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Introduction

In our previous work [1], we developed a theory of eigenfunction expansion
or generalized Fourier transformation associated with the Schrédinger operator
H=—A4+4V(x) in L%R") (n>2) with a long-range potential V(x) satisfying the
following assumption

V(x) is a real smooth function on R" such that for some constant ¢,>0
(A) DV(x)=0(]x|"1=I=%) as |x| —> 0
for all multi-index a.

More precisely, we constructed a partially isometric operator & with initial set
L2 (H) (the absolutely continuous subspace for H) and final set L2(R") satisfying

(FUH)N)(Q)=aE)(F )

for any bounded Borel function a(1) on R and fe L%R"). The main idea was as
follows: First we construct a real function ¢(x, £) which behaves like x - £ as |x|— o0
and solves the eikonal equation

| Fep(x, OI2+V(x)=|¢?
in an appropriate region of the phase space R*xX R*. We set G,(x, {)=e 1.
(—4+V(x)—|€]»)ei*=% and R(z)=(H—2z)"'. We then define &# formally by

O (FNO=ryr e fxdx

@y e Gl DR(E +i0)f(x)dx.

If V(x) is short-range, i.e. V(x)=0(]x|~!%), one can take x-¢& as ¢(x, £). Then the
above formula (0.1) takes the following form

0.2) (FNEQ)=2n)™"/? S e~ x4 f(x)dx

—Qm)r S e~ EV(X)R(E[2 + i0) f (x)dx.
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As is clear from the above definition, the operator & is a generalization of the
ordinary Fouier transformation

03 (Fo))O=]O=@ry [ et ().

One knows many interesting properties of &#,;: Various Paley-Winer type
theorems, transforming rapidly decreasing functions into smooth ones, etc. It
may be of interest to consider to what extent these properties extend to #. The
main purpose of this paper is to prove the following differentiability property for &.
For a real number s, let L?:s denote the space of measurable functions f(x) on R”"
such that

1£12= { (@Dl Rdx < o,

Theorem 0.1. Let y>1/2 be arbitrarily fixed and N a non-negative integer.

If fe LN (F f)(&) is N times differentiable with respect to £+£0, and for any
e>0

o OTDHED @PAESCI iR,

|| <N

The differentiability of & is closely connected with the decay rates for scattering
states. Using the above result, we can prove the following

Theorem 0.2. Let y(A) be a smooth function on R' such that for some ¢>0,
x(A)=1 for 1>2¢, y(A)=0 for A<e. Then for any s>0 and 6>0

[ x(H)e 8 fll s < CA+ NN 55 -

One can make use of the above result as an intermediate step to prove the best
possible decay rate

0.4 Ix(H)e " fll-s<CA+1D1fls  (s=0),

whose proof will be given in a forthcoming paper. _

As can be seen from (0.1) and (0.2), in order to prove the differentiability of &,
one should consider that of the resolvent R(A4i0), which occupies the major part
of this work and is studied in §1 (Theorem 1.9) utilizing the recent results of Isozaki-
Kitada [2], [3] concerning the micro-local estimates for the resolvent. The differ-
entiability with respect to A of R(A+i0) is also discussed by Jensen—-Mourre-Perry
[8], where they employ the commutator method due to Mourre [9].

Let us list the notations used in this paper. For a vector xe R", £ =x/|x| and
x>=(1+[x]®)V2. B(R") denotes the space of smooth functions on R" with
bounded derivatives. CP(R") is the space of smooth functions on R” with compact
support. For two Banach spaces X and Y, B(X; Y) denotes the totality of bounded
linear operators from X to Y. For a multi-index a, D2=(0/0x)*---(0/0x,)*",
la| =0, + -+, Throughout the paper, C’s denote various constants independent
of the parameters in question.
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§1. Differentiability of the resolvent

Let H=—A+V(x), where V satisfies the assumption (A) in the introduction,
and R(z)=(H—-z)"!'. Our starting point is the following limiting absorption
principle (see e.g. [2], Theorem 1.2).

Lemma 1.1. For any A>0 and y>1/2, there exists a strong limit s-lim R(A+
el0

ie)=R(A%i0) in B(L*?; L>~?). Moreover for any &>0, there exists a constant
C>0 such that

IRA+i0)f| -, < CIJAIfI,
for A>e.

Our aim of this section is to discuss the differentiability with respect to A of the
resolvent R(A+i0). It leads us to consider the powers of R(14i0), since by the
formal calculus

d\W . .
<7I> R(A+i0)=N! R(A+ i0)¥*1,

Needless to say, one cannot use Lemma 1.1 directly to treat R(A+i0)¥*!. If one
inserts some pseudo-differential operators (Ps. D. Op.’s), however, one can give a
definite meaning to R(A+i0)*!. The estimates of resolvents multiplied by
Ps. D. Op.’s, which we call the micro-local resolvent estimates, have been intensively
studied in [2] and [3]. Let us begin with recalling the results.

Definition 1.2. Let a,>0 be arbitrarily fixed and u>0. A smooth function
p(x, &; 2) belongs to W(u) if for any o,

sup  {xprtleI(E A DEDY p(x, & A)| < 0.

x,{eR",A> a9

Definition 1.3. p(x, &; A)e S, if
(1) p(x, & e W(0),
(2) there exists a constant £>0 such that

p(x, & )=0 if [|&]/\JA-1I<e, A>aq,
(e may depend on p(x, &; ).

Definition 1.4. p.(x, &; )e S, if
(2) there exists a constant >0 such that

Pe(x, & 0)=0 if [|&l/yA-1|>¢, A>a,,

(e may depend on p.(x, &; 1)),
(3) there exists a constant . such that —1<u, <1 and
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pe(x, & D=0 if £.-&<p,,
p-(x, & H)=0 if £&>pu_,
(¢+ may depend on p4(x, &; 4)).

For a Ps. D. Op. P(4), P(A)e S, (or S,) means that its symbol belongs to S,
(or S;). Then we have shown in [2], Theorems 3.3 and 3.5 the following

Lemma 1.5.
(1) Let P(A)eS,. Then for any s>1/2 and A>a,

IP(AORA 0 f I <C/AIf s -
(2) Let P,()eS.. Then for any s>1/2 and A>a,

IP=(DRAEi0)flls— 1 < CIJ/ANS s -
A remark should be added here concerning the limits lifn P()R(A+i¢) and
el0
li{n P()R(A+ic). What we have shown in [2] actually is that for any s>1/2
el0

(L.1) sup [Ps@RGL o) sy <CIVAIS I,

(see [2], Theorem 3.7), which does not necessarily imply the existence of the strong
limit s- hm P()R(A+tie) in B(L?*; L?71). As can be checked easily, however,

(1.1) 1mp11es the existence of the strong limit shm P(M)R(Atie) in B(L?s;

L2s71=8) for any 6 >0. In the same way, one can show the existence of the strong
limit s-tim P(A)R(A+ ig) in B(L2-; L?:s~%) for any §>0.
el0

Definition 1.6. (1) Let- P(1), Q(4) be Ps.D.Op.’se W(0) with symbols
p(x, &; A), q(x, &; A), respectively. {P(4), Q(4)} is said to be a disjoint pair of type I
if

inf dis (supp pix, &: ), supp q(x, &; 1))>0,
xep",A<ac
where dis (4, B) denotes the distance of two sets 4, BcR", and supp p(x, &; 1)
¢

means the support of p(x, &; A) as a function of &.

(2) Let P4(A) be Ps. D. Op.’se S, with symbols p.(x, {3 4). {P.(4), P_(4)} is
said to be a disjoint pair of type II if there exist constants . such that —1<u_ <
ue<1land

pe(x, & H=0 if f-E<p,,
p_(x, & N=0 if £-E>p_.

Lemma 1.7. (1) Let P(%), Q(A)eS,. Suppose {P(1), Q(A)} is a disjoint pair
of type I. Then for any s>0 and A>a, there exists a strong limit s-]ilrgl P(A)R(A+

ie)Q(2) in B(L?~s; L*%) and
IPYRA+I0QM)f 1< C/J Al -
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(2) Let Po()eS, and Q(A)€S,. Suppose that {P(1), Q(1)} are disjoint pairs
of type I. Then for any s>0 and A>ay, there exist strong limits

S-ligl Q(MR(At ig)P +(4), S'“fé‘ Pz(DHR(A 1 ie)Q(%)
in B(L?7s; L*%)., Moreover,
IQRALIOP (DS, <CIVAISfI -5,

IP=(HRA+IOQA S, < CIJANS N -5 -
(3) Let P.()€S.. Suppose {P.(1), P_(D)} is a disjoint pair of type II. Then
for any s>0 and A>a,, there exists a strong limit s-lim P.(DR(ALie)P.(R) in
el0
B(L*s; L>%) and
IP=(AR(A1 0P (A f I, < CIJ IS -
For the proof, see [2] Theorems 4.2, 4.3, 4.4 and [3] Theorem 2.
We now study the limit s-lim R(A+ig)N.
el0

Theorem 1.8. Let y>1/2 be arbitrarily fixed and N an integer >1. Let
A>ay. Then we have:
(1) There exists a strong limit s-llim R(A+ie)¥ =R(A%i0)N in B(L?-7*N-1; [2.7y-N+1)
el0

and
IRA+IONfll -y na 1t <CA™M2| fllyan-y -

(2) Let P.(A)eS.. For any s>N+y and 6>0, there exists a strong limit
s-l}m Pr()RA+ie)N in B(L?s; L25~N=%) and
el

[PH(ARAL IO fl,-n< CAN2| .
(3) Let P,()eS;. For any s>N+v and 6>0, there exists a strong limit
s-lim R(A+ie)"P (L) in B(L?~s*N; L2.7s7%) and
el0
IR(A+IONP (D f |- < CAN¥2| f]l sy -

(4) Let P.(A)eS,. Suppose {P.(A), P_(A)} is a disjoint pair of type II. Then

for any s>0, there exists a strong limit s-lim P(M)R(A+ie)"P () in B(L*s;
el0

L2-%) and

1P (DRALIONPL(A)f [, <CAN2|| f] .
(5 Let Q(A)eS, and s>y+N—1. For any 6>0 there exists a strong limit
s-l}xgl QA)R(A+ie)N in B(L?s: L2-s~N+1-8) gnd
IQDRALIONf ;- w1 <CA™N2| f5.

Proof (by induction on N). The assertions of the theorem have already been
proved for N=1 (see Lemmas 1.5, 1.7). Assume the theorem for N.
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Choose ¢(&) e C*(R") such that
L JliE-1]<e
Po()=
0 IEI-1]>2e,
where 0<e<1/2. We set
P(5)=1—o().
Let xo(x), x(x) € C®(R") be such that yo(x)+x.(x)=1,
Lo(x)=0 for |x|>2,
xo(x)=1 for |x|<1.

Choose constants —1<fi, <1 and C*-functions p.(f) so that f_<f,, p.()+
p_(t)=1 and

p+()=0 for t<i,,
p_(H=0 for t>fi_.

Let A(4), B(A), P.(2) be the Ps. D. Op.’s with symbols ¢ ,(/1/2), 2o(X)Po(E/v/2)s
Yo(X)P +(2 -f)d;o(é/\/i), respectively. By definition A(A)eS,, P.(A)eS,, the
symbol of B(4) is compactly supported for x and

AAN+BA+P,.(M)+P_(1)=1.

We further introduce the following notations. Let

| I={ze C;Rez>agy Imz>0}.
For an operator T(z) defined for zel, T(z)e C(I; L*s, L?*; k) means that there
exists a strong limit s;ljrgl T(A+ig) in B(L?s; L27) for A>a, and

ITA+i0)fll, < CA™*2||f .
Pfroof of (1) for N+1. We split R(A+ig)¥*! into four parts:
(1.2)  R(A+ig)"*''=R(A+ie)VA(A)R(A+ ie)+ R(A+ ie)" B())R(A+ ie)
+R(A+ig)"P ,(A)R(A+ ie)+ R(A+ ie)VP_(A)R(A+ie).

Since A())eS,. Lemma 1.5 (1) shows that A(A)R(A+ie)e C(I; L2-7+N-1
L2.v*N-1. 1) By our induction hypothesis (1), R(A+ige)¥eC(I; L2:v+N-1,
L2--v=N+1: N). Thus the first term belongs to C(I; LZ:7*N¥-1 [2.=y=N+1. N4 ]),

Since the symbol of B(1) is compactly supported for x, R(A+ige)"B()e C(I;
L2~y [2:-y=N+1. N) by our induction hypothesis (1). This, combined with Lemma
1.1, shows that the second term belongs to C(I; L2:¥, L2:~v~N+1; N41),

In view of Lemma 1.1 and our induction hypothesis (3), we have R(1+ie)e
Cc{I; L?7, L*~7;1) and R(A+ig"P ()eC(; L2~7, L2-=*=N; N), which shows
that the third term belongs to C(I; L2-7, L>~7"¥; N+1),
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Making use of our induction hypotheses (1) and (2) for N, we have for small
8>0, P_()R(A+ig)e C(I; L2-v+N [27+N-1-3. 1) and R(A+ie)¥ € C(I; L?7~%*N"1,
L2:7v+6-N+1: N) Thus the fourth term belongs to C(I; L2:7*N, L2:7v"N*1; N41),

Proof of (2) for N+1, We multiply (1.2) by P_(4). By methods similar to the
above, ong can show that P_(A)R(L+ ie)"A(A)R(A+ic), P_(A)R(A+ie)"B(A)R(L+ ie)
and P_ (l)R(/l+le)"P (M)R(A+ig) belong to C(I; L?s, L2s~N-1-6; N+1) for
s>N+1+7 and §>0. In order to treat the term P_(A)R(A+ie)¥ P ()R(A+ ie),
we note that {P_(A), P,(4)} becomes a disjoint pair of type 1l if i, >u_. Thus by
our induction hypothesis (4) for N, we have P_()R(A+ig)"P . (A)eC(; L*7,
L2s; N) for any s>0, which, combined with Lemma 1.1, shows that P_R(i1+
ie)P,(DR(A+ie)e C(I; L2, L?s; N+1) for any s>0.

Proof of (3). By the asymptotic expansion of the symbol of P.(4)*, we have
for any m>0,

P (A)*=P(D)+0,(4),
where P{(A) e S, and the symbol g,(x, ¢; 4) of Q,(4) verifies
|D2DEq,(x, &5 A)| < Coploxd~m121<EH 1A
(see [2], Theorem 2.4). Thusif s>N+yand m>y+s—1
[Pz(A)*R(ALie)" flls-n
<[IPENARAL N f -+ [Qu(DRA L i) f |-y
<CAN2| £,

where we have used (1) and (2). Taking the adjoint, we have |R(A+ ig)"Po (D) f|_ <
Ci7N12| f|| _y+n» which proves that (3) for N follows from (1) and (2) for N.

Proof of (4) for N+ 1. First we choose fi, in such a way that —l<u_<f_<
fi.<p,<1sothat {P_(A), P,(A)} and {P_(4), P, (1)} form disjoint pairs of type II.
Next we recall that the support with respect to & of the symbol of P, (4) lies in a small
neighborhood of the sphere {¢; |¢|=./4}. Thus for a suitable choice of & for
A(A), {A(A), P (1)} becomes a disjoint pair of type I.

We multiply (1.2) by P.(A) from both sides. Consider the resulting first term.
By Lemma 1.7 (2), A(A)R(A+ie)P,(A)eC; L?~s, L?s; 1) for any s>0. We
also have by our induction hypothesis (2), P_(A)R(A+ie)¥ e C(I; L?s, L?s7N-1; N),
Thus the first term belongs to C(I; L2—5, L?'s; N+1) for s>0.

The treatment of the second term is easy, hence is omitted.

Taking the adjoint in Lemma 1.5 (2), one can show using Lemma 1.1 that
R(A+ig)P (A)e C(I; L2, L2~s2; 1) for s>0. Since {P_(A), P, ()} is a disjoint
pair of type II, we have P_()R(A+ie)"P,(A)eC(I; L*~s2, L2s; N) for s>0.
Thus the third term has the desired property.

Since {P_(A), P.(A)} is a disjoint pair of type II, P_())R(A+ie)P (L) eC{;
L27s, L*s; 1) for s>0. This, combined with (2) proves that the fourth term has
the desired property.
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Proof of (5) for N+1. We shall estimate

Q(D)R(A+ ie)V*1 = Q(A)R(A+ ie) A(AD)R(A+ ie)" + Q(A)R(A + i) B(A)R(A + ig)¥
+ QRO+ ie) P . (AR(A+ie)¥ + Q()R(A+ ie) P _(DR(A + ie).

The treatment of the first two terms is easy. We have only to use (1), (5) for N
and Lemma 1.5 (1).

Since Q(A)e S, one can assume that {Q(4), P,(A)} is a disjoint pair of type I
by an appropriate choice of e. Therefore by Lemma 1.7 (2), Q(A)R(A+ie)P () e
C(I; L*7s, L2s; 1) for s>0. This, combined with (1) for N, shows that the
third term belongs to C(I; L#:**N L2:s; N+1) for s>0.

In order to treat the fourth term, we have only to take note of (2) for N and
Lemma 1.5 (1). 0

N
In view of Theorem 1.8 and the formula (%) R(Atie)=N!R(A+ie)"*1, one

can conclude the strbng differentiability of the resolvent R(1+ i0).

Theorem 1.9. Let y>1/2 and N be an integer >0.
(1) Asanoperator e B(L*7*N, L2:77"N) R(A+i0) is N-times strongly differentiable
and for A>ay>0,

i ) j —(N+1)/2
() ra£ios H_,_NSCA 1f lyen-
(2) Let P.()eSy. Foranys>N+1+yand 1>ay,>0

| P (47) RO 101

SCAZWVED2| |,
N-1

s—N~—

[(45) Rotio)] Pucis

SCAMD2|fll_insy-
-s

(3) Let P.(A)eS.. Suppose that {P.(A), P_(A)} is a disjoint pair of type II.
Then for s>0 and A>ay>0

| P [() RO | Patrs| <caeeormigy,.
(4) Let Q(A)eS,. Forany s>N+yand A>ay>0
| o (-5) Raz10)s|_ <cirevenysy,.

For later use, it is convienient to rewrite the above theorem in the following
form.

Theorem 1.10. In addition to the assumptions of Theorem 1.9, suppose that
the symbols p.(x, &; A), q(x, &; A) of P+(A) and Q(2) have the following properties
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|D2DEDY p1(x, &; k?)| < Copnlxd~1ICEYTIAL,
|D2DEDY q(x, &; k)| < Copmlxd~121LEYT1AT,

where the constant C,p, is independent of k>ko=./ay>0. Then we have for
k>ky>0

1) () RO £i00f | <cictislyan,

2) fors>N+1+y

|(&) tratdrae 01| <cis,

| R £100Pukf | <CEM S -y
(3) fors>0

.\(.d‘%)" [Po(k})R(k? % i0)P 4 (k?)1f Hs Ck £l -
@) fors=N+y

(4 tewereions| _ <crif..

§2. Differentiability of generalized Fourier transforms

In [1], we constructed a solution to the eikonal equation
(2.1) | edp(x, O)I*+ V(x)=1¢|?

and used it to develop an eigenfunction expansion theory for the Schrédinger operator
H. In [4], we gave a slightly different method of construction. First we recall the
results of [1] and [4] (see [1], Theorem 1.16 and [4], Theorem 2.5).

Lemma 2.1. Let ¢>0 be arbitrarily fixed. Choose d>0 arbitrarily. Then
there exists a real function ¢(x, E)e C*(R" x(R"—{0})) having the following
properties:

(1) For any 6>0

[DeDi(P(x, &) —x-&)| < Cpplxdimoomlal(gH1
for xe R" and |£]>6.

@ up (58 (v 01| <112,

xeR",|&|>d

where I is the n x n identity matrix.
(3) For any >0, there exists a constant R>0 such that for |x|>R, |{|>d and
£-E> —1+¢/2, P(x, &) solves the eikonal equation (2.1).
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Lemma 2.2 ([3], Theorem 2.3). Choose &, d>0 arbitrarily. Let ¢(x, &)
be as in Lemma 2.1. Then there exists a smooth function a(x, &) e Z(R") having
the following properties:

¢y |DzDi(a(x, &) —1)| < Coplxdrem 121 EY1,

if 1€|>d, £-E>—14¢, [x|>2R, R being the constant specified in Lemma 2.1 for
5=d/2. a(x, &)=0if |¢|<df2 or £-E< —1+¢/2 or |x|<R.

(2) Let G(x,&)=e i*=O(—A+V—|EDei¢=Dq(x, £). Then for £-&>—1+e¢,
we have for any N >0,

ID2DEG(x, &) < Copn{x>~NED .
If£-8<—1+e,
ID2DEG(x, &) < Coplxy=1121ED .

Our generalized Fourier transformation in [1] is constructed by the following
method.

Lemma 2.3 ([1], Theorem 5.5). Let ¢(x, &) be as in Lemma 2.1. Choose
O<pu<1 arbitrarily and let p(t) e C*(R?}) be such that p(1)=1 for t>1—uf2, p()=0
for t<l—pu. Let Yy(t)e C*(RY) be such that Yy(£)=1 for t<1, Y()=0 for t>2.
We set Yp(x)=¥(|x|/R). Then for fe L?>¥ and k>0, there exists the following
strong limit

s-lim 2ik(2m)="/2 g emit “‘”“"(%lﬁk(x)) (% - )R+ i0) f(x)dx = F (k) f
R—

in L2(S"1). This #(k) is independent of u and for any 6>0

(2.2) IF WSl L2sn-1y <Ck==D2| fl,,  (k>9).

Let us take notice that (2.2) follows from the formulae (8.1), (9.4) in [1] and
Lemma 1.1 in the present paper. The fact that #(k) is independent of u follows
from the proof of [1], §5.

For fe L?7, we define (F f) (£) by

(2:3) (FNEO=(FUDNE/IED-

Then & is uniquely extended to a partial isometry with initial set L2 .(H) and final
set L2(R"), and plays the role of a generalization to the Fourier transformation
([1], Theore 7.1). Moreover, the above Lemma 2.3 shows that # depends only
on the behavior of the phase function ¢(x, &) in a neighborhood of £=&. As has
been noted in the introduction, # f(£) can be written formally as in (0.1). We now
rewrite (0.1) by using a(x, &).

Definition 2.4. Let ¢(x, &) and a(x, & be as in Lemmas 2.1 and 2.2. Let
Yr(x) be as in Lemma 2.3. We define for fe L?:? and k>0
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F(k,R) f(0)=(2n)™"/? g Yr(x)e ik a(x, kw) f(x)dx
— ()2 S Vr(x)e-#Gko Gx, ko) R(k2+i0) f(x) dx.

Lemma 2.5. For fe L% and k>d,
s-im #F(k, R)f=F(k)f in L*((S").
R—®

Proof. We proceed as in [1], §5. Let u=R(k?*+i0)f. Since
Qry2# (k, R) f= S Vel d(e-9a)} udx — g Ve~ i®adudsx,

we have by integration by parts

Qr)y2#(k, R) f= S e 19( AW ) Gudx +2 S i (% l/;R) i (%% —iku) dx

+2ik g e‘“’(—g; l//R> audx
=11(R)+12(R)+13(R)-

One can argue as in the proof of [1], Lemma 5.2 to see that I,(R)—0, I,(R)—0 as
R—oo. Let p(f) be as in Lemma 2.3. Then as in the proof of [1], Lemma 5.3,
we have

[ erioeor (2 ya(x))ats, ka1 —p(t-@)u(x)dx—0
as R—oo. Thus we have only to consider
N
2ik S it (‘ar‘ .pR) ap(% - wyu(x)dx.

Since |(a(x, ko) —1)p(% - w)| < C{x>* by Lemma 2.2, we have as in the proof of
Lemma 5.2 in [1],

S it <_a‘37 ¢R) (@—1)p(% - @)u(x)dx —> 0.
Therefore by Lemma 2.3, we have
sclim (2712 (k, R)f=s-lim 2ik S it (T,fr_ ¢R>p(2  )u(x)dx

=2m"2#F(k)f. O

1t follows formally from Lemma 2.5 that

2.4) (2n)"/2.’/’(k)f=g e~it(xko) g(x kw) f(x)dx

_S e~i6x:ko) Glx, kw)R(k?+i0) f(x)dx.
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The rest of this section is devoted to showing that the right-hand side is a well-
defined bounded operator on L2-¥ and that it is differentiable with repect to & =kw
if f decays rapidly.

Lemma 2.6. Let b(x, £)e #(R*") be such that for some ¢>0 b(x, £)=0 if

|él<e. Then the integral transformation

TF(@)= | ere9b(x, £)(x)dx

has the following properties:
(1) IffeL*N, Tf(&) is N times differentiable and

> IDET AN < Cnl fllw-

la|<N
(2) Lety>1/2 and >0 be arbitrarily fixed. Then for any k>¢,
ICTf) (k) pasn-1y < Ck= =D £,

Proof. (1) follows from [1], Theorem 3.2. Arguing in the same way as in
[1], Theorem 3.4, we have

[ 1TroRds,<clf13,
19]=k

where the constant C is independent of k>¢. The assertion (2) directly follows
from this inequality. ]

Lemma 2.7. Let S(k) be defined by
St f @)= -1 xb(x, ka)fdx (k>0),

where b(x, £)e C°(R?*") and
|DEDEb(x, €) < Coplxdlel,
Let P(k) be the Ps. D. Op. with symbol p(x, &; k) such that
|DEDEP(x, &; k)| < Coplx)711CEN 1A

for a constant C,z independent of k> kg, ko being as in Theorem 1.10. Suppose
that b(x, &) and p(x, &; k) satisfy either of the following assumptions (1), (2):
(1) There exists a constant >0 such that

px, & k)=0  if |Kl/k—1] <e& k>ko.
(2) There exist constants uy such that —1<u_<p, <1 and

b(x, =0 if 2-&>pu_,

px, & k=0 if 2:&<py, k>ko.
Then for any s>0, k>ky, and N>0
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ISCR)CON P(k) Sl Lasn-n < Ck™* I f Il -

Proof. Choose x;(x), x2(x)e C*(R") such that y,(x)+x,(x)=1, x;(x)=1
for |x| <1, x;(x)=0 for |x| >2. We split S(k)(x)¥P(k) into two parts: S(k){x>VP(k)
=A,(k)+ A,(k), where

A,(K) fi@) = | [emieewrorsopix, ko) pix, & 0y, (1) F(@deds,
R >0 being a constant yet to be determined. By Lemma 2.1 (1),
|7l @(x, kw)—x-&))—(kw— I < Ck™{x)p7%.

In view of the assumptions (1) or (2), one can find a constant C>0 such that on the
support of the integrand

lkaw—E|>Ck for k>kq.
Therefore, there is a constant R >0 such that
| P(d(x, kw)—x-E)| > Ck for k>k, and |x|>R.
Letting Y(w, x, &; k)=¢(x, kw)—x-& and using the relation e ™V =|P |2 F -

V.e~i¥, we have by integrating by parts in x 3N times

Az(k)f(w)zgg @Gy (w, x, & k) J(E)dEdx,
where
(2.5) |D2DEbN(w, X, &; k)| < CopdxD72NKT2N,
Let B,(k, ) be the Ps. D. Op. with symbol {x)Vby(w, x, &; k). Then we have

A0 (@)= e #1xy Bk, w)) (.
Thus for large N
[ 4206) flluxisn-y SC_sup 1 4,06) ()]
<C sup [ By(k, @) fllL2sn-1 -

(2.5) implies that | B,(k, w)f || .2<Ck™2"| f|| -y, which shows that || A,(k)f1| L2(s»-1)
<Ck2N| ] _y. |

Next we consider 4,(k). Since in this case the symbol {x>¥p(x, &; k)x,(x/R)
is compactly supported for x, one can easily show for any s>0

14, (RS Nl s -1y < CILf N -

with a constant C independent of k>k,. In order to derive the decay with respect
to k, we have only to note that for large k, | P (¢(x, kw)—x - &)| > Ck for a constant
C>0 and integrate by parts. 0
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We turn to the estimate of the right-hand side of (2.4). The first term is treated
by Lemma 2.6 (1). In order to treat the second term, we set

T(k)f(w)= S e io (ko) G(x, kw)R(k?+i0) f(x)dx

and

(TN =TENSE/IED -

Lemma 2.8. Let d>0 be the constant specified in Lemma 2.2. Choose y>1/2
arbitrarily. Then we have for any N>0 and k>d

e | D¢ Tf(€)|¢=kw”L2(s"-l)£Ck_("_l)/znf||N+y-

Proof. We make use of the localizations used in the proof of Theorem 1.8.
Let ¢o(€), ¢o(€), xo(x) and x,(x) be as in the proof of Theorem 1.8. Choose
p+(1)e C*(RY) such that p ()+p_()=1and p,()=01if t<1/2, p_()=0 if t>3/4.
Let A(k), B(k), P.(k) be the Ps.D.Op.’s with symbols ¢, (E/k), xo(x)Po(E/k),

Xo(X)p £ (R - E)Po(E/k), respectively. Then T(k)= 21 T(k), where
Ty(k) f(w)= S e kNG (x, kw)A(k)R(k?+i0)f(x)fx,

Ty(k) f(w) =\ =164 G(x, k) B(k)R(k? + i0)f (x)dx,

S e
Ty(k) f () = S ik Glx, k)P, (K)R(k2 + i0) f (x)dx,
S e

Ty(k)f(w)=\ e~ 4=k Glx, k)P _(k)R(k? + i0)f (x)dx.

We set
T f(&)=THIEDS&/IED).

First we consider T;. By a straightforward calculation we have

g2y DETLI(E)
=z S e 10O ay(x, E)CxOIP Ay(1E1) DS BR(|E|? +i0) £(x) dx,
f<x

where {({>ag(x, &) and Ay(|¢]) arise from the derivatives of G(x, &) and A(|¢]),
respectively. In particular, ag(x, £) e #(R?") by Lemma 2.2. In view of Lemma
2.7, we have for any s>0

IGEN”DE T f(Ole=xeollL2(sn-1)
. d \ .
<Ck™ 3 (d_k) R(k2+i0) f

SCE™S( flIney

-5
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where we have used Theorem 1.10 (1).
Since the symbol of B(k) is compactly supported for x, we have by using Lemma
2.6 (2),

> IDE T f (Ol e=koll L2se-1)

|a|<N

oo g () o]
< Ckt 1)/2m§N <dk> RUz+i0)1 —N-y

SCk™ DY f [y -
Since G(x, £)=0({&EY x>~ 1), we have, similarly,

2y 1PETf (Dle=kallzsn-y

<Ck-emv2 3 ”(x)'v""‘”y (7‘1k~>m P_(k)R(k?+i0) f HL

S Ck™ D2 Iy

The treatment of T, is slightly different. Choose x.(¢)e C*(R!') such that
+(D+x-®=1and x,()=0if t<—1/4, y_()=0if t>1/4. We split T; into two
parts: T=T§P + T, where

TEK) f(w) = S ek G(x, kw)y 1 (% - 0)P 4 (K)R(k? + i0)f (x)dx.

Since G(x, kw)y (% - w) is rapidly decreasing in x, we have as for T,
|4§N | Dg T(3+)f(f)|¢=km[|u(s"-1)

<Ck™ D2 flingy .
Using Lemma 2.7, one can treat T5™ in the same way as T;:

Z “DE Tg_)f(é)'§=kw|ll,2(sn—x)

la] <N
<CE™* | flIney - 0

Theorem 0.1 in the introduction now ready follows from Lemma 2.8 by inte-
grating in k.

§3. Decay rates for scattering states

As an application of the differentiability property of &, we derive in this section
a decay rate for scattering states of the Schrodinger operator H.

Theorem 3.1, Let y>1/2. Let y(A)eC®(R') be such that for some £>0
and an integer N>1, y(A)=0 for A<, and ](%) XD < CAN-27-m12 for 4>,
m=0,1,2,.... Then we have for t>0
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[x(H)e B f| _N<CN| fllysgay-

Proof. Let y(&)=(Fy(H)f) (£). By [1], Theorem 7.1,
ety (B = F(kyreminy (k- er- e,
From (2.4) it follows that

F)*Y(k-)=Q2nr) /2 SS" . el*xkolg(x, kw)(kw)dw— R(k? —i0)u(k),

where

3.1 v(k) (x)=(2m)~"/2 gs el =k G(x, koW (kw)do.
Therefore,

(32 e H) f=@2m)~"? S el @ =11EMa(x, E(E)dE

_ gw R(K? — i0)o(k)e~ 1k 1dk.
0

First we consider the first term of (3.2). Using the relation (—2it||2)1¢.
Fse~itl812=¢~it1¢1’ we have by integration by parts

x>V S el (9011 (x, S()d¢

-y gei(d:(x.é)—tlﬁlz)aa(x, ¢; DEY(E)dE,
|a|<N

where |D§D§aa(x, & DI<Cp(tl€])"™. Thus by an L2-boundedenss theorem of
Fourier integral operators ([1], Theorem 3.2), we have

(3.3) ”(x)‘” S ei @Ot Ng(x, g)l/,(g)dgnu
<CtV ¥ IKENDH Lo

|a|SN
The sceond term of (3.2) is treated by the technique employed in [5], Lemma
5.1. Fore>0

o)
R(k? —jg)= —je it(H-(k>~i2)) S elstH—(k2=ie)) J¢
t

Therefore letting g(k)=uv(k)k"~!, we have

Sw R(k?—ig)e " g(k)dk = —i gw e (NIt G(s)ds,
0

t

4(s)= S: e~iskg(k)dk.
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In the following, we show for finy s>0

(34 1g(s) Np2<Cs7Mt 5 KO ¥Dgdllpa.
|2|SN+1
If (3.4) is established, we have by the dominated convergence theorem
“Sw R(K? —iO)e"'”"g(k)dkl'
0 L2

<Ct ™V ¥ IKOND L.
Ja| <N+1

Therefore for t>0

Ix(H)e #" fll_y< CrN K> NDgir]l .- -

la|<N+1
Since (&) = x(1¢)) (£ £) (&) and [Dgx(I€1)| < CLEHN 2,
T, KODWIL<C | T IO PDUF Ol

|a|<N+1
<CIf Int1+y s

by Theorem 0.1. This proves the theorem.
Now we prove (3.4). By (3.1),

4)=n) 12 { exe.0-1EG(x, HUOAE.

Choose y4(t)e C*(R!) such that x.()+x-()=1, x+()=0 for t<1/2, x_(H=0
for t>3/4. Split §(1) into two parts: §(t)=g.+(t)+g _(t), where

g.()=(2m) "2 S O IEING(x, Eys (- EW(E)E,

Since G(x, &)x+(& - &) is rapidly decreasing in x, we have by integration by parts as
we have derived (3.3)

[g+(2<Ce7 Nt 5 KO Dlipe.
la|<N+1

(Take notice of the estimates for G(x, &) in Lemma 2.2).
Choose p (1), p;(H)e C*(R') such that p()+p,(H=1, p,()=0 for t>2,
p(1)=0 for t<1. Split g_(t) into two parts: g _(1)=g() + g?(r), where

9 (D) =) 712 | e 0181 (x| RYG(x, Er- (% DUDE,

R >0 being a constant yet to be determined. Since p,(|x|/R) is compactly supported,
we have as above

fgP (2 <Cr7¥ 1 3 [KEMDE| 2.
ja|SN+1

a|

On the support of the integrand of g?’, we have for large R>0
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[7e(d(x, O)—tlEIDI=C(xI+1E))  (Ix|>R).
Thus by integration by parts

@)= eteasien s b (x, & DDIE)E,

la|<N+1
where |DADb(x, &; )| <CtN~1¢|N. Therefore again using the L2-boundedness
theorem of Fourier integral operators

Ig@ (D<Mt 3 KO ¥DW.. O
la|SN+1

In order to prove Theorem 0.2, we have only to interpolate the estimate in
Theorem 3.1 with the obvious one

Ix(H)e= M f [ L2 < fl g2
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