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J. Milnor [10] has determined the so-called J-equivalence (h-cobordism)

classes of oriented differentiable 7-manifolds having the homotopy type of the
7-sphere, and S. Smale [13] has proved that such manifolds are homeomorphic
to the 7-sphere and the J-equivalence classes are the same as the diffeomorphic
classes in this case. Thus compact unbounded oriented differentiable 7-mani-
folds which are homotopy spheres were completely determined. There exist
precisely 28 such differentiable 7-manifolds which form a cyclic group $\Theta^{7}$

under the connected sum.
In this note we shall consider compact unbounded 2-connected oriented

differentiable 7-manifolds whose third homology groups are cyclic of order 3,
having trivial Steenrod operations. We shall show that there exist precisely
56 differentiable 7-manifolds of this homotopy type and that they are obtained
from the standard one by connected sums of elements of $\Theta^{7}$ and the orienta-
tion-reversing.

1. Let $j\psi^{7}$ be the compact unbounded 2-connected oriented $(C^{\infty}-)$ differ-
entiable 7-manifold such that $H_{3}(M^{7} ; Z)\approx Z_{3}$ and that the Steenrod operation
$9_{3}^{1}$ : $H^{3}(j\psi^{7} ; Z_{3})\rightarrow H^{7}(M^{7} ; Z_{3})$ is trivial, namely, for $u\in H^{3}(M^{7} ; Z_{3})$

$(P)$ $9_{3}^{1}(u)=0$ .
LEMMA 1. The condition $(P)$ is equivalent to $p_{1}(M^{7})=0$ , where $p_{1}(1\psi^{7})$ is the

first Pontrjagin class of $1\psi^{7}$ .
PROOF. This lemma follows from the formula given by Hirzebruch [6]:

$p_{1}(M^{7})u=9_{3})(u)$ $mod 3$

for $u\in H^{3}(M^{7} ; Z_{3})$ .
LEMMA 2. $j\psi^{7}$ is a $\pi$-manifold.
PROOF. Suppose that $1\psi^{7}$ is imbedded in a high dimensional Euclidean

space $R^{7+N}$ . Denote by $\nu^{N}$ the normal bundle of $M^{7}$ . Let $K$ be a triangu-
lation of $M^{7}$ . Let us define a (continuous) field of normal N-frames on $M^{7}$ by
stepwise extensions on the skeletons $K^{(q)}$ $(q=0,1, \cdots , 7)$ of $K$ using the ob-
struction theory in the well-known manner. Since $H^{q}(M^{7} ; Z)=0(q=1,2,3)$

and $\pi_{2}(SO(N))=0$ , we can define a field $f$ of normal N-frames on $K^{(3)}$ . Let
$c(f)\in Z^{4}(M^{7} ; Z)$ be the obstruction cocycle to extend $f$ in $K^{(4)}$ , Then the first
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Pontrjagin class $p_{1}(\nu^{N})$ of $\nu^{N}$ is $\{2c(f)\}$ (Milnor-Kervaire [12]). Therefore
Lemma 1 and the product theorem for Pontrjagin classes yield $\{c(f)\}=0$ .
The next obstruction is in dimension 7 with values in $\pi_{6}(SO(N))=0$ . Thus
$\nu^{N}$ is trivial. This completes the proof.

LEMMA 3. $M^{7}$ bounds a compact 3-connected oriented $\pi$-manifold.
PROOF. Since the cokernel of the J-homomorphism $J_{7}$ : $\pi_{7}(SO(N))\rightarrow\pi_{7+N}(S$’ $)$

is zero, this lemma follows from [10; Theorem 6.7 $(b)$].

LEMMA 4. $M^{7}$ bounds a compact 3-connected oriented $\pi$-manifold.
PROOF. Since $M^{7}$ bounds a compact oriented z-manifold, we obtain a com-

pact 3-connected oriented $\pi$-manifold with boundary $M^{7}$ by performing a series
of surgeries (spherical modifications) (Milnor [10], [11]).

Let $W^{8}$ be the compact 3-connected oriented $\pi$ -manifold with boundary $M^{7}$ .
The exactness of the homology sequence of $(W^{8}, M^{7})$

$\rightarrow H_{q}(M^{7} ; Z)\rightarrow H_{q}(W^{8} ; Z)\rightarrow H_{q}(W^{8}, M^{7} ; Z)\rightarrow H_{q-1}(M^{7} ; Z)\rightarrow\cdots$

and the Poincare-Lefschetz duality

$H_{q}(W^{8}, M^{7} ; Z)\approx H^{8-q}(W^{8} ; Z)$

imply that $H_{q}(W^{8} ; Z)=0(q=5,6,7)$ and that $H_{4}(W^{8} ; Z)$ has no torsion.
Let $\phi$ denote the quadratic form over the group $H_{4}(W^{8} ; Z)$ defined by the

formula $x\rightarrow x\circ x$, where $x\circ y$ is the intersection number of two homology classes
$x,y\in H_{4}(W^{8};Z)$ . The index (signature) of this form $\phi$ will be denoted by $I(W^{8})$ .

LEMMA 5. The index $I(W^{8})$ modulo $2^{5}\cdot 7$ is a $diJ7eomorphy$ invariant of $M^{7}$ .
PROOF. Suppose that $M^{7}$ is the boundary of two compact 3-connected ori-

ented $\pi$-manifolds $W_{1}^{8}$ and $W_{2}^{8}$ . Let $V^{8}$ be the compact unbounded oriented
differentiable 8-manifold obtained from $W_{1}^{8}$ and $-W_{2}^{8}$ by pasting together the
common boundary. The exactness of the Mayer-Vietoris cohomology sequence

$f^{*}$

$\rightarrow H^{q-1}(M^{7} ; Z)\rightarrow H^{q}(V^{8} ; Z)\rightarrow H^{q}(W_{1}^{8} ; Z)+H^{q}(W_{2}^{8} ; Z)$

$\rightarrow H^{q}(M^{7} ; Z)\rightarrow\cdots$

implies that $V^{8}$ is 3-connected and that
$\ell^{*};$ $H^{4}(V^{8} ; Z)\rightarrow H^{4}(W_{1}^{8} ; Z)+H^{4}(W_{2}^{8} ; Z)$

is injective. Since $\ell^{*}p_{1}(V^{8})=0$ , we have $p_{1}(V^{8})=0$ . Therefore the index

theorem $I(V^{8})=\frac{1}{45}(7p_{2}(V^{8})-p_{1}^{2}(V^{8}))[V^{8}]$ (Hirzebruch [7]) implies

45 $I(V^{8})=7p_{2}(V^{8})[V^{8}]$ ,

$I(V^{8})\equiv 0$ $mod 7$ ,

and the integrality of $\hat{A}$-genus $\hat{A}(V^{8})=\frac{1}{2^{7}\cdot 45}(-4p_{2}(V^{8})+7p_{1}^{2}(V^{8}))[V^{8}]$ (Atiyah

and Hirzebruch [1], Borel and Hirzebruch [2]) implies
$p_{2}(V^{8})\equiv 0$ $mod 2^{5}\cdot 45$ .
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Thus we have
$I(V^{8})\equiv 0$ $mod 2^{5}\cdot 7$ .

Since $I(V^{8})=I(W_{1}^{8})-I(W_{2}^{8})$ , we have

$I(W_{1}^{8})\equiv I(W_{2}^{8})$ $mod 2^{5}\cdot 7$ .
This completes the proof.

DEFINITION. The residue class of $I(W^{8})mod 2^{5}\cdot 7$ will be denoted by $\overline{\lambda}(M^{7})$ .
LEMMA 6. The determinant of the matrix of the quadratic form $\phi$ is $\pm 3$ .
PROOF. Since $H_{4}(W^{8} ; Z)$ has no torsion, the Poincar\’e-Lefschetz duality

theorem implies $H_{4}(W^{8}, M^{7} ; Z)\approx Hom(H_{4}(W^{8} ; Z), Z)$ . The natural homomor-
phism

$H_{4}(W^{8} ; Z)\rightarrow H_{4}(W^{8}, M^{7} ; Z)\approx Hom(H_{4}(W^{8} ; Z), Z)$

is determined by the matrix of intersection numbers of $H_{4}(W^{8} ; Z)$ . Thus the
lemma follows from the exactness of the homology sequence of $(W^{8}, M^{7})$ and
$H_{3}(M^{7} ; Z)\approx Z_{3}$ .

Let $C$ and $U$ denote matrices

$C=\left(\begin{array}{ll}2 & 1\\1 & 2\end{array}\right)$ , $U=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ .

LEMMA 7. The index $I(W^{8})$ is equal to $\pm 2$ modulo 8.
PROOF. Let

$G_{q}(\phi)=\sum_{(q)}e^{\frac{2\pi i}{q}\phi(\alpha,\alpha)}$

denote the Gauss sum of the quadratic form $\phi$ , where the sum is extended
over all residue classes of $H_{4}(W^{8} ; Z)mod q$ . Then the index $I(W^{8})$ satisfies

$G_{8\cdot 27}(\phi)=e^{-I(W^{8})}(2\cdot 8\cdot 27)^{2}\pi_{4}\underline{i}r\sqrt{3}$ ,

where $r$ denotes the 4 th Betti number of $W^{8}$ (Braun [3 ; \S 1, $(\epsilon)]$ ). We shall
prove that $G_{8\cdot 27}(\phi)$ is purely imaginary.

Every diagonal entry of the matrix of the quadratic form 27 $\phi$ is even
(Milnor [9]). Thus the matrix of the quadratic form 27 $\phi$ is equivalent to
diag $(U, , U)$ or diag $(C, U, , U)$ over the 2-adic integers [8; Theorem $33a$],

which implies that $G_{8}(27\phi)$ is a positive integer. (Compare Milnor [9].)

Since $G_{8\cdot 27}(\phi)=G_{8}(27\phi)G_{27}(8\phi)$ (Braun [3; \S 2, (4)]), it is sufficient to prove
that $G_{27}(8\phi)$ is purely imaginary. According to [8; Theorem 25], there exists
a basis $\alpha_{1},$ $\alpha_{2}$ , $\alpha_{r}$ of $H_{4}(W^{8};Z)mod 27$ such that

$8\phi(\sum_{\int l\approx}^{f}.x_{i}\alpha_{i},\sum_{i=1}^{\prime}x_{i}\alpha_{i})\equiv\sum_{i=1}^{r}a_{i}x_{i}^{2}$ $mod 27$ .

Thus we have



Differentiable 7-manifolds 295

$G_{27}(8\phi)=\sum e^{-t_{-\Sigma ax^{2}}}=\sum\prod_{j}e^{-\frac{\pi i}{7}ax^{2}}2_{2}\pi_{7_{j}jj}2_{2jj}$

$=\prod_{jx}\sum_{=0}^{2\mathfrak{q}}e^{- a_{j}x^{2}}2_{2}\pi_{7}\underline{i}$

It is easy to see that if $a\not\equiv Omod 3,\sum_{x=0}^{26}e^{- ax^{?}}2\pi\underline{i}27$ is purely imaginary and that

if $a\equiv 0mod 3,$ $\not\equiv 0mod 9,\sum_{x=0}^{26}e^{-- ax^{2}}2\pi 27^{i}$ is real. Since Lemma 6 implies

$\prod_{j}a_{j}\equiv 0$
$mod 3$ , $\not\equiv 0$ $mod 9$ ,

it follows that if $r$ is an even integer $G_{27}(8\phi)$ is purely imaginary and if $r$ is
an odd integer $G_{27}(8\phi)$ is real. Therefore, in either case, the index $I(W^{8})$ is
an even integer, which shows that $r$ is even. This completes the proof.

LEMMA 8. If the index $I(W^{8})$ is equal to 2, then the matrix of the quadratic

form $\phi$ , with respect to a suitable basis, $is$

diag $(C, U, \cdots , U)=\left(\begin{array}{llll}C & & & \\ & U & & \\ & & \ddots & \\ & & & U\end{array}\right)$ .

PROOF. $ChoosingabasisofH_{4}(W^{8};Z),$ $letusdenote\phi=\sum_{i,j}a_{ij}x_{i}x_{j}(a_{ij}=a_{ji})$ .
The determinant of the matrix $A=(a_{ij})$ is $\pm 3$ (Lemma 6). Every diagonal
entry of the matrix $A$ is even (Milnor [9]). If $\phi$ is a form of rank 2, then $\phi$

is positive definite. Therefore, according to [8; Theorem 76], the matrix $A$

is equivalent to $C$ . If $\phi$ is a form of rank $\geqq 4$ , then $\phi$ is indefinite. Accord-
ing to [8; Theorem 36], the matrices $A$ and diag$(C, U, \cdots , U)$ are equivalent
over the p-adic integers for every prime $p\neq 3$ . The Hasse symbols $c_{p}(A)$ and
$c_{p}$(diag($C,$ $U$, $\cdot$ .. , $U$ )) are equal for every prime $p\neq 3$ [ $8$ ; Theorem 12], which
implies $c_{3}(A)=c_{3}(diag(C, U, \cdot.. , U))[8$ ; \S 12, 2 $]$ . The matrices $A$ and diag$(C$,
$U,$

$\cdots,$
$U$ ) are equivalent to the matrix diag$(\pm 3, \pm 1,1, \cdots , 1)$ over the 3-adic

integers [8; Theorems 35, $36b$], where signs are determined by the Hasse
symbol. Thus the matrices $A$ and diag$(C, U, \cdots , U)$ have the same genus.

There exists a matrix $X$ with rational elements such that ${}^{t}XAX=diag(C$,
$U$, , $U$)[ $8$ ; Theorem 28]. Let $L$ denote the lattice $H_{4}(W^{8};Z)$ in $H_{4}(W^{8};Q)$

and let $L^{\prime}$ denote the lattice $L$ transformed by $X$, where $Q$ is the field of
rational numbers. The lattices $L$ and $L^{\prime}$ are both maximal [4; S\"atze 9.3, 12.3].
Thus Eichler’s theorem ([4; Satz 15.2], [5; Satz 3]) implies that the matrix
$A$ is equivalent to the matrix diag$(C, U, \cdots , U)$ . (See Milnor [9]). This com-
pletes the proof.

Let $T$ be a closed tubular neighborhood of the diagonal $S^{4}$ in $S^{4}\times S^{4}$ , the
product of two copies of $S^{4}$ with a fixed orientation. Then $T$ is a compact
parallelizable oriented differentiable 8-manifold-with-boundary. The self-inter-
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section number of $S^{4}$ in $T$ is 2. Let $(T, S^{4}, D^{4}, \pi)$ denote the $D^{4}$ -bundle over
$S^{4}$ . Let $W_{e}^{8}$ be the parallelizable 3-connected oriented differentiable 8-manifold-
with-boundary obtained by straightening the angle of the quotient space of
two copies $’\tau$ and $\prime\prime\tau$ of $T$ under an identification of $/_{\pi^{-1}(\sigma^{4})}$

’ with $\prime\prime\pi^{-1}(\prime\prime\sigma^{4})$ in
such a way that the images of base spaces $S^{4}$ and $\prime\prime S^{4}$ in $W_{e}^{8}$ have intersection
number 1, where $’\sigma^{4}$ and $\prime\prime\sigma^{4}$ are 4-cells of $/S^{4}$ and $/\prime S^{4}$ respectively. Denote
by $M_{e}^{7}$ the boundary of $W_{e}^{8}$ with the orientation compatible with that of $W_{e}^{8}$ .
Then $M_{e}^{7}$ is a compact unbounded 2-connected oriented differentiable 7-mani-
fold such that $H_{3}(M_{e}^{7} ; Z)\approx Z_{3}$ and that $p_{1}(M_{e}^{7})=0$ . The invariant $\overline{\lambda}$ of $M_{e}^{7}$ is 2.

LEMMA 9. If the index $I(W^{8})$ equals 2, then $M^{7}$ is diffeomorphic to $M_{e}^{7}$ .
PROOF. By Lemma 8, there exists a basis $\alpha,$ $\beta,$ $\alpha_{1},$ $\beta_{1},$ $\cdots$ , $\alpha_{s},$

$\beta_{s}$ of $H_{4}(W^{8} ; Z)$

such that
$\alpha\circ\alpha=\beta\circ\beta=2$ , $\alpha\circ\beta=1$ ,

$\alpha\circ\alpha_{i}=\alpha\circ\beta_{j}=\beta\circ\alpha_{i}=\beta\circ\beta_{j}=0$ ,

$\alpha_{i}\circ\alpha_{j}=\beta_{i}\circ\beta_{j}=0$ , $\alpha_{i}\circ\beta_{j}=\delta_{ij}$ .
By performing a series of surgeries (spherical modifications) on $W^{8}$ (Milnor

[10; Theorem 5.6], [11; Theorem 4]), we obtain a compact parallelizable 3-
connected oriented differentiable 8-manifold $T/V^{\prime 8}$ with boundary $M^{7}$ such that
$\alpha$ and $\beta$ are generators of $H_{4}(W^{\prime 8};Z)\approx Z+Z$. Let

$f:S^{4}\rightarrow W^{\prime 8}$ , $g:S^{4}\rightarrow W^{\prime 8}$

be differentiable imbeddings which represent homology classes $\alpha,$ $\beta$ respec-
tively. Since $\alpha\circ\beta=1$ , making use of the method of Whitney [15; Theorem 4],

we may assume that $f(S^{4})$ and $g(S^{4})$ intersect regularly at one point. Let $N_{f}$ ,
$N_{g}$ be tubular neighborhoods of $f(S^{4}),$ $g(S^{4})$ respectively. The self-intersection
number of base space and the first Pontrjagin classes characterize a $D^{4}$ -bundle
over $S^{4}$ (see [14]). Since $N_{f}$ and $N_{g}$ are parallelizable, it follows that $N_{f}$ and
$N_{g}$ are diffeomorphic to $T$. Thus we may assume that $N_{f}UN_{g}$ is diffeomor-
phic to $W_{e}^{8}$ . The exactness of the Mayer-Vietoris homology sequence of a
proper triad $(W^{\prime 8} ; N_{f}UN_{g}, W^{\prime 8}-Int(N_{f}UN_{g}))$

$\rightarrow H_{q+1}(W^{\prime 8} ; Z)\rightarrow H_{q}(\partial(N_{f}UN_{g}) ; Z)$

$\rightarrow H_{q}(N_{f}UN_{g} ; Z)+H_{q}(W^{\prime 8}-Int(N_{f}UN_{g});Z)\rightarrow H_{q}(W^{\prime 8} ; Z)\rightarrow\cdots$

implies that $\partial(N_{f}UN_{g})$ is a deformation retract of $W^{\prime 8}-Int(N_{f}UN_{g})$ . The
exactness of the homology sequence of a triple $(W^{\prime 8}, W^{\prime 8}-Int(N_{f}\cup N_{g}),$ $M^{7}$)

$...\rightarrow H_{q}(W^{\prime 8}-Int(N_{f}UN_{g}), M^{7} ; Z)\rightarrow H_{q}(W^{\prime 8}, M^{7} ; Z)$

$\rightarrow H_{q}(W^{\prime 8}, W^{\prime 8}-Int(N_{f}\cup N_{g});Z)\rightarrow H_{q-1}(W^{\prime 8}-Int(N_{f}UN_{g}), M^{7} ; Z)\rightarrow\cdots$

and the Poincar\’e-Lefschetz duality
$H_{q}(W^{\prime 8}, M^{7} ; Z)\approx H^{8-q}(W^{\prime 8} ; Z)$ ,

$H_{q}(W^{\prime 8}, W^{\prime 8}-Int(N_{f}UN_{g});Z)\approx H^{8-q}(N_{f}UN_{g} ; Z)$
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imply
$H_{q}(W^{\prime 8}-Int(N_{f}UN_{g}), M^{7} ; Z)=0$ $q=0,1,$ $\cdots$ , 8,

which shows that $M^{7}$ is a deformation retract of $W^{\prime 8}-Int(N_{f}UN_{g})$ . Therefore
$W^{\prime 8}-Int(N_{f}UN_{g})$ defines a J-equivalence (h-cobordism) between $M^{7}$ and
$\partial(N_{f}UN_{g})$ . By a result of Smale [13; Theorem I], $M^{7}$ is diffeomorphic to
$\partial(N_{f}\cup N_{g})$ . This completes the proof.

REMARK. Since $\overline{\lambda}(-M^{7})=-\overline{\lambda}(M^{7}),$ $M^{7}$ with $\overline{\lambda}(M^{7})=-2$ is diffeomorphic
to $-M_{e}^{7}$ .

Let $M_{0}^{7}$ denote the oriented differentiable 7-manifold homeomorphic to $S^{7}$

which bounds the compact parallelizable 3-connected oriented differentiable 8-
manifold $W_{0}^{8}$ with $I(W_{0}^{8})=8$ (Milnor [10; \S 4]). $M_{0}^{7}$ is a generator of the
group $\Theta^{7}$ .

LEMMA 10. If $\overline{\lambda}(M^{7})=2+8s$ , then $M^{7}$ is diffeomorphic to $M_{e}^{7}\# M_{0}^{7}\#\cdots\# M_{0}^{7}$

(s-fold connected sum of $M_{0}^{7}$). If $\overline{\lambda}(M^{7})=-2+8s$ , then $M^{7}$ is diffeomorphic to
$(-M_{e}^{7})\# M_{0}^{7}\#\cdots\# M_{0}^{7}$ (s-fold connected sum of $M_{0}^{7}$).

PROOF. Suppose that $\overline{\lambda}(M^{7})=2+8s$ . There exists a compact parallelizable
3-connected oriented differentiable 8-manifold $W^{8}$ with boundary $M^{7}$ such that
$I(W^{8})$ equals $2+8s+2^{5}\cdot 7t$ . We form the sum $W^{8}+(-W_{0}^{8})+\cdots+(-W_{0}^{8})$ of $W^{8}$

with the $(s+28t)$-fold sum of $(-W_{0}^{8})$ in the following sense. The sum $W_{1}^{n}+W_{2}^{n}$

will mean the compact oriented differentiable manifold-with-boundary obtained
from the disjoint union of compact oriented differentiable manifolds $W_{1}^{n}$ and
$W_{2}^{n}$ by identifying $f_{1}(x)$ with $f_{2}(x)(x\in D^{n-1})$ , where $f_{1}$ : $D^{n-1}\rightarrow\partial W_{1}$ (resp. $f_{2}$ :
$D^{n-1}\rightarrow\partial W_{2})$ is an orientation-preserving (resp. orientation-reversing) imbedding
of $(n-1)$-disk $D^{n-1}$ . Then $W^{8}+(-W_{0}^{8})+\cdots+(-W_{0}^{8})$ is compact parallelizable 3-
connected oriented differentiable 8-manifold. Since the index of $ W^{8}+(-W_{0}^{8})+\cdots$

$+(W_{0}^{8})$ equals 2, it follows that $\partial(W^{8}+(-W_{0}^{8})+ +(-W_{0}^{8}))=M^{7}\#(-M_{0}^{7})\#\cdots$

$\#(-M_{0}^{7}))(s+28t)$-fold sum of $-M_{0}^{7}$) is diffeomorphic to $M_{e}^{7}$ (Lemma 9). Thus
$M^{7}$ is diffeomorphic to $M_{e}^{7}\# M_{0}^{7}\#\cdots\# M_{0}^{7}$ (s-fold connected sum of $M_{0}^{7}$). This
completes the proof for the case of $\overline{\lambda}(M^{7})=2+8s$ . For the case of $\overline{\lambda(}M^{7}$)

$=-2+8s$ , the proof is similar.
From Lemma 7 and Lemma 10 we have
THEOREM. There exist precisely 56 distinct compact unbounded 2-connected

oriented differentiable 7-manifolds whose third homology groups are cyclic of order 3,
satisfying the condition $(P)$ . The invariant $\overline{\lambda}$ characterizes these manifolds. All
these manifolds are homeomorphic to each other.

2. Let $(\overline{B}_{3m,3}^{8}, S^{4}, D^{4},\overline{\pi})$ be the $D^{4}$ -bundle over $S^{4}$ with the characteristic
map $ 3m\rho+3\sigma$ . (For notations in this section, see [14].) Let $\alpha_{4}$ be a generator of
$H_{4}(\overline{B}_{3m,3}^{8} ; Z)\approx Z$. We choose the orientation of $\overline{B}_{3m,3}^{8}$ in such a way that $\alpha_{4}\circ\alpha_{4}$

is positive. Let $B_{3m,3}^{7}$ denote the boundary of $\overline{B}_{3m,3}^{8}$ with the orientation com-



298 I. TAMURA

patible with that of $\overline{B}_{3m,3}^{8}$ . $B_{3m,3}^{7}$ is a compact unbounded 2-connected oriented
differentiable 7-manifold such that $H_{3}(B_{\theta\uparrow n,3}^{7} ; Z)\approx Z_{3}$ and that $p_{1}(B_{3m,3}^{7})=0$ (see

[14]).

Let us compute the invariant $\overline{\lambda}$ of $B_{3m,3}^{7}$ . Suppose that $B_{3m,3}^{7}$ bounds a
compact parallelizable 3-connected oriented differentiable 8-manifold $W^{8}$ . Let
$V^{8}$ be the compact unbounded 2-connected oriented differentiable 8-manifold
obtained from the disjoint union of $\overline{B}_{3m,3}^{8}$ and $-W^{8}$ by identifying $\partial\overline{B}_{3m,3}^{8}$ with
$\partial W^{8}$ . The index theorem $I(V^{8})=\frac{1}{45}(7p_{2}(V^{8})-p_{1}^{2}(V^{8}))[V^{8}]$ implies

$45(1-I(W^{8}))=7p_{2}(V^{8})[V^{8}]-2^{2}\cdot 3^{3}(2m+1)^{2}$ ,

$I(W^{8})\equiv 4m(m+1)+2$ $mod 7$ .

The integrality of $\hat{A}$-genus $\hat{A}(V^{8})=\frac{1}{2^{7}\cdot 45}(-4p_{2}(V^{8})+7p_{1}^{2}(V^{8}))[V^{8}]$ implies

$p_{2}(V^{8})[V^{8}]\equiv 3^{3}\cdot 7(2m+1)^{2}$ $mod 2^{5}\cdot 45$ .
Hence

$I(W^{8})\equiv 4m(m+1)-26$ $mod 2^{5}$ .
Therefore the invariant $\overline{\lambda}$ of $B_{dm,3}^{7}$ is equal to $4m(m+1)-26$ .
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