
Differentiable Convex Optimization Layers

Akshay Agrawal
Stanford University

akshayka@cs.stanford.edu

Brandon Amos
Facebook AI
bda@fb.com

Shane Barratt
Stanford University

sbarratt@stanford.edu

Stephen Boyd
Stanford University
boyd@stanford.edu

Steven Diamond
Stanford University

diamond@cs.stanford.edu

J. Zico Kolter∗

Carnegie Mellon University
Bosch Center for AI

zkolter@cs.cmu.edu

Abstract

Recent work has shown how to embed differentiable optimization problems (that is,
problems whose solutions can be backpropagated through) as layers within deep
learning architectures. This method provides a useful inductive bias for certain
problems, but existing software for differentiable optimization layers is rigid and
difficult to apply to new settings. In this paper, we propose an approach to differ-
entiating through disciplined convex programs, a subclass of convex optimization
problems used by domain-specific languages (DSLs) for convex optimization. We
introduce disciplined parametrized programming, a subset of disciplined convex
programming, and we show that every disciplined parametrized program can be
represented as the composition of an affine map from parameters to problem data,
a solver, and an affine map from the solver’s solution to a solution of the original
problem (a new form we refer to as affine-solver-affine form). We then demonstrate
how to efficiently differentiate through each of these components, allowing for
end-to-end analytical differentiation through the entire convex program. We im-
plement our methodology in version 1.1 of CVXPY, a popular Python-embedded
DSL for convex optimization, and additionally implement differentiable layers for
disciplined convex programs in PyTorch and TensorFlow 2.0. Our implementation
significantly lowers the barrier to using convex optimization problems in differen-
tiable programs. We present applications in linear machine learning models and in
stochastic control, and we show that our layer is competitive (in execution time)
compared to specialized differentiable solvers from past work.

1 Introduction

Recent work has shown how to differentiate through specific subclasses of convex optimization
problems, which can be viewed as functions mapping problem data to solutions [6, 31, 10, 1,
4]. These layers have found several applications [40, 6, 35, 27, 5, 53, 75, 52, 12, 11], but many
applications remain relatively unexplored (see, e.g., [4, §8]).

While convex optimization layers can provide useful inductive bias in end-to-end models, their
adoption has been slowed by how difficult they are to use. Existing layers (e.g., [6, 1]) require users
to transform their problems into rigid canonical forms by hand. This process is tedious, error-prone,
and time-consuming, and often requires familiarity with convex analysis. Domain-specific languages
(DSLs) for convex optimization abstract away the process of converting problems to canonical forms,
letting users specify problems in a natural syntax; programs are then lowered to canonical forms and

∗Authors listed in alphabetical order.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

supplied to numerical solvers behind-the-scenes [3]. DSLs enable rapid prototyping and make convex
optimization accessible to scientists and engineers who are not necessarily experts in optimization.

The point of this paper is to do what DSLs have done for convex optimization, but for differentiable
convex optimization layers. In this work, we show how to efficiently differentiate through disciplined
convex programs [45]. This is a large class of convex optimization problems that can be parsed and
solved by most DSLs for convex optimization, including CVX [44], CVXPY [29, 3], Convex.jl [72],
and CVXR [39]. Concretely, we introduce disciplined parametrized programming (DPP), a grammar
for producing parametrized disciplined convex programs. Given a program produced by DPP, we
show how to obtain an affine map from parameters to problem data, and an affine map from a solution
of the canonicalized problem to a solution of the original problem. We refer to this representation of
a problem — i.e., the composition of an affine map from parameters to problem data, a solver, and an
affine map to retrieve a solution — as affine-solver-affine (ASA) form.

Our contributions are three-fold:

1. We introduce DPP, a new grammar for parametrized convex optimization problems, and ASA
form, which ensures that the mapping from problem parameters to problem data is affine. DPP and
ASA-form make it possible to differentiate through DSLs for convex optimization, without explicitly
backpropagating through the operations of the canonicalizer. We present DPP and ASA form in §4.

2. We implement the DPP grammar and a reduction from parametrized programs to ASA form in
CVXPY 1.1. We also implement differentiable convex optimization layers in PyTorch [66] and
TensorFlow 2.0 [2]. Our software substantially lowers the barrier to using convex optimization layers
in differentiable programs and neural networks (§5).

3. We present applications to sensitivity analysis for linear machine learning models, and to learning
control-Lyapunov policies for stochastic control (§6). We also show that for quadratic programs
(QPs), our layer’s runtime is competitive with OptNet’s specialized solver qpth [6] (§7).

2 Related work

DSLs for convex optimization. DSLs for convex optimization allow users to specify convex
optimization problems in a natural way that follows the math. At the foundation of these languages is
a ruleset from convex analysis known as disciplined convex programming (DCP) [45]. A mathematical
program written using DCP is called a disciplined convex program, and all such programs are convex.
Disciplined convex programs can be canonicalized to cone programs by expanding each nonlinear
function into its graph implementation [43]. DPP can be seen as a subset of DCP that mildly restricts
the way parameters (symbolic constants) can be used; a similar grammar is described in [26]. The
techniques used in this paper to canonicalize parametrized programs are similar to the methods
used by code generators for optimization problems, such as CVXGEN [60], which targets QPs, and
QCML, which targets second-order cone programs (SOCPs) [26, 25].

Differentiation of optimization problems. Convex optimization problems do not in general admit
closed-form solutions. It is nonetheless possible to differentiate through convex optimization problems
by implicitly differentiating their optimality conditions (when certain regularity conditions are
satisfied) [36, 68, 6]. Recently, methods were developed to differentiate through convex cone
programs in [24, 1] and [4, §7.3]. Because every convex program can be cast as a cone program, these
methods are general. The software released alongside [1], however, requires users to express their
problems in conic form. Expressing a convex optimization problem in conic form requires a working
knowledge of convex analysis. Our work abstracts away conic form, letting the user differentiate
through high-level descriptions of convex optimization problems; we canonicalize these descriptions
to cone programs on the user’s behalf. This makes it possible to rapidly experiment with new families
of differentiable programs, induced by different kinds of convex optimization problems.

Because we differentiate through a cone program by implicitly differentiating its solution map, our
method can be paired with any algorithm for solving convex cone programs. In contrast, methods that
differentiate through every step of an optimization procedure must be customized for each algorithm
(e.g., [33, 30, 56]). Moreover, such methods only approximate the derivative, whereas we compute it
analytically (when it exists).

2

3 Background

Convex optimization problems. A parametrized convex optimization problem can be represented
as

minimize f0(x; ✓)
subject to fi(x; ✓) 0, i = 1, . . . ,m1,

gi(x; ✓) = 0, i = 1, . . . ,m2,
(1)

where x 2 Rn is the optimization variable and ✓ 2 Rp is the parameter vector [22, §4.2]. The
functions fi : Rn ! R are convex, and the functions gi : Rn ! R are affine. A solution to (1) is any
vector x? 2 Rn that minimizes the objective function, among all choices that satisfy the constraints.
The problem (1) can be viewed as a (possibly multi-valued) function that maps a parameter to
solutions. In this paper, we consider the case when this solution map is single-valued, and we denote
it by S : Rp ! Rn. The function S maps a parameter ✓ to a solution x?. From the perspective of
end-to-end learning, ✓ (or parameters it depends on) is learned in order to minimize some scalar
function of x?. In this paper, we show how to obtain the derivative of S with respect to ✓, when (1) is
a DPP-compliant program (and when the derivative exists).

We focus on convex optimization because it is a powerful modeling tool, with applications in control
[20, 16, 71], finance [57, 19], energy management [63], supply chain [17, 15], physics [51, 8],
computational geometry [73], aeronautics [48], and circuit design [47, 21], among other fields.

Disciplined convex programming. DCP is a grammar for constructing convex optimization prob-
lems [45, 43]. It consists of functions, or atoms, and a single rule for composing them. An atom is a
function with known curvature (affine, convex, or concave) and per-argument monotonicities. The

composition rule is based on the following theorem from convex analysis. Suppose h : Rk ! R
is convex, nondecreasing in arguments indexed by a set I1 ✓ {1, 2, . . . , k}, and nonincreasing in
arguments indexed by I2. Suppose also that gi : Rn ! R are convex for i 2 I1, concave for i 2 I2,
and affine for i 2 (I1 \ I2)

c. Then the composition f(x) = h(g1(x), g2(x), . . . , gk(x)) is convex.
DCP allows atoms to be composed so long as the composition satisfies this composition theorem.
Every disciplined convex program is a convex optimization problem, but the converse is not true.
This is not a limitation in practice, because atom libraries are extensible (i.e., the class corresponding
to DCP is parametrized by which atoms are implemented). In this paper, we consider problems of the
form (1) in which the functions fi and gi are constructed using DPP, a version of DCP that performs
parameter-dependent curvature analysis (see §4.1).

Cone programs. A (convex) cone program is an optimization problem of the form

minimize cTx
subject to b�Ax 2 K,

(2)

where x 2 Rn is the variable (there are several other equivalent forms for cone programs). The set
K ✓ Rm is a nonempty, closed, convex cone, and the problem data are A 2 Rm×n, b 2 Rm, and
c 2 Rn. In this paper we assume that (2) has a unique solution.

Our method for differentiating through disciplined convex programs requires calling a solver (an
algorithm for solving an optimization problem) in the forward pass. We focus on the special case
in which the solver is a conic solver. A conic solver targets convex cone programs, implementing a
function s : Rm×n ⇥ Rm ⇥ Rn ! Rn mapping the problem data (A, b, c) to a solution x?.

DCP-based DSLs for convex optimization can canonicalize disciplined convex programs to equivalent
cone programs, producing the problem data A, b, c, and K [3]; (A, b, c) depend on the parameter ✓
and the canonicalization procedure. These data are supplied to a conic solver to obtain a solution;
there are many high-quality implementations of conic solvers (e.g., [64, 9, 32]).

4 Differentiating through disciplined convex programs

We consider a disciplined convex program with variable x 2 Rn, parametrized by ✓ 2 Rp; its solution
map can be viewed as a function S : Rp ! Rn that maps parameters to the solution (see §3). In this
section we describe the form of S and how to evaluate D

TS , allowing us to backpropagate through
parametrized disciplined convex programs. (We use the notation Df(x) to denote the derivative of

3

a function f evaluated at x, and D
T f(x) to denote the adjoint of the derivative at x.) We consider

the special case of canonicalizing a disciplined convex program to a cone program. With little extra
effort, our method can be extended to other targets.

We express S as the composition R � s � C; the canonicalizer C maps parameters to cone problem
data (A, b, c), the cone solver s solves the cone problem, furnishing a solution x̃?, and the retriever R
maps x̃? to a solution x? of the original problem. A problem is in ASA form if C and R are affine.

By the chain rule, the adjoint of the derivative of a disciplined convex program is

D
TS(✓) = D

TC(✓)DT s(A, b, c)DTR(x̃?).

The remainder of this section proceeds as follows. In §4.1, we present DPP, a ruleset for constructing
disciplined convex programs reducible to ASA form. In §4.2, we describe the canonicalization
procedure and show how to represent C as a sparse matrix. In §4.3, we review how to differentiate
through cone programs, and in §4.4, we describe the form of R.

4.1 Disciplined parametrized programming

DPP is a grammar for producing parametrized disciplined convex programs from a set of functions, or
atoms, with known curvature (constant, affine, convex, or concave) and per-argument monotonicities.
A program produced using DPP is called a disciplined parametrized program. Like DCP, DPP is
based on the well-known composition theorem for convex functions, and it guarantees that every
function appearing in a disciplined parametrized program is affine, convex, or concave. Unlike DCP,
DPP also guarantees that the produced program can be reduced to ASA form.

A disciplined parametrized program is an optimization problem of the form

minimize f0(x, ✓)

subject to fi(x, ✓) f̃i(x, ✓), i = 1, . . . ,m1,
gi(x, ✓) = g̃i(x, ✓), i = 1, . . . ,m2,

(3)

where x 2 Rn is a variable, ✓ 2 Rp is a parameter, the fi are convex, f̃i are concave, gi and g̃i are
affine, and the expressions are constructed using DPP. An expression can be thought of as a tree,
where the nodes are atoms and the leaves are variables, constants, or parameters. A parameter is a
symbolic constant with known properties such as sign but unknown numeric value. An expression is
said to be parameter-affine if it does not have variables among its leaves and is affine in its parameters;
an expression is parameter-free if it is not parametrized, and variable-free if it does not have variables.

Every DPP program is also DCP, but the converse is not true. DPP generates programs reducible to
ASA form by introducing two restrictions on expressions involving parameters:

1. In DCP, we classify the curvature of each subexpression appearing in the problem description
as convex, concave, affine, or constant. All parameters are classified as constant. In DPP,
parameters are classified as affine, just like variables.

2. In DCP, the product atom �prod(x, y) = xy is affine if x or y is a constant (i.e., variable-free).
Under DPP, the product is affine when at least one of the following is true:

• x or y is constant (i.e., both parameter-free and variable-free);

• one of the expressions is parameter-affine and the other is parameter-free.

The DPP specification can (and may in the future) be extended to handle several other combinations
of expressions and parameters.

Example. Consider the program

minimize kFx� gk2 + �kxk2
subject to x � 0,

(4)

with variable x 2 Rn and parameters F 2 Rm×n, g 2 Rm, and � > 0. If k·k2, the product, negation,
and the sum are atoms, then this problem is DPP-compliant:

• �prod(F, x) = Fx is affine because the atom is affine (F is parameter-affine and x is
parameter-free) and F and x are affine;

4

• Fx� g is affine because Fx and �g are affine and the sum of affine expressions is affine;

• kFx� gk2 is convex because k·k2 is convex and convex composed with affine is convex;

• �prod(�, kxk2) is convex because the product is affine (� is parameter-affine, kxk2 is
parameter-free), it is increasing in kxk2 (because � is nonnegative), and kxk2 is convex;

• the objective is convex because the sum of convex expressions is convex.

Non-DPP transformations of parameters. It is often possible to re-express non-DPP expressions
in DPP-compliant ways. Consider the following examples, in which the pi are parameters:

• The expression �prod(p1, p2) is not DPP because both of its arguments are parametrized. It
can be rewritten in a DPP-compliant way by introducing a variable s, replacing p1p2 with
the expression p1s, and adding the constraint s = p2.

• Let e be an expression. The quotient e/p1 is not DPP, but it can be rewritten as ep2, where
p2 is a new parameter representing 1/p1.

• The expression log |p1| is not DPP because log is concave and increasing but | · | is convex.
It can be rewritten as log p2 where p2 is a new parameter representing |p1|.

• If P1 2 Rn×n is a parameter representing a (symmetric) positive semidefinite matrix and
x 2 Rn is a variable, the expression �quadform(x, P1) = xTP1x is not DPP. It can be

rewritten as kP2xk22, where P2 is a new parameter representing P
1/2
1 .

4.2 Canonicalization

The canonicalization of a disciplined parametrized program to ASA form is similar to the canoni-
calization of a disciplined convex program to a cone program. All nonlinear atoms are expanded
into their graph implementations [43], generating affine expressions of variables. The resulting
expressions are also affine in the problem parameters due to the DPP rules. Because these expressions
represent the problem data for the cone program, the function C from parameters to problem data is
affine.

As an example, the DPP program (4) can be canonicalized to the cone program

minimize t1 + �t2
subject to (t1, Fx� g) 2 Qm+1,

(t2, x) 2 Qn+1,
x 2 Rn

+,

(5)

where (t1, t2, x) is the variable, Qn is the n-dimensional second-order cone, and Rn
+ is the nonnega-

tive orthant. When rewritten in the standard form (2), this problem has data

A =

2

6

6

6

6

4

�1
�F

�1
�I

�I

3

7

7

7

7

5

, b =

2

6

6

6

4

0
�g
0
0
0

3

7

7

7

5

, c =

"

1
�
0

#

, K = Qm+1 ⇥Qn+1 ⇥ Rn
+,

with blank spaces representing zeros and the horizontal line denoting the cone boundary. In this case,
the parameters F , g and � are just negated and copied into the problem data.

The canonicalization map. The full canonicalization procedure (which includes expanding graph
implementations) only runs the first time the problem is canonicalized. When the same problem
is canonicalized in the future (e.g., with new parameter values), the problem data (A, b, c) can be
obtained by multiplying a sparse matrix representing C by the parameter vector (and reshaping);
the adjoint of the derivative can be computed by just transposing the matrix. The naïve alternative
— expanding graph implementations and extracting new problem data every time parameters are
updated (and differentiating through this algorithm in the backward pass) — is much slower (see §7).
The following lemma tells us that C can be represented as a sparse matrix.

5

Lemma 1. The canonicalizer map C for a disciplined parametrized program can be represented with

a sparse matrix Q 2 Rn×p+1 and sparse tensor R 2 Rm×n+1×p+1, where m is the dimension of the

constraints. Letting ✓̃ 2 Rp+1 denote the concatenation of ✓ and the scalar offset 1, the problem data

can be obtained as c = Q✓̃ and [A b] =
Pp+1

i=1 R[:,:,i]✓̃i.

The proof is given in Appendix A.

4.3 Derivative of a conic solver

By applying the implicit function theorem [36, 34] to the optimality conditions of a cone program, it
is possible to compute its derivative Ds(A, b, c). To compute D

T s(A, b, c), we follow the methods
presented in [1] and [4, §7.3]. Our calculations are given in Appendix B.

If the cone program is not differentiable at a solution, we compute a heuristic quantity, as is common
practice in automatic differentiation [46, §14]. In particular, at non-differentiable points, a linear
system that arises in the computation of the derivative might fail to be invertible. When this happens,
we compute a least-squares solution to the system instead. See Appendix B for details.

4.4 Solution retrieval

The cone program obtained by canonicalizing a DPP-compliant problem uses the variable x̃ =
(x, s) 2 Rn⇥Rk, where s 2 Rk is a slack variable. If x̃? = (x?, s?) is optimal for the cone program,
then x? is optimal for the original problem (up to reshaping and scaling by a constant). As such, a
solution to the original problem can be obtained by slicing, i.e., R(x̃?) = x?. This map is evidently
linear.

5 Implementation

We have implemented DPP and the reduction to ASA form in version 1.1 of CVXPY, a Python-
embedded DSL for convex optimization [29, 3]; our implementation extends CVXCanon, an open-
source library that reduces affine expression trees to matrices [62]. We have also implemented
differentiable convex optimization layers in PyTorch and TensorFlow 2.0. These layers implement
the forward and backward maps described in §4; they also efficiently support batched inputs (see §7).

We use the the diffcp package [1] to obtain derivatives of cone programs. We modified this package
for performance: we ported much of it from Python to C++, added an option to compute the derivative
using a dense direct solve, and made the forward and backward passes amenable to parallelization.

Our implementation of DPP and ASA form, coupled with our PyTorch and TensorFlow layers, makes
our software the first DSL for differentiable convex optimization layers. Our software is open-source.
CVXPY and our layers are available at

https://www.cvxpy.org, https://www.github.com/cvxgrp/cvxpylayers.

Example. Below is an example of how to specify the problem (4) using CVXPY 1.1.

1 import cvxpy as cp
2
3 m, n = 20, 10
4 x = cp.Variable ((n, 1))
5 F = cp.Parameter ((m, n))
6 g = cp.Parameter ((m, 1))
7 lambd = cp.Parameter ((1, 1), nonneg=True)
8 objective_fn = cp.norm(F @ x - g) + lambd * cp.norm(x)
9 constraints = [x >= 0]

10 problem = cp.Problem(cp.Minimize(objective_fn), constraints)
11 assert problem.is_dpp ()

The below code shows how to use our PyTorch layer to solve and backpropagate through problem
(the code for our TensorFlow layer is almost identical; see Appendix D).

6

https://www.cvxpy.org
https://www.github.com/cvxgrp/cvxpylayers

Figure 1: Gradients (black lines) of the logistic
test loss with respect to the training data.

Figure 2: Per-iteration cost while learning an ADP
policy for stochastic control.

1 import torch
2 from cvxpylayers.torch import CvxpyLayer
3
4 F_t = torch.randn(m, n, requires_grad=True)
5 g_t = torch.randn(m, 1, requires_grad=True)
6 lambd_t = torch.rand(1, 1, requires_grad=True)
7 layer = CvxpyLayer(
8 problem , parameters =[F, g, lambd], variables =[x])
9 x_star , = layer(F_t , g_t , lambd_t)

10 x_star.sum().backward ()

Constructing layer in line 7-8 canonicalizes problem to extract C and R, as described in §4.2.
Calling layer in line 9 applies the map R � s � C from §4, returning a solution to the problem. Line
10 computes the gradients of summing x_star, with respect to F_t, g_t, and lambd_t.

6 Examples

In this section, we present two applications of differentiable convex optimization, meant to be
suggestive of possible use cases for our layer. We give more examples in Appendix E.

6.1 Data poisoning attack

We are given training data (xi, yi)
N
i=1, where xi 2 Rn are feature vectors and yi 2 {0, 1} are the

labels. Suppose we fit a model for this classification problem by solving

minimize 1
N

PN
i=1 `(✓;xi, yi) + r(✓), (6)

where the loss function `(✓;xi, yi) is convex in ✓ 2 Rn and r(✓) is a convex regularizer. We hope

that the test loss Ltest(✓) = 1
M

PM
i=1 `(✓; x̃i, ỹi) is small, where (x̃i, ỹi)

M
i=1 is our test set.

Assume that our training data is subject to a data poisoning attack [18, 49], before it is supplied to us.
The adversary has full knowledge of our modeling choice, meaning that they know the form of (6),
and seeks to perturb the data to maximally increase our loss on the test set, to which they also have
access. The adversary is permitted to apply an additive perturbation �i 2 Rn to each of the training
points xi, with the perturbations satisfying k�ik∞ 0.01.

Let ✓? be optimal for (6). The gradient of the test loss with respect to a training data point,
rxi

Ltest(✓?)).gives the direction in which the point should be moved to achieve the greatest increase
in test loss. Hence, one reasonable adversarial policy is to set xi := xi + (.01)sign(rxi

Ltest(✓?)).

The quantity (0.01)
PN

i=1 krxi
Ltest(✓?)k1 is the predicted increase in our test loss due to the

poisoning.

Numerical example. We consider 30 training points and 30 test points in R2, and we fit a logistic
model with elastic-net regularization. This problem can be written using DPP, with xi as parameters

7

Table 1: Time (ms) to canonicalize examples, across 10 runs.

Logistic regression Stochastic control

CVXPY 1.0.23 18.9 ± 1.75 12.5 ± 0.72
CVXPY 1.1 1.49 ± 0.02 1.39 ± 0.02

(see Appendix C for the code). We used our convex optimization layer to fit this model and obtain
the gradient of the test loss with respect to the training data. Figure 1 visualizes the results. The
orange (?) and blue (+) points are training data, belonging to different classes. The red line (dashed)
is the hyperplane learned by fitting the the model, while the blue line (solid) is the hyperplane that
minimizes the test loss. The gradients are visualized as black lines, attached to the data points.
Moving the points in the gradient directions torques the learned hyperplane away from the optimal
hyperplane for the test set.

6.2 Convex approximate dynamic programming

We consider a stochastic control problem of the form

minimize lim
T→∞

E

h

1
T

PT−1
t=0 kxtk22 + k�(xt)k22

i

subject to xt+1 = Axt +B�(xt) + !t, t = 0, 1, . . . ,
(7)

where xt 2 Rn is the state, � : Rn ! U ✓ Rm is the policy, U is a convex set representing the
allowed set of controls, and !t 2 Ω is a (random, i.i.d.) disturbance. Here the variable is the policy �,
and the expectation is taken over disturbances and the initial state x0. If U is not an affine set, then
this problem is in general very difficult to solve [50, 13].

ADP policy. A common heuristic for solving (7) is approximate dynamic programming (ADP),
which parametrizes � and replaces the minimization over functions � with a minimization over
parameters. In this example, we take U to be the unit ball and we represent � as a quadratic
control-Lyapunov policy [74]. Evaluating � corresponds to solving the SOCP

minimize uTPu+ xT
t Qu+ qTu

subject to kuk2 1,
(8)

with variable u and parameters P , Q, q, and xt. We can run stochastic gradient descent (SGD) on P ,
Q, and q to approximately solve (7), which requires differentiating through (8). Note that if u were
unconstrained, (7) could be solved exactly, via linear quadratic regulator (LQR) theory [50]. The
policy (8) can be written using DPP (see Appendix C for the code).

Numerical example. Figure 2 plots the estimated average cost for each iteration of gradient descent

for a numerical example, with x 2 R2 and u 2 R3, a time horizon of T = 25, and a batch size of
8. We initialize our policy’s parameters with the LQR solution, ignoring the constraint on u. This
method decreased the average cost by roughly 40%.

7 Evaluation

Our implementation substantially lowers the barrier to using convex optimization layers. Here, we
show that our implementation substantially reduces canonicalization time. Additionally, for dense
problems, our implementation is competitive (in execution time) with a specialized solver for QPs;
for sparse problems, our implementation is much faster.

Canonicalization. Table 1 reports the time it takes to canonicalize the logistic regression and
stochastic control problems from §6, comparing CVXPY version 1.0.23 with CVXPY 1.1. Each
canonicalization was performed on a single core of an unloaded Intel i7-8700K processor. We report
the average time and standard deviation across 10 runs, excluding a warm-up run. Our extension
achieves on average an order-of-magnitude speed-up since computing C via a sparse matrix multiply
is much more efficient than going through the DSL.

8

(a) Dense QP, batch size of 128. (b) Sparse QP, batch size of 32.

Figure 3: Comparison of our PyTorch CvxpyLayer to qpth, over 10 trials. For cvxpylayers, we
separate out the canonicalization and solution retrieval times, to allow for a fair comparison.

Comparison to specialized layers. We have implemented a batched solver and backward pass for
our differentiable CVXPY layer that makes it competitive with the batched QP layer qpth from [6].
Figure 3 compares the runtimes of our PyTorch CvxpyLayer and qpth on a dense and sparse QP.
The sparse problem is too large for qpth to run in GPU mode. The QPs have the form

minimize 1
2x

TQx+ pTx

subject to Ax = b,
Gx h,

(9)

with variable x 2 Rn, and problem data Q 2 Rn×n, p 2 Rn, A 2 Rm×n, b 2 Rm, G 2 Rp×n, and
h 2 Rp. The dense QP has n = 128, m = 0, and p = 128. The sparse QP has n = 1024, m = 1024,
and p = 1024 and Q, A, and G each have 1% nonzeros (See Appendix E for the code). We ran
this experiment on a machine with a 6-core Intel i7-8700K CPU, 32 GB of memory, and an Nvidia
GeForce 1080 TI GPU with 11 GB of memory.

Our implementation is competitive with qpth for the dense QP, even on the GPU, and roughly 5
times faster for the sparse QP. Our backward pass for the dense QP uses our extension to diffcp; we
explicitly materialize the derivatives of the cone projections and use a direct solve. Our backward
pass for the sparse QP uses sparse operations and LSQR [65], significantly outperforming qpth
(which cannot exploit sparsity). Our layer runs on the CPU, and implements batching via Python
multi-threading, with a parallel for loop over the examples in the batch for both the forward and
backward passes. We used 12 threads for our experiments.

8 Discussion

Other solvers. Solvers that are specialized to subclasses of convex programs are often faster than
more general conic solvers. For example, one might use OSQP [69] to solve QPs, or gradient-based
methods like L-BFGS [54] or SAGA [28] for empirical risk minimization. Because CVXPY lets
developers add specialized solvers as additional back-ends, our implementation of DPP and ASA
form can be easily extended to other problem classes. We plan to interface QP solvers in future work.

Nonconvex problems. It is possible to differentiate through nonconvex problems, either analyti-
cally [37, 67, 5] or by unrolling SGD [33, 14, 61, 41, 70, 23, 38], Because convex programs can
typically be solved efficiently and to high accuracy, it is preferable to use convex optimization layers
over nonconvex optimization layers when possible. This is especially true in the setting of low-latency
inference. The use of differentiable nonconvex programs in end-to-end learning pipelines, discussed
in [42], is an interesting direction for future research.

9

Acknowledgments

We gratefully acknowledge discussions with Eric Chu, who designed and implemented a code
generator for SOCPs [26, 25], Nicholas Moehle, who designed and implemented a basic version of a
code generator for convex optimization in unpublished work, and Brendan O’Donoghue. We also
would like to thank the anonymous reviewers, who provided us with useful suggestions that improved
the paper. S. Barratt is supported by the National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1656518.

References

[1] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through a cone
program. In: Journal of Applied and Numerical Optimization 1.2 (2019), pp. 107–115.

[2] A. Agrawal, A. N. Modi, A. Passos, A. Lavoie, A. Agarwal, A. Shankar, I. Ganichev, J.
Levenberg, M. Hong, R. Monga, and S. Cai. TensorFlow Eager: A multi-stage, Python-
embedded DSL for machine learning. In: Proc. Systems for Machine Learning. 2019.

[3] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex
optimization problems. In: Journal of Control and Decision 5.1 (2018), pp. 42–60.

[4] B. Amos. Differentiable optimization-based modeling for machine learning. PhD thesis.
Carnegie Mellon University, 2019.

[5] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable MPC for end-to-end
planning and control. In: Advances in Neural Information Processing Systems. 2018, pp. 8299–
8310.

[6] B. Amos and J. Z. Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In: Intl. Conf. Machine Learning. 2017.

[7] B. Amos, V. Koltun, and J. Z. Kolter. The limited multi-label projection layer. 2019. arXiv:
1906.08707.

[8] G. Angeris, J. Vučković, and S. Boyd. Computational Bounds for Photonic Design. In: ACS
Photonics 6.5 (2019), pp. 1232–1239.

[9] M. ApS. MOSEK optimization suite. http://docs.mosek.com/9.0/intro.pdf. 2019.

[10] S. Barratt. On the differentiability of the solution to convex optimization problems. 2018. arXiv:
1804.05098.

[11] S. Barratt and S. Boyd. Fitting a kalman smoother to data. 2019. arXiv: 1910.08615.

[12] S. Barratt and S. Boyd. Least squares auto-tuning. 2019. arXiv: 1904.05460.

[13] S. Barratt and S. Boyd. Stochastic control with affine dynamics and extended quadratic costs.
2018. arXiv: 1811.00168.

[14] D. Belanger, B. Yang, and A. McCallum. End-to-end learning for structured prediction energy
networks. In: Intl. Conf. Machine Learning. 2017.

[15] A. Ben-Tal, B. Golany, A. Nemirovski, and J.-P. Vial. Retailer-supplier flexible commit-
ments contracts: A robust optimization approach. In: Manufacturing & Service Operations
Management 7.3 (2005), pp. 248–271.

[16] D. P. Bertsekas. Dynamic programming and optimal control. 3rd ed. Vol. 1. Athena scientific
Belmont, 2005.

[17] D. Bertsimas and A. Thiele. A robust optimization approach to supply chain management. In:
Proc. Intl. Conf. on Integer Programming and Combinatorial Optimization. Springer. 2004,
pp. 86–100.

[18] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine learning.
In: Pattern Recognition 84 (2018), pp. 317–331.

[19] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and J. Speth. Multi-period
trading via convex optimization. In: Foundations and Trends in Optimization 3.1 (2017),
pp. 1–76.

[20] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system
and control theory. SIAM, 1994.

[21] S. Boyd, S.-J. Kim, D. Patil, and M. Horowitz. Digital circuit optimization via geometric
programming. In: Operations Research 53.6 (2005).

10

https://arxiv.org/abs/1906.08707
http://docs.mosek.com/9.0/intro.pdf
https://arxiv.org/abs/1804.05098
https://arxiv.org/abs/1910.08615
https://arxiv.org/abs/1904.05460
https://arxiv.org/abs/1811.00168

[22] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[23] P. Brakel, D. Stroobandt, and B. Schrauwen. Training energy-based models for time-series
imputation. In: Journal of Machine Learning Research 14.1 (2013), pp. 2771–2797.

[24] E. Busseti, W. Moursi, and S. Boyd. Solution refinement at regular points of conic problems.
2018. arXiv: 1811.02157.

[25] E. Chu and S. Boyd. QCML: Quadratic Cone Modeling Language. https://github.com/
cvxgrp/qcml. 2017.

[26] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code generation for embedded second-order
cone programming. In: 2013 European Control Conference (ECC). IEEE. 2013, pp. 1547–
1552.

[27] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end
differentiable physics for learning and control. In: Advances in Neural Information Processing
Systems. 2018, pp. 7178–7189.

[28] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In: Advances in Neural Information
Processing Systems. 2014, pp. 1646–1654.

[29] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. In: Journal of Machine Learning Research 17.1 (2016), pp. 2909–2913.

[30] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein. Unrolled optimization with deep priors.
2017. arXiv: 1705.08041.

[31] J. Djolonga and A. Krause. Differentiable learning of submodular models. In: Advances in
Neural Information Processing Systems. 2017, pp. 1013–1023.

[32] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In: Control
Conference (ECC), 2013 European. IEEE. 2013, pp. 3071–3076.

[33] J. Domke. Generic methods for optimization-based modeling. In: AISTATS. Vol. 22. 2012,
pp. 318–326.

[34] A. L. Dontchev and R. T. Rockafellar. Implicit functions and solution mappings. In: Springer
Monogr. Math. (2009).

[35] P. Donti, B. Amos, and J. Z. Kolter. Task-based end-to-end model learning in stochastic
optimization. In: Advances in Neural Information Processing Systems. 2017, pp. 5484–5494.

[36] A. Fiacco and G. McCormick. Nonlinear programming: Sequential unconstrained minimiza-
tion techniques. John Wiley and Sons, Inc., New York-London-Sydney, 1968, pp. xiv+210.

[37] A. V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear programming.
Vol. 165. Mathematics in Science and Engineering. Academic Press, Inc., Orlando, FL, 1983,
pp. xii+367.

[38] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In: 34th Intl. Conf. Machine Learning-Volume 70. JMLR. org. 2017, pp. 1126–1135.

[39] A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex optimization.
In: arXiv preprint arXiv:1711.07582 (2017).

[40] Z. Geng, D. Johnson, and R. Fedkiw. Coercing machine learning to output physically accurate
results. 2019. arXiv: 1910.09671 [physics.comp-ph].

[41] I. Goodfellow, M. Mirza, A. Courville, and Y. Bengio. Multi-prediction deep Boltzmann
machines. In: Advances in Neural Information Processing Systems. 2013, pp. 548–556.

[42] S. Gould, R. Hartley, and D. Campbell. Deep declarative networks: A new hope. 2019. arXiv:
1909.04866.

[43] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In: Recent
Advances in Learning and Control. Ed. by V. Blondel, S. Boyd, and H. Kimura. Lecture Notes
in Control and Information Sciences. Springer, 2008, pp. 95–110.

[44] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx. 2014.

[45] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In: Global optimization.
Springer, 2006, pp. 155–210.

[46] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation. SIAM, 2008.

11

https://arxiv.org/abs/1811.02157
https://github.com/cvxgrp/qcml
https://github.com/cvxgrp/qcml
https://arxiv.org/abs/1705.08041
https://arxiv.org/abs/1910.09671
https://arxiv.org/abs/1909.04866
http://cvxr.com/cvx

[47] M. Hershenson, S. Boyd, and T. Lee. Optimal design of a CMOS op-amp via geometric
programming. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 20.1 (2001), pp. 1–21.

[48] W. Hoburg and P. Abbeel. Geometric programming for aircraft design optimization. In: AIAA
Journal 52.11 (2014), pp. 2414–2426.

[49] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating machine
learning: Poisoning attacks and countermeasures for regression learning. In: IEEE Symposium
on Security and Privacy. IEEE. 2018, pp. 19–35.

[50] R. Kalman. When is a linear control system optimal? In: Journal of Basic Engineering 86.1
(1964), pp. 51–60.

[51] Y. Kanno. Nonsmooth Mechanics and Convex Optimization. CRC Press, Boca Raton, FL,
2011.

[52] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex
optimization. In: arXiv preprint arXiv:1904.03758 (2019).

[53] C. K. Ling, F. Fang, and J. Z. Kolter. What game are we playing? End-to-end learning in
normal and extensive form games. 2018. arXiv: 1805.02777.

[54] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
In: Mathematical programming 45.1-3 (1989), pp. 503–528.

[55] C. Malaviya, P. Ferreira, and A. F. Martins. Sparse and constrained attention for neural
machine translation. 2018. arXiv: 1805.08241.

[56] M. Mardani, Q. Sun, S. Vasawanala, V. Papyan, H. Monajemi, J. Pauly, and D. Donoho. Neural
proximal gradient descent for compressive imaging. 2018. arXiv: 1806.03963 [cs.CV].

[57] H. Markowitz. Portfolio selection. In: Journal of Finance 7.1 (1952), pp. 77–91.

[58] A. Martins and R. Astudillo. From softmax to sparsemax: A sparse model of attention and
multi-label classification. In: Intl. Conf. Machine Learning. 2016, pp. 1614–1623.

[59] A. F. Martins and J. Kreutzer. Learning what’s easy: Fully differentiable neural easy-first
taggers. In: 2017 Conference on Empirical Methods in Natural Language Processing. 2017,
pp. 349–362.

[60] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded convex optimization.
In: Optimization and Engineering 13.1 (2012), pp. 1–27.

[61] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks.
2016. arXiv: 1611.02163.

[62] J. Miller, J. Zhu, and P. Quigley. CVXCanon. https://github.com/cvxgrp/CVXcanon/.
2015.

[63] N. Moehle, E. Busseti, S. Boyd, and M. Wytock. Dynamic energy management. 2019. arXiv:
1903.06230.

[64] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting conic solver, version 2.1.0.
https://github.com/cvxgrp/scs. 2017.

[65] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse
least squares. In: ACM Transactions on Mathematical Software (TOMS) 8.1 (1982), pp. 43–71.

[66] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop
(2017).

[67] H. Pirnay, R. López-Negrete, and L. T. Biegler. Optimal sensitivity based on IPOPT. In:
Mathematical Programming Computation 4.4 (2012), pp. 307–331.

[68] S. Robinson. Strongly regular generalized equations. In: Mathematics of Operations Research
5.1 (1980), pp. 43–62.

[69] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An operator splitting
solver for quadratic programs. 2017. arXiv: 1711.08013.

[70] V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model
parameters given approximate inference, decoding, and model structure. In: AISTATS. 2011,
pp. 725–733.

[71] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2012,
pp. 5026–5033.

12

https://arxiv.org/abs/1805.02777
https://arxiv.org/abs/1805.08241
https://arxiv.org/abs/1806.03963
https://arxiv.org/abs/1611.02163
https://github.com/cvxgrp/CVXcanon/
https://arxiv.org/abs/1903.06230
https://github.com/cvxgrp/scs
https://arxiv.org/abs/1711.08013

[72] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd. Convex optimization in
Julia. In: SC14 Workshop on High Performance Technical Computing in Dynamic Languages
(2014). arXiv: 1410.4821 [math.OC].

[73] M. Van Kreveld, O. Schwarzkopf, M. de Berg, and M. Overmars. Computational geometry
algorithms and applications. Springer, 2000.

[74] Y. Wang and S. Boyd. Fast evaluation of quadratic control-Lyapunov policy. In: IEEE Transac-
tions on Control Systems Technology 19.4 (2010), pp. 939–946.

[75] B. Wilder, B. Dilkina, and M. Tambe. Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. 2018. arXiv: 1809.05504.

[76] Y. Ye, M. J. Todd, and S. Mizuno. An O(
p
nL)-iteration homogeneous and self-dual linear

programming algorithm. In: Mathematics of Operations Research 19.1 (1994), pp. 53–67.

13

https://arxiv.org/abs/1410.4821
https://arxiv.org/abs/1809.05504

