(y), t+(y, z)] (t+(y, z)
being the exit time from Bd

r (0))

X̃
H
2 (r, y; t, z) = z2 +

ˆ t

t−(y)
b̃
H
2

(
r, y; s, X̃H

1 (r, y; t, z1)
)
ds. (7.41)

By (7.8), we have that, for every Borel function z �→ t (y, z) � t+(y),

ˆ

K


ˆ

Bd
r (z)

∣∣X̃H
2 (r, y; t (y, z), z)− z2

∣∣ dz dy

�
(7.41)

ˆ

K


ˆ

Bd
r (z)

∣∣∣∣
ˆ t (y,z)

t−(y)
b̃
H
2

(
r, y; s, X̃H

1 (r, y; t, z1)
)
ds

∣∣∣∣ dz dy

X̃
H
1 contraction

�
ˆ

K


ˆ

Bd
r (z)

∣∣∣∣
ˆ t (y,z)

t−(y)
b̃
H
2

(
r, y; s, z1

)
ds

∣∣∣∣ dz dy

�
(7.8)

C̄rLd(Bd
r (0))|Db|(
),
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which in particular is equivalent to
ˆ

K


ˆ

Bd
r (z)

∥∥X̃H
2 (r, y; ·, z)− z2

∥∥
C0 dz dy � C̄rLd(Bd

r (0))|Db|(
). (7.42)

Here we can allow the time t (y, z) to be larger than the exit time from the cylinder

X(t, y)+Bd
r (0)because of the particular formof theflow X̃

H
: thefirst component is

a contraction, and the seconddepends only on thefirst. Clearly itwill bemeaningless

when exiting X(t, y)+ [−r, r ] × QH (r) because of the form of b̃
H
.

In the following proposition, we estimate the quantity
∣∣∣X2(t, y + z)− X2(t, y)− X̃

H
2 (r, y; t, z)

∣∣∣.

Proposition 7.11. If E1(r, y) is the set defined in (7.39), then it holds
ˆ

K
,2

ˆ

Bd
r (0)\E1(r,y)

∥∥∥X2(·, y + z)− X2(·, y)− X̃
H
2 (r, y; ·, z)

∥∥∥
C0

dz dy

< 7C̄rLd(Bd
r (0))(ε̄)1/4|Db|(
). (7.43)

This proposition corresponds to Point (5) of page 19, Equation (5.2).

Proof. In this case the flow X̃
H
2 is not Lipschitz (take for example a single jump

discontinuity), so we cannot use Corollary A.2 and instead proceed as follows:
let t2(y, z) ∈ [t−(y), t+(y, z)] be the time where

∣∣∣X2(t2(y, z), y + z)− X2(t2(y, z), y)− X̃
H
2 (r, y; t2(y, z), z)

∣∣∣

=
∥∥∥X2(·, y + z)− X2(·, y)− X̃

H
2 (r, y; ·, z)

∥∥∥
C0

.

The above quantity can be written as
∣∣∣X2(t2(y, z), y + z)− X2(t2(y, z), y)− X̃

H
2 (r, y; t2(y, z), z)

∣∣∣

=
∣∣∣∣
ˆ t2(y,z)

t−(y)

[
b2(s, X(s, y + z))− b2(s, X(s, y))− b̃

H
2 (r, y; s, X̃H

1 (r, y; s, z1))
]
ds

∣∣∣∣

�
∣∣∣∣
ˆ t2(y,z)

t−(y)

[
b2(s, X(s, y + z))−

 

QH (r)
b2(s, X1(s, y + z)e1 + w) dw

]
ds

∣∣∣∣

+
∣∣∣∣
ˆ t2(y,z)

t−(y)

[ 

QH (r)
b2(s, X1(s, y + z)e1 + w) dw

−
 

QH (r)
b2

(
s, X(s, y)+ X̃

H
1 (r, y; s, z1)e1 + w

)
dw

]
ds

∣∣∣∣

+
∣∣∣∣
ˆ t2(y,z)

t−(y)

1

Ld−1(QH (r))

[
(D1b2)

(
X(s, y)+ [0, X̃H

1 (r, y; s, z1)] × QH (r)
)

− ξ̄2|Db|(X(s, y)+ [0, X̃H
1 (r, y; s, z1)] × QH (r)

)]
ds

∣∣∣∣

+
∣∣∣∣
ˆ t2(y,z)

t−(y)

[
b2(s, X(s, y))−

 

QH (r)
b2(s, X(s, y)+ w) dw

]
ds

∣∣∣∣.

(7.44)
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We have used

 

QH (r)
b2

(
s, X(s, y)+ X̃

H
1 (r, y; s, z1)e1 + w

)
dw −

 

QH (r)
b2

(
s, X(s, y)+ w

)
dw

= 1

Ld−1(QH (r))
(D1b2)

(
X(s, y)+ [0, X̃H

1 (r, y; s, z1)] × QH (r)
)
.

Integrating the third term with respect to y and using (7.2), we get

ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t2(y,z)

t−(y)

1

Ld−1(QH (r))

[
D1b2

(
X(s, y)

+ [0, X̃H
1 (r, y; s, z1)] × QH (r)

)

− ξ̄2|Db|(X(s, y)+ [0, X̃H
1 (r, y; s, z1)] × QH (r)

)]
ds

∣∣∣∣ dy

�
ˆ

K
,2

ˆ

Bd
r (0)

ˆ t2(y,z)

t−(y)

1

Ld−1(QH (r))

∣∣(D1b2)− ξ̄2|Db|∣∣(X(s, y)

+ [0, w1] × QH (r)
)]

ds dy

� C̄
ˆ

Bd
r (0)

ˆ




1

Ld−1(QH (r))

∣∣(D1b2)− ξ̄2|Db|∣∣((s, x)

+ [0, w1] × QH (r)
)
ds dx

�
(7.2)

C̄rLd(Bd
r (0))ε̄|Db|(
),

(7.45)

wherewe used the fact that X̃
H
1 (r, y; s, z1) � w1 in the first inequality and |w1| � r

in the last one.
Integrating, we obtain, for the fourth term,

ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t2(y,z)

t−(y)

[
b2(s, X(s, y))

−
 

QH (r)
b2(s, X(s, y)+ w) dw

]
ds

∣∣∣∣ dz dy

�
ˆ

K
,2

ˆ

Bd
r (0)

ˆ t+(y)

t−(y)

 

QH (r)

∣∣∣b2(s, X(s, y))

− b2(s, X(s, y)+ w)

∣∣∣ dw ds dz dy

near. incompr. � C̄Ld (Bd
r (0))

 

QH (r)

ˆ




∣∣b2(t, x + w)− b2(t, x)
∣∣ dx dt dw

(|w| � (1+ H)r) � C̄(1+ H)rLd(Bd
r (0))|D2b2|(
)

�
(7.2)

2C̄ HrLd(Bd
r (0))ε̄|Db|(
)

<
(7.4)

2C̄rLd (Bd
r (0))

√
ε̄|Db|(
).

(7.46)
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The above estimate is the same for the first term:

ˆ

K
,2

ˆ

Bd
r (0)

∣∣∣∣
ˆ t2(y,z)

t−(y)

[
b2(s, X(s, y + z))

−
 

QH (r)
b2(s, X1(s, y + z)e1 + w) dw

]
ds

∣∣∣∣ dz dy

�
ˆ

K
,2

ˆ

Bd
r (0)

ˆ t+(y,z)

t−(y)

 

QH (r)

∣∣∣b2(s, X(s, y + z))

− b2(s, X1(s, y + z)e1 + w)

∣∣∣ dw ds dz dy

�
ˆ

K
,2

ˆ

Bd
r (0)

ˆ t+(y,z)

t−(y)

 

QH+1(r)

∣∣∣b2(s, X(s, y + z))

− b2(s, X(s, y + z)+ w)

∣∣∣ dw ds dz dy

near. incompr. � C̄Ld(Bd
r (0))

 

QH+1(r)

ˆ




∣∣b2(t, x + w)− b2(t, x)
∣∣ dx dt dw

� C̄(2+ H)rLd(Bd
r (0))ε̄|Db|(
)

< 2C̄rLd(Bd
r (0))

√
ε̄|Db|(
).

(7.47)

Here in the third step we have used

X1(t, y + z)e1 + QH (r) ⊂ X(t, y + z)+ QH+1(r),

valid until the exit time t2(y, z).
Recalling that for z ∈ Bd

r (0)\E1(r, y) it holds that

∥∥∥X1(·, y + z)− X1(·, y)− X̃
H
1 (r, y; ·, z1)

∥∥∥
C0

< (ε̄)1/4r, (7.48)

we obtain (the interval in the second linemay have the extremals exchanged depend-

ing on s, here for definiteness we assume X̃
H
1 (r, y; s, z) � X1(s, y+z)−X1(s, y))

 

QH (r)

∣∣∣b2(s, X1(s, y + z)e1 + w)− b2(s, X(s, y)+ X̃
H
1 (r, y; s, z1)e1 + w)

∣∣∣ dw

� 1

Ld−1(QH (r))
|D1b2|

(
X(s, y)+ [

X̃
H
1 (r, y; s, z1), X1(s, y + z)

− X1(s, y)
]× QH (r)

)

�
(7.48)

1

Ld−1(QH (r))
|D1b2|

(
X(s, y)+ [− (ε̄)1/4r, (ε̄)1/4r ] × QH (r)

)
.

(7.49)
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Then integrating the second term

ˆ

K
,2

ˆ

Bd
r (0)\E1(r,y)

∣∣∣∣
ˆ t2(y,z)

t−(y)

[  

QH (r)
b2(s, X1(s, y + z)e1 + w) dw

−
 

QH (r)
b2(s, X(s, y)+ z1e1 + w) dw

]
ds

∣∣∣∣ dz dy

�
(7.49)

ˆ

K
,2

ˆ

Bd
r (0)

ˆ t+(y,z)

t−(y)

|D1b2|
(
X(s, y)+ [− (ε̄)1/4r, (ε̄)1/4r ] × QH (r)

)

Ld−1(QH (r))
ds dz dy

< 2C̄(ε̄)1/4rLd(Bd
r (0))|D1b2|(
),

(7.50)

where we used the fact that Bd
r (0)\E1(r, y) ⊂ Bd

r (0).
Finally, collecting all estimates,

ˆ

K
,2

ˆ

Bd
r (0)\E1(r,y)

∥∥∥X2(·, y + z)− X2(·, y)− X̃
H
2 (r, y; ·, z)

∥∥∥
C0

dz dy

<
(7.44),(7.47),(7.50),(7.45),(7.46)

2C̄(ε̄)1/4rLd(Bd
r (0))|D1b2|(
)

+ C̄rLd(Bd
r (0))ε̄|Db|(
)

+ 2C̄rLd(Bd
r (0))

√
ε̄|Db|(
)+ 2C̄rLd(Bd

r (0))
√

ε̄|Db|(
)

< 7C̄rLd(Bd
r (0))(ε̄)1/4|Db|(
),

(7.51)

which is the statement.

7.6. The linearized ODE

We compare now the approximate flux X̃
H

(r, y; t, w) with the linearized flow
of Section 4, namely the solution to

Ẇ (t, y) = (Db)y(dt)
W (t−, y)

J (t−, y)
, W (t−(y), y) = I, t ∈ (t−(y), t+(y)).

Let W̃ (t, y) be the solution to the following approximated ODE (whenever it
exists, that is whenever J (t, y) � c > 0)

˙̃W (t, y) = ξ̄ ⊗ η̄|Db|y(dt) W̃ (t−, y)

J̃ (t−, y)
, W̃ (t−(y), y) = I, (7.52)

where J̃ (t, y) = det(W̃ (t, y)). Clearly due to the simple form of the right-hand
side one gets

˙̃J (t, y) = ξ̄ · η̄|Db|y(dt) = ξ̄1|Db|y(dt), J̃ (t−(y), y) = 1. (7.53)
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Lemma 7.12. There exists a set K
3 ⊂ K
 with co-measure

Hd(K
\K
,3
)

�
√

ε̄ (7.54)

such that, if J (t, y) is the Jacobian of the flow X(t, y) (see Proposition 3.6),

∥∥J (·, y)− J̃ (·, y)∥∥L∞(t−(y),t+(y)) �
√

ε̄. (7.55)

In this set the solution to (7.52) is defined for all t ∈ [t−(y), t+(y)] and it holds

ˆ

K
,3

∥∥W (·, y)− W̃ (·, y)∥∥L∞(t−(y),t+(y))dy � 3C̄2e3C̄M√ε|Db|(
). (7.56)

Proof. We can write

d

dt

(
J (t, y)− J̃ (t, y)

) = (div b)y(dt)− ξ̄ · η̄|Db|y(dt) (7.57)

Hence integrating in K
 one obtains

ˆ

K


∥∥J (·, y)− J̃ (·, y)∥∥L∞(t−(y),t+(y)) dy

�
(7.57)

ˆ

K


ˆ t+(y)

t−(y)

∣∣(Db)y − ξ̄ ⊗ η̄|Db|y
∣∣(dt) dy <

(7.2)
ε̄|Db|(
).

Hence by Chebyshev’s inequality we can remove a set of trajectories of measure
<
√

ε̄|Db|(
) and in the remaining set the estimate (7.55) holds:

∥∥J (·, y)− J̃ (·, y)∥∥L∞(t−(y),t+(y)) �
√

ε̄.

In particular we deduce that

1

2C̄
� 1

C̄
−√ε̄ � J̃ � C̄ +√ε̄ � 2C̄,

so that the solution W̃ (t, y) does exist on this set, and in the same way as in (4.14)
one gets

|W̃ (t, y)| � e2C̄M . (7.58)
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Write for these trajectories

d

dt

(
W (t, y)− W̃ (t, w)

) = (Db)y(dt)
W (t−, y)

J (t−, y)
− ξ̄ ⊗ η̄|Db|y(dt) W̃ (t−, y)

J̃ (t−, y)

= (Db)y(dt)

J (t−, y)

(
W (t−, y)− W̃ (t−, y)

)

+ (Db)y(dt)
W̃ (t−, y)

J (t−, y)
− ξ̄ ⊗ η̄|Db|y(dt) W̃ (t−, y)

J̃ (t−, y)

= (Db)y(dt)

J (t−, y)

(
W (t−, y)− W̃ (t−, y)

)

+ [
(Db)y(dt)− ξ̄ ⊗ η̄|Db|y(dt)

] W̃ (t−, y)

J (t−, y)

+ ξ̄ ⊗ η̄|Db|y(dt)
(

1

J (t−, y)
− 1

J̃ (t−, y)

)
W̃ (t−, y).

Integrating in time and using Duhamel Formula together with (4.4) and (7.58), we
get

∥∥W (·, y)− W̃ (·, y)∥∥L∞(t−(y),t+(y))

� C̄e3C̄M
ˆ t+(y)

t−(y)

∣∣(Db)y − ξ̄ ⊗ η̄|Db|y
∣∣(dt)

+ 2C̄2e3C̄M
∥∥J (·, y)− J̃ (·, y)∥∥L∞(t−(y),t+(y))|Db|y(t−(y), t+(y)).

(7.59)

Integrating in K
,3 one deduces that
ˆ

K
,3

∥∥W (·, y)− W̃ (·, y)∥∥L∞(t−(y),t+(y)) dy �
(7.59),(7.2),(7.55)

3C̄2e3C̄M√ε|Db|(
).

The solution to (7.52) can be computed explicitly when y ∈ K
,3: the equation
for the first component is

˙̃W11(t, y) = ξ̄1|Db|y(dt) W̃11(t−, y)

J̃ (t−, y)
, W̃11(t

−(y), y) = 1,

whose unique solution (from Theorem 4.1) is clearly

W̃11(t, y) = J̃ (t, y).

The only component non constant besides W̃11 is W̃12(t, y), which satisfies

˙̃W12(t, y) = ξ̄2|Db|y(dt) W̃11(t−, y)

J̃ (t−, y)
= ξ̄2|Db|y(dy), W̃12(t

−(y), y) = 0,

whose solution is

W̃12(t, y) = ξ̄2|Db|y(t−(y), t).

Hence, we obtain
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Lemma 7.13. If y ∈ K
,3, the explicit solution to (7.52) is given by

W̃ (t, y) = I+ ξ̄ ⊗ η̄|Db|y(t−(y), t). (7.60)

7.7. Collecting the estimates for the singular part

Here we prove that the assumptions of Section 5 are verified with the measure
with a suitable measure μP , which will be given in Section 8, when collecting all
estimates.

More precisely

(1) Point (2) of page 18: there exists a set of trajectories S′1 = K
,3 such that

Hd(S1\S′1) <
(7.21),(7.54)

ε̄Ld+1(
)+√ε|Db|(
)

< (ε̄)1/4
[|Db|(
)+ Ld+1(
)

];
(7.61)

(2) Point (6)of page 19: there exists an approximated solution X̃
H

(r, y; t, w)

such that for all t ∈ (t−(y), t+(y)), r ′ � r

ˆ

K
,3

ˆ

Bd
r ′ (z)

∥∥X̃H
(r, y; ·, w)− w

∥∥
C0 dw dy

�
(7.11)

ˆ

K


ˆ

Bd
r ′ (0)

ˆ t+(y)

t−(y)

∣∣b̃H (r, y; s, w)
∣∣ ds dw dy

�
(7.8)

C̄r ′Ld(Bd
r ′(0))|Db|(
).

(7.62)

(3) Point (4)of page 18: for every y ∈ K
,3 there exists a set of initial points
E1(r, y) ⊂ Bd

r (0) such that

ˆ

K
,3

Ld(E1(r, y)) dy <
(7.40)

5C̄2(ε̄)1/4Ld(Bd
r (0))|Db|(
); (7.63)

(4) Formula (5.2) of Point (5), page 19: for the remaining trajectories it hold

ˆ

K
,3

ˆ

Bd
r (0)\E1(r,y)

∥∥X(·, y + z)− X(·, y)

− X̃
H

(r, y; ·, z)∥∥C0(t−(y),t+(y,z)) dz dy

(7.13), (7.34), (7.43) < 3C̄2
√

ε̄rLd(Bd
r (0))|Db|(
)

+ C̄2rLd(Bd
r (0))ε̄|Db|(
)

+ 7C̄rLd(Bd
r (0))(ε̄)1/4|Db|(
)

< 11C̄2(ε̄)1/4rLd(Bd
r (0))|Db|(
);

(7.64)
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(5) Comparison of approximate solution with the linearised flow: recalling
that

X̃
H

(r, y; t, z)− z =
ˆ t

t−(y)
b̃
H

(r, y; s, X̃H
1 (r, y; s, z)) ds, (7.65)

for the approximate vector field

ˆ

K
,3

ˆ

Bd
r (0)

∣∣∣
(
X̃

H
(r, y; t+(y), w)− w

)−W (t+(y), t−(y), y)w
∣∣∣ dw dy

�
(7.60

ˆ

K
,3

ˆ

Bd
r (0)

∣∣∣
(
X̃

H
(r, y; t+(y), w)− w

)

− ξ̄ ⊗ η̄|Db|y((t−(y), t+(y)))w1

∣∣∣ dw dy

+
ˆ

Bd
r (0)

|w|dw
ˆ

K
,3

∥∥W (·, y)− W̃ (·, y)∥∥L∞(t−(y),t+(y)) dy

=
(7.65),(7.56)

ˆ

K
,3

ˆ

Bd
r (0)

∣∣∣∣
ˆ t+(y)

t−(y)
b̃
H (

r, y; s, X̃H
(r, y; s, w)

)
ds

− ξ̄ ⊗ η̄|Db|y((t−(y), t+(y)))w1

∣∣∣∣ dw dy

+ 3C̄2e3C̄M√ε|Db|(
)

�
(7.24),(7.2)

CdC̄
√

ε̄rLd(Bb
r (0))

[Ld+1(
)+ |Db|(
)
]

+ C̄rLd(Bd
r (0))|Db|(
\K0

)

+ 3C̄2e3C̄M√ε|Db|(
).

(7.66)

(6) Point (7)of page 19: if E2(r, y) is the set of trajectories which exit from
X(t, y)+ Bd

r (0) before t+(y), then

ˆ

K
,2

ˆ

Bd
r (0)\(E1(r,y)∪E2(r,y))

∣∣∣X(t+(y), y + z)− X(t+(y), y)−W (t, y)z
∣∣∣dzdy

<
(7.64),(7.66)

11C2(ε̄)1/4rLd(Bd
r (0))|Db|(
)

+ Cd(1+ C̄)rLd(Bd
r (0))(ε̄)1/4

[Ld+1(
)+ |Db|(
)
]

+ C̄rLd(Bd
r (0))|Db|(
\K0

)+ 3C̄2e3C̄M√ε|Db|(
)

< 16C̄2CdrLd(Bd
r (0))(ε̄)1/4

[Ld+1(
)+ |Db|(
)
]

+ C̄rLd(Bd
r (0))|Db|(
\K0

)
.

(7.67)

This concludes the local estimates in the case the singular part is contracting,
that is ξ̄ · η̄ � 0.
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7.8. The time reverse case

To study the case ξ̄ · η̄ > 0, we use the estimates we have already proved by
reversing time or, equivalently, by changing variables and using as initial set the
set S2 instead of the set S1. In order to have more flexibility in the proof, we will
choose the parameter H determining QH (r) later.

We proceed as follows:

(1) First of all, we will consider as initial points S′2 the image of the set K
,3, that
is S2 ∩K
,3: by the near incompressibility and the fact that up to C̄ ε̄Ld+1(
)

all trajectories start from S1 and leave from S2 for a perturbed proper set, we
obtain that

Hd(S2\S′2) <
(7.61),(7.1)

ε̄Ld+1(
)+ C̄(ε̄)1/4
(|Db|(
)+ Ld+1(
)

)

<
ε̄�1

2C̄(ε̄)1/4
(|Db|(
)+ Ld+1(
)

)
.

(7.68)

(2) We estimate the flow exiting or entering the sets
⋃

t

{
X(t, y)+ [0, X̃H

1 (r, y; t, r)] × QH (r)
}

or

⋃

t

{
X(t, y)+ [X̃H

1 (r, y; t,−r), 0] × QH (r)
}
. (7.69)

One can repeat the analysis of Lemma 7.5, letting the dependence with respect
to H be explicit, and obtain that the flow �L(y) is controlled by
ˆ

K


�L(y) dy �
(7.17),(7.18),(7.19),(7.20)

CdC̄(1+ H)rLd−1(QH
r )ε̄|Db|(
)

� CdC̄H2ε̄rd |Db|(
). (7.70)

As usual, the constant Cd may increase line by line. Hence, if

E+(r, y) =
{
y′ ∈ X(t+(y), y)+ Bd

r (0), y′ end point of a trajectory crossing

the boundary of (7.69)

}
,

we have
ˆ

K


Ld(E+(r, y)) dy �
(7.70), near. incompr.

CdC̄
2H2ε̄rd |Db|(
). (7.71)

(3) By Chebyshev inequality applyed to (7.71), we remove a set of initial points
Z1 ⊂ K
,3 of measure

Hd(Z1) < C̄
√

ε̄|Db|(
), (7.72)

for the rest of the trajectories X(t, y), y ∈ K
,3\Z1, the flow crossing the

boundary of
⋃

t {X(t, y) + [0, X̃H
1 (r, y; t, r)] × QH (r)} or

⋃
t {X(t, y)
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+ [X̃H
1 (r, y; t,−r), 0] × QH (r)} is controlled by (one H in (7.70) has been

incorporated in QH (r))

�L(y) � CdC̄
√

ε̄HrLd−1(QH
r ). (7.73)

The set S′′2 of final points is thus the image of K
,3\Z1, which satisfies by near
incompressibility

Hd(S2\S′′2 ) <
(7.68),(7.72)

2C̄(ε̄)1/4
[|Db|(
)+ Ld+1(
)

]+ C̄2
√

ε̄|Db|(
)

< 3C̄(ε̄)1/4
[|Db|(
)+ Ld+1(
)

]
.

(7.74)

This is Point (2)of page 18 for the case ξ̄ · η̄ > 0.
(4) Using the bound (7.73), we can estimate the size of X̃1(r, y; t+(y), r): by the

balance

final area+ lateral flow � 1

C̄
initial trajectories,

one gets

X̃
H
1 (r, y; t+(y), r)Ld−1(QH (r))+ CdC̄H

√
ε̄rLd−1(QH (r)) � 1

C̄
rLd−1(QH (r)),

where we have used (7.73). The above equation gives for y ∈ K
,3\Z1 that

X̃
H
1 (r, y; t+(y), r) � 1

C̄

(
1− CdC̄

2
√

ε̄H
)
r =: r+(r). (7.75)

This lower bound on XH
1 (r, y; t+(y), r) will be used in the next section to

bound E+1 (r, y).
Note that r+(r) � O(1)C̄−1r by the choice of H in the next points, as one has
to expect from the near incompressibility (4.3).

(5) We can thus estimate the subset E+1 (r, y) of Bd
r+(r)(X(t+(y), y)) coming from

trajectories crossing the boundary of (7.69):
ˆ

K
,3\Z1

Ld(E+1 (r, y))dy �
(7.71)

CdC̄
2H2ε̄rd |Db|(
)

= CdC̄
2H2ε̄

(
r

r+(r)

)d

Ld(Bd
r+(r)(0))|Db|(
)

=
(7.75)

CdC̄d+2ε̄H2

(1− CdC̄2
√

ε̄H)d
Ld(Bd

r+(r)(0))|Db|(
).

(7.76)

We also estimates the set X(t+(y), y)+ E+2 (r, y) ⊂ X(t+(y), y)+ Bd
r+(r)(0)

of trajectories arriving from points which do not belongs to K
,3:
ˆ

K
,3

Ld(E+2 (r, y)) dy �
for r�1

ε̄Ld(Bd
r+(r)(0))Ld+1(
), (7.77)
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where we have observed that Hd�S2 -almost everywhere point in S2 ∩ K
,3 is
a Lebesgue point.
Finally we have that if

E+(r, y) = E+1 (r, y) ∪ E+2 (r, y)

then

ˆ

K
,3\Z1

Ld(E+(r, y)) dy

�
(7.76),(7.77)

CdC̄d+2ε̄H2

(1− CdC̄2
√

ε̄H)d
Ld(Bd

r+(r)(0))|Db|(
)

+ ε̄Ld(Bd
r+(r)(0))Ld+1(
).

(6) The remaining trajectories in X(t+(y), y)+ Bd
r+(r)(0) are arriving from some

set which we denote as

X(t−(y), y)+ A(y) ⊂ X(t−(y), y)+ [−r, r ]
×QH (r) ⊂ K
,3 ∩

(
y + Bd

(1+H)r (0)
)
,

and are not crossing the boundary of (7.69); hence these trajectories cannot
arrive from E2((1+ H)r, y)), being the latter defined as the set of trajectories
in X(t−(y), y) + Bd

(1+H)r (0) which exit X(t, y) + Bd
r (0) before t+(y). Thus

by changing the coordinates from the initial points y, z at time t−(y) to the end
points at time t+(y) and using the near incompressibility we can write

ˆ

K
,3

ˆ

A(y)\E1((1+H)r,y)

∣∣∣X(t, y + z)− X(t, y)−W (t+(y), t−(y), y)z
∣∣∣ dy dz

�
(4.3),(7.79)

1

C̄2

ˆ

X(K
,3)

ˆ

Bd
r+(r)

(0)\E(r+(r),y′)

∣∣∣w −W (t+(y), t−(y), y)

(
X−1(y′ + w)− X−1(y′)

)∣∣∣ dw dy′

�
|(Db)y |�M,

Thm. 4.1

e−C̄M

C̄2

ˆ

X(K
,3)

ˆ

Bd
r+(r)

(0)\E(r+(r),y′)

∣∣∣X−1(y′ + w)− X−1(y′)

−W−1(t−(y), t+(y), y)w
∣∣∣ dw dy′.

(7.78)

For shortness we have used the notation y(y′) inverting the function

X
(
t+(y(y′)), y(y′)

) = y′.
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The set E(r+(r), y) is the set not coveredby the trajectories starting in X(t−(y), y)+
Bd

(1+H)r (0), which satisfy the estimate for which we can use (7.67): using again

that the exiting trajectories have already been counted in E+1 (r+(r), y)

E(r+(r), y) = E+1 (r, y) ∪ E+2 (r, y) ∪
[(

X
(
t+(y), y + E1((1+ H)r, y)

∪ E2((1+ H)r, y)
)− X(t+(y), y)

)
∩ Bd

r+(r)(0)
]

= E+1 (r, y) ∪ E+2 (r, y)

∪
[(

X
(
t+(y), y + E1((1+ H)r, y)

)− X(t+(y), y)
)
∩ Bd

r+(r)(0)
]
.

(7.79)

(7) Noting that

W−1(t+(y), t−(y), y) = W (t−(y), t+(y), X(t+(y), y)) = W (t−(y′), t+(y′), y′),

the bound (7.67) with r replaced with (1+ H)r gives

e−C̄M

C̄2

ˆ

X(K
,3\Z1)

ˆ

Bd
r+(r)

(0)\E(r+(r),y′)

∣∣∣X−1(y′ + w)− X−1(y′)

−W (t−(y′), t+(y′), y′)w
∣∣∣ dw dy′

�
(7.78)

ˆ

K
,3\Z1

ˆ

A(y)\E1((1+H)r,y)

∣∣∣X(t, y + z)− X(t, y)−W (t+(y), t−(y), y)z
∣∣∣ dy dz

�
A(y)⊂[−r,r ]×QH (r)

ˆ

K
,3\Z1

ˆ

Bd
(1+H)r (0)\(E1((1+H)r,y)∪E2((1+H)r,y))

∣∣∣X(t, y + z)− X(t, y)

−W (t+(y), t−(y), y)z
∣∣∣ dy dz

�
(7.67)

16C̄2CdrLd(Bd
r (0))(ε̄)1/4

[Ld+1(
)+ |Db|(
)
]

+ C̄rLd(Bd
r (0))|Db|(
\K0

)

= 16C̄2Cd(1+ H)d+1
(

r

r+(r)

)d+1
r+(r)Ld(Bd

r+(r)(0))(ε̄)
1/4

[Ld+1(
)+ |Db|(
)
]

+ C̄

(
r

r+(r)

)d+1
r+(r)Ld (Bd

r+(r)(0))|Db|(
\K0
)

=
(7.75)

16Cd
(C̄)d+3(1+ H)d+1

(1− CdC̄2
√

ε̄H)d
(ε̄)1/4Ld(Bd

r+(r)(0))
[Ld+1(
)+ |Db|(
)

]

+ C̄

(
C̄

1− CdC̄2
√

ε̄H

)d+1
r+(r)Ld (Bd

r+(r)(0))|Db|(
\K0
)
.

(7.80)

(8) Choosing

H = (ε̄)−1/16(d+1) � 1, (7.81)

we obtain that

r+(r) =
(7.75)

1

C̄

(
1− CdC̄

2(ε̄)(8d+7)/(16d+16)
)
r
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and the estimate of (7.76) becomes
ˆ

K


Ld(E+(r, y)) dy

= Cd(C̄)d+2(ε̄)(8d+7)/(8d+8)

(1− CdC̄2(ε̄)(8d+7)/(16d+16))d
Ld(Bd

r+(r)(0))|Db|(
).

(7.82)

The image of the set E1((1+ H)r, y) is controlled by (7.63): hence using the
nearly incompressibility its image has are controlled by

ˆ

K
,2

Ld(X(t+(y), t−(y), E1(r, y))) dy

�
(7.63)

5C̄3(ε̄)1/4Ld(Bd
r (0))|Db|(
), (7.83)

so that we conclude with
ˆ

K
,3

Ld(E(r+, y)) dy �
(7.82),(7.83)

Cd(C̄)d+2(ε̄)(8d+7)/(8d+8)

(1− CdC̄2(ε̄)(8d+7)/(16d+16))d

Ld(Bd
r+(r)(0)|Db|(
)

+ 5C̄3(ε̄)1/4Ld(Bd
(1+H)r (0)|Db|(
)

((1+ H) � 2H) = Cd(C̄)d+2(ε̄)(4d+3)/(8d+8)

(1− CdC̄2(ε̄)(8d+7)/(16d+16))d

Ld(Bd
r+(r)(X(t+(y), y)))|Db|(
)

+ 5C̄32d(ε̄)(3d+4)/(16d+16)Ld(Bd
r+(r)(X(t+(y), y)))|Db|(
).

(7.84)

Up to pushing the measure Ld(dy) to the end points X(t+(y), t−(y), y)) (thus
multiplying the right-hand side by C̄ when integrating inLd(dy′)), the estimate
(7.84) corresponds to Point (3) of page 18, as well as the evaluation of the
measure of E2(r, y) of Point (7) for the expanding case.
We note in particular that the fraction of E2(r, y) can be made small around a
large set of initial points: this is what is proved here for the final points, but the
argument can be repeated also in the contractive case.

(9) The remaining trajectories start in Bd
(1+H)r (y)\(E1((1 + H)r, y) ∪ E2((1 +

H)r, y)), because of the choice of E(r+, y) and the assumptions that they do
not leave Bd

(1+H)r (0). Hence we can use (7.80) together with (7.81) to obtain

ˆ

X(K
)

ˆ

Bd
r+(r)

\E(r+,y′)

∣∣∣X−1(y′ + z)− X−1(y)−W (t−(y′), t+(y′), y)z
∣∣∣ dy′ dz

�
(7.80)

16Cd
(C̄)d+3(1+ H)d+1

(1− CdC̄2
√

ε̄H)d
(ε̄)1/4Ld (Bd

r+(r)(0))
[Ld+1(
)+ |Db|(
)

]

+C̄
(

C̄

1− CdC̄2
√

ε̄H

)d+1
r+(r)Ld (Bd

r+(r)(0))|Db|(
\K0
)
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=
(7.81)

16Cd
2d+1C̄d+3(ε̄)3/16

(1− CdC̄2(ε̄)(8d+7)/(16d+16))d
Ld (Bd

r+(r)(0))
[Ld+1(
)+ |Db|(
)

]

+C̄
(

C̄

1− CdC̄2(ε̄)(8d+7)/(16d+16)

)d+1
r+(r)Ld (Bd

r+(r)(0))|Db|(
\K0
)
. (7.85)

Since the trajectories not in E(r+, y) are not exiting, we can just use Point
(7) of page 19 for the previous two points: (5.3) follows from the properties
of the disintegration applied to the linear flow W (·, y).
This concludes theproof that the assumptions ofSection5hold aroundLebesgue

points of the singular part of the derivative.

8. Construction of a Suitable Partition into Proper Sets

The differentiability in measure follows from the estimates in the previous
sections if we can find a suitable partition into perturbed proper sets such that the
assumptions of Section 5 hold.

Theorem 8.1. For every open set
 ⊃ K0 there exists a finite partition {
sing
i }Ni=1∪


rem of the compact set K0 � [0, T ] ×R
d made of disjoint perturbed proper sets,

such that

K0 ⊂
⋃

i


̄
sing
i ∪
rem ⊂ 
,

and such that Points (2), (3) of Theorem 3.4 hold with ε replaced by ε̄Ld+1(
i ),
and 


sing
i satisfies the assumptions of Section 7.1 and |Dsingb|(
rem) < ε̄.

Proof. Fix 
 open neighborhood of K0, and let 
′ be another open set such that

K ⊂ 
′ ⊂ 
̄′ ⊂ 
.

Without loss of generality, we can assume that 
′ is a proper set. The construction
of a disjoint covering is done as follows:

(1) Consider a Lebesgue negligible set S where |Dsingb| is concentrated. By Besi-
covitch’s Theorem (see [11, Theorem 2.17]), we can cover S with countably
many disjoint closed proper balls such that the estimates of Section 7.7 and
Section 7.8 hold: these are collected in Point (2) of page 49 in the proof that
the partition satisfies the assumptions of Section 5.

(2) Hence we can consider finitely many closed proper balls {Bd+1
ri (ti , xi )}Ni=1,

contained in 
′, such that

|Dsingb|
(


′\
N⋃

i=1
Bd+1
ri (ti , xi )

)
< ε̄.
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(3) Being these balls at positive distance from one another and from R
d+1\
, we

can perturb them into disjoint proper balls {
sing
i }Ni=1, 


sing
i ⊂ 
, such that

the estimates of Point (2) of page 49 for the singular part Dsingb hold with ε

replaced by

min

{
ε̄Ld+1(
sing

i ), ε̄
Ld+1(
′\ ∪N

i=1 

sing
i )

N

}
. (8.1)

(4) The complement of the union of the closure of these perturbed proper balls is
the set


rem = 
′\
N⋃

i=1

̄

sing
i .

In order to show that the sets {
sing
i ,
rem} satisfy the statement, we just need to

prove that
rem is a perturbed proper set: by Lemma 3.3, it is a proper set, being the
difference of two proper sets whose boundaries have empty intersection. It remains
to show that the flow occurs mostly on the time-flat parts of the boundary.
To this end, we need to estimate the trajectories in K which cross ∂
rem outside
{t = 0, T }∪∪i Ssingi ∪∪ j Sa.c.j : indeed these are the non flat parts of the boundary of

rem from which a trajectory inKmay enter. We observe that these trajectories are
leaving one of the 


sing
i , 
a.c.

j not from some flat parts, so that their total estimate

is bounded by (8.1) by ε̄Ld+1(
rem).

We conclude this section by proving that the partition constructed in Theo-
rem 8.1 satisfies the assumptions of Section 5 with a suitable measure μP . This
will conclude the proof of Theorem 1.1.

Proposition 8.2. The partition into perturbed proper sets {
sing
i }Ni=1 ∪ {
rem} sat-

isfies the assumptions of Section 5 with

μP = Cd(ε̄)
3/16(Ld + |Db|)Cd |Dsingb|�
rem+Cd |Db|(
\K0), (8.2)

whose total mass is of order ε̄3/16.

Proof. We consider separately 

sing
i and 
rem.

(1) Estimates for 
rem. We can use the comparison with the a.c. part Da.c.b of Db
in order to obtain the estimates for every perturbed proper set 
a.c.

j :
(a) Point (2) of page 18: by Point (2) of page 24, restrict to a set of initial data

S′1, j whose co-measure is small than ε̄Ld+1(
rem);
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(b) Points (4), (5), (6), (7) of page 19: By (6.7), we have the following error
estimate with respect to the linear flow W (·, y) solving (6.1):
ˆ

S′1, j

ˆ

Bd
R(0)

∥∥X(·, y + z)− X(·, y)−W (·, y)z∥∥C0(t−(y),t+(y,z)) dz dy

<
(6.7)

C̄2eM Rω(R)Ld(Bd
R(0))|Db|(
rem)

+ C̄2eM RLd(Bd
R(0))|(Db)sing|(
rem)

� CdC̄
2RLd(Bd

R(0))
(
ε̄|Db|(
rem)+ |Dsingb|(
rem)

)

(8.3)

for R � 1.
(2) Estimates for 


sing
i . By construction, the sets 


sing
i satisfy the assumptions of

Section 7.1. Moreover, we prove that the following properties hold true.
(a) Point (2) of page 18: There exists a set of trajectories S′1,i such that, for

ε̄ � 1,

Hd(S1,i\S′1,i ) <
(7.61),(7.74)

3(ε̄)1/4
(|Db|(
sing

i )+ Ld+1(
sing
i )

);

(b) Point (6) of page 19: There exists an approximated vector solution

X̃
H

(r, y; t, w) such that, for all t , r ′ � r ,
ˆ

S′1,i

ˆ

Bd
r ′ (z)

∥∥X̃H
(r, y; ·, z)− z

∥∥
C0 dw dy

�
(7.62)

2C̄r ′Ld(Bd
r ′(0))|Db|(
sing

i ).
(8.4)

We have used the estimates on the norm of conditional probabilities for the
disintegration, since in the time reverse case the approximate vector field is
exactly the disintegration (Db)y (see Point (9) of page 47).

(c) Point (4) of page 18: For every y ∈ S′1,i , there exists a set of initial points
E1(r, y) ⊂ Bd

r (0) such that

ˆ

S′1,i
Ld(E1(r, y)) dy <

(7.63)
(ε̄)1/2Ld(Bd

r (0))|Db|(
sing
i )

or
ˆ

S′1,i
Ld(E1(r, y)) dy

<
(7.84)

Cd(C̄)d+2(ε̄)(4d+3)/(8d+8)

(1− CdC̄(ε̄)(8d+7)/(16d+16))d
Ld(Bd

r (y)))|Db|(
sing
i )

+ 5C̄32d(ε̄)(4d+3)/(16d+16)Ld(Bd
r (y)))|Db|(
sing

i )

� Cd(ε̄)
3/16Ld(Bd

r (y)))|Db|(
sing
i ).
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(d) Point (5) of page 19: For the remaining trajectories, we have
ˆ

S′1,i

ˆ

Bd
r (0)\E1(r,y)

∥∥X(·, y + z)− X(·, y)− X̃ H (r, y; ·, z)∥∥C0(t−(y),t+y (z)) dz dy

<
(7.85)

11C̄2(ε̄)1/4rLd (Bd
r (0))|Db|(
sing

i )

+ 14CdM
2d+1C̄d+3(ε̄)(3d+3)/(16d+16)

(1− CdC̄(ε̄)(8d+7)/(16d+16))d
Ld (Bd

r+(r)(0))
[Ld+1(
sing

i )

+ |Db|(
sing
i )

]

+ C̄

(
C̄

1− CdC̄2(ε̄)(8d+7)/(16d+16)

)d+1
r+(r)Ld (Bd

r+(r)(0))|Db|(
sing
i \K0

)

� Cd (ε̄)
1/4Ld (Bd

r (y))
[Ld+1(
sing

i )+ |Db|(
sing
i )

]

+ CdLd (Bd
r (y))|Db|(
sing

i \K0).

(8.5)

(e) Point (7) of page 19: By the choice of the singular point,
ˆ

S′1,i

ˆ

Bd
r (0)\(E1(r,y)∪E2(r,y))

∣∣∣X(t+(y), y + z)− X(t+(y), y)

−W ((t−(y), t+(y)), y)z
∣∣∣ dz dy

<
(7.67),(7.85)

14CdC̄
2rLd (Bd

r (0))(ε̄)1/4
[Ld+1(
sing

i )+ |Db|(
sing
i )

]

+ 14CdM
2d+1C̄d+3(ε̄)(3d+3)/(16d+16)

(1− CdC̄(ε̄)(8d+7)/(16d+16))d
Ld (Bd

r+(r)(0))
[Ld+1(
sing

i )

+ |Db|(
sing
i )

]

+ C̄

(
C̄

1− CdC̄2(ε̄)(8d+7)/(16d+16)

)d+1
r+(r)Ld (Bd

r+(r)(0))|Db|(
sing
i \K0

)

� Cd (ε̄)
1/4Ld (Bd

r (y))
[Ld+1(
sing

i )+ |Db|(
sing
i )

]

+ CdLd (Bd
r (y))|Db|(
sing

i \K0).

We then define the measure μP as

μP = Cd(ε̄)
3/16[Ld + |Db|]Cd |Dsingb|�
rem+Cd |Db|(
\K0),

whose total mass is less than O(ε̄3/16). This gives the Point (1) of page 18.
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Appendix A. Bressan’s Lemma on the Approximation of Lipschitz
Continuous Flows

A key tool in the proof of our main result is the following lemma (see [25, Lemma 4] or
[26, Theorem 2.9]): given an absolutely continuous curve γ and a Lipschitz continuous
semigroup St , we can estimate the distance between γ and the trajectory of the semigroup
starting at γ (0).

Lemma A.1. Let t �→ γ (t) be an a.c. curve, and St is a L-Lipschitz semigroup. If there
exists an L1-function f : R+ → R

+ such that

∥∥St − Ss
∥∥ �

ˆ t

s
f (τ ) dτ,

then

∣∣γ (T )− ST γ (0)
∣∣ � L

ˆ T

0
lim inf
h↘0

∣∣γ (t + h)− Sh(γ (t))
∣∣

h
dt.

Proof. Let us consider the curve

t �→ X (t) = ST−tγ (t).

We have
∣∣X (t + h)− X (t)

∣∣ = ∣∣ST−t−hγ (t + h)− ST−tγ (t)
∣∣

= ∣∣ST−t−h
(
γ (t + h)− Shγ (t))

∣∣ � L
∣∣γ (t + h)− Shγ (t)

∣∣.

Using the assumption on St , we have

∣∣X (t + h)− X (t)
∣∣ � L

ˆ t+h
t

(|γ̇ |(s)+ f (s)
)
ds,

so that the curve is absolutely continuous. Moreover, in each point of differentiability,

|Ẋ |(t) = lim
h↘0

|X (t + h)− X (t)|
h

� L lim inf
h↘0

|γ (t + h)− Shγ (t)|
h

,

which concludes the proof.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We use Lemma A.1 to compare a nearly incompressible flow X(t, y) generated by a vector
field b with a L-Lipschitz flow Y(t, y) generated by the vector field b̃ that satisfies

lim
h→0

Y(t + h, x)− x

h
= b̃(t, x) (A.1)

on a set of full Ld+1-measure.

Corollary A.2. If X(t, y) is a nearly incompressible flow generated by b(t, x) and Y(t, y)
is a L-Lipschitz continuous semigroup such that (A.1) holds for Ld+1-almost everywhere
(t, x) ∈ [0, T ] × R

d , then, for Ld -almost everywhere y ∈ R
d ,

∣∣X(t, y)− Y(t, y)
∣∣ � L

ˆ T

0

∣∣b(t, X(t, y))− b̃(t, X(t, y))
∣∣ dt.

Proof. Lemma A.1 yields
∣∣X(T, y)− Y(T, y)

∣∣

� L
ˆ T

0
lim inf
h↘0

|X(t + h, y)− Y(t + h, X(t, y))|
h

dt

= L
ˆ T

0
lim inf
h↘0

∣∣∣∣b(t, X(t, y))− Y(t + h, X(t, y))− X(t, y)

h

∣∣∣∣ dt.

By the nearly incompressibility and Fubini theorem, for Ld -almost everywhere trajectory
the above limit is equal for L1-almost everywhere t to |b(t, X(t, y)) − b̃(t, X(t, y))|. We
thus proved the claim.

In particular, we remark that assumption (A.1) holds in the following two cases (which are
relevant to Sections 6 and 7 respectively):

(1) the linear flow generated by a matrix A(t) ∈ L1((0, T ));
(2) the solution to the differential inclusion

ẋ ∈ −A(t, x),

with A(t) a quasi monotone operator defined in R
d and such that |A(t, 0)| ∈ L1.

The first case is elementary; the second one is analyzed in [19].

References

1. Alberti, G.: Rank one property for derivatives of functions with bounded variation.
Proc. R. Soc. Edinburgh Sect. A 123(2), 239–274, 1993

2. Alberti, G., Bianchini, S., Crippa, G.: Two-dimensional transport equation with
Hamiltonian vector fields. Hyperbolic Problems: Theory, Numerics and Applications,
Volume67ofProceedings of Symposia inAppliedMathematics. AmericanMathematical
Society, Providence, 337–346, 2009

3. Alberti, G.,Bianchini, S.,Crippa, G.: Structure of level sets and Sard-type properties
of Lipschitz maps. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 863–902, 2013

4. Alberti, G.,Bianchini, S.,Crippa, G.: A uniqueness result for the continuity equation
in two dimensions. J. Eur. Math. Soc. (JEMS) 16(2), 201–234, 2014

5. Alberti, G., Crippa, G.,Mazzucato, A.L.: Exponential self-similar mixing and loss
of regularity for continuity equations. C. R. Math. Acad. Sci. Paris 352(11), 901–906,
2014



Page 732 of 734 Stefano Bianchini & Nicola De Nitti

6. Alberti, G., Crippa, G., Mazzucato, A.L.: Exponential self-similar mixing by in-
compressible flows. J. Am. Math. Soc. 32(2), 445–490, 2019

7. Alberti, G., Crippa, G., Mazzucato, A.L.: Loss of regularity for the continuity
equation with non-Lipschitz velocity field. Ann. PDE 5(1), 5–9, 2019

8. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent.
Math. 158(2), 227–260, 2004

9. Ambrosio, L., Crippa, G.: Existence, uniqueness, stability and differentiability prop-
erties of the flow associated to weakly differentiable vector fields. Transport Equations
and Multi-D Hyperbolic Conservation Laws, Volume 5 of Lecture Notes of the Unione
Matematica Italiana. Springer, Berlin, 3–57, 2008

10. Ambrosio, L., Crippa, G.: Continuity equations and ODE flows with non-smooth ve-
locity. Proc. R. Soc. Edinburgh Sect. A 144(6), 1191–1244, 2014

11. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Dis-
continuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford
University Press, New York, 2000

12. Ambrosio, L., Lecumberry, M., Maniglia, S.: Lipschitz regularity and approximate
differentiability of the DiPerna–Lions flow. Rend. Sem. Mat. Univ. Padova 114(29–50),
2005, 2006

13. Ambrosio, L.,Malý, J.: Very weak notions of differentiability. Proc. R. Soc. Edinburgh
Sect. A 137(3), 447–455, 2007

14. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York,
1989

15. Bianchini, S.: On Bressan’s conjecture on mixing properties of vector fields. Self-
similar Solutions of Nonlinear PDE, Volume 74 of BanachCenter Publications. Institute
of Mathematics of the Polish Academy of Sciences, Warsaw, 13–31, 2006

16. Bianchini, S., Bonicatto, P.: A uniqueness result for the decomposition of vector
fields in R

d . Invent. Math. 220(1), 255–393, 2020
17. Bianchini, S., Bonicatto, P.: Forward untangling and applications to the uniqueness

problem for the continuity equation.Discrete Contin. Dyn. Syst. 41(6), 2739–2776, 2021
18. Bianchini, S., Bonicatto, P., Gusev, N.A.: Renormalization for autonomous nearly

incompressible BV vector fields in two dimensions. SIAM J. Math. Anal. 48(1), 1–33,
2016

19. Bianchini, S.,Gloyer, M.: An estimate on the flow generated by monotone operators.
Commun. Partial Differ. Equ. 36(5), 777–796, 2011

20. Bianchini, S., Gusev, N.A.: Steady nearly incompressible vector fields in two-
dimension: chain rule and renormalization. Arch. Ration. Mech. Anal. 222(2), 451–505,
2016

21. Bohun, A., Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with
anisotropic regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(6), 1409–1429,
2016

22. Bonicatto, P., Gusev, N.A.: On the structure of divergence-free measures on R
2.

arXiv:1912.10936, 2019
23. Bonicatto, P., Marconi, E.: Regularity estimates for the flow of BV autonomous

divergence-free vector fields in R
2. Commun. Partial Differ. Equ. 46(12), 2235–2267,

2021
24. Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with gradient given by a

singular integral. J. Hyperbolic Differ. Equ. 10(2), 235–282, 2013
25. Bressan, A.: The unique limit of the Glimm scheme. Arch. Ration. Mech. Anal. 130(3),

205–230, 1995
26. Bressan, A.: Hyperbolic systems of conservation laws. The One-Dimensional Cauchy

Problem, Volume 20 of Oxford Lecture Series in Mathematics and Its Applications (Ed.
Bressan A.) Oxford University Press, Oxford, 2000

27. Bressan, A.: An ill posed Cauchy problem for a hyperbolic system in two space di-
mensions. Rend. Sem. Mat. Univ. Padova 110, 103–117, 2003

http://arxiv.org/abs/1912.10936


Differentiability in Measure of the Flow Page 733 of 734

28. Bressan, A.: A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat.
Univ. Padova 110, 97–102, 2003

29. Brué, E., Nguyen, Q.-H.: Advection diffusion equations with Sobolev velocity field.
Commun. Math. Phys. 383(1), 465–487, 2021

30. Bruè, E., Nguyen, Q.-H.: Sharp regularity estimates for solutions of the continuity
equation drifted by Sobolev vector fields. Anal. PDE 14(8), 2539–2559, 2021

31. Bruè, E., Nguyen, Q.-H., Stefani, G.: A maximal function characterisation of abso-
lutely continuous measures and Sobolev functions. Atti Accad. Naz. Lincei Rend. Lincei
Mat. Appl. 30(3), 599–614, 2019

32. Colombini, F., Lerner, N.: Uniqueness of continuous solutions for BV vector fields.
Duke Math. J. 111(2), 357–384, 2002

33. Crippa, G.,De Lellis, C.: Estimates and regularity results for the DiPerna–Lions flow.
J. Reine Angew. Math. 616, 15–46, 2008

34. Crippa, G., Ligabue, S.: A note on the Lagrangian flow associated to a partially regular
vector field. Differ. Equ. Dyn. Syst. 1–20, 2020

35. Crippa, G.,Lucà, R., Schulze, C.: Polynomial mixing under a certain stationary Euler
flow. Physica D 394, 44–55, 2019

36. Crippa, G., Schulze, C.: Cellular mixing with bounded palenstrophy. Math. Models
Methods Appl. Sci. 27(12), 2297–2320, 2017

37. De Lellis, C.: Notes on hyperbolic systems of conservation laws and transport equa-
tions. Handbook of Differential Equations: Evolutionary Equations, Handbook of Dif-
ferential Equations, Vol. III. Elsevier/North-Holland, Amsterdam, 277–382, 2007

38. De Lellis, C.: A note on Alberti’s rank-one theorem. Transport Equations andMulti-D
Hyperbolic Conservation Laws, Volume 5 of LectureNotesUnioneMatematica Italiana.
Springer, Berlin, 61–74, 2008

39. De Philippis, G., Rindler, F.: On the structure of A-free measures and applications.
Ann. Math. (2) 184(3), 1017–1039, 2016

40. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and
Sobolev spaces. Invent. Math. 98(3), 511–547, 1989

41. Elgindi, T.M.,Zlatoš, A.: Universalmixers in all dimensions.Adv.Math. 356, 106807,
2019

42. Fremlin, D.H.: Measure Theory. Volume 4. Topological Measure Spaces. Part I, II.
Torres Fremlin, Colchester, 2006. Corrected second printing of the 2003 original
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