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DIFFERENTIABLE GROUP ACTIONS
ON HOMOTOPY SPHERES: III.

INVARIANT SUBSPHERES AND SMOOTH SUSPENSIONS
BY

REINHARD SCHULTZ1

Abstract. A linear action of an abelian group on a sphere generally contains a large
family of invariant linear subspheres. In this paper the problem of finding invariant
subspheres for more general smooth actions on homotopy spheres is considered.
Classification schemes for actions with invariant subspheres are obtained; these are
formally parallel to the classifications discussed in the preceding paper of this series.
The realizability of a given smooth action as an invariant codimension two sub-
sphere is shown to depend only on the ambient differential structure and an isotopy
invariant. Applications of these results to specific cases are given; for example, it is
shown that every exotic 10-sphere admits a smooth circle action.

In our previous papers in this series [45,44], we have considered the theory of
semifree actions on homotopy spheres as formulated by W. Browder and T. Pétrie
[10] and M. Rothenberg and J. Sondow [34]. Specifically, in the first paper a method
was presented for describing (at least formally) those exotic spheres admitting such
semifree actions—a problem first posed explicitly by Browder in [3, Problem l,p. 7]
—and the second paper extended the whole theory to handle certain actions that are
not semifree. This paper will treat another problem posed in Browder's paper
[3, Problem 3] regarding invariant subspheres of homotopy spheres with group
actions.

One motivation for considering this question is that linear actions on spheres
generally admit a great assortment of invariant linear subspheres (e.g., if the group is
abelian and the dimension is much larger than the group's order), and from this
viewpoint the existence of invariant subspheres reflects the extent to which an
arbitrary smooth action resembles some natural linear model. In particular, this idea
is central to the work of Browder and Livesay on free involutions [8] (compare also
[3]).

The existence of such subspheres is directly related to the realizability of actions
as equivariant smooth suspensions, providing basic necessary conditions for such a
realization. We shall also consider a dual problem in this paper; namely, the
description of those group actions that can be smoothly equivariantly suspended.
Questions of this sort first arose in the study of free involutions [16], and their close
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730 REINHARD SCHULTZ

relationship with the invariant subsphere problem was clarified in later work of
Browder and Livesay [8], Lopez de Medrano [29], and others.

Of course, there is no topological obstruction to suspending an action, and given
that exotic spheres roughly represent the simplest differences between the DIFF and
TOP categories, it is fairly predictable that the obstructions should involve groups of
homotopy spheres. Actually, these obstructions already arose in [45 and 49]; for
circle actions, the differential structure on the homotopy sphere is the obstruction to
smooth suspendabihty, while for cychc group actions one must supplement a
differential structure condition with an assumption that the action is isotopically
trivial.

We shall find it convenient to divide invariant homotopy subspheres into two
types. The Type I (homotopy) subspheres are those invariant içS such that the
action is free on 2 — K, while the Type II subspheres are more or less the others. An
important advantage of Type I subspheres is that the methods of [50] adapt easily to
discuss them.

Aside from its intrinsic interest, the invariant subsphere question—especially for
Type I subspheres—and the equivariant suspension construction figure importantly
in answering some basic questions about the smooth S ' and Zp actions that can exist
on a given exotic sphere. To illustrate the apphcability of these notions, we shall
construct a smooth S1 action on the generator of 01O = Z6, which previously had
not been shown to admit such an action (compare [41]). The results on invariant
subspheres in this paper also suffice to complete the proofs of some assertions in [44]
about realizing certain classes in irxiDiîf(S")) by continuous representations of the
circle group (see §4). More comprehensive apphcations will appear in papers IV-VI
of this series, including (i) a purely homotopy-theoretic characterization of those
exotic spheres admitting Zp ( p an odd prime) actions with a fixed point set of given
codimension and (ii) an inductive method for constructing smooth circle actions on
exotic spheres with Pontrjagin-Thom invariants ß2,... ,ßp_x G ir^P) (see [48] for a
partial summary).

There have been several previous studies of invariant subspheres, particularly in
the free case (e.g., see [3,8,9,12,13,17,18,19,25,29,55]). For the most part, such
studies have dealt with a class of invariant subspheres called characteristic (see §2 for
a description in our context; also compare [3], for example). Characteristic sub-
spheres of semifree and more general actions have also been studied in [3,9, and 56].

I am extremely grateful to Wu-chung Hsiang, Ted Pétrie, and Valdis Vijums for
discussing with me results of theirs which were unpublished, at least in 1976-1977
when the discussions took place. I would also like to thank Princeton University, the
Institute for Advanced Study, the University of Chicago, and the University of
Michigan for their hospitality while the manuscript for this paper was written.

1. Type I subspheres and their knot invariants. We are mainly interested in the
theory and applications of invariant subspheres for semifree actions. However, it is
just as easy to formulate everything for ultrasemifree actions as defined in [50, p.
267]. If G is abelian, an effective action is ultrasemifree if the set of isotropy
subgroups Gx ¥^ {1} has a unique minimal element (called the subprincipal isotropy
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DIFFERENTIABLE GROUP ACTIONS ON HOMOTOPY SPHERES 731

subgroup). In particular, Up is prime then every action of Zpr is ultrasemifree. If G
acts semifreely, then G itself is the subprincipal isotropy subgroup; in general, if H is
the subprincipal isotropy subgroup, then G acts freely on the complement of the
fixed point set of //.

As stated in the introduction, we shall be interested in triples 2 D K Z) F of
smooth homotopy spheres, where

(a) G = Zpr ip prime), Qr (generalized quaternion group), S\ or S3 acts
smoothly and ultrasemifreely on 2 with subprincipal isotropy bound (or group) H.

(b) K is a (/-invariant homotopy subsphere.
(c) F= KH = 2".

This will be the precise definition of an ultrasemifree action on 2 with an invariant
Type I i homotopy) subsphere. In order to organize our thoughts more efficiently, we
assume x E F is a fixed point and denote the equivariant tangent spaces at x in
F, K, and 2 by a, a + W, and a + V respectively; the G-modules W and V are free
G-modules, and we make the allowable assumption W E V. Denote the quotient
module V/W by Q. Since the triples in question all admit invariant Riemannian
metrics with K a totally geodesic submanifold and the decomposition a + W + Ü
may be assumed orthogonal, we shall assume such metrics have been chosen when
necessary.

Of course, a triple 2 D K D F defines two separate ultrasemifree G-actions, one
on 2 and one on K. Therefore by the results of [45] one has two knot invariants
associated to F — 2W = KH. It is natural to look for a relationship between these
two knot invariants. An obvious model for such a relationship is given by the normal
bundles associated to 2 D K D F; namely, the normal bundle viF, 2) is the sum of
viF, K) plus the restriction of viK, 2) to F (compare [21]).

In analogy with the situation for normal bundles, we need a third knot invariant,
that of K in 2. Let f denote the normal bundle of K; then the arguments of [45,50]
show that the composite

(1.1) S^fi) — S(f ) Ç 2 — K   {S = unit sphere or unit sphere bundle)

is a G-homotopy equivalence if dimRi2 > 3 and a G-homotopy retract if dimRß = 2.
Thus, as in [45,50], we may again define an equivariant fiber retraction S(f) -» S(fl),
and we shall denote this by u0iK E 2). This invariant takes values in the set

(1.2) F/0GQMeiK)    (see [41,44] for notation).

Remark. If F, K, and 2 are merely Z^-homology spheres, in analogy with [45] one
may define a knot invariant in F(p)/0G fi free rather than F/0C a free.

We can now state and prove a Sum Formula for knot invariants which parallels
the well-known identity for normal bundles mentioned above.

Theorem 1.3. Suppose that G as above acts ultrasemifreely on the triple 2 D K D F
with 2H = F = KH. Let i: F -» K denote inclusion. Then the knot invariants of F in 2
and K are related by the formula to(F E 2) = co(F E K) © i*u>0iK E 2), where
direct sum is defined as in [50, §2],
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732 REINHARD SCHULTZ

Remark. The identical argument also works for quadruples F E N E K El, with
F = N" = KH = 2" to show that <o0(JV Q 2) = «0(iV Ç #) © z'*w0(/i: Ç 2).

Proof. It will be helpful to introduce some notation. Let £, tj, and f denote the
equivariant normal bundles of F in 2, F in AT, and K in 2 respectively. As noted
before, we have £ = tj © /'*f. Therefore the following diagram is an equivariant
fiberwise pushout:

sir,)xFsii*n   -   siv)
(1.4) I i

S(i*n -     S(£)
Consider next the following commutative diagram:

K-F^

SiW) E Siv) -► (2 - K) - SiO.)

(1.5) SiW) x 5(S2) C5(t?) xF Sii*0 —» (2 - /T) - PW u S(ft)]

I     xc /
5(S2) C 5(/*f) > (2 - A) - 5(1V)/A

2-.K
By duality the three horizontal composites are equivariant homotopy equivalences.

However, 5(F) = SiW) * 5(ñ) is the pushout of SiW) *- 5(IF) X 5(ß) -» 5(ß),
and it follows that the equivariant retraction 5(tj © z'*f ) -* 5(F) is given by a
pushout construction; specifically, from the fiberwise join over F defined by

5(T,©/*n = 5(7,)*F5(/*n
into the representation of 5(F) as an ordinary pushout above.    D

In our subsequent work we shall be especially interested in the special case
dimRS2 = 2. Therefore we shall derive an important simphfication that occurs in this
case.

Proposition 1.6. If il is a free 2-dimensional G-module and X is an invariantly
pointed finite G-equivariant cell complex, then F/0G aheeiX) is trivial.

Proof. By induction and an exact sequence argument, it suffices to show
F/®Ha,ireeiX) 's a point where X = S" or 5"+ and H C G is an arbitrary closed
subgroup (compare [45, (2.9)] and the arguments of [50, §2-3]). But in these cases

F/Oh^JX) = 77„(5F„(ß), SCH(Q)),
and, as noted in [45], the latter groups are trivial.    D

Corollary 1.7. Suppose that G acts smoothly and ultrasemifreely on the homotopy
sphere 2 with subprincipal isotropy bound H, and let F — 2W. Assume in addition there
is an invariant homotopy subsphere K with dim 2 — dim K — 2. Then the knot invariants
satisfy uiFE 2) = (¿iFEK)@Q.    D
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DIFFERENTIABLE GROUP ACTIONS ON HOMOTOPY SPHERES 733

We shall conclude this section by outhning some consequences of 1.6 and 1.7
involving the exotic 8-sphere. The starting point is the following result from [50, §8].

Suppose that 51 acts smoothly and effectively on the exotic sphere 28. Then the fixed
point set of Z2 is 4-dimensional and the knot invariant of this fixed point set is
nontrivial for the associated Z4 action.

Using this, one may prove the following.

Proposition 1.8. Suppose that 51 acts smoothly and effectively on the exotic sphere
28. Then there is no invariant subsphere K6 such that 51 acts freely on 2 — K.

As explained in [39, Example 2.6], this result implies that certain homotopy classes
in 7r,(Diff 56) cannot be represented by representations of the circle group.

Proof of 1.8 (outline). Suppose such an action exists on a homotopy 8-sphere.
By [50, Proposition 8.3], the fixed point set F of Z2 is 4-dimensional, and it follows
that K6 is an invariant Type I codimension 2 subsphere for the associated Z4 action.
By 1.3, this implies that the knot invariant of the Z4 action is a direct sum of two
pieces. Specifically, if V represents the 4-dimensional normal representation to the
fixed point of Z2, then this splitting corresponds to a splitting of V = W © Ü with
W and fi both 2-dimensional. By 1.6, each of these summands must be trivial.
Therefore the knot invariant of the given action is trivial. Therefore [50, Theorem
8.12] implies that the ambient homotopy 8-sphere must be the standard sphere.    □

2. Groups of actions with Type I subspheres. We now consider the problem posed
in the introduction: Given an ultrasemifree G-homotopy (a + F)-sphere, when does
it admit a smooth invariant (a + W)-sphere of Type I? We shall approach this
problem using the groups 0^+ v as defined in [50, §6]. This will involve a systematic
generalization of the groups 0f+ v and the exact sequences into which they fit. Not
surprisingly, many of the necessary arguments are virtually word for word adapta-
tions of the arguments described in [50, §6]. In the interests of avoiding lengthy
duplications, we shall omit many of the particulars that involve word for word
generalization, concentrating instead on the necessary changes of notation. There-
fore, some familiarity with [50, §6] is probably very useful for understanding this
section, and it might be helpful to have that article available for quick reference
while reading the rest of this section.

The first step is to define groups of pairs of G-homotopy spheres

vAU ®(a+W*:a+V)

consisting of equivariant //-cobordism classes of triples (2, K, F) with 2 an oriented
G-homotopy (a + F)-sphere and K an oriented (a + W^-subsphere of Type I.2 As
usual, connected sum along the fixed point set and Type I subsphere defines an
addition (commutative if dim 2e s* 1) and inverses are defined by taking the

Such actions are frequently called "semilinear" in the literature.
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734 REINHARD SCHULTZ

opposite orientation. We may also define relative groups

(2.2) ®(a+H/«a+K,a+K)

consisting of a homotopy (1 + a + F)-disk A with a Type I invariant (a + W)-
sphere K C 2 = 3A. The following result is then elementary.

Proposition 2.3. There is an exact sequence

R F R.  ûC _, CíG r¡,G ûC
"* ^(a+W^a+V.a+V) "^ w(a+ W¡<*+ V)       ^a-t- V       KJ(a+ W- 1 ,a + V- 1 ;a+ V- I) '

where B denotes taking the boundary, F denotes forgetting the subsphere, and R denotes
removing a linear disk about a fixed point.    D

Thus we can solve the question at the beginning of this section up to h-cobordism if
we can calculate the image of F. If one is willing to introduce equivariant torsion as
in [33] and deal with groups of s-cobordism classes as in [50], then a result of
Rothenberg [33] allows an exact answer in many cases. In the specific cases we
consider later, the appropriate torsion groups vanish and the two notions coincide.

By itself, and even with the exact sequence of [50] for ®£+ v, the exact sequence of
2.3 gives no evidence of being effectively computable. However, the method of proof
for [50, (6.2)] immediately yields the following additional sequence.

Proposition 2.4. There is an exact sequence

0G

hS?+w+xiSiSl))      -      0(ca+^a+n       C*-W>        ©       -      //5aG+(4/(5(ß))

if dim ß > 3. If dim ß = 2, then a similar statement is true provided G — 51.

The symbol K denotes taking the Type I subsphere, while to denotes the knot
invariant of K in 2.

Proof (sketch). The case IF = 0 is just [50, (6.2)], and the proof of 2.4 is
essentially a word forward generalization of the proof for this special case. The
crucial fact needed to make this generalization is the homotopy equivalence of 5(ß)
and 2 — K. If dimß > 3, this is just the usual general position argument, while if
dim ß = 2 and G — S ' this follows by the argument used in [9].    D

Remark. If G is finite and dim ß = 2 one can formulate a similar result using the
methods of [12].

To study the image of F in Proposition 2.3 more clearly, we must interlock these
sequences with those from [50, §6]. The following exact ladder contains the crucial
information.
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DIFFERENTIABLE GROUP ACTIONS ON HOMOTOPY SPHERES 735

Proposition 2.5. There exists a commutative diagram with exact rows as follows:

^+fV(FW/0W)
©

- hS^TiS(W) E 5(F))     -0(Ga+^Ca+n     *      ^(F(W)/0(W))       -
©
QÇ/H

A' i A i a J,

^(F(V)/0(V))

- hS?+x(S(V)) -0G *     @

Here is an explanation of the notation: The superscript WS means "weakly split";
in other words, a homotopy equivalence that is Poincaré transverse to the submani-
fold such that the induced map of triads is a homotopy equivalence of triads. There
are three components of the map x, the first being the knot invariant of K in 2, the
second being the knot invariant of F in K, and the third being the equivariant
/z-cobordism class of F. Since the proof offers no surprises, we shall not present it
(the second row is already in [50]).    D

To conclude this section, we shall describe the relationship between the results
presented above and the more specialized notion of a characteristic subsphere, which
has been studied in several previous papers (for example, see [3,20, or 56]). An
invariant subsphere K E 2 of Type I is characteristic if the equivariant degree 1
collapse map 2' -» Sa+V can be made equivariantly smoothly transverse to sa+w
such that K is the latter's transverse inverse image. The smoothness must be
emphasized because the knot invariant construction implies that one can always
make this collapsing map equivariantly Poincaré transverse. In fact, we have the
following elementary criterion for characteristic subspheres.

Proposition 2.6. An invariant subsphere K E 2 is characteristic if and only if the
knot invariant of K in 2 vanishes.    D

An extensive study of semifree actions on spheres with characteristic subspheres
appears in the thesis of V. Vijums [56]; since his methods generalize immediately to
ultrasemifree actions, we shall present everything in that context. Vijums defines
groups of G-homotopy spheres with characteristic Type I subspheres that are
analogous to (2.1) and will be denoted by

"(o-l- ^<«+ V),c

in this paper. Elaborating on Proposition 2.6, we can relate Vijums' groups to ours
with the following exact sequence, in which <x> denotes the knot invariant:

(2.7)
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736 REINHARD SCHULTZ

If we combine (2.7) and Proposition 1.6, we obtain the following easy observation.

Corollary 2.8. Suppose that dim^ß = 2. Then ®^a+xv^a+v),c an<i ©<o+ wza+ v)
are isomorphic.    D

In general the map « in (2.7) is nonzero (numerous examples will appear in Part
IV), and thus there is a substantial difference between characteristic subspheres and
subspheres that are merely invariant. Each is worth studying for separate reasons.

3. Existence theorem for Type I subspheres. In this section we shall apply the
machinery of §2 to establish a partial converse to Corollary 1.7. We shall use this
result in Part IV to construct circle actions on certain exotic spheres. The discussion
here is limited to circle actions; for a treatment of finite group actions in a similar
spirit see [56].

Theorem 3.1. Let 5' act ultrasemifreely on 2, where dim 2 is even (we adopt the
usual notation from §§1 and 2 henceforth). Suppose that the tangent space at a fixed
point decomposes as a + V — a + W+ ß with ß an irreducible free 5' -module. Then
there is an invariant Type I subsphere Ka+W in 2 up to h-cobordism if and only if the
knot invariant of 2 lies in the image of

i®ü),:naciF{W)/OiW))^^iF{V)/0{V))        (G = S1 here).

Invariant codimension 2 subspheres have been much studied, particularly in the
free case; papers of Browder [3], Cappell and Shaneson [12,13], Homer [17,18], H.
T. and M. C. Ku [20], Montgomery and Yang [30] and Stoltzfus [55] give a
representative sampling of such results.

Proof. We shall use the exact ladder of Proposition 2.5: The "only if part is a
restatement of Corollary 1.7, so we shall consider only the "if part henceforth. By
construction x'(2, 5') lies in the image of a, say as a(w, F); recall that F(ß)/0(ß)
is equivariantly contractible by 1.6. We claim that (w, F) lies in the image of x-

The main step is to construct an 5'-homotopy (a + IF)-sphere K with KH = F
and knot invariant W with K nonequivariantly diffeomorphic to the standard
sphere. Once this is known we may proceed as in [44] to construct a "smooth
5'-suspension" as follows: As in [44], there is an equivariant diffeomorphism
Arx5'-5|a+H/,X5', where 51 acts trivially on the standard sphere 5|a+ ^. Then
we have the manifold
(3.2) 2' = KXD2 U2/)la+H'+'lX5',

which defines an element of Qfa+w^a+v) with x(^', 5') = («, F). By the exact
sequence of [42,(1.1)], the existence of the K depends upon whether the image of
(co, F) in hS^iSiW)) is zero. By the surgery exact sequence and the triviality of
Lodd(l), it is enough to show that the associated normal invariant is zero. This will
follow from the commutativity of the diagram below (for semifree actions this was
discussed in [45, Proposition 2.7]):

tt?(F(W)) ^hS?(S(W)) -*[S" Ac(S(W)+),F/0]
(3.3) I restriction Î

■n-ac(F(V)) ̂ hS£(S(V)) ^[S° AG(S(V)+), F/0]
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DIFFERENTIABLE GROUP ACTIONS ON HOMOTOPY SPHERES 737

To see the assertion on normal invariants, note that (w © ß, F) goes to zero in
//5G(5(F)) (a fortiori in [5a AG(5(F))+ , F/0]) because it comes from the action
on 2; hence exactness of the sequence in [50, §4] implies (co © ß,, F) goes to zero on
the bottom row. Thus (3.3) implies that (w, F) goes to zero on the top row. We now
need to show that K is the standard sphere. But (w © ß, F) h> 0 in the normal
invariant group implies (by [40, §3]) that the Pontrjagin-Thom invariant of K goes to
zero under the map

f*:[s^AG(s(W)+),F/o]^nd¡mK(F/0).

The former is the normal invariant group associated to //5G+](5(IF)), and the
vanishing of L^O) implies this normal invariant map is onto. Thus if we assume
piK) — f*y, we may take an element of r/5G+] which projects to -y under the map

to obtain a new action on some K' with the same F and the samehSa + 1 0.a+W
knot invariant, but piK') = 0. Since the Pontrjagin-Thom invariant is injective for
even-dimensional exotic spheres, this means K' is the standard sphere. Thus even if
the original K is not standard we can make a simple alteration to obtain a standard
sphere.

Therefore, in the notation of 2.5, 2 - Ail.') lies in the image of //5aG+1(5(F)). If
we can show that A' is onto, then it will follow that 2 itself lies in the image of A.

To prove the surjectivity of A', start out with any representative/: Y -» Z)a+1
xcS(F) °f a given class in //5G+1(5(F)). Without loss of generality, / is already
smooth and transverse to Da+X XGSiW) with transverse inverse image Y'. Then
f\Y' is a simply connected odd-dimensional relative normal map, and this is
relatively normally cobordant to a homotopy equivalence; let {Y", g0) denote such a
relatively normally cobordant homotopy equivalence. By a relative version of the
normal cobordism extension theorem (see [6, p. 221; 4 and 7, Chapter VI]), (T, /) is
relatively normally cobordant to iZx,gx) with gx transverse to Z)a+1 XC5(H/),
g,-1 = Y", and g, | Y" = g0 (see Figure 3.1 for the construction of this normal
cobordism).

Normal   cobordism
from Y'   to  Y"

Y   x   I

t ^| Pullback of complex line
bundle

Figure 3.1
Let T" be a suitably small closed tubular neighborhood of Y" in Z, (e.g., half the

disk bundle in Figure 3.1), and let F be a tubular neighborhood of/J>°+' XC5(IF)
in Da+1 XC5(F) so that Z, - Int T" maps to Da+! XG5(F) - Int E and aT"
maps to 3£. Then g, | Z, — Int T" is a normal map that is a homotopy equivalence
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738 REINHARD SCHULTZ

on the boundary, and another application of simply connected surgery imphes it is
normally cobordant to a homotopy equivalence keeping the boundary pieces fixed.
Let W0 be the extending normal cobordism shown in Figure 3.1, let IF, be the new
normal cobordism with the boundary held fixed, and consider the union W = W0
Uz _Intr» Wx. If Z denotes the manifold obtained by attaching 3IF, — (Z, — Int T")
to T" along aT", then W defines a normal cobordism between/and g: Z -» Da+i
XG5(F), where g is split along Z)°+1 XG5(IF). It follows from [11,Lemma 8.La]
that ( Y, f ) lies in the image of A '.    D

0     ¿,-int  T      1

z

zl

Figure 3.2
We now specialize to semifree circle actions and prove a "desuspension theorem

in the stable range." This was in fact the starting point for the proof of Theorem 3.1,
and I am grateful to Wu-chung Hsiang for bringing this phenomenon to my
attention. The techniques of T. Pétrie [31] may be used to give an alternate proof of
this result and similar "desuspension theorems" for finite group actions (also see
[56, §4]).

Proposition 3.4. In the notation of Theorem 3.1, assume that 5' acts semifreely and
dim a < dimR W — 1. Then 2 admits an invariant Type I subsphere.

Proof. If the stabilization map ttg(F(JF)/0(H/)) -» 7rG(F(F)/0(F)) is onto, then
the result is true up to //-cobordism by Theorem 3.1. However, the surjectivity of
stabilization follows from the spectral sequences of [40] under the assumption
dim a < dim R W — 1. Finally, in the situation at hand it is elementary to show that
all equivariant //-cobordisms are products, so existence up to //-cobordism is equiva-
lent to existence itself.    D

4. Smooth suspensions of circle actions. In §3 we discussed the problem of finding
an invariant Type I subsphere of codimension two. There is also a dual question:
Given a group action on a homotopy sphere, when is it an invariant codimension
two subsphere for an action on a larger homotopy sphere? The previously cited
papers on free actions give fairly specific information in that case. Also, it has been
known for some time that for semifree circle actions it is necessary [9] and sufficient
[43, §2] for an invariant codimension two subsphere of Type I to have the standard
differential structure. If we view the larger sphere as a smooth suspension, this
condition is a natural one for forming cones in the smooth category. In this section
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DIFFERENTIABLE GROUP ACTIONS ON HOMOTOPY SPHERES 739

we shall formulate some smooth 5'-equivariant suspension constructions precisely
and apply them to strengthen an observation in [41]. We noted there that every
exotic sphere of dimension < 13 that bounds a spin manifold admits an effective
smooth circle action. For this range, nonspin boundaries occur only in dimensions 9
and 10. The results of [46] imply that every exotic 9-sphere admits a smooth semifree
circle action, and Theorem 4.4 below completes the picture by constructing circle
actions on all exotic 10-spheres. Such actions cannot be semifree because [38 and 45]
combine to rule out all possible dimensions for the fixed point set for a generator of
0,0 = Z6, and thus the sort of construction given here is about the simplest possible.
The method is also useful for constructing smooth circle actions on elements of 0„
with order not a prime power; we shall illustrate this with an infinite class of
examples generalizing the generators of 0,o.

To abstractify the smooth suspension construction, we begin with a representation
ß of 5' and a finite subgroup H C 5'. As in [50] we may define the groups of
homotopy ^-spheres 0^ for G = H or 51, and there is a canonical forgetful
homomorphism

(4.1) ®f^%".
As in work of Rothenberg dealing with the semifree case [32], these forgetful maps
may be fit into a long exact sequence

(4.2) ejftf- e/ - %" i ejfw* -»...,
where the &HS are groups of 5'-homotopy spheres whose //-restrictions bound
//-homotopy disks. The map j merely cuts out the interior of a closed linear disk. In
order to avoid conflict with [32 and 42], we shall denote the relative groups in the
exact sequence for the forgetful map 0^ -» 0dim ß by 5^. We then have the following
result.

Proposition 4.3. There is a well-defined homomorphism
„. fyH.s' _^ as'

(////= 1 take Sß as the domain) such that a(A, 3A = 2) has 2 as an invariant
codimension two subsphere. The representation \[/H is the realification of the complex
representation (z, t>) -» z^v.

Proof. We shall simply describe the construction as it applies to representatives
of the //-cobordism classes; verification that it passes to a well-defined homomor-
phism is routine and left to the reader.

Consider the manifold 2 X Di\j/H), where D denotes the associated disk of the
representation. The boundary of this manifold is 2 X Si4/H) — 2 X 5'///. It is well
known that 2 X 5'/// is canonically 5' isomorphic to 5' Xw(2 | //) [2, Exercise
9,p. 113], which bounds 5' XWA. Therefore we may form the equivariant smooth
suspension

a0(A,2) = 2X/)(^w)us5' X„A.
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It is a routine exercise to verify that a0(A, 2) is an 5'-homotopy iß + ^H)-sphere,
and the existence of a codimension two subsphere 5' isomorphic to 2 is immediate
from the definition.    D

Using this suspension construction we shall prove that the generator (and in fact
every element) of 0,o admits a smooth circle action.

Theorem 4.4. Let 2'° generate the image of€)x0 — Z6. Then ievery multiple of)1
admits a smooth action as an Sl-homotopy (4 + Re(/2 + 2t))-sphere.

Proof. We may decompose 01O as Z2 © Z3, the first summand being generated
by a preimage of pxt] (in trxo) and the second being generated by a preimage of jS,.
The first summand admits an action of the type described by results of G. Bredon
[1], and by taking connected sums along the fixed point set it suffices to prove that
the second summand admits such an action. We shall prove this using 4.3 and
[45, Theorem 3.2] (equivalently, [50, Theorem 4.8]); in order to apply these results,
we shall require highly detailed information about the exact sequences of type
[42, (1.1)] (equivalently [50, (6.2)]) in which the groups

G\S[ G>S' fiz2"4 + 3C' ^4 + 2C' W4 + 4R

lie. One part of this problem is essentially surgery-theoretic, and another involves
explicit calculations for the homotopy groups of equivariant function spaces using
the machinery of [40].

We shall use some special notation from [40] that deviates from our usual notation
in this paper, [45], and [50]; this will make several computational statements in the
proof easier to express. The equivariant function spaces Fsi(C) and FZ(R") (free
linear actions on the appropriate spheres) will be denoted by GC„ and GR„
respectively.

We shall divide the computational proof that "j8,"GE 0,o has the desired circle
action into three steps.

Step 1. Consider a semifree circle action on "/}," with 54 as its fixed point set
(e.g., take the action constructed in [41]). This action has a knot invariant in
77-4(GC3/l/3) that we wish to determine; specifically, we claim it is nontrivial. If an
action on 2'° with 4-dimensional fixed point set has trivial knot invariant, by
exactness of [42,(1.1)] it comes from an element of hS^CP2) = /z5(CP2 X (55, D4))
and the differential structure is given by the composite

hS5iCP2) -[55(CP2+ ), F/0] -*10(F/0)

(compare [39]). However, the image of ßx in ir,o(F/0) is easily seen to be outside the
image of g* (consider the splitting F/0(3) = BSO{3) X Cok 7(3) and the 9-connectivity
of Cok 7(3)).

The group 774(GC3/Í73) may be computed by the spectral sequences of [40]; it is
cyclic of order 24, and in the spectral sequence of [40] for w4(GC3) it corresponds to
£™3 = E23 s 7T3. By taking connected sums along the fixed point set 8 or 16 times
we may assume that the action's knot invariant generates the 3-torsion of 7r3. But
w6(53) -> 7T3 is onto at 3, and it follows by 3.1 that 2 admits a Type I invariant
subsphere AT8.
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Remarks on Step 1. (i) In this particular case one can construct the invariant
subsphere directly from the description of the action in [41]. The existence of K was
first brought to my attention by Wu-chung Hsiang using an argument as in 3.1.

(ii) The existence of AT8 was mentioned and used in [44, §2].
Step 2. We shall use A"$ to perform an equivariant suspension as in 4.3 with

H = Z2 rather than the choice H = {1} which is appropriate to the semifree case.
To use 4.3 we must show thai the induced involution on A"8 bounds a Z2-homotopy
disk. Ulis is unavoidably computational, the key points being as follows:

(i) The group AS^CP'J) is zero by the surgery exact sequence, and by exactness
of [42,(1.1)] 04 j2C is detected by the knot invariant.

(ii)) By the spectral sequences of [40] and their morphisms [40, §3,5], elements of
order 3 in 7r4(GC3/£/3),goto zero in w4(GR6/06).

((uf) By (ü) and exactness of [42,(1.1)], the induced involution on K lies in the
inugeof A55(RP3).

((irv) By exactness of the surgery sequence, the group //55(RP3) is finite and
2-tprimary.

Step 3. Let Mm tee a smooth suspension ¡of A"8 as in 4.3, with H = Z2. We claim
that M10 has order ¡(divisible by) 3, which suffices to complete the proof. To see this,
we consider the knot invariant for the restricted action of Z3 on Ml0. Two applica-
tions of 1.7 show that the Z3 knot invariants of 2 and M are both stabilizations of
the knot invariant of K. It follows from [45,217 and 50,4.3] that the Pontrjagin-Thom
invariants of M and 2 have the same images under the map

T,o(f/0)<3) -[54Z5'(Z3), F/0]O).

To show they are equal, by the Puppe sequence .h su ff ices to show that

[55L3(Z3),F/O](3)-%0(.F/O)<3)

is zero; but, as before, this follows from the splitting F/0(3) * BS00) X Cok J(3) and
the 9-connectivity of Cok /(3).    D

The same method of proof yields an infinite family of further examples.

Theorem 4.5. Suppose that p = 3 (4) is a prime. Then there are smooth S' actions
on the homotopy (2p2 — 2p — 2)-spheres with Pontrjagin-Thom invariant pm-q + ßt
im = 4/c2 - 2k- 1).

Proof. Bredon's results again imply that pmi] is realized by an 5'-homotopy
((2p - 2) + Reint + i2))-sphere, so it remains to prove the same is true of /?,. The
construction begins with the semifree 5' actions on such spheres having fixed point
set S2p~2 [43]. A process of elimination as forp = 3 (plus the splitting of F/0(p) and
the (2p2 - 2p - 3)-connectivity of Cok J(p)) yields the knot invariant. Specifically,
it comes from Erx2p_2{p) = Tr2p_3(p) in the spectral sequence for it2p-2(GCn+x).
Furthermore this knot invariant desuspends to w2i,_2(GC„), and consequently the
action admits an invariant codimension two Type I subsphere K (compare Remark
(ii) to Step 1 in the proof of 4.4 and [44, (2.5)]).

We now claim that a connected sum of q copies of this action along the fixed
point set, for some q = 1 mod p, the induced involution on K bounds a homotopy
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disk. These follow as before because hS2 x(CP"~l) and hS2p_xiRP2n~x) are finite
of order prime top, w2;i_2(GCn) hasp-component Z , and &2p^2 has nop-torsion.
Using this and the previously mentioned facts about F/0(p) and Cok 7(/)), the
argument may be concluded as before in the special case p — 3.    D

5. Smooth suspensions of cyclic actions. As in §4, one can ask whether a given Zk
action on a homotopy sphere A"" is an invariant Type I subsphere of codimension
two in another such manifold 2"+2 with group action. Motivated by the results of
[49] and those cited in §4 for circle actions, it seems reasonable that one obstruction
involves the differential structure on K". Since a homotopy «-sphere which embeds
in another with codimension two bounds a parallelizable manifold (compare [24]), at
any rate we know that the differential structure is significantly restricted if « is odd
and indeed standard if n is even. Further remarks appear at the end of this section.

On the other hand, as suggested by [49, Theorem 2.1], there is also a second
obstruction involving the isotopy map Zk -» 7r0(Diff 5") s 0n+1 (the isomorphism
follows from [14] and the generahzed Poincaré conjecture, and the map is well
defined—and not merely so up to conjugacy—because the codomain is abelian). A
brief justification for the assertion regarding isotopy classes and suspension con-
structions is given in Proposition 5.1. Before doing this, we establish an elementary
identity involving the mapping torus of a smooth Zk action. Given a smooth Zk
action on a homotopy sphere A", define an associated homotopy sphere B"+l as
follows: Let 0„+1 = ir0(Diff(Z)n, Sn~1)) map to 7r0(Diff A") by extending a diffeo-
morphism on D" E A" that is the identity near the boundary to all of ^4", it is well
known that this extension homomorphism is onto (compare [37, Proposition 2.2]).
Let y E 7r0(Diff A") be the image of the standard generator expi2mi/k) E Zk in the
homotopy group under the isotopy map of the action; then B"+] is defined to be a
homotopy sphere that maps to y via the extension homomorphism.

Lemma 5.0. The manifold A XZk 5' is diffeomorphic to A" X Sl#B"+l.

Proof. The manifold in question is the mapping torus of y, and y is the image of
B. It follows as in [5] that this mapping torus of y is just 5' X A#B as claimed.    D

Proposition 5.1. Suppose that Zk acts smoothly and orientation preservingly on
2" + 2 with K" as an invariant Type I subsphere. Assume that K" is nonequivariantly
diffeomorphic to S", and the difference of tangent spaces at a fixed point x E K is a
faithful representation of Zk in S02. Then the isotopy homomorphism Zk -» 0„+1 is
trivial.

Proof. The normal bundle of A" in 2 is trivial by the results of §1. By 5.0, the
orbit manifold is 5" X 5'#//"+1, where //"+l is the exotic sphere corresponding to
the image of a generator of Zk in 0n+,.

Let W = 2 - Int(K X D2), and let

W=I,-lnt(KXD2)/Zk.
It follows from the spectral sequence of the covering pair (W, 5') -» (IF, S]/Zk =
5') that W is an integral homology circle with boundary 5" X 5'#//"+l. If we
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perform surgery on the embedded circle in the boundary, we may add a 2-handle to
W and obtain a manifold X with boundary H"+l. However, calculations using the
Seifert-van Kampen theorem and Mayer-Vietoris sequences imply that X is a
contractible manifold, and consequently H"+] must be the standard sphere. In other
words, the isotopy representation must be trivial. D

There is also an elementary converse to 5.1.

Proposition 5.2. Suppose that Zk acts smoothly on K", which is nonequivariantly
diffeomorphic to S", and assume that the isotopy map ty: Zk -> 0„+1 is trivial. Then
there exists a smooth Zk action on a homotopy sphere 2"+2 with K" as an invariant
Type I subsphere.

Proof. Consider the manifold K" Xz 5'; which by 5.0 is just the mapping torus
for a generator of the Zk action. But this generator is isotopic to the identity, and
hence K" Xz 5" is diffeomorphic to 5" X 5' (compare [49]). Since the map
S"XSA KiZk, 1) giving the connected Afold covering of 5" X 51 factors through
D"+l X 5', it follows that K" X 5' bounds a free Z^-manifold W"+2 homotopy
equivalent to 5' and such that the diagram below commutes:

K"XSl

\

I 5'
/

W" + 2

Therefore we may form the Z ¿.-manifold 2 = A" X Z)2 U W, which is a homotopy
sphere with the prescribed sort of Zk action.    D

As in §4, one can make the smooth suspension construction into a group
homomorphism; however, the setup is slightly more delicate than in 4.3 because one
also must include explicit isotopies to the identity. For this it is convenient to know
that the isotopies may be chosen to have good properties. The following result,
which is essentially a routine consequence of the isomorphism 7r0(Diff(D", 5"~')) =
w0(Diff 5"), provides such information; the proof is left as an exercise.

Lemma 5.3. Suppose that Zk acts smoothly on the homotopy sphere K", where K" is
nonequivariantly diffeomorphic to S" and the isotopy map is trivial. Suppose that the
local representation ofZk at a fixed point x E K is extended to a representation V" of
5' with the same fixed point set. Then there is a smooth map ty: 5' X K" -* K" such
that:

(i) ty | Zk X K" is the group action,
(ii) ty is Zk-equivariant,

(hi) ty | (z) X K is a diffeomorphism for all K",
(iv) there is a closed ty-invariant disk D" in K" on which ty is equivalent to the

representation V.    D

Remark. As in [44], it is generally not possible to choose ty to be a circle action.
We shall say such mappings ty are good isotopic trivializations of a Zk action.
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The construction is now straightforward. Let %Syk consist of all «-cobordism
classes of (K| ZA)-homotopy spheres K" together with

(i) nonequivariant contractible coboundaries for the A"",
(ii) good isotopic trivializations of the group action.

As usual, connected sums at fixed points in "^-linear disks" make these into abelian
groups, and by the techniques discussed in this section one can prove the following
result.

Theorem 5.4. There is a well-defined homomorphism

a: %Sfr - e&c
(C = standard 2-dim rep of Zk C 5') such that a(K, A, ty) has K as an invariant
codimension two subsphere of Type I.

Proof (sketch). Consider the manifold K Xz 5', which we know is homotopy
equivalent to 5" X 5'. By the construction of ty we can in fact say that there is a
homotopy equivalence of triads

(K; D", K" - \nt D") XZj5' ^iS",D"+ ,£>_",) X 51

which is a diffeomorphism over D"+ X5'; in other words this defines a class in
«5„(5') s 0n © 0„+1. Since A" is a standard sphere and the action is isotopically
trivial, the previous arguments show this class must vanish; likewise, the previous
construction carries through to give a smooth double suspension of a given action,
which is well defined up to the original //-cobordism relation.    D

Remark 5.5. One can attempt a twisted smooth double suspension even if K"
merely bounds a 77-manifold as follows: Suppose we have a smooth embedding
K" E Sn+2 such that the Á>fold cyclic branched cover along K is again a homotopy
sphere. Let C = 5"+2 — Int K" X D2, and let C denote its fc-fold cyclic covering.
Now suppose that Zk acts smoothly on K", the transformations being isotopic to the
identity. It then follows as before that K" XZ/¡ 5' is diffeomorphic to A"" X 5'. Let
/: (A"", Zk) X 5' — (K", trivial action) X 5' denote the induced equivariant diffeo-
morphism of k-iold covering spaces. Then

2"+2 = K" X D2 U; C

is a homotopy sphere, it has a smooth Zk action, and K" is an invariant Type I
subsphere.

Given K", one can actually construct such a cyclic branched covering using
techniques of Cappell and Shaneson [11,53] (also compare [12, §11]). Consequently,
one can always find smooth (twisted) double suspensions of Zk actions on boundaries
of 77-manifolds provided the group transformations are isotopic to the identity. To
see that this happens in many cases, consider the realizations of elements in bPn + x as
Brieskorn varieties; these yield large special orthogonal group actions, and the
induced actions of cyclic subgroups give large families of isotopically trivial actions.
In fact, the circle actions themselves are good isotopic trivializations in our sense.
For Zk actions with a connected positive-dimensional fixed point set, one may also
obtain examples as in [41, §6]; namely, if Zk acts on K" in this way, then the
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connected sum (along the fixed point set) of k copies of this action is isotopically
trivial. This is particularly useful if k is relatively prime to the order of bPn + x.    D

6. Groups of actions with Type II subspheres. In this section we shall look briefly
at the existence and classification problem for group actions on homotopy spheres
with Type II homotopy subspheres. To simplify matters, we limit the discussion to
semifree actions. One outside motivation for interest in such objects comes from
Z X Z actions on homotopy spheres. In this case, if we restrict the action to
Z X (1), then usually the fixed point set of {1} X Zp is a Type II invariant
subsphere. It is possible to proceed further along these lines and refine these ideas to
study smooth Z X Zp actions on homotopy spheres in the spirit of [50] (an outline
of these results appeared in [51]).

Of course, the basic examples of invariant Type II subspheres arise from linear
representations, and thus we first focus on some linear models. Given a compact Lie
group G acting linearly and semifreely, let a and ß be nonzero free G-modules with
a E ß, and let k > / be positive integers. Then 5/+a (notation of [52]) is an invariant
Type II subsphere of Sk+ß.

The existence question for Type II subspheres is embarrassingly trivial to answer.

Proposition 6.1. Let k, I, a, ß be as above, and let I. be a G-homotopy ik + ß)-
sphere with x0 E 2 a fixed point. Then 2 admits an invariant Type II homotopy
(/ + a)-subsphere K with x0 E K.

Proof. Since an invariant neighborhood of x0 is G-diffeomorphic to the G-module
R* X Eiß), it suffices to check this for the latter with 0 replacing x0. But if v is a
unit vector in R* = R*~ ' X R, we may take K to be the unit sphere in R' X R X Eia)
about v, composed with the standard inclusion of the latter in R*~' X R X £(a) Ç
Rk X Eiß).    D

We turn now to classify pairs (2, K) of G-homotopy ik + /?)-spheres 2 with
invariant Type II (/ + a)-subspheres K. When using such notation we shall often
write F = 2G and E = KG without further comment.

As usual, one can define a group structure (almost always abelian) on //-cobordism
classes of such objects by connected sum, and the resulting groups will be called
aa+a-ik+ß)- We shall describe how one fits this group into an exact sequence
formally parallel to (2.3). For reasons of space the proofs will be either sketched or
omitted.

In the classification of semifree actions, the equivariant normal bundle of the fixed
point set is a key object. The corresponding item for elements of 8tG+a«ï*+«) is a
smooth invariant regular neighborhood of F U K. It is possible to discuss this
concept abstractly using [15,19, and 22], for example, but in our situation it is
probably simpler to view the regular neighborhood Ä2 as the plumbing of the
equivariant normal disk bundles of F and A" along their intersection E (see the
comments below).

As for semifree actions, the central themes of our classification are the construc-
tion of a G-homotopy equivalence from 3/?2 to the corresponding object 3/?LIN from
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the linear action and the observation that G-homotopy equivalence extends to
2 — Int Z?2 -» Sk+a — Int RLm. The G-homotopy equivalence of 3Ä2 will be de-
fined indirectly through invariants resembling knot invariants. Specifically, to define
a homotopy smoothing of 3ÄLIN we first need (i) a homotopy sphere Fk as a
candidate for the fixed point set, (ii) a G-homotopy sphere Kl+a as a candidate for
the Type II subsphere and (iii) a smooth embedding of E = KG in F. In addition to
this we need bundle data to complete the plumbing process. The precise statements
and data needed are more easily understood with an explicit description of R, so we
shall construct a standard example beginning with S1 X Dk~' X Diß), rounding the
corners, and gluing on £>'+' X 5*~'~' X J-/)(/?) and Dl+l X \Dk~' X 5(a)
X \Diß — a) with corners suitably rounded as usual.

Unfortunately, the notation now becomes extremely tedious in complete general-
ity, and therefore we shall assume a = ß and I < k — 3 henceforth (see Addendum
6.8 for the case a < ß). In this case we may take R = Sk X Dia) U Dk X Sa with
rounded corners.

The following result yields the desired key step in setting up the exact sequence.

Proposition 6.2. Let 2 be a G-homotopy ik + ß)-sphere with invariant Type II
subsphere Kl+a. If R^ is an invariant closed regular neighborhood of F U A", then there
is a canonical equivariant G-homotopy equivalence 3/?2 -» 3ÄLIN.

Proof. We may decompose 3/?2 as 5(pf|F — DivE F)) U SivK\K— DivEK)),
the intersection being the fiberwise product

SivF\E)XES{vK\E).

A similar decomposition was given before for the linear model, where all normal
bundles are trivial.

By the usual homological considerations and the equivariant Whitehead theorem,
2 — K has the equivariant homotopy type of sk~'~x (with trivial group action).
Consequently, we obtain a canonical equivariant fiber retraction SivK) -» Sk~l_1 in
addition to the knot invariant retraction SivF) -* 5(a). By construction, the homo-
topy trivialization of SivK) extends the homotopy trivialization of SivE F) given in
Levine's work [23]. We can now plumb together the two fiber homotopy trivializa-
tions of SivK) and 5(ef) along S(rF) XES(vK) to form the required homotopy
equivalence 3/?2 -> dRLlN.    D

The two fiber homotopy trivializations correspond to the knot invariant in
previous cases, but a little care is needed to give a precise definition because the
homotopy trivializations have a consistency condition built into them as noted
above. Specifically, the knot invariant of K is classified by an element of
[Sk+a/G,Gk_i/Ok_l], and its restriction to 5* matches the invariant of F under the
map Skl -> ■nkiGk_,/Ok_,) from [23] (here Gm denotes the selfmaps of 5m~'). It
follows that the knot invariant of A" in 2 and the knot type of E are determined by a
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canonical class on the homotopy pullback Tin the following diagram:

Y i     F(syG,Gk_,/Ok_,)

(6.3) I J,eval. at zero

«WO*-/     -     Gk-t/Ok-i

This uses the isomorphisms @kj s ir¡iPDk_l/Ok_l) of [35]; as in [23,35] the fiber of
/ and hence/ is G/PL because k — I > 3. On the other hand, the inclusion of 5' in
Sl+a/G = 5' * [5(a)/G] is nullhomotopic, and hence one has that

(6.4) 7r/(T) = P/©[5'+VG,G,_//0,_/],   where P, = »,(G/PL).
To complete description of the exact sequence, we must describe 3ÄLIN and

Sk+a _ jnt ^LiN explicitly.

Proposition 6.5. We have the following G-diffeomorphisms:
(i)   5*+a - 5* U 5/+a =* (R' X Eia) - [R1 U £(a)]) X (H*"' - {0}) = R/+2 X

Sk-t-i x ^
(ii) 3ÄLIN - 5/+1 X 5*-'-' X 5(a).

(in) 5*+a - Int RLXN « Dl+2 X 5*-'-1 X 5(a).    D

These are all routine verifications.
It follows that the homotopy smoothing in 6.2 has codomain 5/+l X 5*_/_1 X

5(a)/G; if one is more careful with the construction, a homotopy smoothing of
triads into

(5/+1, D'+\ Dl+')X 5*-'"' X 5(a)/G
is obtained which is a diffeomorphism over D'+K In other words, one gets an
element of hS/+xiSk~'~] X 5(a)/G). Furthermore, as in the cases without invariant
subspheres, one can extend the homotopy smoothing to a homotopy equivalence
from 2 - Int Ä2/G to Dl+2 X Sk~'~i X 5(a)/G. Proceeding further along these
familiar lines, one finally obtains the desired exact sequence.

Theorem 6.6. The following sequence is exact:

©

[Sl+a/G,G^/O,.,]
©

• • • «S/+2(s*-'-' X^}l®°+^kJa'b^d)P^hSl+liSk-i-> X 5(«)/G)- ■ •

©
0G

Explanation. The map T is a gluing map comparable to the usual map
«5¿ + ,(5(a)/G) -» 0c+a, the maps a and d give the invariant subspheres F and A",
the maps b and c carry the knot type of E E F and the knot invariant of A", and it is
given by the plumbing construction described in the proof of 6.2.    D
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For the record we note an immediate consequence of the above discussion.

Corollary 6.7. Given 2 as above with invariant Type II subsphere K and
(F, E) = (2G, A"G), then E bounds a parallelizable submanifold of F.    O

Addendum 6.8. The case a < ß. A similar analysis is possible using the splitting
V(E 2) = V(E F) ® "(E,K) ® ¿ where all three summands are now positive dimensional.
One can again define an equivariant fiber retraction for p(£)2), and it splits into fiber
retractions over (i) an equivariant fiberwise closed regular neighborhood NF of
Si"(E F)) m Siv(E,z.))' (ü) the boundary of (i) as given, (iii) and (iv) likewise with K
replacing F and (v) the subbundle 5(p(£ 2)) — IntiJV,. U A^). The fiber restrictions
in (i)—(iv) involve restrictions of the knot invariants of F and K to E, and (v) serves
as a substitute for an equivariant fiber retraction of the remaining subbundle 5(£)
over E.
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