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Sébastien Racanière sracaniere@google.com

DeepMind

James Martens jamesmartens@google.com

DeepMind

Jakob Foerster jakobfoerster@gmail.com

University of Oxford

Karl Tuyls karltuyls@google.com

DeepMind

Thore Graepel thore@google.com

DeepMind

Editor: Kilian Weinberger

Abstract

Deep learning is built on the foundational guarantee that gradient descent on an objective
function converges to local minima. Unfortunately, this guarantee fails in settings, such
as generative adversarial nets, that exhibit multiple interacting losses. The behavior of
gradient-based methods in games is not well understood – and is becoming increasingly
important as adversarial and multi-objective architectures proliferate. In this paper, we
develop new tools to understand and control the dynamics in n-player differentiable games.

The key result is to decompose the game Jacobian into two components. The first,
symmetric component, is related to potential games, which reduce to gradient descent on
an implicit function. The second, antisymmetric component, relates to Hamiltonian games,
a new class of games that obey a conservation law akin to conservation laws in classical
mechanical systems. The decomposition motivates Symplectic Gradient Adjustment (SGA),
a new algorithm for finding stable fixed points in differentiable games. Basic experiments
show SGA is competitive with recently proposed algorithms for finding stable fixed points
in GANs – while at the same time being applicable to, and having guarantees in, much
more general cases.

Keywords: game theory, generative adversarial networks, deep learning, classical mechan-
ics, hamiltonian mechanics, gradient descent, dynamical systems

1. Introduction

A significant fraction of recent progress in machine learning has been based on applying
gradient descent to optimize the parameters of neural networks with respect to an objective
function. The objective functions are carefully designed to encode particular tasks such as
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supervised learning. A basic result is that gradient descent converges to a local minimum of
the objective function under a broad range of conditions (Lee et al., 2017). However, there
is a growing set of algorithms that do not optimize a single objective function, including:
generative adversarial networks (Goodfellow et al., 2014; Zhu et al., 2017), proximal gradient
TD learning (Liu et al., 2016), multi-level optimization (Pfau and Vinyals, 2016), synthetic
gradients (Jaderberg et al., 2017), hierarchical reinforcement learning (Wayne and Abbott,
2014; Vezhnevets et al., 2017), intrinsic curiosity (Pathak et al., 2017; Burda et al., 2019),
and imaginative agents (Racanière et al., 2017). In effect, the models are trained via games
played by cooperating and competing modules.

The time-average of iterates of gradient descent, and other more general no-regret
algorithms, are guaranteed to converge to coarse correlated equilibria in games (Stoltz and
Lugosi, 2007). However, the dynamics do not converge to Nash equilibria – and do not
even stabilize in general (Mertikopoulos et al., 2018; Papadimitriou and Piliouras, 2018).
Concretely, cyclic behaviors emerge even in simple cases, see example 1.

This paper presents an analysis of the second-order structure of game dynamics that
allows to identify two classes of games, potential and Hamiltonian, that are easy to solve
separately. We then derive symplectic gradient adjustment1 (SGA), a method for finding
stable fixed points in games. SGA’s performance is evaluated in basic experiments.

1.1. Background and Problem Description

Tractable algorithms that converge to Nash equilibria have been found for restricted classes of
games: potential games, two-player zero-sum games, and a few others (Hart and Mas-Colell,
2013). Finding Nash equilibria can be reformulated as a nonlinear complementarity problem,
but these are ‘hopelessly impractical to solve’ in general (Shoham and Leyton-Brown, 2008)
because the problem is PPAD hard (Daskalakis et al., 2009).

Players are primarily neural nets in our setting. For computational reasons we restrict
to gradient-based methods, even though game-theorists have considered a much broader
range of techniques. Losses are not necessarily convex in any of their parameters, so Nash
equilibria are not guaranteed to exist. Even leaving existence aside, finding Nash equilibria
in nonconvex games is analogous to, but much harder than, finding global minima in neural
nets – which is not realistic with gradient-based methods.

There are at least three problems with gradient-based methods in games. Firstly, the
potential existence of cycles (recurrent dynamics) implies there are no convergence guarantees,
see example 1 below and Mertikopoulos et al. (2018). Secondly, even when gradient descent
converges, the rate of convergence may be too slow in practice because ‘rotational forces’
necessitate extremely small learning rates, see Figure 4. Finally, since there is no single
objective, there is no way to measure progress. Concretely, the losses obtained by the
generator and the discriminator in GANs are not useful guides to the quality of the images
generated. Application-specific proxies have been proposed, for example the inception score
for GANs (Salimans et al., 2016), but these are of little help during training. The inception
score is domain specific and is no substitute for looking at samples. This paper tackles the
first two problems.

1. Source code is available at https://github.com/deepmind/symplectic-gradient-adjustment.
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Differentiable Game Mechanics

1.2. Outline and Summary of Main Contributions

1.2.1. The Infinitesimal Structure of Games

We start with the basic case of a zero-sum bimatrix game: example 1. It turns out that the
dynamics under simultaneous gradient descent can be reformulated in terms of Hamilton’s
equations. The cyclic behavior arises because the dynamics live on the level sets of the
Hamiltonian. More directly useful, gradient descent on the Hamiltonian converges to a Nash
equilibrium.

Lemma 1 shows that the Jacobian of any game decomposes into symmetric and antisym-
metric components. There are thus two ‘pure’ cases corresponding to when the Jacobian is
symmetric and anti-symmetric. The first case, known as potential games (Monderer and
Shapley, 1996), have been intensively studied in the game-theory literature because they are
exactly the games where gradient descent does converge.

The second case, Hamiltonian2 games, were not studied previously, probably because
they coincide with zero-sum games in the bimatrix case (or constant-sum, depending on the
constraints). Zero-sum and Hamiltonian games differ when the losses are not bilinear or
when there are more than two players. Hamiltonian games are important because (i) they are
easy to solve and (ii) general games combine potential-like and Hamiltonian-like dynamics.
Unfortunately, the concept of a zero-sum game is too loose to be useful when there are many
players: any n-player game can be reformulated as a zero-sum (n+ 1)-player game where
ℓn+1 = −

∑n
i=1 ℓi. In this respect, zero-sum games are as complicated as general-sum games.

In contrast, Hamiltonian games are much simpler than general-sum games. Theorem 4
shows that Hamiltonian games obey a conservation law – which also provides the key to
solving them, by gradient descent on the conserved quantity.

1.2.2. Algorithms

The general case, neither potential nor Hamiltonian, is more difficult and is therefore the focus
of the remainder of the paper. Section 3 proposes symplectic gradient adjustment (SGA), a
gradient-based method for finding stable fixed points in general games. Appendix A contains
TensorFlow code to compute the adjustment. The algorithm computes two Jacobian-vector
products, at a cost of two iterations of backprop. SGA satisfies a few natural desiderata
explained in Section 3.1: (D1) it is compatible with the original dynamics; and it is
guaranteed to find stable equilibria in (D2) potential and (D3) Hamiltonian games.

For general games, correctly picking the sign of the adjustment (whether to add or
subtract) is critical since it determines the behavior near stable and unstable equilibria.
Section 2.4 defines stable equilibria and contrasts them with local Nash equilibria. Theorem
10 proves that SGA converges locally to stable fixed points for sufficiently small parameters
(which we quantify via the notion of an additive condition number). While strong, this may
be impractical or slow down convergence significantly. Accordingly, Lemma 11 shows how to
set the sign so as to be attracted towards stable equilibria and repelled from unstable ones.
Correctly aligning SGA allows higher learning rates and faster, more robust convergence,
see Theorem 15. Finally, Theorem 17 tackles the remaining class of saddle fixed points by
proving that SGA locally avoids strict saddles for appropriate parameters.

2. Lu (1992) defined an unrelated notion of Hamiltonian game.
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1.2.3. Experiments

We investigate the empirical performance of SGA in four basic experiments. The first exper-
iment shows how increasing alignment allows higher learning rates and faster convergence,
Figure 4. The second set of experiments compares SGA with optimistic mirror descent on
two-player and four-player games. We find that SGA converges over a much wider range of
learning rates.

The last two sets of experiments investigate mode collapse, mode hopping and the related,
less well-known problem of boundary distortion identified in Santurkar et al. (2018). Mode
collapse and mode hopping are investigated in a setup involving a two-dimensional mixture
of 16 Gaussians that is somewhat more challenging than the original problem introduced in
Metz et al. (2017). Whereas simultaneous gradient descent completely fails, our symplectic
adjustment leads to rapid convergence – slightly improved by correctly choosing the sign of
the adjustment.

Finally, boundary distortion is studied using a 75-dimensional spherical Gaussian. Mode
collapse is not an issue since there the data distribution is unimodal. However, as shown in
Figure 10, a vanilla GAN with RMSProp learns only one of the eigenvalues in the spectrum
of the covariance matrix, whereas SGA approximately learns all of them.

The appendix provides some background information on differential and symplectic
geometry, which motivated the developments in the paper. The appendix also explores what
happens when the analogy with classical mechanics is pushed further than perhaps seems
reasonable. We experiment with assigning units (in the sense of masses and velocities) to
quantities in games, and find that type-consistency yields unexpected benefits.

1.3. Related Work

Nash (1950) was only concerned with existence of equilibria. Convergence in two-player
games was studied in Singh et al. (2000). WoLF (Win or Learn Fast) converges to Nash
equilibria in two-player two-action games (Bowling and Veloso, 2002). Extensions include
weighted policy learning (Abdallah and Lesser, 2008) and GIGA-WoLF (Bowling, 2004).
Infinitesimal Gradient Ascent (IGA) is a gradient-based approach that is shown to converge
to pure Nash equilibria in two-player two-action games. Cyclic behaviour may occur in case
of mixed equilibria. Zinkevich (2003) generalised the algorithm to n-action games called
GIGA. Optimistic mirror descent approximately converges in two-player bilinear zero-sum
games (Daskalakis et al., 2018), a special case of Hamiltonian games. In more general
settings it converges to coarse correlated equilibria.

Convergence has also been studied in various n-player settings, see Rosen (1965); Scutari
et al. (2010); Facchinei and Kanzow (2010); Mertikopoulos and Zhou (2016). However, the
recent success of GANs, where the players are neural networks, has focused attention on a
much larger class of nonconvex games where comparatively little is known, especially in the
n-player case. Heusel et al. (2017) propose a two-time scale methods to find Nash equilibria.
However, it likely scales badly with the number of players. Nagarajan and Kolter (2017)
prove convergence for some algorithms, but under very strong assumptions (Mescheder et al.,
2018). Consensus optimization (Mescheder et al., 2017) is closely related to our proposad
algorithm, and is extensively discussed in Section 3. A variety of game-theoretically or
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Figure 1: A minimal example of Hamiltonian mechanics. Consider a game where ℓ1(x, y) =
xy, ℓ2(x, y) = −xy, and the dynamics are given by ξ(x, y) = (y,−x). The game
is a special case of example 1. (A) The dynamics ξ cycle around the origin since
they live on the level sets of the Hamiltonian H(x, y) = 1

2(x
2 + y2). (B) Gradient

descent on the Hamiltonian H converges to the Nash equilibrium of the game, at
the origin (0, 0). Note that A⊺ξ = (x, y) = ∇H.

minimax motivated modifications to vanilla gradient descent have been investigated in the
context of GANs, see Mertikopoulos et al. (2019); Gidel et al. (2018).

Learning with opponent-learning awareness (LOLA) infinitesimally modifies the objectives
of players to take into account their opponents’ goals (Foerster et al., 2018). However, Letcher
et al. (2019) recently showed that LOLA modifies fixed points and thus fails to find stable
equilibria in general games.

Symplectic gradient adjustment was independently discovered by Gemp and Mahadevan
(2018), who refer to it as “crossing-the-curl”. Their analysis draws on powerful techniques
from variational inequalities and monotone optimization that are complementary to those
developed here—see for example Gemp and Mahadevan (2016, 2017); Gidel et al. (2019).
Using techniques from monotone optimization, Gemp and Mahadevan (2018) obtained more
detailed and stronger results than ours, in the more particular case of Wasserstein LQ-GANs,
where the generator is linear and the discriminator is quadratic (Feizi et al., 2017; Nagarajan
and Kolter, 2017).

Network zero-sum games are shown to be Hamiltonian systems in Bailey and Piliouras
(2019). The implications of the existence of invariant functions for games is just beginning
to be understood and explored.

1.3.1. Notation

Dot products are written as v⊺w or 〈v,w〉. The angle between two vectors is θ(v,w).
Positive definiteness is denoted S ≻ 0.

2. The Infinitesimal Structure of Games

In contrast to the classical formulation of games, we do not constrain the parameter sets
to the probability simplex or require losses to be convex in the corresponding players’
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parameters. Our motivation is that we are primarily interested in use cases where players
are interacting neural nets such as GANs (Goodfellow et al., 2014), a situation in which
results from classical game theory do not straightforwardly apply.

Definition 1 (differentiable game)
A differentiable game consists in a set of players [n] = {1, . . . , n} and corresponding twice
continuously differentiable losses {ℓi : Rd → R}ni=1. Parameters are w = (w1, . . . ,wn) ∈ Rd

where
∑n

i=1 di = d. Player i controls wi ∈ Rdi, and aims to minimize its loss.

It is sometimes convenient to write w = (wi,w−i) where w−i concatenates the parameters
of all the players other than the ith, which is placed out of order by abuse of notation.

The simultaneous gradient is the gradient of the losses with respect to the parameters of
the respective players:

ξ(w) = (∇w1
ℓ1, . . . ,∇wnℓn) ∈ Rd.

By the dynamics of the game, we mean following the negative of the vector field, −ξ, with
infinitesimal steps. There is no reason to expect ξ to be the gradient of a single function in
general, and therefore no reason to expect the dynamics to converge to a fixed point.

2.1. Hamiltonian Mechanics

Hamiltonian mechanics is a formalism for describing the dynamics in classical physical
systems, see Arnold (1989); Guillemin and Sternberg (1990). The system is described via
canonical coordinates (q,p). For example, q often refers to position and p to momentum of
a particle or particles.

The Hamiltonian of the system H(q,p) is a function that specifies the total energy as a
function of the generalized coordinates. For example, in a closed system the Hamiltonian is
given by the sum of the potential and kinetic energies of the particles. The time evolution
of the system is given by Hamilton’s equations:

dq

dt
=

∂H
∂p

and
dp

dt
= −∂H

∂q
.

An importance consequence of the Hamiltonian formalism is that the dynamics of the
physical system—that is, the trajectories followed by the particles in phase space—live on
the level sets of the Hamiltonian. In other words, the total energy is conserved.

2.2. Hamiltonian Mechanics in Games

The next example illustrates the essential problem with gradients in games and the key
insight motivating our approach.

Example 1 (Conservation of energy in a zero-sum unconstrained bimatrix game)
Zero-sum games, where

∑n
i=1 ℓi ≡ 0, are well-studied. The zero-sum game

ℓ1(x,y) = x⊺Ay and ℓ2(x,y) = −x⊺Ay

has a Nash equilibrium at (x,y) = (0,0). The simultaneous gradient ξ(x,y) = (Ay,−A⊺x)
rotates around the Nash, see Figure 1.
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The matrix A admits singular value decomposition (SVD) A = U⊺DV. Changing

to coordinates u = D
1

2Ux and v = D
1

2Vy gives ℓ1(u,v) = u⊺v and ℓ2(u,v) = −u⊺v.
Introduce the Hamiltonian

H(u,v) = 1

2

(
‖u‖22 + ‖v‖22

)
=

1

2
(x⊺U⊺DUx+ y⊺V⊺DVy) .

Remarkably, the dynamics can be reformulated via Hamilton’s equations in the coordinates
given by the SVD of A:

ξ(u,v) =

(
∂H
∂v

,−∂H
∂u

)

.

The vector field ξ cycles around the equilibrium because ξ conserves the Hamiltonian’s level
sets (i.e. 〈ξ,∇H〉 = 0). However, gradient descent on the Hamiltonian converges
to the Nash equilibrium. The remainder of the paper explores the implications and
limitations of this insight.

Papadimitriou and Piliouras (2016) recently analyzed the dynamics of Matching Pennies
(essentially, the above example) and showed that the cyclic behavior covers the entire
parameter space. The Hamiltonian reformulation directly explains the cyclic behavior via a
conservation law.

2.3. The Generalized Helmholtz Decomposition

The Jacobian of a game with dynamics ξ is the (d × d)-matrix of second-derivatives

J(w) := ∇w · ξ(w)⊺ =
(
∂ξα(w)
∂wβ

)d

α,β=1
, where ξα(w) is the αth entry of the d-dimensional

vector ξ(w). Concretely, the Jacobian can be written as

J(w) =








∇2
w1

ℓ1 ∇2
w1,w2

ℓ1 · · · ∇2
w1,wn

ℓ1
∇2

w2,w1
ℓ2 ∇2

w2
ℓ2 · · · ∇2

w2,wn
ℓ2

...
...

∇2
wn,w1

ℓn ∇2
wn,w2

ℓn · · · ∇2
wn

ℓn








where ∇2
wi,wj

ℓk is the (di × dj)-block of 2nd-order derivatives. The Jacobian of a game is a
square matrix, but not necessarily symmetric. Note: Greek indices α, β run over d parameter
dimensions whereas Roman indices i, j run over n players.

Lemma 1 (generalized Helmholtz decomposition)
The Jacobian of any vector field decomposes uniquely into two components J(w) = S(w) +
A(w) where S ≡ S⊺ is symmetric and A+A⊺ ≡ 0 is antisymmetric.

Proof Any matrix decomposes uniquely as M = S + A where S = 1
2(M + M⊺) and

A = 1
2(M−M⊺) are symmetric and antisymmetric. The decomposition is preserved by orthog-

onal change-of-coordinates: given orthogonal matrix P, we have P⊺MP = P⊺SP+P⊺AP
since the terms remain symmetric and antisymmetric. Applying the decomposition to the
Jacobian yields the result.

The connection to the classical Helmholtz decomposition in calculus is sketched in
appendix B. Two natural classes of games arise from the decomposition:
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Definition 2 A game is a potential game if the Jacobian is symmetric, i.e. if A(w) ≡ 0.
It is a Hamiltonian game if the Jacobian is antisymmetric, i.e. if S(w) ≡ 0.

Potential games are well-studied and easy to solve. Hamiltonian games are a new class of
games that are also easy to solve. The general case is more difficult, see Section 3.

2.4. Stable Fixed Points (SFPs) vs Local Nash Equilibria (LNEs)

There are (at least) two possible solution concepts in general differentiable games: stable
fixed points and local Nash equilibria.

Definition 3 A point w is a local Nash equilibrium if, for all i, there exists a neighbor-
hood Ui of wi such that ℓi(w

′
i,w−i) ≥ ℓi(wi,w−i) for w′

i ∈ Ui.

We introduce local Nash equilibria because finding global Nash equilibria is unrealistic in
games involving neural nets. Gradient-based methods can reliably find local—but not global—
optima of nonconvex objective functions (Lee et al., 2016, 2017). Similarly, gradient-based
methods cannot be expected to find global Nash equilibria in nonconvex games.

Definition 4 A fixed point w∗ with ξ(w∗) = 0 is stable if J(w∗) � 0 and J(w∗) is
invertible, unstable if J(w∗) ≺ 0 and a strict saddle if J(w∗) has an eigenvalue with
negative real part. Strict saddles are a subset of unstable fixed points.

The definition is adapted from Letcher et al. (2019), where conditions on the Jacobian
hold at the fixed point; in contrast, Balduzzi et al. (2018a) imposed conditions on the
Jacobian in a neighborhood of the fixed point. We motivate this concept as follows.

Positive semidefiniteness, J(w∗) � 0, is a minimal condition for any reasonable notion of
stable fixed point. In the case of a single loss ℓ, the Jacobian of ξ = ∇ℓ is the Hessian of ℓ,
i.e. J = ∇2ℓ. Local convergence of gradient descent on single functions cannot be guaranteed
if J(w∗) � 0, since such points are strict saddles. These are almost always avoided by Lee
et al. (2017), so this semidefinite condition must hold.

Another viewpoint is that invertibility and positive semidefiniteness of the Hessian
together imply positive definiteness, and the notion of stable fixed point specializes, in a
one-player game, to local minima that are detected by the second partial derivative test.
These minima are precisely those which gradient-like methods provably converge to. Stable
fixed points are defined by analogy, though note that invertibility and semidefiniteness do
not imply positive definiteness in n-player games since J may not be symmetric.

Finally, it is important to impose only positive semi-definiteness to keep the class as
large as possible. Imposing strict positivity would imply that the origin is not an SFP in
the cyclic game ℓ1 = xy = −ℓ2 from Example 1, while clearly deserving of being so.

Remark 1 The conditions J(w∗) � 0 and J(w∗) ≺ 0 are equivalent to the conditions on
the symmetric component S(w∗) � 0 and S(w∗) ≺ 0 respectively, since

u⊺Ju = u⊺Su+ u⊺Au = u⊺Su

for all u, by antisymmetry of A. This equivalence will be used throughout.
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Stable fixed points and local Nash equilibria are both appealing solution concepts, one
from the viewpoint of optimisation by analogy with single objectives, and the other from
game theory. Unfortunately, neither is a subset of the other:

Example 2 (stable 6=⇒ local Nash)
Let ℓ1(x, y) = x3 + xy and ℓ2(x, y) = −xy. Then

ξ(x, y) =

(
3x2 + y
−x

)

and J(x, y) =

(
6x 1
−1 0

)

.

There is a stable fixed point with invertible Hessian at (x, y) = (0, 0), since ξ(0, 0) = 0 and
J(0, 0) � 0 invertible. However any neighbourhood of x = 0 contains some small ǫ > 0 for
which ℓ1(−ǫ, 0) = −ǫ3 < 0 = ℓ1(0, 0), so the origin is not a local Nash equilibrium.

Example 3 (local Nash 6=⇒ stable)
Let ℓ1(x, y) = ℓ2(x, y) = xy. Then

ξ(x, y) =

(
y
x

)

and J(x, y) =

(
0 1
1 0

)

.

There is a fixed point at (x, y) = (0, 0) which is a local (in fact, global) Nash equilibrium
since ℓ1(0, y) = 0 ≥ ℓ1(0, 0) and ℓ2(x, 0) = 0 ≥ ℓ2(0, 0) for all x, y ∈ R. However J = S has
eigenvalues λ1 = 1 and λ2 = −1 < 0, so (0, 0) is not a stable fixed point.

In Example 3, the Nash equilibrium is a saddle point of the common loss ℓ = xy. Any
algorithm that converges to Nash equilibria will thus converge to an undesirable saddle point.
This rules out local Nash equilibrium as a solution concept for our purposes. Conversely,
Example 2 emphasises the better notion of stability whereby player 1 may have a local
incentive to deviate from the origin immediately, but would later be punished for doing so
since the game is locally dominated by the ±xy terms, whose only ‘resolution’ or ‘stable
minimum’ is the origin (see Example 1).

2.5. Potential Games

Potential games were introduced by Monderer and Shapley (1996). It turns out that our
definition of potential game above coincides with a special case of the potential games of
Monderer and Shapley (1996), which they refer to as exact potential games.

Definition 5 (classical definition of potential game)
A game is a potential game if there is a single potential function φ : Rd → R and positive
numbers {αi > 0}ni=1 such that

φ(w′
i,w−i)− φ(w′′

i ,w−i) = αi

(

ℓi(w
′
i,w−i)− ℓi(w

′′
i ,w−i)

)

for all i and all w′
i,w

′′
i ,w−i, see Monderer and Shapley (1996).

Lemma 2 A game is a potential game iff αi∇wi
ℓi = ∇wi

φ for all i, which is equivalent to

αi∇2
wiwj

ℓi = αj∇2
wiwj

ℓj = αj

(

∇2
wjwi

ℓj

)
⊺

∀i, j. (1)

9
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Proof See Monderer and Shapley (1996).

Corollary 3 If αi = 1 for all i then Equation (1) is equivalent to requiring that the Jacobian
of the game is symmetric.

Proof In an exact potential game, the Jacobian coincides with the Hessian of the potential
function φ, which is necessarily symmetric.

Monderer and Shapley (1996) refer to the special case where αi = 1 for all i as an exact
potential game. We use the shorthand ‘potential game’ to refer to exact potential games
in what follows.

Potential games have been extensively studied since they are one of the few classes of
games for which Nash equilibria can be computed (Rosenthal, 1973). For our purposes, they
are games where simultaneous gradient descent on the losses corresponds to gradient descent
on a single function. It follows that descent on ξ converges to a fixed point that is a local
minimum of φ or a saddle.

2.6. Hamiltonian Games

Hamiltonian games, where the Jacobian is antisymmetric, are a new class games. They are
related to the harmonic games introduced in Candogan et al. (2011), see Section B.4. An
example from Balduzzi et al. (2018b) may help develop intuition for antisymmetric matrices:

Example 4 (antisymmetric structure of tournaments)
Suppose n competitors play one-on-one and that the probability of player i beating player
j is pij. Then, assuming there are no draws, the probabilities satisfy pij + pji = 1 and

pii = 1
2 . The matrix A =

(

log
pij

1−pij

)n

i,j=1
of logits is then antisymmetric. Intuitively,

antisymmetry reflects a hyperadversarial setting where all pairwise interactions between
players are zero-sum.

Hamiltonian games are closely related to zero-sum games.

Example 5 (an unconstrained bimatrix game is zero-sum iff it is Hamiltonian)
Consider bimatrix game with ℓ1(x,y) = x⊺Py and ℓ2(x,y) = x⊺Qy, but where the parame-
ters are not constrained to the probability simplex. Then ξ = (Py,Q⊺x) and the Jacobian
components have block structure

A =
1

2

(
0 P−Q

(Q−P)⊺ 0

)

and S =
1

2

(
0 P+Q

(P+Q)⊺ 0

)

The game is Hamiltonian iff S = 0 iff P+Q = 0 iff ℓ1 + ℓ2 = 0.

However, in general there are Hamiltonian games that are not zero-sum and vice versa.
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Example 6 (Hamiltonian game that is not zero-sum)
Fix constants a and b and suppose players 1 and 2 minimize losses

ℓ1(x, y) = x(y − b) and ℓ2(x, y) = −(x− a)y

with respect to x and y respectively.

Example 7 (zero-sum game that is not Hamiltonian)
Players 1 and 2 minimize

ℓ1(x, y) = x2 + y2 ℓ2(x, y) = −(x2 + y2).

The game actually has potential function φ(x, y) = x2 − y2.

Hamiltonian games are quite different from potential games. In a Hamiltonian game there is a
Hamiltonian function H that specifies a conserved quantity. In potential games the dynamics
equal ∇φ; in Hamiltonian games the dynamics are orthogonal to ∇H. The orthogonality
implies the conservation law that underlies the cyclic behavior in example 1.

Theorem 4 (conservation law for Hamiltonian games)
Let H(w) := 1

2‖ξ(w)‖22. If the game is Hamiltonian then

i) ∇H = A⊺ξ and

ii) ξ preserves the level sets of H since 〈ξ,∇H〉 = 0.

iii) If the Jacobian is invertible and lim‖w‖→∞H(w) = ∞ then gradient descent on H
converges to a stable fixed point.

Proof Direct computation shows ∇H = J⊺ξ for any game. The first statement follows
since J = A in Hamiltonian games.

For the second statement, the directional derivative is DξH = 〈ξ,∇H〉 = ξ⊺A⊺ξ where
ξ⊺A⊺ξ = (ξ⊺A⊺ξ)⊺ = ξ⊺Aξ = −(ξ⊺A⊺ξ) since A = −A⊺ by anti-symmetry. It follows that
ξ⊺A⊺ξ = 0.

For the third statement, gradient descent on H will converge to a point where ∇H =
J⊺ξ(w) = 0. If the Jacobian is invertible then clearly ξ(w) = 0. The fixed-point is stable
since 0 ≡ S � 0 in a Hamiltonian game, recall remark 1.

In fact, H is a Hamiltonian function for the game dynamics, see appendix B for a concise
explanation. We use the notation H(w) = 1

2‖ξ(w)‖2 throughout the paper. However, H
can only be interpreted as a Hamiltonian function for ξ when the game is Hamiltonian.

There is a precise mapping from Hamiltonian games to symplectic geometry, see ap-
pendix B. Symplectic geometry is the modern formulation of classical mechanics (Arnold,
1989; Guillemin and Sternberg, 1990). Recall that periodic behaviors (e.g. orbits) often arise
in classical mechanics. The orbits lie on the level sets of the Hamiltonian, which expresses
the total energy of the system.

11
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3. Algorithms

We have seen that fixed points of potential and Hamiltonian games can be found by descent
on ξ and ∇H respectively. This Section tackles finding stable fixed points in general games.

3.1. Finding Stable Fixed Points

There are two classes of games where we know how to find stable fixed points: potential
games where ξ converges to a local minimum and Hamiltonian games where ∇H, which is
orthogonal to ξ, finds stable fixed points.

In the general case, the following desiderata provide a set of reasonable properties for an
adjustment ξλ of the game dynamics. Recall that θ(u,v) is the angle between the vectors u
and v.

3.1.1. Desiderata

To find stable fixed points, an adjustment ξλ to the game dynamics should satisfy

D1. compatible3 with game dynamics: 〈ξλ, ξ〉 = α1 · ‖ξ‖2;

D2. compatible with potential dynamics:
if the game is a potential game then 〈ξλ,∇φ〉 = α2 · ‖∇φ‖2;

D3. compatible with Hamiltonian dynamics:
If the game is Hamiltonian then 〈ξλ,∇H〉 = α3 · ‖∇H‖2;

D4. attracted to stable equilibria:
in neighborhoods where S ≻ 0, require θ(ξλ,∇H) ≤ θ(ξ,∇H);

D5. repelled by unstable equilibria:
in neighborhoods where S ≺ 0, require θ(ξλ,∇H) ≥ θ(ξ,∇H).

for some α1, α2, α3 > 0.

Desideratum D1 does not guarantee that players act in their own self-interest—this
requires a stronger positivity condition on dot-products with subvectors of ξ, see Balduzzi
(2017). Desiderata D2 and D3 imply that the adjustment behaves correctly in potential and
Hamiltonian games respectively.

To understand desiderata D4 and D5, observe that gradient descent on H = 1
2‖ξ‖2

will find local minima that are fixed points of the dynamics. However, we specifically wish
to converge to stable fixed points. Desideratum D4 and D5 require that the adjustment
improves the rate of convergence to stable fixed points (by finding a steeper angle of descent),
and avoids unstable fixed points.

More concretely, desiderata D4 can be interpreted as follows. If ξ points at a stable
equilibrium then we require that ξλ points more towards the equilibrium (i.e. has smaller
angle). Conversely, desiderata D5 requires that if ξ points away then the adjustment should
point further away.

The unadjusted dynamics ξ satisfies all the desiderata except D3.

3. Two nonzero vectors are compatible if they have positive inner product.

12
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3.2. Consensus Optimization

Since gradient descent on the function H(w) = 1
2‖ξ‖2 finds stable fixed points in Hamiltonian

games, it is natural to ask how it performs in general games. If the Jacobian J(w) is invertible,
then ∇H = J⊺ξ = 0 iff ξ = 0. Thus, gradient descent on H converges to fixed points of ξ.

However, there is no guarantee that descent on H will find a stable fixed point. Mescheder
et al. (2017) propose consensus optimization, a gradient adjustment of the form

ξ + λ · J⊺ξ = ξ + λ · ∇H.

Unfortunately, consensus optimization can converge to unstable fixed points even in simple
cases where the ‘game’ is to minimize a single function:

Example 8 (consensus optimization can converge to a global maximum)
Consider a potential game with losses ℓ1(x, y) = ℓ2(x, y) = −κ

2 (x
2 + y2) with κ≫ 0. Then

ξ = −κ ·
(
x
y

)

and J = −
(
κ 0
0 κ

)

Note that ‖ξ‖2 = κ2(x2 + y2) and

ξ + λ · J⊺ξ = κ(λκ− 1) ·
(
x
y

)

.

Descent on ξ + λ · J⊺ξ converges to the global maximum (x, y) = (0, 0) unless λ < 1
κ .

Although consensus optimization works well in two-player zero-sum, it cannot be considered
a candidate algorithm for finding stable fixed points in general games since it fails in the
basic case of potential games. Consensus optimization only satisfies desiderata D3 and D4.

3.3. Symplectic Gradient Adjustment

The problem with consensus optimization is that it can perform worse than gradient descent
on potential games. Intuitively, it makes bad use of the symmetric component of the Jacobian.
Motivated by the analysis in Section 2, we propose symplectic gradient adjustment, which
takes care to only use the antisymmetric component of the Jacobian when adjusting the
dynamics.

Proposition 5 The symplectic gradient adjustment (SGA)

ξλ := ξ + λ ·A⊺ξ.

satisfies D1—D3 for λ > 0, with α1 = 1 = α2 and α3 = λ.

Proof First claim: λ · ξ⊺A⊺ξ = 0 by anti-symmetry of A. Second claim: A ≡ 0 in
a potential game, so ξλ = ξ = ∇φ. Third claim: 〈ξλ,∇H〉 = 〈ξλ,J⊺ξ〉 = 〈ξλ,A⊺ξ〉 =
λ · ξ⊺AA⊺ξ = λ · ‖∇H‖2 since J = A by assumption.

Note that desiderata D1 and D2 are true even when λ < 0. This will prove useful, since
example 9 shows that it may be necessary to pick negative λ near S ≺ 0. Section 3.5 shows
how to also satisfy desiderata D4 and D5.

13
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3.4. Convergence

We begin by analysing convergence of SGA near stable equilibria. The following lemma
highlights that the interaction between the symmetric and antisymmetric components
is important for convergence. Recall that two matrices A and S commute iff [A,S] :=
AS− SA = 0. That is, A and S commute iff AS = SA. Intuitively, two matrices commute
if they have the same preferred coordinate system.

Lemma 6 If S � 0 is symmetric positive semidefinite and S commutes with A then ξλ
points towards stable fixed points for non-negative λ:

〈ξλ,∇H〉 ≥ 0 for all λ ≥ 0.

Proof First observe that ξ⊺ASξ = ξ⊺S⊺A⊺ξ = −ξ⊺SAξ, where the first equality holds
since the expression is a scalar, and the second holds since S = S⊺ and A = −A⊺. It follows
that ξ⊺ASξ = 0 if SA = AS. Finally rewrite the inequality as

〈ξλ,∇H〉 = 〈ξ + λ ·A⊺ξ,Sξ +A⊺ξ〉 = ξ⊺Sξ + λξ⊺AA⊺ξ ≥ 0

since ξ⊺ASξ = 0 and by positivity of S, λ and AA⊺.

The lemma suggests that in general the failure of A and S to commute should be
important for understanding the dynamics of ξλ. We therefore introduce the additive
condition number κ to upper-bound the worst-case noncommutativity of S, which allows
to quantify the relationship between ξλ and ∇H. If κ = 0, then S = σ · I commutes with all
matrices. The larger the additive condition number κ, the larger the potential failure of S
to commute with other matrices.

Theorem 7 Let S be a symmetric matrix with eigenvalues σmax ≥ · · · ≥ σmin. The additive
condition number4 of S is κ := σmax−σmin. If S � 0 is positive semidefinite with additive
condition number κ then λ ∈ (0, 4

κ) implies

〈ξλ,∇H〉 ≥ 0.

If S is negative semidefinite, then λ ∈ (0, 4
κ) implies

〈ξ−λ,∇H〉 ≤ 0.

The inequalities are strict if J is invertible.

Proof We prove the case S � 0; the case S � 0 is similar. Rewrite the inequality as

〈ξ + λ ·A⊺ξ,∇H〉 = (ξ + λ ·A⊺ξ)⊺ · (S+A⊺)ξ

= ξ⊺Sξ + λξ⊺ASξ + λξ⊺AA⊺ξ

4. The condition number of a positive definite matrix is σmax

σmin

.
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Let β = ‖A⊺ξ‖ and S̃ = S− σmin · I, where I is the identity matrix. Then

ξ⊺Sξ + λξ⊺ASξ + λ · β2 ≥ ξ⊺S̃ξ + λξ⊺AS̃ξ + λ · β2

since ξ⊺Sξ ≥ ξ⊺S̃ξ by construction and ξ⊺AS̃ξ = ξ⊺ASξ − σminξ
⊺Aξ = ξ⊺ASξ because

ξ⊺Aξ = 0 by the anti-symmetry of A. It therefore suffices to show that the inequality holds
when σmin = 0 and κ = σmax.

Since S is positive semidefinite, there exists an upper-triangular square-root matrix T
such that T⊺T = S and so ξ⊺Sξ = ‖Tξ‖2. Further,

|ξ⊺ASξ| ≤ ‖A⊺ξ‖ · ‖T⊺Tξ‖ ≤ √σmax · ‖A⊺ξ‖ · ‖Tξ‖.

since ‖T‖2 =
√
σmax. Putting the observations together obtains

‖Tξ‖2 + λ(‖Aξ‖2 − 〈Aξ,Sξ〉) ≥ ‖Tξ‖2 + λ(‖Aξ‖2 − ‖Aξ‖ ‖Sξ‖
≥ ‖Tξ‖2 + λ‖Aξ‖(‖Aξ‖ − ‖Sξ‖)
≥ ‖Tξ‖2 + λ‖Aξ‖(‖Aξ‖ − √σmax‖Tξ‖)

Set α =
√
λ and η =

√
σmax. We can continue the above computation

‖Tξ‖2 + λ(‖Aξ‖2 − 〈Aξ,Sξ〉) ≥ ‖Tξ‖2 + α2‖Aξ‖(‖Aξ‖ − η‖Tξ‖)
= ‖Tξ‖2 + α2‖Aξ‖2 − α2‖Aξ‖η‖Tξ‖
= (‖Tξ‖ − α‖Aξ‖)2 + 2α‖Aξ‖ ‖Tξ‖ − α2η‖Aξ‖ ‖Tξ‖
= (‖Tξ‖ − α‖Aξ‖)2 + ‖Aξ‖ ‖Tξ‖(2α− α2η)

Finally, 2α− α2η > 0 for any α in the range (0, 2η ), which is to say, for any 0 < λ < 4
σmax

.
The kernel of S and the kernel of T coincide. If ξ is in the kernel of A, resp. T, it cannot
be in the kernel of T, resp. A and the term (‖Tξ‖ − α‖Aξ‖)2 is positive. Otherwise, the
term ‖Aξ‖‖Tξ‖ is positive.

The theorem above guarantees that SGA always points in the direction of stable fixed
points for λ sufficiently small. This does not technically guarantee convergence; we use
Ostrowski’s theorem to strengthen this formally. Applying Ostrowski’s theorem will require
taking a more abstract perspective by encoding the adjusted dynamics into a differentiable
map F : Ω→ Rd of the form F (w) = w − αξλ(w).

Theorem 8 (Ostrowski) Let F : Ω→ Rd be a continuously differentiable map on an open
subset Ω ⊆ Rd, and assume w∗ ∈ Ω is a fixed point. If all eigenvalues of ∇F (w∗) are strictly
in the unit circle of C, then there is an open neighbourhood U of w∗ such that for all w0 ∈ U ,
the sequence F k(w0) of iterates of F converges to w∗. Moreover, the rate of convergence is
at least linear in k.

Proof This is a standard result on fixed-point iterations, adapted from Ortega and Rhein-
boldt (2000, 10.1.3).
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Corollary 9 A matrix M is called positive stable if all its eigenvalues have positive real
part. Assume w∗ is a fixed point of a differentiable game such that (I + λA⊺)J(w∗) is
positive stable for λ in some set Λ. Then SGA converges locally to w∗ for λ ∈ Λ and α > 0
sufficiently small.

Proof Let X = (I+ λA⊺). By definition of fixed points, ξ(w∗) = 0 and so

∇[Xξ](w∗) = ∇X(w∗)ξ(w∗) +X(w∗)∇ξ(w∗) = XJ(w∗)

is positive stable by assumption, namely has eigenvalues ak + ibk with ak > 0. Writing
F (w) = w − αXξ(w) for the iterative procedure given by SGA, it follows that

∇F (w∗) = I− α∇[Xξ](w∗)

has eigenvalues 1− αak − iαbk, which are in the unit circle for small α. More precisely,

|1− αak − iαbk|2 < 1 ⇐⇒ 1− 2αak + α2a2k + α2b2k < 1

⇐⇒ 0 < α <
2ak

a2k + b2k

which is always possible for ak > 0. Hence ∇F (w∗) has eigenvalues in the unit circle for
0 < α < mink 2ak/(a

2
k + b2k), and we are done by Ostrowski’s Theorem since w∗ is a fixed

point of F .

Theorem 10 Let w∗ be a stable fixed point and κ the additive condition number of S(w∗).
Then SGA converges locally to w∗ for all λ ∈ (0, 4

κ) and α > 0 sufficiently small.

Proof By Theorem 5 and the assumption that w∗ is a stable fixed point with invertible
Jacobian, we know that

〈ξλ,∇H〉 = 〈(I+ λA⊺)ξ,J⊺ξ〉 > 0

for λ ∈ (0, 4
κ). The proof does not rely on any particular property of ξ, and can trivially be

extended to the claim that

〈(I+ λA⊺)u,J⊺u〉 > 0

for all non-zero vectors u. In particular this can be rewritten as

u⊺J(I+ λA⊺)u〉 > 0 ,

which implies positive definiteness of J(I+λA⊺). A positive definite matrix is positive stable,
and any matrices AB and BA have identical spectrum. This implies also that (I+ λA⊺)J is
positive stable, and we are done by the corollary above.

We conclude that SGA converges to an SFP if λ is small enough, where ‘small enough’
depends on the additive condition number.
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3.5. Picking sign(λ)

This section explains desiderata D4—D5 and shows how to pick sign(λ) to speed up
convergence towards stable and away from unstable fixed points. In the example below,
almost any choice of positive λ results in convergence to an unstable equilibrium. The
problem arises from the combination of a weak repellor with a strong rotational force.

Example 9 (failure case for λ > 0)
Suppose ǫ > 0 is small and

ℓ1(x, y) = −
ǫ

2
x2 − xy and ℓ2(x, y) = −

ǫ

2
y2 + xy

with an unstable equilibrium at (0, 0). The dynamics are

ξ = ǫ ·
(
−x
−y

)

+

(
−y
x

)

with A =

(
0 −1
1 0

)

and

A⊺ξ =

(
x
y

)

+ ǫ

(
−y
x

)

Finally observe that

ξ + λ ·A⊺ξ = (λ− ǫ) ·
(
x
y

)

+ (1 + ǫλ) ·
(
−y
x

)

which converges to the unstable equilibrium if λ > ǫ.

We now show how to pick the sign of λ to avoid unstable equilibria. First, observe that
〈ξ,∇H〉 = ξ⊺(S+A)⊺ξ = ξ⊺Sξ. It follows that for ξ 6= 0:

{

if S � 0 then 〈ξ,∇H〉 ≥ 0;

if S ≺ 0 then 〈ξ,∇H〉 < 0.
(2)

A criterion to probe the positive/negative definiteness of S is thus to check the sign of 〈ξ,∇H〉.
The dot product can take any value if S is neither positive nor negative (semi-)definite. The
behavior near saddle points will be explored in Section 3.7.

Recall that desiderata D4 requires that, if ξ points at a stable equilibrium then we
require that ξλ points more towards the equilibrium (i.e. has smaller angle). Conversely,
desiderata D5 requires that, if ξ points away then the adjustment should point further away.
More formally,

Definition 6 Let u and v be two vectors. The infinitesimal alignment of ξλ := u+λ ·v
with a third vector w is

align(ξλ,w) :=
d

dλ

{
cos2 θλ

}

|λ=0
for θλ := θ(ξλ,w).

If u and w point the same way, u⊺w > 0, then align > 0 when v bends u further toward w,
see Figure 2A. Otherwise align > 0 when v bends u away from w, see Figure 2B.

The following lemma allows us to rewrite the infinitesimal alignment in terms of known
(computable) quantities, from which we can deduce the correct choice of λ.
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Figure 2: Infinitesimal alignment between u + λv and w is positive (cyan) when small
positive λ either: (A) pulls u toward w, if w and u have angle < 90◦; or (B)
pushes u away from w if their angle is > 90◦. Conversely, the infinitesimal
alignment is negative (red) when small positive λ either: (A) pushes u away from
w when their angle is acute or (B) pulls u toward w when their angle is obtuse.

Algorithm 1 Symplectic Gradient Adjustment

Input: losses L = {ℓi}ni=1, weights W = {wi}ni=1

ξ ←
[
gradient(ℓi,wi) for (ℓi,wi) ∈ (L,W)

]

A⊺ξ ← get sym adj(L,W) // appendix A
if align then
∇H ←

[
gradient(12‖ξ‖2,w) for w ∈ W)

]

λ← sign
(
1
d〈ξ,∇H〉〈A⊺ξ,∇H〉+ ǫ

)

// ǫ = 1
10

else
λ← 1

end if
Output: ξ + λ ·A⊺ξ // plug into any optimizer

Lemma 11 When ξλ is the symplectic gradient adjustment,

sign
(

align(ξλ,∇H)
)

= sign
(

〈ξ,∇H〉 · 〈A⊺ξ,∇H〉
)

.

Proof Observe that

cos2 θλ =

( 〈ξλ,∇H〉
‖ξλ‖ · ‖∇H‖

)2

=
〈ξ,∇H〉+ 2λ〈ξ,∇H〉〈A⊺ξ,∇H〉+O(λ2)

(
‖ξ‖2 +O(λ2)

)
· ‖∇H‖2

where the denominator has no linear term in λ because ξ ⊥ A⊺ξ. It follows that the sign of
the infinitesimal alignment is

sign

{
d

dλ
cos2 θλ

}

= sign
{

〈ξ,∇H〉〈A⊺ξ,∇H〉
}

as required.
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Intuitively, computing the sign of 〈ξ,∇H〉 provides a check for stable and unstable
fixed points. Computing the sign of 〈A⊺ξ,∇H〉 checks whether the adjustment term points
towards or away from the nearby fixed point. Putting the two checks together yields a
prescription for the sign of λ, as follows.

Proposition 12 Desiderata D4—D5 are satisfied for λ such that λ · 〈ξ,∇H〉 · 〈A⊺ξ,∇H〉 ≥
0.

Proof If we are in a neighborhood of a stable fixed point then 〈ξ,∇H〉 ≥ 0. It follows

by Lemma 11 that sign
(

align(ξλ),∇H)
)

= sign
(

〈A⊺ξ,∇H〉
)

and so choosing sign(λ) =

sign
(

〈A⊺ξ,∇H〉
)

leads to the angle between ξλ and ∇H being smaller than the angle

between ξ and ∇H, satisfying desideratum D4. The proof for the unstable case is similar.

3.5.1. Alignment and Convergence Rates

Gradient descent is also known as the method of steepest descent. In general games, however,
ξ does not follow the steepest path to fixed points due to the ‘rotational force’, which forces
lower learning rates and slows down convergence.

The following lemma provides some intuition about alignment. The idea is that, the
smaller the cosine between the ‘correct direction’ w and the ‘update direction’ ξ, the smaller
the learning rate needs to be for the update to stay in a unit ball, see Figure 3.

Lemma 13 (Alignment Lemma)
If w and ξ are unit vectors with 0 < w⊺ξ then ‖w−η·ξ‖ ≤ 1 for 0 ≤ η ≤ 2w⊺ξ = 2 cos θ(w, ξ).
In other words, ensuring that w− ηξ is closer to the origin than w requires smaller learning
rates η as the angle between w and ξ gets larger.

Proof Check ‖w − η · ξ‖2 = 1 + η2 − 2η ·w⊺ξ ≤ 1 iff η2 ≤ 2η ·w⊺ξ. The result follows.

The next lemma is a standard technical result from the convex optimization literature.

Lemma 14 Let f : Rd → R be a convex Lipschitz smooth function satisfying ‖∇f(y) −
∇f(x)‖ ≤ L · ‖y − x‖ for all x,y ∈ Rd. Then

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤ L

2
· ‖y − x‖2

for all x,y ∈ Rd.

Proof See Nesterov (2004).

Finally, we show that increasing alignment helps speed convergence:
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w w

A B

Figure 3: Alignment and learning rates. The larger cos θ, the larger the learning rate η that
can be applied to unit vector ξ without w + η · ξ leaving the unit circle.

Theorem 15 Suppose f is convex and Lipschitz smooth with ‖∇f(x)−∇f(y)‖ ≤ L·‖x−y‖.
Let wt+1 = wt− η ·v where ‖v‖ = ‖∇f(wt)‖. Then the optimal step size is η∗ = cos θ

L where
θ := θ(∇f(wt),v), with

f(wt+1) ≤ f(wt)−
cos2 θ

2L
· ‖∇f(wt)‖2.

The proof of Theorem 15 adapts Lemma 14 to handle the angle arising from the ‘rotational
force’.

Proof By the Lemma 14,

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2
‖y − x‖2

= f(x)− η · 〈∇f, ξ〉+ η2
L

2
· ‖ξ‖2

= f(x)− η · 〈∇f, ξ〉+ η2
L

2
· ‖∇f‖2

= f(x)− η(α− η

2
L) · ‖∇f‖2

where α := cos θ. Solve

min
η

∆(η) = min
η

{

−η(α− η

2
L)

}

to obtain η∗ = α
L and ∆(η∗) = −α2

2 L as required.

Increasing the cosine with the steepest direction improves convergence. The alignment
computation in algorithm 1 chooses λ to be positive or negative such that ξλ is bent towards
stable (increasing the cosine) and away from unstable fixed points. Adding a small ǫ > 0 to
the computation introduces a weak bias towards stable fixed points.
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Figure 4: SGA allows faster and more robust convergence to stable fixed points than vanilla
gradient descent in the presence of ‘rotational forces’, by bending the direction
of descent towards the fixed point. Note the gradient descent diverges extremely
rapidly in the top-right panel, which has a different scale from the other panels.

3.6. Aligned Consensus Optimization

The stability criterion in Equation (2) also provides a simple way to prevent consensus
optimization from converging to unstable equilibria. Aligned consensus optimization is

ξ + |λ| · sign
(

〈ξ,∇H〉
)

· J⊺ξ, (3)

where in practice we set λ = 1. Aligned consensus optimization satisfies desiderata D3—D5.
However, it behaves strangely in potential games. Multiplying by the Jacobian is the
‘inverse’ of Newton’s method since for potential games the Jacobian of ξ is the Hessian of
the potential function. Multiplying by the Hessian increases the gap between small and
large eigenvalues, increasing the (usual, multiplicative) condition number and slows down
convergence. Nevertheless, consensus optimization works well in GANs (Mescheder et al.,
2017), and aligned consensus may improve performance, see experiments below.

Dropping the first term ξ from Equation (3) yields a simpler update that also satisfies
D3—D5. However, the resulting algorithm performs poorly in experiments (not shown),
perhaps because it is attracted to saddles.
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Figure 5: Comparison of SGA with optimistic mirror descent. The plots sweep over learning
rates in range [0.01, 1.75], with λ = 1 throughout for SGA. (Left): iterations to
convergence, with maximum value of 250 after which the run was interrupted.
(Right): average absolute value of losses over the last 10 iterations, 240-250, with
a cutoff at 5.

3.7. Avoiding Strict Saddles

How does SGA behave near saddles? We show that Symplectic Gradient Adjustment locally
avoids strict saddles, provided that λ and α are small and parameters are initialized with
(arbitrarily small) noise. More precisely, let F(w) = w−αξλ(w) be the iterative optimization
procedure given by SGA. Then every strict saddle w∗ has a neighbourhood U such that
{w ∈ U | Fn(w)→ w∗ as n→∞} has measure zero for small α > 0 and λ.

Intuitively, the Taylor expansion around a strict saddle w∗ is locally dominated by
the Jacobian at w∗, which has a negative eigenvalue. This prevents convergence to w∗

for random initializations of w near w∗. The argument is made rigorous using the Stable
Manifold Theorem following Lee et al. (2017).

Theorem 16 (Stable Manifold Theorem)
Let w∗ be a fixed point for the C1 local diffeomorphism F : U → Rd, where U is a neighbour-
hood of w∗ in Rd. Let Es ⊕ Eu be the generalized eigenspaces of ∇F (w∗) corresponding to
eigenvalues with |σ| ≤ 1 and |σ| > 1 respectively. Then there exists a local stable center man-
ifold W with tangent space Es at w∗ and a neighbourhood B of w∗ such that F (W )∩B ⊂W
and ∩∞n=0F

−n(B) ⊂W .

Proof See Shub (2000).

It follows that if ∇F (w∗) has at least one eigenvalue |σ| > 1 then Eu has dimension at
least 1. Since W has tangent space Es at w∗ with codimension at least one, we conclude
that W has measure zero. This is central to proving that the set of nearby initial points
which converge to a given strict saddle w∗ has measure zero. Since w is initialized randomly,
the following theorem is obtained.

Theorem 17 SGA locally avoids strict saddles almost surely, for α > 0 and λ small.
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Proof Let w∗ a strict saddle and recall that SGA is given by

F (w) = w − α(I− αJ)ξ(w) .

All terms involved are continuously differentiable and we have

∇F (w∗) = I− α(I− αJ)J(w∗)

by assumption that ξ(w∗) = 0. Since all terms except I are of order at least α, ∇F (w∗)
is invertible for all α sufficiently small. By the inverse function theorem, there exists a
neighbourhood U of w∗ such that F is has a continuously differentiable inverse on U . Hence
F restricted to U is a C1 diffeomorphism with fixed point w∗.

By definition of strict saddles, J(w∗) has an eigenvalue with negative real part. It follows
by continuity that (I− αJ)J(w∗) also has an eigenvalue a+ ib with a < 0 for α sufficiently
small. Finally,

∇F (w∗) = I− α(I− αJ)J(w∗)

has an eigenvalue σ = 1− αa− iαb with

|σ| = 1− 2αa+ α2(a2 + b2) ≥ 1− 2αa > 1 .

It follows that Es has codimension at least one, implying in turn that the local stable set W
has measure zero. We can now prove that

Z = {w ∈ U | lim
n→∞

Fn(w) = w∗}

has measure zero, or in other words, that local convergence to w∗ occurs with zero probability.
Let B the neighbourhood guaranteed by the Stable Manifold Theorem, and take any w ∈ Z.
By definition of convergence there exists N ∈ N such that FN+n(w) ∈ B for all n ∈ N, so
that

FN (w) ∈ ∩∞n∈NF−n(B) ⊂W

by the Stable Manifold Theorem. This implies that w ∈ F−N (W ), and by extension
w ∈ ∪n∈NF−n(W ). Since w was arbitrary, we obtain the inclusion

Z ⊆ ∪n∈NF−n(W ) .

Now F−1 is C1, hence locally Lipschitz and thus preserves sets of measure zero, so that
F−n(W ) has measure zero for each n. Countable unions of measure zero sets are still
measure zero, so we conclude that Z also has measure zero. In other words, SGA converges
to w∗ with zero probability upon random initialization of w in U .

Unlike stable and unstable fixed points, it is unclear how to avoid strict saddles using
only alignment, that is, independently from the size of λ.

4. Experiments

We compare SGA with simultaneous gradient descent, optimistic mirror descent (Daskalakis
et al., 2018) and consensus optimization (Mescheder et al., 2017) in basic settings.
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SYMPLECTIC GRADIENT ADJUSTMENT
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learning rate 1.0
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SYMPLECTIC GRADIENT ADJUSTMENT
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SYMPLECTIC GRADIENT ADJUSTMENT
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learning rate 1.16

OPTIMISTIC MIRROR DESCENT

learning rate 0.4

Figure 6: Individual runs on zero-sum bimatrix game in Section 4.2.
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4.1. Learning rates and alignment

We investigate the effect of SGA when a weak attractor is coupled to a strong rotational
force:

ℓ1(x, y) =
1

2
x2 + 10xy and ℓ2(x, y) =

1

2
y2 − 10xy

Gradient descent is extremely sensitive to the choice of learning rate η, top row of Figure 4.
As η increases through {0.01, 0.032, 0.1} gradient descent goes from converging extremely
slowly, to diverging slowly, to diverging rapidly. SGA yields faster, more robust convergence.
SGA converges faster with learning rates η = 0.01 and η = 0.032, and only starts overshooting
the fixed point for η = 0.1.

4.2. Basic adversarial games

Optimistic mirror descent is a family of algorithms that has nice convergence properties in
games (Rakhlin and Sridharan, 2013; Syrgkanis et al., 2015). In the special case of optimistic
gradient descent the updates are

wt+1 ← wt − η · ξt − η · (ξt − ξt−1).

Figure 5 compares SGA with optimistic gradient descent (OMD) on a zero-sum bimatrix
game with ℓ1/2(w1,w2) = ±w⊺

1w2. The example is modified from Daskalakis et al. (2018)
who also consider a linear offset that makes no difference. A run is taken to have converged
if the average absolute value of losses on the last 10 iterations is < 0.01; we end each
experiment after 250 steps.

The left panel shows the number of steps to convergence (when convergence occurs) over
a range of learning rates. OMD’s peak performance is better than SGA, where the red curve
dips below the blue. Howwever, we find that SGA converges—and does so faster—for a
much wider range of learning rates. OMD diverges for learning rates not in the range [0.3,
1.2]. Simultaneous gradient descent oscillates without converging (not shown). The right
panel shows the average performance of OMD and SGA on the last 10 steps. Once again,
here SGA consistently performs better over a wider range of learning rates. Individual runs
are shown in Figure 6.

4.2.1. OMD and SGA on a Four-Player Game

Figure 7 shows time to convergence (using the same convergence criterion as above) for
optimistic mirror descent and SGA. The games are constructed with four players, each of
which controls one parameter. The losses are

ℓ1(w, x, y, z) =
ǫ

2
w2 + wx+ wy + wz

ℓ2(w, x, y, z) = −wx+
ǫ

2
x2 + xy + xz

ℓ3(w, x, y, z) = −wy − xy +
ǫ

2
y2 + yz

ℓ4(w, x, y, z) = −wz − xz − yz +
ǫ

2
z2,
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Figure 7: Time to convergence of OMD and SGA on two 4-player games. Times are cutoff
after 5000 iterations. Left panel: Weakly positive definite S with ǫ = 1

100 . Right
panel: Symmetric component is identically zero.

where ǫ = 1
100 in the left panel and ǫ = 0 in the right panel. The antisymmetric component

of the game Jacobian is

A =







0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0







and the symmetric component is

S = ǫ ·







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







.

OMD converges considerably slower than SGA across the full range of learning rates. It also
diverges for learning rates > 0.22. In contrast, SGA converges more quickly and robustly.

4.3. Learning a two-dimensional mixture of Gaussians

We apply SGA to a basic Generative Adversarial Network setup adapted from Metz et al.
(2017). Data is sampled from a highly multimodal distribution designed to probe the
tendency of GANs to collapse onto a subset of modes during training. The distribution is a
mixture of 16 Gaussians arranged in a 4× 4 grid. Figure 8 shows the probability distribution
that is sampled to train the generator and discriminator. The generator and discriminator
networks both have 6 ReLU layers of 384 neurons. The generator has two output neurons;
the discriminator has one.

Figure 9 shows results after {2000, 4000, 6000, 8000} iterations. The networks are trained
under RMSProp. Learning rates were chosen by visual inspection of grid search results at
iteration 8000. More precisely, grid search was over learning rates {1e-5, 2e-5,5e-5, 8e-5, 1e-4,
2e-4, 5e-4} and then a more refined linear search over [8e-5, 2e-4]. Simultaneous gradient
descent and SGA are shown in the figure.
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Figure 8: Ground truth for GAN experiments on a two-dimensional mixture of 16 Gaussians.

The last two rows of Figure 9 show the performance of consensus optimization without
and with alignment. Introducing alignment slightly improves speed of convergence (second
column) and final result (fourth column), although intermediate results in third column are
ambiguous.

Simultaneous gradient descent exhibits mode collapse followed by mode hopping in later
iterations (not shown). Mode hopping is analogous to the cycles in example 1. Unaligned SGA
converges to the correct distribution; alignment speeds up convergence slightly. Consensus
optimization performs similarly in this GAN example. However, consensus optimization can
converge to local maxima even in potential games, recall example 8.

4.4. Learning a high-dimensional unimodal Gaussian

Mode collapse is a well-known phenomenon in GANs. A more subtle phenomenon, termed
boundary distortion, was identified in Santurkar et al. (2018). Boundary distortion is a form
of covariate shift where the generator fails to model the true data distribution.

Santurkar et al demonstrate boundary distortion using data sampled from a 75-dimensional
unimodal Gaussian with spherical covariate matrix. Mode collapse is not a problem in this
setting because the data distribution is unimodal. Nevertheless, they show that vanilla
GANs fail to learn most of the spectrum of the covariate matrix.

Figure 10 reproduces their result. Panel A shows the ground truth: all 75 eigenvalues
are equal to 1.0. Panel B shows the spectrum of the covariance matrix of the data generated
by a GAN trained with RMSProp. The GAN concentrates on a single eigenvalue and
essentially ignores the remaining 74 eigenvalues. This is similar to, but more extreme than,
the empirical results obtained in Santurkar et al. (2018). We emphasize that the problem is
not mode collapse, since the data is unimodal (although, it’s worth noting that most of the
mass of a high-dimensional Gaussian lies on the “shell”).

Finally, panel C shows the spectrum of the covariance matrix of the data sampled from
a GAN trained via SGA. The GAN approximately learns all the eigenvalues, with values
ranging between 0.6 and 1.5.
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Figure 9: First row: Simultaneous gradient descent suffers from mode collapse and in later
iterations (not shown) mode hopping. Second and third rows: vanilla SGA
converges smoothly to the ground truth (Figure 8). SGA with alignment converges
slightly faster. Fourth and fifth rows: Consensus optimization without and
with alignment.
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Figure 10: Panel A: The ground truth is a 75 dimensional spherical Gaussian whose
covariance matrix has all eigenvalues equal to 1.0. Panel B: A vanilla GAN
trained with RMSProp approximately learns the first eigenvalue, but essentially
ignores all the rest. Panel C: Applying SGA results in the GAN approximately
learning all 75 eigenvalues, although the range varies from 0.6 to 1.5.

5. Discussion

Modern deep learning treats differentiable modules like plug-and-play lego blocks. For this
to work, at the very least, we need to know that gradient descent will find local minima.
Unfortunately, gradient descent does not necessarily find local minima when optimizing
multiple interacting objectives. With the recent proliferation of algorithms that optimize
more than one loss, it is becoming increasingly urgent to understand and control the dynamics
of interacting losses. Although there is interesting recent work on two-player adversarial
games such as GANs, there is essentially no work on finding stable fixed points in more
general games played by interacting neural nets.

The generalized Helmholtz decomposition provides a powerful new perspective on game
dynamics. A key feature is that the analysis is indifferent to the number of players. Instead,
it is the interplay between the simultaneous gradient ξ on the losses and the symmetric and
antisymmetric matrices of second-order terms that guides algorithm design and governs the
dynamics under gradient adjustments.

Symplectic gradient adjustment is a straightforward application of the generalized
Helmholtz decomposition. It is unlikely that SGA is the best approach to finding stable fixed
points. A deeper understanding of the interaction between the potential and Hamiltonian
components will lead to more effective algorithms. Reinforcement learning algorithms that
optimize multiple objectives are increasingly common, and second-order terms are difficult
to estimate in practice. Thus, first-order methods that do not use Jacobian-vector products
are of particular interest.

5.0.1. Gamification

Finally, it is worth raising a philosophical point. In this paper we are concerned with finding
stable fixed points (because, for example, they yield pleasing samples in GANs). We are not
concerned with the losses of the players per se. The gradient adjustments may lead to a
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player acting against its own self-interest by increasing its loss. We consider this acceptable
insofar as it encourages convergence to a stable fixed point. The players are but a means to
an end.

We have argued that stable fixed points are a more useful solution concept than local
Nash equilibria for our purposes. However, neither is entirely satisfactory, and the question
“What is the right solution concept for neural games?” remains open. In fact, it likely has
many answers. The intrinsic curiosity module introduced by Pathak et al. (2017) plays two
objectives against one another to drive agents to search for novel experiences. In this case,
converging to a fixed point is precisely what is to be avoided.

It is remarkable—to give a few examples sampled from many—that curiosity, generating
photorealistic images, and image-to-image translation (Zhu et al., 2017) can be formulated
as games. What else can games do?
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Appendix A. TensorFlow Code to Compute SGA

Source code is available at https://github.com/deepmind/symplectic-gradient-adjustment.
Since computing the symplectic adjustment is quite simple, we include an explicit description
here for completeness.

The code requires a list of n losses, Ls, and a list of variables for the n players, xs.
The function fwd gradients which implements forward mode auto-differentiation is in the
module tf.contrib.kfac.utils.

% compute Jacobian-vector product Jv

def jac vec(ys, xs, vs) :
return fwd gradients(ys, xs, grad xs = vs, stop gradients = xs)

% compute Jacobian⊺-vector product J⊺v

def jac tran vec(ys, xs, vs) :
dydxs = tf.gradients(ys, xs, grad ys = vs, stop gradients = xs)
return [tf.zeros like(x) if dydx is None

else dydx for (x, dydx) in zip(xs, dydxs)]

% compute Symplectic Gradient Adjustment A⊺ξ

def get sym adj(Ls, xs) :
% compute game dynamics ξ

xi = [tf.gradients(ℓ, x)[0] for (ℓ, x) in zip(Ls, xs)]
J xi = jac vec(xi, xs, xi)
Jt xi = jac tran vec(xi, xs, xi)
% compute A⊺ξ = 1

2(J
⊺ξ − Jξ)
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At xi = [jt−j
2

for (j, jt) in zip(J xi, Jt xi)]
return At xi

Appendix B. Helmholtz, Hamilton, Hodge, and Harmonic Games

This section explains the mathematical connections with the Helmholtz decomposition,
symplectic geometry and the Hodge decomposition. The discussion is not necessary to
understand the main text. It is also not self-contained. The details can be found in textbooks
covering differential and symplectic geometry (Arnold, 1989; Guillemin and Sternberg, 1990;
Bott and Tu, 1995).

B.1. The Helmholtz Decomposition

The classical Helmholtz decomposition states that any vector field ξ in 3-dimensions is the
sum of curl-free (gradient) and divergence-free (infinitesimal rotation) components:

ξ = ∇φ
︸︷︷︸

gradient component

+ curl(B)
︸ ︷︷ ︸

rotational component

[

curl(•) := ∇× (•)
]

We explain the link between curl and the antisymmetric component of the game Jacobian.
Recall that gradients of functions are actually differential 1-forms, not vector fields. Differ-
ential 1-forms and vector fields on a manifold are canonically isomorphic once a Riemannian
metric has been chosen. In our case, we are implicitly using the Euclidean metric. The
antisymmetric matrix A is the differential 2-form obtained by applying the exterior derivative
d to the 1-form ξ.

In 3-dimensions, the Hodge star operator is an isormorphism from differential 2-forms to
vector fields, and the curl can be reformulated as curl(•) = ∗d(•). In claiming A is analogous
to curl, we are simply dropping the Hodge-star operator.

Finally, recall that the Lie algebra of infinitesimal rotations in d-dimensions is given
by antisymmetric matrices. When d = 3, the Lie algebra can be represented as vectors
(three numbers specify a 3× 3 antisymmetric matrix) with the ×-product as Lie bracket. In
general, the antisymmetric matrix A captures the infinitesimal tendency of ξ to rotate at
each point in the parameter space.

B.2. Hamiltonian Mechanics

A symplectic form ω is a closed nondegenerate differential 2-form. Given a manifold with
a symplectic form, a vector field ξ is Hamiltonian vector field if there exists a function
H : M → R satisfying

ω(ξ, •) = dH(•) = 〈∇H, •〉. (4)

The function is then referred to as the Hamiltonian function of the vector field. In our
case, the antisymmetric matrix A is a closed 2-form because A = dξ and d ◦ d = 0. It may
however be degenerate. It is therefore a presymplectic form (Bottacin, 2005).

Setting ω = A, Equation (4) can be rewritten in our notation as

ω(ξ, •)
︸ ︷︷ ︸

A⊺ξ

= dH(•)
︸ ︷︷ ︸

∇H

,
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justifying the terminology ‘Hamiltonian’.

B.3. The Hodge Decomposition

The exterior derivative dk : Ωk(M)→ Ωk+1(M) is a linear operator that takes differential
k-forms on a manifold M , Ωk(M), to differential k + 1-forms, Ωk+1(M). In the case k = 0,
the exterior derivative is the gradient, which takes 0-forms (that is, functions) to 1-forms.
Given a Riemannian metric, the adjoint of the exterior derivative δ goes in the opposite
direction. Hodge’s Theorem states that k-forms on a compact manifold decompose into a
direct sum over three types:

Ωk(M) = dΩk−1(M)⊕Harmonick(M)⊕ δΩk+1(M).

Setting k = 1, we recover a decomposition that closely resembles the generalized Helmholtz
decomposition:

Ω1(M)
︸ ︷︷ ︸

1-forms

= dΩ0(M)
︸ ︷︷ ︸

gradients of functions

⊕Harmk(M)⊕ δΩ2(M)
︸ ︷︷ ︸

antisymmetric component

The harmonic component is isomorphic to the de Rham cohomology of the manifold—which
is zero when k = 1 and M = Rn.

Unfortunately, the Hodge decomposition does not straightforwardly apply to the case
when M = Rn, since Rn is not compact. It is thus unclear how to relate the generalized
Helmholtz decomposition to the Hodge decomposition.

B.4. Harmonic and Potential Games

Candogan et al. (2011) derive a Hodge decomposition for games that is closely related in
spirit to our generalized Helmholtz decomposition—although the details are quite different.
Candogan et al. (2011) work with classical games (probability distributions on finite strategy
sets). Their losses are multilinear, which is easier than our setting, but they have constrained
solution sets, which is harder in many ways. Their approach is based on combinatorial
Hodge theory (Jiang et al., 2011) rather than differential and symplectic geometry. Finding
a best-of-both-worlds approach that encompasses both settings is an open problem.

Appendix C. Type Consistency

The next two sections carefully work through the units in classical mechanics and two-player
games respectively. The third section briefly describes a use-case for type consistency.

C.1. Units in Classical Mechanics

Consider the well-known Hamiltonian

H(p, q) = 1

2

(

κ · q2 + 1

µ
· p2

)
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where q is position, p = µ · q̇ is momentum, µ is mass, κ is surface tension and H measures
energy. The units (denoted by τ) are

τ(q) = m τ(p) = kg·m
s

τ(κ) = kg
s2

τ(µ) = kg

where m is meters, kg is kilograms and s is seconds. Energy is measured in joules, and

indeed it is easy to check that τ(H) = kg·m2

s2
.

Note that the units for differentation by x are τ( ∂
∂x) =

1
τ(x) . For example, differentiating

by time has units 1
s . Hamilton’s equations state that q̇ = ∂H

∂p = 1
µ · p and ṗ = −∂H

∂q = −κ · q
where

τ(q̇) = m
s τ(ṗ) = kg·m

s2

τ
(

∂
∂q

)

= 1
m τ

(
∂
∂p

)

= s
kg·m

The resulting flow describing the dynamics of the system is

ξ = q̇ · ∂
∂q

+ ṗ · ∂
∂p

=
1

µ
p · ∂

∂q
− κq · ∂

∂p

with units τ(ξ) = 1
s . Hamilton’s equations can be reformulated more abstractly via symplectic

geometry. Introduce the symplectic form

ω = dq ∧ dp with units τ(ω) =
kg ·m2

s
.

Observe that contracting the flow with the Hamiltonian obtains

ιξω = ω(ξ, •) = dH =
∂H
∂q
· dq + ∂H

∂p
· dp

with units τ(dH) = τ(H) = kg·m2

s2
.

C.1.1. Losses in Classical Mechanics

Although there is no notion of “loss” in classical mechanics, it is useful (for the next section)
to keep pushing the formal analogy. Define the “losses”

ℓ1(q, p) =
1

µ
· qp and ℓ2(q, p) = −κ · qp (5)

with units τ(ℓ1) =
m2

s and τ(ℓ2) =
kg2·m2

s3
. The Hamiltonian dynamics can then be recovered

game-theoretically by differentiating ℓ1 and ℓ2 with respect to q and p respectively. It is
easy to check that

ξ =
∂H
∂p

∂

∂q
− ∂H

∂q

∂

∂p
=

∂ℓ1
∂q

∂

∂q
+

∂ℓ2
∂p

∂

∂p
.
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C.1.2. The Duality between Vector Fields and Differential Forms

Finally recall that the symplectic form in games was not “pulled out of thin air” as ω = dq∧dp,
but rather derived as ω = dξ♭, where ξ♭ is the differential form corresponding to the vector
field ξ under the musical isomorphism ♭ : TM → T ∗M .

It is instructive to compute ξ♭ in the case of a classical mechanical system and see

what happens. Naively, we would guess that the musical isomorphism is
(

∂
∂q

)♭
= dq and

(
∂
∂p

)♭
= dp. However, applying the naive musical isomorphism to ξ to get

ξ♭ =
∂ℓ1
∂q
· dq + ∂ℓ2

∂p
· dp

results in a type violation because

τ

(
∂ℓ1
∂q
· dq

)

= τ(ℓ1) =
m2

s

whereas

τ

(
∂ℓ2
∂p
· dp

)

= τ(ℓ2) =
kg2 ·m2

s3

and we cannot add objects with different types.

To correct the type inconsistency, define the musical isomorphism as

(
∂

∂q

)♭

=
µ

2
· dq and

(
∂

∂p

)♭

=
1

2κ
· dp

with inverse

(dq)♯ =
2

µ
· ∂
∂q

and (dp)♯ = 2κ · ∂
∂p

.

The correction terms in the direction ♭ : TM → T ∗M invert the coupling terms κ and 1
µ

that were originally introduced into the Hamiltonian for physical reasons. Applying the
corrected musical isomorphism to ξ yields

ξ♭ =
µ

2
· ∂f
∂q
· dq + 1

2κ
· ∂g
∂p
· dp =

1

2
(p · dq − q · dp) .

The two terms of ξ♭ then have coherent types

τ
(
∂ℓ1
∂q · µ · dq

)

= m
s · kg ·m = kg·m2

s

τ
(
∂ℓ2
∂p · 1κ · dp

)

= kg·m
s2
· s2kg ·

kg·m
s = kg·m2

s

as required. The associated two form is

ω := dξ♭ = −
(

µ · ∂2f

∂q∂p
− 1

κ
· ∂2g

∂q∂p

)

dq ∧ dp = −dq ∧ dp
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which recovers the symplectic form (up to sign) with units τ(ω) = kg·m2

s as required. Finally,
observe that

〈ξ, ξ♭〉 = 1

2

〈
p

µ
· ∂
∂q
− κq · ∂

∂p
, p · dq − q · dp

〉

=
1

2

(

κ · q2 + 1

µ
· p2

)

= H(p, q)

recovering the Hamiltonian.

C.2. Units in Two-Player Games

Without loss of generality let w = (x;y) where we refer to x as position and y as momentum
so that τ(x) = m and τ(y) = kg·m

s . The aim of this section is to check type-consistency
under these, rather arbitrarily assigned, units. Since we are considering a game, we do not
require that x and y have the same dimension—even though this would necessarily be the
case for a physical system. The goal is to verify that units can be consistently assigned to
games.

Consider a quadratic two player game of the form

ℓ1(w) =
1

2

(
x⊺ y⊺

)
(
A11 A12

A21 A22

)(
x
y

)

+
(
x⊺ y⊺

)
(
b1

b2

)

and

ℓ2(w) =
1

2

(
x⊺ y⊺

)
(
C11 C12

C21 C22

)(
x
y

)

+
(
x⊺ y⊺

)
(
d1

d2

)

We restrict to quadratic games since our methods only involve first and second derivatives.
We assume the matrices A and C are symmetric without loss of generality so that, for
example, A12 = A⊺

21. Adding constant terms to ℓ1 and ℓ2 makes no difference to the analysis
so they are omitted.

By Equation (5), the units for ℓ1 and ℓ2 should be m2

s and kg·m2

s3
respectively. We can

therefore derive the correct units for each of the components of the quadratic losses as

(

m kg·m
s

)





1
s

1
kg

1
kg

s
kg2









m

kg·m
s





︸ ︷︷ ︸

w⊺Aw

+
(

m kg·m
s

)





m
s

m
kg





︸ ︷︷ ︸

w⊺b

for ℓ1 and

(

m kg·m
s

)






kg2

s3
kg
s2

kg
s2

1
s










m

kg·m
s





︸ ︷︷ ︸

w⊺Cw

+
(

m kg·m
s

)






kg2·m
s3

kg·m
s2






︸ ︷︷ ︸

w⊺d

for ℓ2. It follows from a straightforward computation that the vector field ξ = ∂ℓ1
∂x

∂
∂x + ∂ℓ2

∂y
∂
∂y

has type τ(ξ) = 1
s as required.
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The presymplectic form ω = dξ♭ makes use of the musical isomorphism ♭ : TM → T ∗M .
As in Section C.1, if we naively define ( ∂

∂x)
♭ = dx and ( ∂

∂y )
♭ = dy then

ξ♭ =
∂ℓ1
∂x
· dx+

∂ℓ2
∂y
· dy

which is type inconsistent because τ(∂ℓ1∂x · dx) = m2

s and τ(∂ℓ2∂y · dy) =
kg2·m2

s3
.

C.2.1. Type-Consistency via SVD

It is necessary, as in Section C.1, to correct the naive musical isomorphism by taking into
account the coupling constants for the mixed position-momentum terms. In the classical
setup the coupling constants were the scalars 1

µ and κ, whereas in a game they are the
off-diagonal blocks A12 and C12.

Apply singular value decomposition to factorize

A12 = U⊺

ADAVA and C12 = U⊺

CDCVC

where the entries of the diagonal matrices have types τ(DA) =
1
kg and τ(DC) =

kg
s2
, and

the types of the orthogonal matrices U and V are pure scalars. The diagonal matrices DA

and DC have the same types as 1
µ and κ in the classical system since they play the same

coupling role.
Extending the procedure adopted in the Section C.1, fix the type-inconsistency by

defining the musical isomorphisms as

(
∂

∂x

)♭

= U⊺

AD−1
A UA · dx

and
(

∂

∂y

)♭

= V⊺

CD
−1
C VC · dy.

Alternatively, the isomorphisms can be computed by noting thatU⊺

AD−1
A UA = (

√
A12A21)

−1

and V⊺

CD
−1
C VC = (

√
C21C12)

−1.
The dual isomorphism ♯ : T ∗M → TM is then

(dx)♯ = U⊺

ADAUA ·
∂

∂x
and (dy)♯ = V⊺

CDCVC ·
∂

∂y

If

ξ =

(
A12y + b1

C21x+ d2

)

then it follows that

ξ♭ =

(
U⊺

AD−1
A UAb1 +U⊺

AUAy

V⊺

CD
−1
C VCd2 +V⊺

CVCx

)

with associated closed two form

ωτ = dξ♭ = −
(
U⊺

AVA −U⊺

CVC

)
dx ∧ dy.

where the notation ωτ emphasizes that the two-form is type-consistent.
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C.3. What Does Type-Consistency Buy?

Example 10 Consider the loss functions

f(x, y) = xy and g(x, y) = 2xy,

with ξ = (y, 2x). There is no function φ : R2 → R such that ∇φ = ξ. However, there is a
family of functions φα(x, y) = α · xy which satisfies

〈
ξ,∇φα

〉
= α · (x2 + 2y2) ≥ 0 for all α > 0.

Although ξ is not a potential field, there is a family of functions on which ξ performs gradient
descent—albeit with coordinate-wise learning rates that may not be optimal. The vector
field ξ arguably does not require adjustment. This kind of situation often arises when the
learning rates of different parameters are set adaptively during training of neural nets, by
rescaling them by positive numbers.

The vanilla and type-consistent 1-forms corresponding to ξ are, respectively,

ξ♭ = y · dx+ 2x · dy and ξ♭τ = y · dx+ x · dy

with

ω = dξ♭non = dx ∧ dy and ωτ = dξ♭τ = 0.

It follows that the type-consistent symplectic gradient adjustment is zero. Type-consistency
‘detects’ that no gradient adjustment is needed in example 10.
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