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Introduction

In our previous work [1], we developed a theory of eigenfunction expansion
or generalized Fourier transformation associated with the Schrticlinger operator

H = —4-1-1/(x) in L 2 (R) (n > 2) with a  long-range potential V (x ) satisfying the
following assumption

V (x ) is a  real smooth function on Rn such that f o r some constant eo >0

(A) D07(x)=0(lxl-121-80) as ixi oo

for all multi-index a.

More precisely, we constructed a partially isometric operator with initial set
L ( H )  (the absolutely continuous subspace for H) and final set L2 (R") satisfying

( g c c (H )f ) ( )= 4 1 1 2 ) ( g - f)

for any bounded Borel function oc(A) on R  and fE L2 (R " ) . The main idea was as
follows: First we construct a real function 44(x, which behaves like x  as lxi o o

and solves the eikonal equation

Fx0(x, )12 + V(x) = 1
2

in an appropriate region of the phase space R n x R'. W e  set Go (x, ) = e ( ) .

+ V(x)— I  12 )eio ( x, 4 ) and R(z)=(H— z) - 1 . We then define formally by

(0.1) („F f) ( ) = (2n) - "12 e ( x )  f(x )d x
R .

—(270 - n/2c i o (x, ) G o (x, -FiO)f(x)dx.
R .

If V(x) is short-range, i.e. V(x)= 0(1xl - 1 - 8 0), one can take x • as 0(x, Then the
above formula (0.1) takes the following form

(0.2) (...0-f) () = (270-.12
( x ) d x

_ p i t y./ 2 e - ix. 4
V(x)R (I I 2 + i0)f(x)dx.
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As is clear from the above definition, the operator .F is a generalization of the
ordinary Fouier transformation

(0.3) ( .F0f) =f ( )=  (2i 1 e ( x ) d x .

One knows many interesting properties of Various Paley-Winer type
theorems, transforming rapidly decreasing functions into smooth ones, etc. It
may be of interest to consider to what extent these properties extend to  The
main purpose of this paper is to prove the following differentiability property for g".
For a real number s, let L 2 , s denote the space of measurable functions f (x ) on R n

such that

I f  = (1 +1 .0 2 1f (x)12 dx < oo.

Theorem 0 . 1 .  L et y> 1/2 be arbitrarily  f ix ed and N  a  non-negative integer.
If  fe L 2 , N ÷ Y , (F f)() is N  times dif ferentiable w ith respect to and  f o r any
e> 0

E <0-2Y1DzGFD
la w s /  ii>E

The differentiability of " ' is closely connected with the decay rates for scattering
states. U sin g  the above result, we can prove the following

Theorem 0 .2 .  L et A A ) be a smooth function on 121 such that f o r some e>0,
x(A)=1 for 2e, x()=0 for .1.<8. Then for any s>0 and S>

IIX(H)e
- f t n f  , < C ( 1 +Itl) - s lIf Ils+a •

One can make use of the above result as an intermediate step to prove the best
possible decay rate

(0.4) X(H)e-ituf ± It1)- 11/11s (s 0),

whose proof will be given in a forthcoming paper.
As can be seen from (0.1) and (0.2), in order to prove the differentiability of g",

one should consider that of the resolvent R(A + i0), which occupies the major part
of this work and is studied in §1 (Theorem 1.9) utilizing the recent results of Isozaki-
Kitada [2], [3] concerning the micro-local estimates for the resolvent. The differ-
entiability with respect to of R(.1+ i0) is also discussed by Jensen-Mourre-Perry
[8], where they employ the commutator method due to Mourre [9].

Let us list the notations used in this paper. For a vector x e R n =  x/Ixi and
<x >= (1 +  lx12)112. .1(Rn) denotes the space o f smooth functions on  R n with
bounded derivatives. C,T(R") is the space of smooth functions on R n with compact
support. For two Banach spaces X and Y, B(X ; Y) denotes the totality of bounded
linear operators from X  to  Y . For a m ulti-index a, D;=(0/Ox i yi-••(0/0x„)an,
laI =a, + • • • +a„. Throughout the paper, C's denote various constants independent
of the parameters in question.
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§1 . Differentiability of the resolvent

Let H=— A+V(x), where V satisfies the assumption (A) in the introduction,
and R(z)=(H — z) - 1 . O ur starting point is  the following limiting absorption
principle (see e.g. [2 ], Theorem 1.2).

Lemma 1.1. For any  k>0 and y> 1/2, there ex ists a strong lim it s-Jim R(k+
ig)=R(A-Fi0) in  B(L 2 , Y ; L2 , - 1 ). M oreov er for any  g>0, there ex ists a constant
C>0 such that

IIR(2±l0).1.11 -y C/ /i f  II y
f or A>g.

Our aim of this section is to discuss the differentiability with respect to A. of the
resolvent R(k+ i0). It leads us to consider the powers of R(.1.+ i0), since by the
formal calculus

dd,i)
N

 R(k+i0)=N! R(k+i0)N+'.

Needless to say, one cannot use Lemma 1.1 directly to treat R(A-FiO)N+ 1 . If one
inserts some pseudo-differential operators (Ps. D. Op.'s), however, one can give a
definite meaning to R(k+ i0)"+'. The estimates o f  resolvents multiplied by
Ps. D. Op.'s, which we call the micro-local resolvent estimates, have been intensively
studied in [2 ] and [ 3 ] .  Let us begin with recalling the results.

Definition 1.2. Let ao >0 be arbitrarily fixed and p.> O. A smooth function
p(x, A) belongs to W(p) if for any a, fi

sup <x>A+I. 1<0 1131 1Dp1 p(x, )1)I < co
x, e.R",.1>ao

Definition 1.3. p(x, 2) e S  if
(1) p(x, eW(0),
(2) there exists a constant s> 0 such that

P(x, /1)= 0 if U1//1-11 <E, 11> ao ,

(g may depend on p(x, A)).

Definition 1.4. p± (x ,  ;  A) e S± if
(1) p± (x, 2)e W(0),
(2) there exists a constant E > 0 such that

P±(x, /1)=0 if H I/ N/2-11>e, 2>a o ,

(s may depend on p ± (x, 2)),
( 3 )  there exists a constant p± such that —1<p ±  <1 and
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p + (x, 2)=0 i f  .R • < ,

p_(x, 2)=0 i f  .R • ,

(j,/±  may depend on p i (x, A)).
For a Ps. D. Op. P(A), P(/1) e S S )  means that its symbol belongs to S œ

(or S i ). Then we have shown in [2], Theorems 3.3 and 3.5 the following

Lemma 1.5.

Let P(A) e S OE,. Then for any  s> 1/2 and A> a 0

IIP(A)R(A± i0 ) f  s  C/A f

( 2 )  Let P ± (2)e S ± . Then for any  s> 1/2 and A> a0

IIPT(A)R(2 ± io ) f f Ils •

A  remark should be added here concerning th e  limits lirn P(2)R(A. + je) and
E.Lc•

lim PT (A)R( + is). What we have shown in [2 ] actually is that for any s> 1/2
e l( )

(1.1) sup ilf(A )R (A ±
0 < c < 1

(see [2], Theorem 3.7), which does not necessarily imply the existence of the strong
limit s-lim P T (;,)R (A  je) i n  B(L 2 , s; L 2 , s- 1 ). As can be checked easily, however,

,Lo
(1.1) implies th e  ex is tence  o f the  strong limit s-lim PT (A )R(2+ is) i n  B(L 2 , s;

E.to
L 2 , s- 1 - 6 ) for any 5>0. I n  th e  same way, one can show the existence of the strong

limit s-urn P(2)R(2+ is) in  B(L 2 , s; L 2 ) for any 6> 0.
e.1.0

Definition 1.6. (1) L e t .  P(2), Q (A ) b e  Ps. D. Op.'s e W (0 ) with symbols
p(x, 2 ) ,  q ( x ,  2 ) ,  respectively. {P(2), Q(2)} is said to be a disjoint pair of type I
if

inf dis (supp p(x, A), supp q(x, 2))> 0,
xcp",,1<ao 4 4

where dis (A, B ) denotes the distance of two sets A, B c R n , and supp p(x, 2 )
4

means the support of p(x, 2) as a function of

( 2 )  Let P ( 2 )  be Ps. D. Op.'s E S±  with symbols p i (x, A). { P + (2), P_(2)}  is
said to be a disjoint pair of type II if there exist constants it ±  such that — 1<p_ <
tt+  <1 and

p + (x, 2)=0 i f  .R ,

p_(x, 2)=0 i f  .R • ! >,u_ .

Lemma 1.7. (1) Let P(A), Q(2) E S .  Suppose {P(2), Q(2)}  is a disjoint pair
of type I. T h e n  for any  s> 0 and 2>a 0 , there exists a strong limit s-lim P(2)R(2+

E O

ie)Q(2) in B(L 2 , - s; L 2 , ) and

IIP(2)R(2 ±i 0 )Q(A )f s CINIA llf  M —s •

(1)
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(2) Let P ± (A )eS ± and Q() . ) e  S .  Suppose that { P(t), Q(A )}  are disjoint pairs
of type I. T hen  f o r any  s>0  and tl >a o , there exist strong limits

s-urn Q(A)R(il.±is)P ± (A),

in B(L 2 , - s; ) Moreover,

IQ(A)R ± i0)P ±( ) .)f  s CIN I Ail f  II

IIPT (A)R(2±i0)Q(1.)f II s c  I f 11 - s •

(3) Let P ± (A )eS ± . Suppose {13
+ 0.), P_Q.)}  is a disjoint pair of type II. Then

fo r an y  s>0  and A >a o ,  there ex ists a  strong lim it s-lim P ± (t1)R(t+iv)P ± (2.) in

B(L 2 , - s; L 2 , ) and

PTMR( 11±i0 )-13 ±(11,) f  s  C l  N/  f 11 - s •

For the proof, see [2 ] Theorems 4.2, 4.3, 4.4 and [3 ] Theorem 2.
We now study the limit s-urn R(t1+ .

,to

Theorem 1 . 8 .  Let y >112 be arbitrarily  f ix ed and N  an in te g e r >1 . Let
tl >a o . Then we have:
(1) There exists a strong limit s-lim R(À. + R(t1.+ i0)N in B(L2,Y+N-1; L 2 , - y - N + 1 )

and

R f  - y  - N  + 1 /211f Ily+N -1 •

(2) Let P ± (.1.) eS ± . F or an y  s> N +y  and S >0 , there ex ists a  strong lim it
s-lim PT (A)R(1±i6)N in B(L 2 , s; ) and

( 3 )  Let P ± (A)e S ± .
s-lim R(A±iv)N P ± (.1.)

TNII PT(A)RG1. ± io)Nf Ils- N G I /  2 11I f Ils .

F or an y  s >N +y  and (5>0,  there ex ists a  strong lim it
in  B(L2,-s+N ;  L 2  , - s - 6 )  and

E 10

11R(1± i0 )N
P±(2 )f  II Ilf II -s+N

(4) Let P ± (A)e S .  Suppose {P,.(11.), P_ (1)}  is a disjoint pair of type II. Then
fo r  any  s> 0 , there ex ists a  strong lim it s-1im P T (A )R(2+ONP ± (A ) in  B(L 2 , - s;

E 10
L 2 , ) and

±(A )R()±i0Y  ±(A )f Ils5Cit - N 1 2 11f II - ,
(5) Let Q(2) e S ac,  and s>y  + N  — 1. For any  S > 0  there ex ists a strong lim it
s-lim Q(A)R(.1+ ON in B(L2,5

:  L 2 , s - N + 1 - 6 )  and
tio

II Q(A)R(A ± io)Nf Ils-N+1 c A - Ni2 Ilf Ils.
Proof  (by induction on N ) .  The assertions of the theorem have already been

proved for N =1  (see Lemmas 1 .5 , 1 .7 ). Assume the theorem for N.

s-lim PT (A)R0.±is)Q(.1)
t4.o
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Choose 45 0( ) e C"(1?") such that

Oo(0=
{ 01

where 0<8 G  1/2. We set

I I I - 1 I <
I I I - 1 I > 28,

(M O = 1 - 013(0.

Let zo(x), X(x) E C (R )  be such that zo (x)+ x oe (x)= 1,

Xo(x)= 0 f o r  Ixl >2,

Zo(x)= 1 f o r  Ix' <1.

Choose constants — 1< < 1  and C'-functions p ± ( t )  so  th a t /I_ <fL ,  p ± (t)+
p _(0= 1 and

p (t )= O f o r  t< ii +

p _(t)= 0 f o r  t> /1_ .

Let A(2), B(2), P ) b e  the Ps. D. Op.'s with symbols (toco (/ \//1.), Xo(x)00(IV ,I.),
Z.(x)P±(- • N9 oW VA), respectively. By definition A(A) e S . ,  /3 ± (.1) e S ,  th e
symbol of B(),) is compactly supported for x and

A(A)+ B(A)+ P ± (,1)+ P _ (A) 1.

We further introduce the following notations. Let

/---{zeC ; Rez> a o , Imz>0}.

For an operator T(z) defined for z e I ,  T(z) e C(I; L2,s, L2,r ; )  means that there

exists a strong limit s-urn T +  i) in  B(L 2 , s; L2 ,
r) f o r  A> a 0  a n d

e l0

Pfroof of (1) for N  + 1 . We split R Q  ie)N +1 into four parts:

(1.2) R(A+ ie)N + 1 = ig)N A(A)R(.1-1- i )+  R(.+ ig)N B(A)R(A± ig)

+ R(1 ± le )" + (A)R(A + i )  + R(A+ i e)N P _(2)R(.1+ ig).

Since A ( t ) e  S ,  L em m a  1 .5  (1 )  shows t h a t  A (1.)R (2 ie) C( Ï ;
L 2 4 4 - N - 1 ;  1). B y  o u r  induction hypothesis (1), R Q - F  e  ;  L 2 , 7 +N-1,

L2 , - 7 - N+1 ; N ) .  Thus the first term belongs to C(I ; L 2 'Y + N - 1 ,  L2'—Y -1,1+1  N +1).
Since the symbol of Be.) is compactly supported for x , R(A ig)N B(t) e C(/;

L 2 , - 7 - N+1 ; N) by our induction hypothesis (1). This, combined with Lemma

1.1, shows that the second term belongs to C(Ï ; L2 ,7 , L 2 , - 7 - N+1 ; N +1).
In view of Lemma 1.1 and our induction hypothesis (3), we have R(.1+ is) e

C(I; L2 ,7 , L 2 , - 7 ; 1 ) an d  R(A+ ie)N P + W e C(I ; L 2 , - 7 , L 2 Y - N ; N), w hich  shows
that the third term belongs to C(/; L2 ,7 , L 2 '— Y— N ; N+1).
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Making use of our induction hypotheses (1) and (2) for N , we have for small
5>o, 15 _(.1)R(2+ ie)e C(/; L 2 , v+N, L2 , Y+N- 1 -- 6 ;  1 )  a n d  R(A+ e C(/; L 2 , 7 - 6 +N- 1 ,

L 2 , - r " - N+1 ; N ) .  Thus the fourth term belongs to C(I ; L 2 , Y+N, L 2 .- Y- N-" ;  N +1).
Proof of (2) for N  +1 . We multiply (1.2) by P_(2.). By methods similar to the

above, one can show that P _(A)R(). + ie)NA(2.)R(2+ je), P _(A)R()+ iE)NBMR(/1+ je)
a n d  P _(),)R(A+ ie)N P _(.1.)R(A+ iE) b e lo n g  to  C a; L2,s, L2,s—N-1-6 N . 1 ,) for

s>N  +1 +y  and 5 > 0. I n  order to treat the  term P_W R(1+ie)N15
± (A)R(A+ie),

we note that {P_(2), P )}  becomes a disjoint pair of type II if fi +  >p ,_ .  Thus by
our induction hypothesis ( 4 )  fo r  N , w e have P _(A)R().- ie)NP + (,1)EC(1; L 2 ' ,
L 2 0 ; N ) fo r any s> 0 , which, combined with Lemma 1 .1 , shows that P _R(A+

is).15
+ (),)R(A +ie)e C(I; L 2 , 7 , 1.2 . 5 ;

 N  +1) for any s> 0.
Proof of (3). By the asymptotic expansion of the symbol of P ) * ,

 we have

for any m >0,

P±(A r= P (In ) (A) ± Qm(A) 9

where P (
±m) (A) e S ±  and the symbol q (x , 2) of Q„,(A) verifies

I D P l q ( x ,  ; A )I<C,i p<x› - m- ial<0 -1131

(see [2 ], Theorem 2 .4 ) .  Thus if s > N +y and m > y + s —1

IIPT(A) * R(A±iE)
N
N

1113(1")11(A)R(A± )NfMs_N+ 11Qm(A)R (A.-± ie) "  f s — N

<CA— N / 2 11f Ils
where we have used (1) and ( 2 ) .  Taking the adjoint, we have 11R(),+ ier P ±(A )f  -s<
CA - N12 11f11_,± N , which proves that (3) for N follows from (1) and (2) for N.

Proof of (4) for N +1. First we choose fl ±  in  such a way that —1<y_ < P _ <
<pi + <1 so that { P _ ) ,  + 1)). and {P_(,I), P + (A)} form disjoint pairs of type II.

Next we recall that the support with respect t o  of the symbol of P + (A) lies in a small
neighborhood o f  th e  sphere {c  ; = j } .  Thus f o r  a  suitable choice o f  E for

A (A ), {A (A ), ± (2)} becomes a disjoint pair of type I.
We multiply (1.2) by P ± (2) from both sides. Consider the resulting first term.

By Lemma 1 .7  (2 ) ,  A(A)R(2+iE)13
± ( ) e  C(Ï ; L 2 , - s, L 2 , s ;  1 )  f o r  a n y  s > O. W e

also have by our induction hypothesis (2), P _(A)R(.1+ ic)N e C(Ï ; L2,s, L2,5-N-1 ; N) .

Thus the first term belongs to C (J ; L2,s; N +1)  for s> 0.
The treatment of the second term is easy, hence is omitted.
Taking the  adjoint in  Lemma 1 .5  (2 ), one can show using Lemma 1.1 that

R(A+ ie)P ± (A) e C(I ; L2,-s, L 2 , - s - 2 ;  1) for s> 0. S in c e  {P _(A), P )} is a disjoint

pa ir  o f type  II, w e have P _(.1)R(A+ is)N P + W e C a; L 2 , - s- 2 , L 2 0 ; N )  fo r  s >O.
Thus the third term has the desired property.

Since {P_(.1), P ± (111)}  is  a disjoint pair of type II, P _W R ()+ ie)1 ± (A) E C(I ;
L.2 's ; 1) for s > O. This, combined with (2) proves that the fourth term has

the desired property.
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Proof of (S) for N+1. W e shall estimate

Q(A)R(.1.+ is) ' = Q(A)R(2+ ie)A(2)R(A+ie)N +Q(2)R(2+ ie)B(A)R(,1+ is)N

+Q(A)R(A+ ie)P + (il.)R(A+ is)N +Q(A)R(A+ is)P _(A)RO. +

The treatment of the first two terms is easy. We have only to use (1), (5) for N
and Lemma 1.5 (1).

Since Q(2) e S oo , one can assume that {Q(A), P+ (2)} is a disjoint pair of type I

by an appropriate choice of e. Therefore by Lemma 1.7 (2), Q(A)R().-F + (,1) e
C(1; L2 •- s, L2 , 5 ; 1) fo r  s > O .  T his, combined with (1) f o r  N , shows th a t  the

third term belongs to C(I ; L2 , 7 +N, L2 , s; N+1) for s> 0.
In  order to treat the fourth term, we have only to take note of (2) for N and

Lemma 1.5 (1).

In  view of Theorem 1.8 and the formula (  d i e ) =  N ! R ( ,1 +  ie ) N + 1 , one

can conclude the strong differentiability of the resolvent R(,1+ 10).

Theorem 1.9. Let y> 1/2 and N be an integer >O.
(1 ) As an operator e B(L2 .Y+N, R(1+ i0) is N-times strongly differentiable
and for ).> ao > 0, •

(2) Let P± (,DeS ± .

N  

R(il±i0)fd
d

2 ) < CA - ( " 1 " 2 1If Ily+N •
- 7 -  N  

and /1.>ao >0For any  s>N+1+y

P+ (,1)( RO.±i0)fd
d

A ) N

s - N - 1
<CA-(1.1+1)/2Ilf Ils, 

[ ( d R ( .1 ,±i0 )1 P ± (,)fll -FAT-Fi•

(3) L et P± (A)eS ± . Suppose that {P + (t), P_(,1.)} is  a disjoint pair of  ty pe II.
Then for s > 0 and A>a 0 >0

  

,, d
P T V ) [ ( W )  R(A±i0)1P ± (A)f < CA /211f _s

   

( 4 )  Let Q(A)e S . .  For any  s>N +y and A> a0 >0

1112( .) ( ÷ 1
2

- ) N R() ± i0)f I _ C 2 - ( N + 1 ) Ilf Ils •
Is -  N

For later use, it is  convienient to  rewrite the above theorem in the following

form.

Theorem 1.10. In  addition to  the assumptions o f  Theorem 1.9, suppose that

the symbols p± (x, g(x, of P± (A) and Q(A) have the following properties
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ID'VY4D 1 p ± (x, k2 )I <C o n ,<x> <> - - Ifil

IDD1D 1 q(x, k2 )1<C O 3,,<x>-1 1 1 <o - Ifil

where the constant Co n , is independent o f  k>k 0 =Va o >0. T hen w e have for

k> ko >

(1) R(k 2i 0 ) fd
d
k )

N

- y - N

(2) f or s>N+1+y

[P T (k2)R(k2 ±i0 )]fd
d
k ) N

s-N-1

[R (k 2i 0 ) P ± (k2) ] fd
d V
k Y < C 1C i llf

- s
5+N+1,

(3) f or s>0

d CPT(k2)R(k2 ± i 0 )P±(0 ) ] f C kHI fM -sdk

(4) f or s>N+y

d
d
k )

N

 EQ(k 2 )R (k 2 i 0 ) ] f  
s - N

§2. Differentiability of generalized Fourier transforms

In [1 ], we constructed a solution to the eikonal equation

(2.1) I FAO, + V(x) = I  12

and used it to develop an eigenfunction expansion theory for the Schrödinger operator

H .  In [4], we gave a slightly different method of construction. First we recall the
results of [1] and [4] (see [1], Theorem 1.16 and [4], Theorem 2.5).

Lemma 2.1. L et c>0 be arbitrarily  f ix ed. Choose d>0 arbitrarily . T hen

there ex ists a  real f unc tion  cl)(x, M R "x (R n  — {0 } )) hav ing  the following

properties:
(1 ) For any  6>0

IDV) P4(0(x, x. )1 C„p<x>1-e0-1.1<0-1

f or x e R . and

(2) sup
xeR",I41>d ax

a
l
2a i 4))(x, <1/2,

where I  is the nxn identity  m atrix .
(3) For any  6>0, there ex ists a constant R > 0 such that f o r ixl>R, Il>6 and
.52 • !> —1+42, 0(x, solves the eikonal equation (2.1).
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Lemma 2 .2  ([3 ], Theorem 2.3). Choose E ,  d > 0  arb itrarily . L e t  0 (x , )
be as in Lemma 2.1. Then there exists a smooth function a (x , )e  .J (R ) having
the following properties:

(1) IIYID1(a(x, 1)1 < C afl<x› - E0- 1.1 <0-1

if d, • !> — 1+s, lx1>2R, R being the constant specified in Lemma 2.1 f or
6= d12. a(x, )=0 if  gl<d12 or g • !< —1+s/2 or Ixl <R.
(2) L e t  G(x, e-io(x,o( + V— I 12)e i ( x ) ci(x, T hen f o r  .5? • !> —1+s,
we have for any  N>0,

IDV4G(x, cafliv<x>- N<0

I f  • !< -1 + s ,

IDD1G(x, < Co<x> - 1 - 1 "1<0 •

Our generalized Fourier transformation in [1] is constructed by the following
method.

Lemma 2 .3  ( [ 1 ] ,  Theorem 5.5). L e t (/)(x, be as  in  Lemma 2.1. Choose
0 < it <1 arbitrarily  and let p(t)e C°(R 1) be such that p(t)=1 f or t>1—y12, p(t)=0
f o r t<1— p. L et ili(t)e M R 1)  be such that ili(t) =1 f o r t <1, 0(0=0 f o r  t>2.
We set t l iR ( x ) =0 ( 1 x 1 I R ) . T h e n  f or f e L 2 , Y and  k >0 , there ex ists the following
strong lim it

s-lim 2ik(27r) -  "I 2(
0x 111 R(x)) p( • w)R(k2 + i0)f (x)dx= 9 . (k )fR -.

in L 2 (Sn- 1 ). This .F(k) is independent of y and for any  6>0

(2.2) .F(k)f II L2(s„ -1) < ck - 0 - 1 ) 1 2 11f Ily
( k > 5 ) .

Let us take notice that (2.2) follows from the formulae (8.1), (9.4) in  [1] and
Lemma 1.1 in the present paper. The fact that .F(k) is independent of 1.1 follows
from the proof of [1], §5.

For fe  L2 , Y, we define (..F .f) ( ) by

(2.3) (.F f ) ( ) = (F ( I I ) f  ) (V  •

Then F is uniquely extended to a partial isometry with initial set L ( H )  and final
set L 2 (Rn), and plays the role of a generalization to the Fourier transformation
([1], Theore 7.1). Moreover, the above Lemma 2.3 shows that depends only
on the behavior of the phase function cXx, 0 in a neighborhood o f  = As has
been noted in the introduction, F f ( )  can be written formally as in (0.1). We now
rewrite (0.1) by using a(x,

Definition 2 .4 .  Let 0(x, and a(x, be a s  in  Lemmas 2.1 and 2.2. Let
OR (x) be as in Lemma 2.3. We define for fe  L2 , Y and k > 0
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.F (k ,R ) f(co )=  (27r) - "/2 5 J R ( x ) e i . k » )  a ( x ,  kw) f (x )d x

- (27r) -- "/2  1 11 R (x )e - io ( x , " ) ) G (x , kw) R(k 2  + i0) f(x) dx.

Lemma 2 .5 .  For fe  L 2 0 ' and k>d,

s- urnR ) f = " " ( k ) f i n  L 2 (Sn - 1 ).

Pro o f . We proceed as in [ 1 ] ,  § 5 .  Let u= R(k 2 + i 0 ) f .  Since

(2i /2 (k ,  R ) f=  tk R {A(e - i0 5 )}u d x -

we have by integration by parts

(27c)n 1 2 .F (k , R ) f =  c i ik(Atfr R ) dudx + 2  c i <fi (  o
a
r OR ) a ( -  iku )d x

+ 2 ik e - i4 '(   oar tl/R )dudx

= 11 ( R) +  12 (R )+ 13 (R).

One can argue as in the proof of [1], Lemma 5.2 to see that /. 1(R)-›0, 12 (R)->0 as
R - *co. L e t  p (t) be as in Lemma 2 .3 .  Then as in the proof of [1 ] , Lemma 5.3,

we have

e- ic x , " »  ilf,(x ))a (x, kw )(1 -  p(3 -w))u(x)dx — >0
Ô r

as R - > co . Thus we have only to consider

r  R ) cTip(3 • w)u(x)dx.

Since l(a(x, kw) -  1)p(.32 • w)I <C(0 - so by Lemma 2.2, we have as in the proof of
Lemma 5.2 in [1],

(  a
a

 r-  tIJR )(d  - 1)X.R • w)u(x)dx O.

Therefore by Lemma 2.3, we have

s- 11m (27r)"/ 2 " - (k, R )f=  s- 11m( w a  IIIR )p(R • w)u(x)dx
R-.0D n-oo

=(270^/2 .F (k )f.

It follows formally from Lemma 2.5 that

(2.4) (2n)n12.F(k)f = e-
i c t q x , k w )  

a(x, kw) f (x )d x

e - io(x , ")) G (x, kco)R(k 2  +10) f(x)dx.
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The rest of this section is devoted to showing that the right-hand side is a well-
defined bounded operator on L 2 , Y and that it is differentiable with repect to kw
if f decays rapidly.

Lemma 2.6. L et b(x, e (R 2 )  be such that f o r som e e > 0  b(x, 0 = 0  if
Then the integral transformation

Tf cio(x,Db(x, )f(x)dx

has the following properties:
(1) If fe L 2 , N, TA O is N times differentiable and

E  1lDz TfG)11L2 CNII flIN
laISN

(2) Let y> 1/2 and c> 0 be arbitrarily  f ix ed. T hen f o r any  k>e,

11( 7 ' f )  ( 1c . )11L2(s.-1)_Ck - (n - 1 1 1 2 11f  y •

Pro o f . (1) follows from [1 ], Theorem 3.2. Arguing in the same way as in
[1], Theorem 3.4, we have

1 0 1 = k  

I Tf(0)12 ds0 cllf 14 ,

where the constant C is independent of k> e. The assertion (2) directly follows
from this inequality.

Lemma 2.7. Let S(k) be defined by

S(k)f(w) = - io(x , "))b(x, kco)f(x)dx (k> 0),

where b(x, )E C(R 2") and

IDD1b(x, )1<C 0 <x>"- 1
.

Let P(k) be the Ps. D. Op. with symbol p(x, k) such that

IDV4p(x, k)I<C0 <x>-111 <0 -1 R1

for a constant Co  independent of k>k o , ko be ing  as  in  Theorem 1.10. Suppose
that b(x, and p(x, k) satisfy either of the following assumptions (1), (2):
(1) There exists a constant E>0 such that

p(x, k)=0 i f  1111lc <E, k>k o .

(2) There exist constants 12±  such that —1<y_ < < 1  and

b(x, )=0 if • >  _  ,

p(x, k)=0 if • k>

Then for any s>0, k> k 0 and N > 0
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S(k)(x>" P(k) f II os—i ) Csk- slIfIl-s•

P ro o f . Choose x 1 ( x ) ,  X 2 ( x )E C (R )  s u c h  th at  x 1 ( x ) + Z 2 ( x ) = 1 ,  x 1(x)=1

for Ixl <1, x i (x)=O for 1x1>  2 . We split S(k)(x>N P(k) into two parts: S(k)<x> N  P(k)
= A i (k)+ A 2 (k), where

Ai (k) f(co)= e- i ( c f q x , k t o ) - x 0 b(x, kw)<x>N p(x, k)x ;  R
x1

)  f  dUx ,

R> 0 being a constant yet to be determined. By Lemma 2.1 (1),

Fx(4)(x, kw)— x • )) —(kw— )l<C1c - 1 <x>- e0 .

In view of the assumptions (1) or (2), one can find a constant C > 0 such that on the
support of the integrand

Ika) - 1>Ck
f o r  k>ko  •

Therefore, there is a constant R>0 such that

117„(4(x, kw) — x >Ck fo r  k> k o  a n d  1x1>R.

Letting i/i(co, x, k)=4)(x, kw) —x and using the relation c i o=lrxti/1 - 2 i 17..tfr -

Vx chk, we have by integrating by parts in x 3N times

A2 (k) f(w)=11e - itfr( ),x4 ;k ) biv (co, k) .T()dclx,

where

(2.5) 1DVYPN(co, x, k)1_ Co<X> - 2 N k- 2 N .

Let B2 (k, co) be the Ps. D. Op. with symbol <x>N bN(a), x, k). Then we have

A2(k)f(0))=- C i d 9 ( x 'k w ) <x>— " (B2(k, co)f)(x)dx•

Thus for large N

II A2(k) f II L 2( s n -  < C  sup IA2(k)f(w)i
(O

 sup IIB2(k, co) fIlL2 (s ,— , ) .
w eS " - 1

"
(2 .5 ) implies that 11B2(k, ( O f  L2 —N, which shows that 11A2(k)f L2 (S
_<_Ck- 2 N 11f1I-N•

Next we consider A i (k). Since in this case the symbol <x>" p(x, k)x,(xl R)
is compactly supported for x, one can easily show for any s> 0

liAi(k)f

with a constant C independent of k> /cc,. In order to derive the decay with'respect

to k, we have only to note that for large k, I Fx (0(x, kw)— x • )1> Ck for a constant
C>0 and integrate by parts. 0
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We turn to the estimate of the right-hand side of (2.4). The first term is treated
by Lemma 2.6 (1). In order to treat the second term, we set

T (k )f (co)= e - io(x , ") ) G(x, kco)R(k 2 +i0)f (x )dx

and

(TD( )= T(I ) f ( / ) .
Lemma 2.8. Let d > 0 be the constant specified in Lemma 2.2. Choose y> 1/2

arbitrarily . T hen w e hav e for any  N >0 and k >d

E JD T f ( )1 4 =kœllo(s—i ) <ck - 0 - 1 )/2 11f IIN+, •
I a

P ro o f . We make use of the localizations used in the proof of Theorem 1.8.
Let 0o(0 ,

 ( M O , Xo(x) and x (x )  be as in  the proof of Theorem 1.8. Choose
p ± (t) E C°(R i) such that p + (t)+ p _(t)— 1 and p + (t)= 0 if t < 1/2, p _(t)= 0 if t > 3/4.
Let A (k ), B (k ), P ± (k )  be the Ps. D. Op.'s with symbols (/),0(0 0 , X otx)00(Ik),

X .(x)P±( 3 N i) ( ( /k ) , respectively. Then T(k)= Ti (k ), where

Tl(k) f (co) = e -  io c , kao G(x, kco)A(k)R(k 2  i0) f  (x )f  x ,

T2 (k )f (w ) = e - (x k c ° ) G(x, kco)B(k)R(k 2  + i0) f (x)dx,

T3 (k )f (w ) = e -  (x kw) G(x , kco)P + (k)R(k 2  + i0) f (x)dx,

T4 (k )f (w ) = e -  ' ( x ' " ) G (x , kco)P _(k)R(k 2  + i0) f (x)dx.

We set

f  =  T ;( 1 0 f

First we consider T1 . By a straightforward calculation we have

E f
Ia l5 N

=  E
Œ l 5 N  e

- 1 0 (x,4 ><Oafi ( x ,  )<x>IfilAp(10 D r i3R(11 2 +10) f (x ) dx ,

where <Da p (x, and A ( I )  arise  from the derivatives o f G(x, and A (0 ,
respectively. In particular, a p(x , )e M(R 2 n) by Lemma 2.2. In view of Lemma
2.7, we have for any s>0

c; N  
ID T i f kw II L 2 ( S .  - 1 )

Ck - s ddk R ( k 2  i0 )  f  
—s

^ C k I f N + Y ,,
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where we have used Theorem 1.10 (1).
Since the symbol of B(k) is compactly supported for x, we have by using Lemma

2.6 (2),

E IID T2f ( ) I ll1,2(s. -1)
IŒISN

<  C k -  ( n - 1 ) / 2  E
m5N

 

d
d
k )

m R(k 2 + i0 )f
-N -y

  

<Ck - ( n- I 2 1if I1N+y •

Since G(x, 0=0((> <x> - '), we have, similarly,

E 111) T4f ( ) I ll& kco L 2 (s. - 1)
I al5N

< Ck -  (n-  0 1 2  E 1<x>N---1+Y  d  7n
 d k  

P_(k)R(k 2 + i0) f
m5N L2

<  C k -  ( n - 1 ) /  2 11f 11 N+ y•

The treatment of T 3  is slightly different. Choose x± (t)E  C (R 1)  such that
X+(0+ x_(t)= 1 and x+ (t)=0 if t< —1/4, x_(t)= 0 if t > 1/4. We split T, into two
parts: T= 71+ )  + T , where

T (k ) f (w ) e-  1 4' (x 'kw) G(x , koi)x ± (52 • co)P (k)R(k2 + i0) f (x)dx.

Since G(x, kco)x + (.12 • co) is rapidly decreasing in x, we have as for T2

11-1 )  TS+ )  f ( 014=kcoll L 2 (S"I al5N

<Ck 12 11f liN+y •

Using Lemma 2.7, one can treat TS- )  in the same way as T1 :

E  11DZ T3— ) f(06kcoilL2 (sn - 1)
laW■T

< liN+y • II

Theorem 0.1 in the introduction now ready follows from Lemma 2.8 by inte-
grating in k.

§3 . Decay rates for scattering states
As an application of the differentiability property of .F, we derive in this section

a decay rate for scattering states of the Schr6dinger operator H.

Theorem 3.1. L et y>1/2. L e t )(W e C '(R ') be such that f o r  some s>0

and an integer N>1, z(.1)=0 for <  8, and d   -1( dA)
<cm ,„(N„),_m>„ f o r  A> . 8,

m=0, 1, 2,.... Then we have for t >0
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14(1 1 )e - " 11f l i N  + 1 + y

Pro o f . Let 0 ( ) = ( 3 - Z (H)f ) ( ). By [1], Theorem 7.1,

e — n c ( 1 1 ) f  =  ,F(k )*e — " k2 t/i(k .)kn - 1 cik.
0

From (2.4) it follows that

.F(k )*0(k  • )= (270 - "12ei0(x ,k coa(x , k co)0(k w )dw  —  R (k 2 — i0)v(k),
s"-

where

(3.1) v(k )(x )= (270—n/2 ei0(x,icco)G(x5 ho)Ii(k w )do) .

S" - 1

Therefore,

(3.2) e-itHAH)f_(270-n/2 ei(4.(x,)—
t I a ( x ,  O t f r ( ) c k

R(k 2 — i0)v(k)e - i t k 2 k n — l

dk.

First we consider the first term of (3.2). Using the relation (-2it11 2 ) - 1 •
re - itl 12 =e - itl 4 12 , we have by integration by parts

<x>-N 412)a(x ,  )1/i(Ock

=  E e i( c h x ,4 ) —tl412)a (x , t ) D 'i t f r ( ) d ,
lalsN

w here IM,DY4 aOE(x, t)I <C py(tI O - N . T h u s  b y  a n  L 2 -boundedenss theorem  of

Fourier integral operators ([1], Theorem 3.2), we have

<x› — N  e i ( O t x , ) — t 1 4 1 2 ) a ( x ,  )t/J( ) ck

<C t — N  E 11<0 —NDPP 42.
Ice Wv

The sceond term of (3.2) is treated by the technique employed in [5], Lemma

5.1. For e>0

R (k 2 —Is) = — ie - "(H - ( 1 x2 - " ) ) e's ( H- (k2 - '0 ) ds.
i t

Therefore letting g(k )=v (k )k , we have

R (k 2 — W e - it° g(k )dk  =
e -  ( s - O s e - i ( t - s )  

(s)ds ,

4(s) = .ç o
c° e-isk2g(k)dk

(3.3)
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In the following, we show for finy s> 0

(3.4) II 4 ( s ) c s -
N-1 E <0 -

NDZIG II L2
IctI N+1

If (3.4) is established, we have by the dominated convergence theorem

R (k 2 —i0)e - iik 2g (k )d k
L2

,<Ct - N  E  II <0
I ctI N+1

—NDPPIIL2 •

Therefore for t> 0

II x(H)e - i tl i f  II -N < ct- N E II <> - N DZI/J111.2.1 N-Fi

Since 0() x(11 2)(..F.f)() and INA c<0'2Y,

E  II <0 - NDpfr 11/.2 C E  IK0-612D Z( f ) ( )1 1 L 2I N+1

<clIflIN±H,

by Theorem 0.1. This proves the theorem.
Now we prove (3.4). By (3.1),

At)=(27-c)- n/2 5 ei(0 (. ,4 )- t1 12)G(X, OlP(OCk.

Choose x ± (t)e  C'(R 1
)  such that x+(t)+ X-(0= 1 , x + (t)= 0 for t < 1/2, z _(t)= 0

for t > 3/4. Split 4(t) into two parts: g(t)=g + (t) + g _(t), where

g ± (t)=(2n) - n/2 e i(4 )(x , ) - t1 12 )G ( x ,  )x ± (3 • '61P(Og.

Since G(x, Ox + (.R • !) is rapidly decreasing in x, we have by integration by parts as
we have derived (3.3)

119+(t)li2<Ct - N - 1  E
laisN+1

(Take notice of the estimates for G(x, in Lemma 2.2).
Choose MO, p 2 (0  e C'(R 1)  such that p1(t)+P2(t)= 1 ,  P1(0=0 for t>2,

P 2(0=0 for t <1. S p lit  g _(t) into two parts: g _(t)= g9 ) (t) + 0 ) (t), where

g ( i ) (0=(2.7r) - n12 e i ( o(x•) - ig 12 p i (lx 111?)G(x , ))(-( • 6i1J(0g,

R> 0 being a constant yet to be determined. Since p i (IxIIR) is compactly supported,
we have as above

11g9 ) (011L2 ct - N- i E <>—/VDZIPlaISN-F1

On the support of the integrand of g 9 ) , we have for large R> 0
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IF0(x , (Ixl> R).

Thus by integration by parts

g L2)( t ) = ,  e ( x f i c 2 ) E  b (x , t)Dp,11()ck,

where 11).13,D7 b,c(x, Therefore again using th e  L 2 -boundedness
theorem of Fourier integral operators

II9L2 ) (t)IlL2_ C c "  E IKO - N DPPI1L2.IccISNA- 1

I n  order to prove Theorem 0.2, we h a v e  only to interpolate th e  estimate in

Theorem 3.1 with the  obvious one

Il x (H )e -  i tH f  II L2 f 111 .2
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