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1. Introduction. While very general representation theorems have been proved

for isotropic tensor functions [1-3], almost all of these theorems are algebraic in

character. Take the most familiar representation formula in (three-dimensional)

continuum mechanics for example, namely

T(B) = y,I + y2B + y3B2; (1.1)

here T : Sym —> Sym is a given isotropic tensor function; Sym denotes the set of

symmetric second-order tensors, and I is the identity tensor. The algebraic theorem

asserts that for each isotropic function T( •), there are coefficients y,, y2, and y3,

which are scalar functions of the principal invariants of B, such that Eq. (1.1) is

valid for each B in Sym. Moreover, it is well known that the coefficients yi are

uniquely determined by Eq. (1.1) only if the eigenvalues of B are distinct.

A natural question on the continuity and differentiability properties of y( arises:

suppose T( •) is of class C" (n > 0); can we choose the coefficients yi so that

they are of class Ck (0 < k < «)? In 1959, Serrin [4] gave a counterexample in

which T( •) is differentiable but there is no way to choose the yt such as to remain

continuous. He went on to prove in the same article that the yt can be chosen to

be continuous if T( •) is of class C . Recently Man [5] improved Serrin's sufficient
3 2

condition of smoothness from C to C , but that is all that we currently know about

the analytical aspects of the representation formula (l.l).1 Except for the analogue

of (1.1) in two-dimensional space (cf. Man [5]) and a major memoir of Ball [6] on

scalar-valued functions, as far as we are aware, nothing else has been published on

the analytical aspects of other representation formulae for isotropic tensor functions.

As an explanation for such a deplorable situation, there is the argument that the

continuity and differentiability of representation formulae are ignored because they

are irrelevant in many applications. We do not accept this argument. Even if we set
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aside the intrinsic merit in delineating the continuity and differentiability properties,

it is a fact that those properties are crucial in some applications (cf. the last paragraph

of this section).

In this paper we study the smoothness of scalar coefficients in two representation

formulae for isotropic tensor functions in two-dimensional space. The first formula

concerns isotropic functions H : Sym x Sym —> Sym , (A, E) H(A, E), which are

linear in E:

H(A, E) = (aj, trE + a12 tr(AE))I + (a21 trE + a22 tr(AE))A + a3E, (1-2)

where I is the two-dimensional identity tensor and the coefficients a-. and a3 are

symmetric functions of the repeated eigenvalues of A. Appealing to the work of

Rivlin and Ericksen [7], Noll [8] first wrote down the analogue of the representation

formula (1.2) in three-dimensional space. Here we show in Theorem 3.1 below that

if H is of class C"+2 (« > 0), then there is a unique choice of coefficients in (1.2)

for which the a(/ are of class C" and ai is of class Cn+1.

The mathematical apparatus by which we derive the aforementioned differentiabil-

ity properties of scalar coefficients in (1.2) applies also to the representation formula

G(A) = /?,I + P2A (1.3)

for an isotropic function G : Sym —► Sym in two-dimensional space, where /?, and

/?, are symmetric functions of the repeated eigenvalues of A. We show that if G is

of class C"+] (n > 0), then we may choose /?, and /?-, in (1.3) so that they are of

class C" (see Theorem 3.3).

The class of isotropic tensor functions given by (1.2) above has various mathe-

matical and physical applications. For instance, if the isotropic function G : Sym —♦

Sym, A i-> G(A), is of class Cn+i (n > 0), then its derivative DG(A) is a linear

transformation on Sym and is of class C"+2 in A. Equation (1.2) will then deliver

a basis-free formula for DG(A)[-]. To mention one physical application of (1.2),

consider metal sheets that have null prestress and are prepared from some isotropic

natural state by plastic prestraining. If we restrict our attention to small in-plane

elastic motions superimposed on such sheets, then (1.2) will be appropriate for mod-

elling the constitutive equation of the sheets [9], In this context, A will denote the

plastic Karni-Reiner prestrain, E the incremental (infinitesimal) elastic strain, and

H the surface elasticity tensor. It turns out [9] that the coefficient a„ in (1.2) is

related to the "acoustoelastic earing coefficient" of the plastically prestrained sheets

and its smoothness is crucial in the analysis of some physical problems.

2. Mathematical preliminaries. First we prove two theorems on symmetric func-

tions that we shall need later. Their proof is based on Lemmas 2.1 and 2.2 below.

After we constructed our proof of these lemmas, we noticed Whitney's 1943 paper

on "Differentiability of the remainder term in Taylor's formula" [10]. Our lemmas

are in essence nothing but a slightly reworded version of some of Whitney's results.

As far as these two lemmas go, however, we believe that our proof is simpler than the

original proof of Whitney's, which covers more ground than what concerns us here.
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For completeness and for ease of reading, we decide not to appeal to Whitney's work

but present our independent proof of Lemmas 2.1 and 2.2.

Lemma 2.1. Let / : R2 —> R1 , where f e Cm and m > 1. Define

' m~X r)r f \

f(x,y)-J2gyr(x> °)//r!J /ym> when y +0>
fjx,y) =

dy

Then fm is continuous, and

f)m f

(x,0)/m\, wheny = 0.

(2.1)

r\k f

lim  r-(x^y)yk — 0 forl<A;<ra. (2.2)
U,y)-(X0,0) ay* ~ ~

yji 0

Proof. For y ^ 0, since

- ^ ,n. , „

-{x,y )y /m\ /yf(x, y) -53 ' °)///'! j iym = (§7^*' y')y'n Im^)

(2.3)
d f

(.x,y')/m\
dy"

for some y' with |y' | < |y|, continuity of d'" f /dym yields

dm f
lim fm(x,y)= lim —-™(x, y')/m\

(x,.y)-»(x0,0) (x ,y)—(x0,0) dy

y* 0 (2.4)
r)m {

= ^0'°)/m!-

For y = 0, it is clear that

p.m r r^m r

(2'5)

Hence fm is continuous. We now proceed to prove the lemma by induction. For

m = 1 and y / 0, we have f(x, y) = fx(x, y)y + f(x, 0). Differentiating both

sides of the preceding equation with respect to y, we obtain

^{x,y) = y^{x,y)y + f[(x,y). (2.6)

By the continuity of /, and of df /dy, we conclude that

lim ^-(Jc,y)y = 0. (2.7)
(x,v)-»u0,0) dy

o

For m > 2, we write m = n + 2, where n > 0. For y / 0, since

n+1 p.r r

f{x, y) = fn+2(x > y)yn+2 + 53 777 (x > °)/'/rl > (2-8)
r=0 '
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we have

§£(*, y) = (n + 2)/„+2(x , y)y"< + , y),"*2 + £ J!l (*, 0)y'/r<,

(2.9)
and

fa*-y)~± %?{%)(*■0)//r! ) //+1 = (" + 2)/n+2(x, >>) +, y)y.

(2.10)
Hence

o«+2 /• o r

—^{x,y)l(n + \)\-{n + 2)fn+1(x,y) = ~^(x,y)y, (2.11)

for some y with \y'\ < |y|. By taking the limit as (x, y) —> (x0, 0) on both sides,

we obtain

lim ^L±l^Xfy)y = 0, (2.12)
(x,y)^(x0,0) dy

y? o

Thus the lemma is valid for k = 1 . Now suppose the lemma holds up to k—p- 1 .

From

n+1 „r r

f(x, y) = f„+2(x , y)yn+2 + 0)yrfr\, (2.13)

r=0

we obtain for y ^ 0 and 2 < p < n + 1

^LL(X y) = Y (/t + 2)! cp- ^-(x y)y"+2~r
dyP f^(n + 2-r)rr dyp~r [X,y,y

"+^P dr (dpf\ .
+ E 97(w)v.o»M.

(2.14)

r=0

-P
where = p\/(p - r)! r\. It follows that

n+2-p(dPf dr / dpf\
[dyp{x,y) § 0/UW(*' 0)//r! //'

_J [Y (/i + 2)! r/"+2(x y)/+2_f
/+2-, ^(n + 2_r)!c, ,

(2.15)

Hence, for some y with \y'\ < |y|,

<9 f, / . .. (n + 2)! pd f + 2 p-r ..
^I(x,y)/(l, + 2-f,)! = g(„ + 2_f)!Cr^!-(-'.J')y . (2.16)
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which implies

~^{x,y')/(n + 2-p)\

+ (2.17)

y (n + 2)! pd' 7„+2( P-r

f^{n + 2-r)\ r dyP~r [x'y)y ■

By taking the limit on each side as (x, y) -> (x0, 0), we have

, lim ~^(x,y)yp = 0 (2.18)
(x,y)-> (x0,0) dyp

y± o

for 2 < p < n + 1 . For p = n + 2, instead of Eq. (2.14) we have for y / 0,

r\ti+2 r n+2 / r f

it Ifx v) = Y (" + 2)! cn+2d_ ln±l(x v)v"+2~r
dyn+2 ^(« + 2-r)! r dy"+2~r ( '

= ddJs2(x' y^yn+2 + («+2)' fn+2(* > y) (2_ 19)

n+1 , . o»+2-r /■

(ft + 2). „ +  A+2( v)vn+2~r
f^(n + 2-r)\ r dyn+2~r [ ,y)y

Taking the limit on both sides of Eq. (2.19) as {x, y) —> (x0, 0), we deduce that

f) -f
lim  T=f{x, y)y"+2 = 0. □ (2.20)

(*.y)-(*b.o) dyn+2
yt 0

Lemma 2.2. Let / : R2 —» R1 be a Cn+k function (n > 0, k > 1) that satisfies

f(x, 0) = 0 and (d f /dy)(x , 0) = • • • = (dk~l f /dyk~l)(x, 0) = 0 for all * . Define

f{x,y)/yk, when y ^ 0,

-£-{x, 0)/k\ when y = 0. 2^
dyk

g(x,y) =

Then g e C"(R2), and

r\P | (\P+k r

w{x'0) = vm.-d7^(JC-0) fp-22>

0 2
Proof. Since g = Jk , we conclude from Lemma 2.1 that g e C (R ). For y /

0 and 0 < p < n, dpg/dxp = (dp f /dxp)/yk , where dpf/dxp e c"+k~P an(j

(dpf/dxp)(x, 0) = 0,(d'(dpf/dxp)/dy')(x,0) = (dp(d'f/dy')/dxp)(x, 0) = 0
for 1 < / < fc — 1 . Hence it follows from Lemma 2.1 again that dpg/dxp e C°(K2)

if we define (dpg/dxp)(x, 0) = [(dk(dpf /dxp)/dyk)(x, 0)]//:!.
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Now we consider dpg/dyp . For y ^ 0, by Eq. (2.1) we recast Eq. (2.21) as

*<*, y) = ^ = /„*(*, y)y" + £ °>(FT*ji • <2-23>

Then, for 1 < p < n - 1,

dPg , x r,p n' ^ fn+k / \ n~r
w(x-y)=^cray,-; (*.^

3/+P+* r! + k + r)!

(2.24)

By Lemma 2.1, we conclude that

d" g p\ dp+k f
lim ^-4 = . y . f(xn,0), (2.25)

(x,j>)->(*0,0) 0/ (p + A:)! ay+* 0
v^o

for 1 < p < n - 1. For p = n , we obtain from Eq. (2.23) that

0 A? rt , $\n~r f

d_g^Ycn ' - ^±JL(x v)v"~r (2 26)

It follows from Lemma 2.1 that
r^n

lim —=• = n\ f Axn, 0)
(*,>-)-(*o.o) 0/ •/"+fcV °' '

y* o

„ i r\H-\-k r

— - L<x o)
\| an + k ^0 ' V> ■

(2.27)

{n + ky.Qy*

It remains to consider the mixed partial derivatives of g . We note that for y 0,

g € C"+k ; so we can do the partial differentiation in any order. In particular,

a pth-order mixed partial derivative, where 2 < p < n, can be written as

dl'~q (dq g/dxq)/dyp~q for some 1 < q < p . But

dp-* d«g 01 d"f
dyp-q[dxq> dyp-q ykdxq>

for y / 0. Moreover, since (1 /yk)({dq f /dxq)(x, y)) is cn+k~q away from y - 0

and

for all x, its (p - <y)th partial derivative with respect to y may be extended to all

of R2 as above.

Finally, since g e C°(R2), g e C"(R2 \ {(x, y) : y - 0}) and since all the partial

derivatives of g of order 1 through n can be continuously extended to all of R , it

follows from a lemma due to J. M. Ball ([6], Proposition 2.2) that g e C"(R2). □
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In what follows we shall use Lemma 2.2 only for the cases k = 1 and k = 2. We

easily obtain the following theorems from Lemma 2.2 by a change of variables.

Theorem 2.3. Let / : K~ —> R1 be symmetric, / € Cn+2, n > 0, and /(A, A) = 0
1 2 1

for each A e R . Then there exists a unique symmetric function g : R —► R ,

g e C", such that /(A,, A2) = g(A,, A-,)(A, - A2)2 for all (A,, A2) € R2.

Proof. Letting x = + A2, y — A, - A2, we define F(x,y) = f((x+y)/2,

(x -y)/2). Then F E Cn+2,F(x, 0) = /(x/2,x/2) = 0, and F(x,y) =

f((x + y)/2, (x-y)/2) = f{{x-y)/2, {x + y)/2) = F(x,-y). Thus,

(dF/dy)(x, 0) = 0. Now define

G{x, y)

F{x,y)/y2, when y ^ 0,
rj2 n

—t(x,0)/2, wheny = 0.
dy

Then G is of class C" by Lemma 2.2, and G(x, y) = G{x, -y). Define g(X{, A2) =

g{(x + y)/2,(x- y)/2) = G(x, y). Then g G C" , g is symmetric, and /(A, , A2) =

F(x, y) = G(x, y)y2 = g(A,, A2)(Aj - A2)2. □

Theorem 2.4. Let /: R2 -+ R1 be symmetric (resp. alternating), / e C"+1 , n > 0,

and /(A, A) = 0 for each A e R1 . Then there exists a unique alternating (resp.

symmetric) function h : R" —> R1 , h £ C" , such that /(A, , A2) = /?(A, , A2)(Aj - A2)

for all (At, A2) g R2.

Proof. We use the variables x, y and define the function F as in the proof of

Theorem 2.3. Here F e Cn+I . Let

!F{x,y)/y, when y ^0,

— (x,0), when y = 0.

Then, by Lemma 2.2, H is of class Cn . Define /z(A, , A2) = h((x + y)/2, (x — y)/2)

= //(x, y). Then h e Cn , /(A, , A2) = F(x, y) = H{x, y)y = /z(A,, A2)(A, - A2),

and h is alternating (resp. symmetric) if / is symmetric (resp. alternating). □

3. Two representation theorems. We proceed to prove our main theorem.

Theorem 3.1. Let Sym be the set of second-order symmetric tensors in two-dimen-

sional space. Let H : Sym x Sym —► Sym, H = H(A, E), and H be of class C"+".

Let H be isotropic in A and E; that is,

H(QAQT,QEQT) = QH(A,E)QT (3.1)

for each orthogonal Q. Also, let H be linear in E. Then there exist four C"

functions an , an, a2l, a22, and a C"+2 function a3 : R2 -► R1 , each of which is

a symmetric function of the repeated eigenvalues of A, such that

H(A, E) = (au trE + an tr(AE))I + (a21 trE -I- a22 tr(AE))A + a3E. (3.2)
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Moreover, coefficient functions that satisfy Eq. (3.2) and enjoy the aforementioned

continuity (« = 0) or differentiability (n > 1) properties are unique.

Proof. For tensors A and E such that (i) A has distinct eigenvalues and (ii) A, E

do not share the same eigenvectors, the tensors I, A, and E are linearly independent.

For the moment we consider only such A and E. Under these circumstances we

may express

H(A, E) = a,(A, E)I + a2(A, E)A + a3(A, E)E (3.3)

for some scalar-valued functions aj (i = 1,2,3). Since H is isotropic in A and

E, it will be convenient to choose a Cartesian coordinate system and restrict our

attention to such A and E with matrix representation of the form

Mo °J. <«>
where A, / A2 and en / 0. After we draw a conclusion, we can easily rewrite it in

a coordinate-free way.

For all A G M1 , a, (A, AE)I+a2(A, AE)A+a3(A, AE)(AE) = H(A, AE) = AH(A, E)

= Aa,(A, E)I + Aq!2(A, E)A + Aa3(A, E)E. Since I, A, and E are linearly indepen-

dent, a3(A,AE)A = Aa3(A,E). So a3(A,AE) = a3(A, E) for all A / 0. Now

consider A and E of the form given in (3.4). By a similar argument, if E' is di-

agonal, then a3(A, E)-el2 + a3(A, E')-0 = a3(A, E + E')e12; so a3 is constant for

a given value of el2 and a fixed A. Combining these two facts, we have a3(A, •)

constant over all E that do not share the same eigenvectors with A.

We may extend the functions a3(A, •) by continuity so that they are constant

over Sym. By this choice we henceforth write a3 = q3(A) , which is well defined for

those A with distinct eigenvalues.

Let G(A, E) = H(A, E) - a3(A)E. From Eq. (3.3) we see that G and A have
the same eigenvectors. Since G is well defined for all E e Sym and for all A with

distinct eigenvalues, a, and a2 are uniquely determined by Eq. (3.3) for all such A

and E. Since H is isotropic, we have

a, (QAQT, QEQT)I + a2(QAQT, QEQT)A + a3(QAQT)E

= a,(A, E)I + a2(A, E)A + a3(A)E.

From (3.5) it is easy to see that whenever A has distinct eigenvalues, a{ , must

be isotropic in A and E, and a3 must be isotropic in A.

From G(A, AE) = H(A, AE) - a3(A)AE = A(H(A, E) - a3(A)E), we see that

a,(A, AE)I + a2(A, AE)A = Aa,(A, E)I + Aa2(A, E)A. (3.6)

Hence

a/(A,AE) = AaI-(A,E) (i = 1, 2) (3.7)

for all A G R1 , E e Sym, and A with distinct eigenvalues. Similarly we prove that

a|.(A,E1) + a|.(A,E2) = a|.(A,E1+E2) (/ = 1, 2) (3.8)

for all E,, E2 g Sym and all A with distinct eigenvalues.
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Since a3 is an isotropic function of A, it is a symmetric function of the eigen-

values A,, X2 of A. Under a coordinate system where A and E assume the form

(3.4), if we let

*;;)■ (w>

then

h\i = ai + a2^\ + aie\ I '

/?22 — OL-jX-, ~i~ ' (3.10)

hn = aie\2 ■

Equation (3.10)3 is valid even when A, = X2. Since hy2 is of class Cn+1 in

Xt, X2, en , el2, and e22 over M5, a3 is of class C"+2 in X{ and over M2.

From (3.10) we obtain

a, = —^—{huX1-h22kl +a3e22Al -a3enX2) = /i (V A2 > gn > gi2 > g22) ?

, fn ; I <3-n)
a = - (h -h +ae -ae ) - 1 ' 2 ' e\ l ' gi2 ■ e22>

2 ; ^22 "ll+a3ell a3e22> ~ 2 _ 2 '
21 2 1

where /,, f2 £ Cn+~ over M5. Since aj (i = 1, 2) is isotropic in A and E, it

assumes the same value whether we use the coordinate system where A is diagonal

or that where E is diagonal. Moreover, since a, and are linear in E, under the

coordinate system where E = diag[e,, e2\, we have

a\ = Cjj (A)e, -)- C,2(A)e2, (3 12)

a2 ^22(^)^2 '

for some coefficients Ctj (i, j = 1, 2) defined for all A with distinct eigenvalues

A,, X2. It follows from (3.11) that

C,,( A)e] + C12( A)e2
f\ (^1 1 ̂ 2 ' ^11 ' ^12 ' ^22)

5

(3.13)
X2 —

C21(A)e, + C22(A)e2 = /2(V *..» *12. *22)

2 1

Now let JQ = ex + e2 = trE, and 7, = ane, + a22e2 = tr(AE); here atj are the

components of A under the coordinate system where E is diagonal. Note that

2 2
a,. = X, cos 6 + X, sin" 6," ' 2 2 2 (3.14)

a12 = Xx sin 9 + A, cos 8,

where 6 is the angle of rotation required to bring the coordinate system for which

E is diagonal to that for which A is diagonal. We want aj} such that

JA = fa" Ql2) ( 1 1 ) (*» V (3.15)
*21 "22/ \"M/ VQ21 a22 / Vflll a22 / V e2 J
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Comparing Eq. (3.15) with Eq. (3.12), we have for cos28 ± 0,

/an £*,2^ _ /C„ C,2\ / 1 1 \

Va21 a22 ) \^21 ^22 J V«ll a22 /

-1

Cu C[2\ 1 ( a22 ^

C21 C22) a22 a{, \ a{, 1

/Cua22-Cnau -Cl 1+^-12

(3.16)

(A2 A | )COS 20 y ^~*21 ^22 C22d j j ^~*21 ^22

By putting ex = 1, e2 = 0 in Eq. (3.13) and letting eit assume their appropriate
2 2

values (i.e., eu = cos' 8, en = cos 8 sin 8, e22 = sin' 8 , where 8 is the angle of

rotation required to bring the coordinate system for which E is diagonal to that for

which A is diagonal), we get

^ ^ ... Wl ' X2' cos2 6' cos 6 sin 8 , sin2 8) ^ ^
iIV / — 2 _ 2 (3.1 ')a2 a.

for i = 1,2. Similarly,

„ fitti , A2, sin20, - cos 0 sin0, cos2 0)
/2^ / — 2 2 (3.1o)

A2 A j

for f — 1,2. It follows from Eq. (3.16)3 that

a,, (A) =

2 2 2 2
a22/i (A,, A,, cos 0, cos 0 sin 0, sin" 0) - a,,/, (A, , A-,, sin 6, - cos 0 sin 8, cos 0)

(A2 — A, )2 cos 28 (3 19)

where au and a22 are given by Eq. (3.14). Similarly, we obtain corresponding

expressions for a,2 , a21 , and a22.

Now, from the equation

H(A, E) = (an trE + a12 tr(AE))I + (a21 trE + a22 tr(AE))A + a3E, (3.20)

we deduce from the isotropy of H that aij (i, j = 1, 2) are isotropic functions of

A. Hence they are functions of A, , A, alone and are independent of 8. It follows

from Eq. (3.19) that

("I)
\^2 1'

where fu e Cn+2 is symmetric in A, and X2. Similarly,

frXK , A,)
%(*i » *2) = . ,2 = 1,2) (3.22)

v^2 1/

where f(. e C"+2 is symmetric in A, and A7.

Until now the functions aj} were defined over the set {(A, , A2) e R" : A, 7^ A2} .

The functions / , however, are defined even when A. = A2. From Eqs. (3.14),
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(3.19), and (3.21), we obtain the formula

/11(A,A)=A/,(A,;I, 1,0,0)-A/,(A,A,0,0, 1) (3.23)

by putting 0 = 0. When A = AI, H is a linear isotropic function of E; so

H(AI, E) = /?(A)(trE)I+a3(A, A)E for some /?(A) 6 R1 . It follows then from the def-

inition of /j (cf. Eq. (3.11)) that /, (A, A, 1,0,0) = /j (A, A, 0,0, 1) = 0. Hence,

fn(X, X) = 0. Similarly we prove that ftJ(X, X) = 0 for i, j = 1,2. By Theorem

2.3 we conclude that atj may be extended by continuity to allow for A, = X2, and

the resulting functions are of class C" . □

For a given A, the tensor function H(A, •) : Sym —► Sym given by (3.2) is linear.

Let us write H(A, •) = H(A)[ • ]. For two second-order tensors A and B, we define

their dot product by A • B = tr(ABT). The following corollary, which will be useful in

some applications [9], follows from formula (3.2) after a straightforward calculation.

Corollary 3.2. Suppose furthermore that the isotropic tensor function H(A)[ • ] in

Theorem 3.1 satisfies

E1.H(A)[E2] = H(A)[E,].E2 (3.24)

for all Ej and E., in Sym. Then al2 = a2l .

Now, consider an isotropic function G : Sym —> Sym. It is well known that G

has a representation of the form

G(A) = /?jl + P2A, (3.25)

where /?, and /?7 are symmetric functions of the repeated eigenvalues A,, A2 of A.

When A,^A2, /?, and /?2 are uniquely determined by the formulae

f, = g,>? I f1' ■ ft = frr-. <3-26>A, | 2 1

where g, and g2 are the eigenvalues of G; g{ and g2 are functions of Xt, X2,

and gx{X,, X2) = g2(X2 , A(). When A, = X2 , Eq. (3.25) no longer determines /?,,

uniquely. Indeed the possible choices of the coefficients are infinite. It is easy to

show by counterexample (cf. Truesdell and Noll [11, p. 33]; the exponent in their

counterexample should read -1/4, not 1/4) that even for a continuous G, when

X{ = X-, there need not exist a choice of coefficients in (3.25) that will match with Eq.

(3.26) to define continuous functions /?,, /?, on R". If G is of class C , however,

it is known [5] that /?, and fi2, as defined by Eq. (3.26) on R2 \ {(A,, A,): A, / A2}

may be extended to be continuous functions on R2. Now, with Theorem 2.4 in hand,

we can immediately strengthen the preceding extension theorem as follows:

Theorem 3.3. Let Sym be the set of second-order symmetric tensors in two-dimen-

sional space. Let G : Sym —► Sym, A G(A), be isotropic and of class C"+l

(n > 0). Then there exist two C" functions /?t, /?2 : R2 R1 , each of which is a

symmetric function of the repeated eigenvalues of A, such that

G(A) = /?,! + /?2A. (3.27)
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Moreover, coefficient functions that satisfy Eq. (3.27) and enjoy the aforementioned

continuity (n = 0) or differentiability (n > 1) properties are unique.

Proof. The conclusion follows from Theorem 2.4 and the fact that gx and g2 are

of class C"+1 . □
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