Differentiable 7-manifolds with a certain homotopy type

By Itiro TAMURA

(Received Dec. 22, 1961)
(Revised March 29, 1962)

Abstract

J. Milnor [10] has determined the so-called J-equivalence (h-cobordism) classes of oriented differentiable 7-manifolds having the homotopy type of the 7 -sphere, and S. Smale [13] has proved that such manifolds are homeomorphic to the 7 -sphere and the J-equivalence classes are the same as the diffeomorphic classes in this case. Thus compact unbounded oriented differentiable 7-manifolds which are homotopy spheres were completely determined. There exist precisely 28 such differentiable 7 -manifolds which form a cyclic group Θ^{7} under the connected sum.

In this note we shall consider compact unbounded 2 -connected oriented differentiable 7 -manifolds whose third homology groups are cyclic of order 3, having trivial Steenrod operations. We shall show that there exist precisely 56 differentiable 7 -manifolds of this homotopy type and that they are obtained from the standard one by connected sums of elements of Θ^{7} and the orienta-tion-reversing.

1. Let M^{7} be the compact unbounded 2 -connected oriented (C^{∞}-) differentiable 7 -manifold such that $H_{3}\left(M^{7} ; Z\right) \approx Z_{3}$ and that the Steenrod operation $\mathscr{P}_{3}^{1}: H^{3}\left(M^{7} ; Z_{3}\right) \rightarrow H^{7}\left(M^{7} ; Z_{3}\right)$ is trivial, namely, for $u \in H^{3}\left(M^{7} ; Z_{3}\right)$

$$
\begin{equation*}
\mathscr{P}_{3}^{1}(u)=0 . \tag{P}
\end{equation*}
$$

LEMMA 1. The condition (P) is equivalent to $p_{1}\left(M^{7}\right)=0$, where $p_{1}\left(M^{7}\right)$ is the first Pontrjagin class of M^{7}.

Proof. This lemma follows from the formula given by Hirzebruch [6]:

$$
p_{1}\left(M^{7}\right) \cup u=\mathscr{P}_{3}^{1}(u) \quad \bmod 3
$$

for $u \in H^{3}\left(M^{7} ; Z_{3}\right)$.
LEMMA 2. M^{7} is a π-manifold.
Proof. Suppose that M^{7} is imbedded in a high dimensional Euclidean space R^{7+N}. Denote by ν^{N} the normal bundle of M^{7}. Let K be a triangulation of M^{7}. Let us define a (continuous) field of normal N-frames on M^{7} by stepwise extensions on the skeletons $K^{(q)}(q=0,1, \cdots, 7)$ of K using the obstruction theory in the well-known manner. Since $H^{q}\left(M^{7} ; Z\right)=0(q=1,2,3)$ and $\pi_{2}(S O(N))=0$, we can define a field f of normal N-frames on $K^{(3)}$. Let $c(f) \in Z^{4}\left(M^{7} ; Z\right)$ be the obstruction cocycle to extend f in $K^{(4)}$, Then the first

Pontrjagin class $p_{1}\left(\nu^{N}\right)$ of ν^{N} is $\{2 c(f)\}$ (Milnor-Kervaire [12]). Therefore Lemma 1 and the product theorem for Pontrjagin classes yield $\{c(f)\}=0$. The next obstruction is in dimension 7 with values in $\pi_{6}(S O(N))=0$. Thus ν^{N} is trivial. This completes the proof.

Lemma 3. $\quad M^{7}$ bounds a compact 3 -connected oriented π-manifold.
Proof. Since the cokernel of the J-homomorphism $J_{7}: \pi_{7}(S O(N)) \rightarrow \pi_{7+N}\left(S^{N}\right)$ is zero, this lemma follows from [10; Theorem 6.7 (b)].

Lemma 4. M^{7} bounds a compact 3 -connected oriented π-manifold.
Proof. Since M^{7} bounds a compact oriented π-manifold, we obtain a compact 3 -connected oriented π-manifold with boundary M^{7} by performing a series of surgeries (spherical modifications) (Milnor [10], [11]).

Let W^{8} be the compact 3 -connected oriented π-manifold with boundary M^{7}. The exactness of the homology sequence of (W^{8}, M^{7})
$\cdots \longrightarrow H_{q}\left(M^{7} ; Z\right) \longrightarrow H_{q}\left(W^{8} ; Z\right) \longrightarrow H_{q}\left(W^{8}, M^{7} ; Z\right) \longrightarrow H_{q-1}\left(M^{7} ; Z\right) \longrightarrow \cdots$
and the Poincaré-Lefschetz duality

$$
H_{q}\left(W^{8}, M^{7} ; Z\right) \approx H^{8-q}\left(W^{8} ; Z\right)
$$

imply that $H_{q}\left(W^{8} ; Z\right)=0(q=5,6,7)$ and that $H_{4}\left(W^{8} ; Z\right)$ has no torsion.
Let ϕ denote the quadratic form over the group $H_{4}\left(W^{8} ; Z\right)$ defined by the formula $x \rightarrow x \circ x$, where $x \circ y$ is the intersection number of two homology classes $x, y \in H_{4}\left(W^{8} ; Z\right)$. The index (signature) of this form ϕ will be denoted by $I\left(W^{8}\right)$.

Lemma 5. The index $I\left(W^{8}\right)$ modulo $2^{5} .7$ is a diffeomorphy invariant of M^{7}.
Proof. Suppose that M^{7} is the boundary of two compact 3 -connected oriented π-manifolds W_{1}^{8} and W_{2}^{8}. Let V^{8} be the compact unbounded oriented differentiable 8 -manifold obtained from W_{1}^{8} and $-W_{2}^{8}$ by pasting together the common boundary. The exactness of the Mayer-Vietoris cohomology sequence

$$
\begin{aligned}
\cdots & H^{q-1}\left(M^{7} ; Z\right) \longrightarrow H^{q}\left(V^{-} ; Z\right) \xrightarrow{c^{*}} H^{q}\left(W_{1}^{8} ; Z\right)+H^{q}\left(W_{2}^{8} ; Z\right) \\
& \longrightarrow H^{q}\left(M^{7} ; Z\right) \longrightarrow \cdots
\end{aligned}
$$

implies that V^{8} is 3 -connected and that

$$
\iota^{*}: H^{4}\left(V^{8} ; Z\right) \longrightarrow H^{4}\left(W_{1}^{8} ; Z\right)+H^{4}\left(W_{2}^{8} ; Z\right)
$$

is injective. Since $\iota^{*} p_{1}\left(V^{8}\right)=0$, we have $p_{1}\left(V^{8}\right)=0$. Therefore the index theorem $I\left(V^{8}\right)=\frac{1}{45}\left(7 p_{2}\left(V^{8}\right)-p_{1}^{2}\left(V^{8}\right)\right)\left[V^{8}\right]$ (Hirzebruch [7]) implies

$$
\begin{aligned}
45 I\left(V^{8}\right) & =7 p_{2}\left(V^{8}\right)\left[V^{8}\right], \\
I\left(V^{8}\right) & \equiv 0 \quad \bmod 7,
\end{aligned}
$$

and the integrality of \hat{A}-genus $\hat{A}\left(V^{8}\right)=\frac{1}{2^{7} \cdot 45}\left(-4 p_{2}\left(V^{8}\right)+7 p_{1}^{2}\left(V^{8}\right)\right)\left[V^{8}\right]$ (Atiyah and Hirzebruch [1], Borel and Hirzebruch [2]) implies

$$
p_{2}\left(V^{8}\right) \equiv 0 \quad \bmod 2^{5} \cdot 45 .
$$

Thus we have

$$
I\left(V^{8}\right) \equiv 0 \quad \bmod 2^{5} \cdot 7
$$

Since $I\left(V^{8}\right)=I\left(W_{1}^{8}\right)-I\left(W_{2}^{8}\right)$, we have

$$
I\left(W_{1}^{8}\right) \equiv I\left(W_{2}^{8}\right) \quad \bmod 2^{5} \cdot 7
$$

This completes the proof.
Definition. The residue class of $I\left(W^{8}\right) \bmod 2^{5} .7$ will be denoted by $\bar{\lambda}\left(M^{7}\right)$. Lemma 6. The determinant of the matrix of the quadratic form ϕ is ± 3.
Proof. Since $H_{4}\left(W^{8} ; Z\right)$ has no torsion, the Poincaré-Lefschetz duality theorem implies $H_{4}\left(W^{8}, M^{7} ; Z\right) \approx \operatorname{Hom}\left(H_{4}\left(W^{8} ; Z\right), Z\right)$. The natural homomorphism

$$
H_{4}\left(W^{8} ; Z\right) \longrightarrow H_{4}\left(W^{8}, M^{7} ; Z\right) \approx \operatorname{Hom}\left(H_{4}\left(W^{8} ; Z\right), Z\right)
$$

is determined by the matrix of intersection numbers of $H_{4}\left(W^{8} ; Z\right)$. Thus the lemma follows from the exactness of the homology sequence of (W^{8}, M^{7}) and $H_{3}\left(M^{7} ; Z\right) \approx Z_{3}$.

Let C and U denote matrices

$$
C=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), \quad U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Lemma 7. The index $I\left(W^{8}\right)$ is equal to ± 2 modulo 8.
Proof. Let

$$
G_{q}(\phi)=\sum_{(q)} e^{\frac{2 \pi i}{q} \phi(\alpha, \alpha)}
$$

denote the Gauss sum of the quadratic form ϕ, where the sum is extended over all residue classes of $H_{4}\left(W^{8} ; Z\right) \bmod q$. Then the index $I\left(W^{8}\right)$ satisfies

$$
G_{8 \cdot 27}(\phi)=e^{\frac{\pi i}{4} I\left(W^{8}\right)}(2 \cdot 8 \cdot 27)^{\frac{r}{2}} \sqrt{3},
$$

where r denotes the 4 th Betti number of W^{8} (Braun [3; §1, (ε)]. We shall prove that $G_{8 \cdot 27}(\phi)$ is purely imaginary.

Every diagonal entry of the matrix of the quadratic form 27ϕ is even (Milnor [9]). Thus the matrix of the quadratic form 27ϕ is equivalent to $\operatorname{diag}(U, \cdots, U)$ or $\operatorname{diag}(C, U, \cdots, U)$ over the 2-adic integers [8; Theorem 33a], which implies that $G_{8}(27 \phi)$ is a positive integer. (Compare Milnor [9].)

Since $G_{8 \cdot 27}(\phi)=G_{8}(27 \phi) G_{27}(8 \phi)$ (Braun [3; §2, (4)]), it is sufficient to prove that $G_{27}(8 \phi)$ is purely imaginary. According to [8; Theorem 25], there exists a basis $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ of $H_{4}\left(W^{8} ; Z\right) \bmod 27$ such that

$$
8 \phi\left(\sum_{i=1}^{r} x_{i} \alpha_{i}, \sum_{i=1}^{r} x_{i} \alpha_{i}\right) \equiv \sum_{i=1}^{r} a_{i} x_{i}^{2} \quad \bmod 27
$$

Thus we have

$$
\begin{aligned}
G_{27}(8 \phi) & =\Sigma e^{\frac{2 \pi i}{27} \Sigma_{j} a_{j} x_{j}^{2}}=\Sigma \prod_{j} e^{\frac{2 \pi i}{27} a_{j} x_{j}^{2}} \\
& =\prod_{j} \sum_{x=0}^{2 \hbar} e^{2 \pi \tau_{i}} \frac{2 \pi a_{j} x^{2}}{} .
\end{aligned}
$$

It is easy to see that if $a \neq 0 \bmod 3, \sum_{x=0}^{26} e^{-2 \pi i}-a x^{2}$ is purely imaginary and that if $a \equiv 0 \bmod 3, \not \equiv 0 \bmod 9, \sum_{x=0}^{26} e^{\frac{2 \pi i}{27} a x^{2}}$ is real. Since Lemma 6 implies

$$
\prod_{j} a_{j} \equiv 0 \bmod 3, \quad \equiv 0 \bmod 9,
$$

it follows that if r is an even integer $G_{27}(8 \phi)$ is purely imaginary and if r is an odd integer $G_{27}(8 \phi)$ is real. Therefore, in either case, the index $I\left(W^{8}\right)$ is an even integer, which shows that r is even. This completes the proof.

Lemma 8. If the index $I\left(W^{8}\right)$ is equal to 2, then the matrix of the quadratic form ϕ, with respect to a suitable basis, is

$$
\operatorname{diag}(C, U, \cdots, U)=\left(\begin{array}{cccc}
C & & & \\
& U & & \\
& & \ddots & \\
& & & U
\end{array}\right)
$$

Proof. Choosing a basis of $H_{4}\left(W^{8} ; Z\right)$, let us denote $\phi=\sum_{i, j} a_{i j} x_{i} x_{j}\left(a_{i j}=a_{j i}\right)$. The determinant of the matrix $A=\left(a_{i j}\right)$ is ± 3 Lemma 6). Every diagonal entry of the matrix A is even (Milnor [9]). If ϕ is a form of rank 2, then ϕ is positive definite. Therefore, according to [8; Theorem 76], the matrix A is equivalent to C. If ϕ is a form of rank $\geqq 4$, then ϕ is indefinite. According to [8; Theorem 36], the matrices A and $\operatorname{diag}(C, U, \cdots, U)$ are equivalent over the p-adic integers for every prime $p \neq 3$. The Hasse symbols $c_{p}(A)$ and $c_{p}(\operatorname{diag}(C, U, \cdots, U))$ are equal for every prime $p \neq 3$ [8; Theorem 12], which implies $c_{3}(A)=c_{3}(\operatorname{diag}(C, U, \cdots, U))[8 ; \S 12,2]$. The matrices A and $\operatorname{diag}(C$, $U, \cdots, U)$ are equivalent to the matrix $\operatorname{diag}(\pm 3, \pm 1,1, \cdots, 1)$ over the 3 -adic integers [8; Theorems 35, 36b], where signs are determined by the Hasse symbol. Thus the matrices A and $\operatorname{diag}(C, U, \cdots, U)$ have the same genus.

There exists a matrix X with rational elements such that ${ }^{t} X A X=\operatorname{diag}(C$, $U, \cdots, U)\left[8\right.$; Theorem 28]. Let L denote the lattice $H_{4}\left(W^{8} ; Z\right)$ in $H_{4}\left(W^{8} ; Q\right)$ and let L^{\prime} denote the lattice L transformed by X, where Q is the field of rational numbers. The lattices L and L^{\prime} are both maximal [4; Sätze 9.3, 12.3]. Thus Eichler's theorem ([4; Satz 15.2], [5; Satz 3]) implies that the matrix A is equivalent to the matrix $\operatorname{diag}(C, U, \cdots, U)$. (See Milnor [9]). This completes the proof.

Let T be a closed tubular neighborhood of the diagonal S^{4} in $S^{4} \times S^{4}$, the product of two copies of S^{4} with a fixed orientation. Then T is a compact parallelizable oriented differentiable 8 -manifold-with-boundary. The self-inter-
section number of S^{4} in T is 2 . Let (T, S^{4}, D^{4}, π) denote the D^{4}-bundle over S^{4}. Let W_{e}^{8} be the parallelizable 3 -connected oriented differentiable 8 -manifold-with-boundary obtained by straightening the angle of the quotient space of two copies ' T and " T of T under an identification of ${ }^{\prime} \pi^{-1}\left({ }^{\prime} \sigma^{4}\right)$ with " $\pi^{-1}\left(\prime \sigma^{4}\right)$ in such a way that the images of base spaces ${ }^{\prime} S^{4}$ and " S^{4} in W_{e}^{8} have intersection number 1 , where ' σ^{4} and " σ^{4} are 4 -cells of ' S^{4} and " S^{4} respectively. Denote by M_{e}^{7} the boundary of W_{e}^{8} with the orientation compatible with that of W_{e}^{8}. Then M_{e}^{7} is a compact unbounded 2 -connected oriented differentiable 7-manifold such that $H_{3}\left(M_{e}^{7} ; Z\right) \approx Z_{3}$ and that $p_{1}\left(M_{e}^{7}\right)=0$. The invariant $\bar{\lambda}$ of M_{e}^{7} is 2 .

Lemma 9. If the index $I\left(W^{8}\right)$ equals 2 , then M^{7} is diffeomorphic to M_{e}^{7}.
Proof. By Lemma 8, there exists a basis $\alpha, \beta, \alpha_{1}, \beta_{1}, \cdots, \alpha_{s}, \beta_{s}$ of $H_{4}\left(W^{8} ; Z\right)$ such that

$$
\begin{gathered}
\alpha \circ \alpha=\beta \circ \beta=2, \quad \alpha \circ \beta=1, \\
\alpha \circ \alpha_{i}=\alpha \circ \beta_{j}=\beta \circ \alpha_{i}=\beta \circ \beta_{j}=0, \\
\alpha_{i} \circ \alpha_{j}=\beta_{i} \circ \beta_{j}=0, \quad \alpha_{i} \circ \beta_{j}=\delta_{i j} .
\end{gathered}
$$

By performing a series of surgeries (spherical modifications) on W^{8} (Milnor [10; Theorem 5.6], [11; Theorem 4]), we obtain a compact parallelizable 3connected oriented differentiable 8 -manifold $W^{\prime 8}$ with boundary M^{7} such that α and β are generators of $H_{4}\left(W^{\prime 8} ; Z\right) \approx Z+Z$. Let

$$
f: S^{4} \longrightarrow W^{\prime 8}, \quad g: S^{4} \longrightarrow W^{\prime 8}
$$

be differentiable imbeddings which represent homology classes α, β respectively. Since $\alpha \circ \beta=1$, making use of the method of Whitney [$\mathbf{1 5}$; Theorem 4], we may assume that $f\left(S^{4}\right)$ and $g\left(S^{4}\right)$ intersect regularly at one point. Let N_{f}, N_{g} be tubular neighborhoods of $f\left(S^{4}\right), g\left(S^{4}\right)$ respectively. The self-intersection number of base space and the first Pontrjagin classes characterize a D^{4}-bundle over S^{4} (see [14]). Since N_{f} and N_{g} are parallelizable, it follows that N_{f} and N_{g} are diffeomorphic to T. Thus we may assume that $N_{f} \cup N_{g}$ is diffeomorphic to W_{ε}^{8}. The exactness of the Mayer-Vietoris homology sequence of a proper triad $\left(W^{\prime 8} ; N_{f} \cup N_{g}, W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right)\right)$

$$
\begin{aligned}
& \cdots \longrightarrow H_{q+1}\left(W^{\prime 8} ; Z\right) \longrightarrow H_{q}\left(\partial\left(N_{f} \cup N_{g}\right) ; Z\right) \\
& \quad \longrightarrow H_{q}\left(N_{f} \cup N_{g} ; Z\right)+H_{q}\left(W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right) ; Z\right) \longrightarrow H_{q}\left(W^{\prime 8} ; Z\right) \longrightarrow \cdots
\end{aligned}
$$

implies that $\partial\left(N_{f} \cup N_{g}\right)$ is a deformation retract of $W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right)$. The exactness of the homology sequence of a triple $\left(W^{\prime 8}, W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right), M^{7}\right)$

$$
\begin{aligned}
\cdots & H_{q}\left(W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right), M^{7} ; Z\right) \longrightarrow H_{q}\left(W^{\prime 8}, M^{7} ; Z\right) \\
& \longrightarrow H_{q}\left(W^{\prime 8}, W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right) ; Z\right) \longrightarrow H_{q-1}\left(W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right), M^{7} ; Z\right) \longrightarrow \cdots
\end{aligned}
$$

and the Poincaré-Lefschetz duality

$$
\begin{aligned}
& H_{q}\left(W^{\prime 8}, M^{7} ; Z\right) \approx H^{8-q}\left(W^{\prime 8} ; Z\right), \\
& H_{q}\left(W^{\prime 8}, W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right) ; Z\right) \approx H^{8-q}\left(N_{f} \cup N_{g} ; Z\right)
\end{aligned}
$$

imply

$$
H_{q}\left(W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right), M^{7} ; Z\right)=0 \quad q=0,1, \cdots, 8,
$$

which shows that M^{7} is a deformation retract of $W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right)$. Therefore $W^{\prime 8}-\operatorname{Int}\left(N_{f} \cup N_{g}\right)$ defines a J-equivalence (h-cobordism) between M^{7} and $\partial\left(N_{f} \cup N_{g}\right)$. By a result of Smale [13; Theorem I], M^{7} is diffeomorphic to $\partial\left(N_{f} \cup N_{g}\right)$. This completes the proof.

REMARK. Since $\bar{\lambda}\left(-M^{7}\right)=-\bar{\lambda}\left(M^{7}\right), M^{7}$ with $\bar{\lambda}\left(M^{7}\right)=-2$ is diffeomorphic to $-M_{e}^{7}$.

Let M_{0}^{7} denote the oriented differentiable 7 -manifold homeomorphic to S^{7} which bounds the compact parallelizable 3 -connected oriented differentiable 8 manifold W_{0}^{8} with $I\left(W_{0}^{8}\right)=8$ (Milnor $[10 ; \S 4]$). M_{0}^{7} is a generator of the group Θ^{7}.

Lemma 10. If $\bar{\lambda}\left(M^{7}\right)=2+8 s$, then M^{7} is diffeomorphic to $M_{e}^{7} \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ (s-fold connected sum of M_{0}^{7}). If $\bar{\lambda}\left(M^{7}\right)=-2+8 s$, then M^{7} is diffeomorphic to $\left(-M_{e}^{7}\right) \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ (s-fold connected sum of M_{0}^{7}).

Proof. Suppose that $\bar{\lambda}\left(M^{7}\right)=2+8 s$. There exists a compact parallelizable 3-connected oriented differentiable 8-manifold W^{8} with boundary M^{7} such that $I\left(W^{8}\right)$ equals $2+8 s+2^{5} \cdot 7 t$. We form the sum $W^{8}+\left(-W_{0}^{8}\right)+\cdots+\left(-W_{0}^{8}\right)$ of W^{8} with the $(s+28 t)$-fold sum of $\left(-W_{0}^{8}\right)$ in the following sense. The sum $W_{1}^{n}+W_{2}^{n}$ will mean the compact oriented differentiable manifold-with-boundary obtained from the disjoint union of compact oriented differentiable manifolds W_{1}^{n} and W_{2}^{n} by identifying $f_{1}(x)$ with $f_{2}(x)\left(x \in D^{n-1}\right.$), where $f_{1}: D^{n-1} \rightarrow \partial W_{1}$ (resp. f_{2} : $D^{n-1} \rightarrow \partial W_{2}$) is an orientation-preserving (resp. orientation-reversing) imbedding of $(n-1)$-disk D^{n-1}. Then $W^{8}+\left(-W_{0}^{8}\right)+\cdots+\left(-W_{0}^{8}\right)$ is compact parallelizable 3connected oriented differentiable 8 -manifold. Since the index of $W^{8}+\left(-W_{0}^{8}\right)+\cdots$ $+\left(W_{0}^{8}\right)$ equals 2 , it follows that $\partial\left(W^{8}+\left(-W_{0}^{8}\right)+\cdots+\left(-W_{0}^{8}\right)\right)=M^{7} \#\left(-M_{0}^{7}\right) \# \cdots$ \# $\left.\left(-M_{0}^{7}\right)\right)\left(s+28 t\right.$-fold sum of $\left.-M_{0}^{7}\right)$ is diffeomorphic to M_{e}^{7} (Lemma 9). Thus M^{7} is diffeomorphic to $M_{e}^{7} \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ (s-fold connected sum of M_{0}^{7}). This completes the proof for the case of $\bar{\lambda}\left(M^{7}\right)=2+8 s$. For the case of $\bar{\lambda}\left(M^{7}\right)$ $=-2+8 s$, the proof is similar.

From Lemma 7 and Lemma 10 we have
THEOREM. There exist precisely 56 distinct compact unbounded 2-connected oriented differentiable 7-manifolds whose third homology groups are cyclic of order 3 , satisfying the condition (P). The invariant $\bar{\lambda}$ characterizes these manifolds. All these manifolds are homeomorphic to each other.
2. Let $\left(\bar{B}_{3 m, 3}^{8}, S^{4}, D^{4}, \bar{\pi}\right)$ be the D^{4}-bundle over S^{4} with the characteristic map $3 m \rho+3 \sigma$. (For notations in this section, see [14].) Let α_{4} be a generator of $H_{4}\left(\bar{B}_{3 m, 3}^{8} ; Z\right) \approx Z$. We choose the orientation of $\bar{B}_{3 m, 3}^{8}$ in such a way that $\alpha_{4} \circ \alpha_{4}$ is positive. Let $B_{3 m, 3}^{7}$ denote the boundary of $\bar{B}_{3 m, 3}^{8}$ with the orientation com-
patible with that of $\bar{B}_{3 m, 3}^{8} . \quad B_{3 m, 3}^{7}$ is a compact unbounded 2-connected oriented differentiable 7 -manifold such that $H_{3}\left(B_{3 m, 3}^{7} ; Z\right) \approx Z_{3}$ and that $p_{1}\left(B_{3 m, 3}^{7}\right)=0$ (see [14]).

Let us compute the invariant $\bar{\lambda}$ of $B_{3 m, 3}^{\eta}$. Suppose that $B_{3 m, 3}^{\eta}$ bounds a compact parallelizable 3 -connected oriented differentiable 8 -manifold W^{8}. Let V^{8} be the compact unbounded 2 -connected oriented differentiable 8 -manifold obtained from the disjoint union of $\bar{B}_{3 m, 3}^{8}$ and $-W^{8}$ by identifying $\partial \bar{B}_{3 m, 3}^{8}$ with ∂W^{8}. The index theorem $I\left(V^{8}\right)=\frac{1}{45}\left(7 p_{2}\left(V^{8}\right)-p_{1}^{2}\left(V^{8}\right)\right)\left[V^{8}\right]$ implies

$$
\begin{aligned}
45\left(1-I\left(W^{8}\right)\right) & =7 p_{2}\left(V^{8}\right)\left[V^{8}\right]-2^{2} \cdot 3^{3}(2 m+1)^{2}, \\
I\left(W^{8}\right) & \equiv 4 m(m+1)+2 \quad \bmod 7 .
\end{aligned}
$$

The integrality of \hat{A}-genus $\hat{A}\left(V^{8}\right)=\frac{1}{2^{7} .45}\left(-4 p_{2}\left(V^{8}\right)+7 p_{1}^{2}\left(V^{8}\right)\right)\left[V^{8}\right]$ implies

$$
p_{2}\left(V^{8}\right)\left[V^{8}\right] \equiv 3^{3} \cdot 7(2 m+1)^{2} \quad \bmod 2^{5} \cdot 45
$$

Hence

$$
I\left(W^{8}\right) \equiv 4 m(m+1)-26 \quad \bmod 2^{5} .
$$

Therefore the invariant $\bar{\lambda}$ of $B_{3 m, 3}^{7}$ is equal to $4 m(m+1)-26$.
University of Tokyo

References

[1] M.F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc., 65 (1959), 276-281.
[2] A. Borcl and F. Hirzebruch, Characteristic classes and homogeneous spaces III, Amer. J. Math., 82 (1960), 491-504.
[3] H. Braun, Geschlechter quadratischer Formen, J. Reine Angew. Math., 182 (1940), 32-49.
[4] M. Eichler, Quadratische Formen und orthogonale Gruppen, Berlin, 1952.
[5] M. Eichler, Die Ähnlichkeitsklassen indefiniter Gitter, Math. Zeit., 55 (1952), 216-252.
[6] F. Hirzebruch, On Steenrod reduced powers in oriented manifolds, (mimeographed), Princeton University, 1953.
[7] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Berlin, 1956.
[8] B. W. Jones, The arithmetic theory of quadratic forms, New York, 1950.
[9] J. Milnor, On simply connected 4-manifolds, Topologia Algebraica, Mexico, 1958, 122-128.
[10] J. Milnor, Differentiable manifolds which are homotopy spheres, (mimeographed), Princeton University, 1959.
[11] J. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Proceedings of the Symposium on Differential Geometry, 1961, 39-55.
[12] J. Milnor and M. Kervaire, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proceedings of the Int. Congress of Math., Edinburgh, 1958, 454-458
[13] S. Smale, Generalized Poincare's conjecture in dimensions greater than four, Ann. of Math., 74 (1961), 391-406.
[14] I. Tamura, On Pontrjagin classes and homotopy types of manifolds, J. Math. Soc. Japan, 9 (1957), 250-262.
[15] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math., 45 (1944), 220-246.

