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We introduce a novel differentiable hybrid traffic simulator, which simulates
traffic using a hybrid model of both macroscopic and microscopic models and
can be directly integrated into a neural network for traffic control and flow
optimization. This is the first differentiable traffic simulator for macroscopic
and hybrid models that can compute gradients for traffic states across time
steps and inhomogeneous lanes. To compute the gradient flow between two
types of traffic models in a hybrid framework, we present a novel intermediate
conversion component that bridges the lanes in a differentiable manner as well.
We also show that we can use analytical gradients to accelerate the overall
process and enhance scalability. Thanks to these gradients, our simulator can
provide more efficient and scalable solutions for complex learning and control
problems posed in traffic engineering than other existing algorithms. Refer to
https://sites.google.com/umd.edu/diff-hybrid-traffic-sim for our project.
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1 INTRODUCTION
Automobile traffic is a dynamic phenomenon that emerges from the
interactions of a multitude of distinct entities, and its complexity has
led analysts to rely on simulations to solve complex real-world traffic
problems, such as signal control, congestion, road design, and urban
planning [Lieberman and Rathi 1997]. Traffic simulation has become
increasingly more important due to population growth, fast-growing
technologies, and demands for autonomous driving. Autonomous
driving agents need accurate and efficient models to simulate all types
of plausible traffic scenarios to capture corner cases and accelerate
learning-based training that requires data not easily available from
real-world capturing [Akhauri et al. 2020].

Techniques for traffic simulation can be broadly classified as either
macroscopic or microscopic based on their modeling assumptions.
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Fig. 1. Traffic simulation in an urban environment. Traffic simulation
can be used to analyze complex traffic dynamics. Among two popular
traffic models, by simulating areas of interest with the microscopic
one and using macroscopic simulation elsewhere, we can reduce the
overall computational cost without compromising significant details.
For instance, the center of intersection can be simulated with discrete,
agent-based models for higher-fidelity inter-vehicle dynamic interaction.
(This scene is rendered in CARLA [Dosovitskiy et al. 2017].)

Macroscopic models describe traffic evolution as a system of partial
differential equations (PDE), and the traffic state is represented as
a continuum of values across the road network. Since we treat vehi-
cles as particles translated by convection under this assumption, it
is computationally efficient but provides coarse simulation results.
In contrast, microscopic models represent traffic through individual
vehicles, or agents, that are evolved individually and which together
characterize the traffic state of the road network [Sewall et al. 2011].
Therefore, this approach gives us fine-grained details but often re-
quires much more computation resources than macroscopic models.

In this work, we propose to adopt both microscopic and macro-
scopic models to create a more general traffic simulator that is differ-
entiable (Figure 1). This kind of hybrid approach has already been
proven to simulate large-scale traffic environments much more effi-
ciently than either of the approaches while maintaining integrity [Se-
wall et al. 2011]. Here we leverage the power of the hybrid approach
to support large-scale traffic scenes, which will be demonstrated
in our experiments. During simulation, our framework computes
gradient information that provides abundant insight into traffic dy-
namics. This approach results in enhanced sample efficiency in our
simulation, as each sample of traffic simulation comes with gradient
information explaining how and why such an event has occurred.
Moreover, this differentiability allows us to integrate our framework
with neural networks to support a wide range of traffic control, plan-
ning, management, and flow optimization problems.

We first derive the analytical formulation of the differentiable
traffic models for both macroscopic and microscopic paradigms. The
resulting representations can simulate traffic on road networks for
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any metropolitan region more efficiently. Furthermore, we present a
probabilistic method to convert traffic states between macroscopic
and microscopic ones, which is also differentiable. With this novel
differentiable traffic simulation model, we can find near-optimal
solutions to some traffic problems that were otherwise not previously
solvable, and we can do so efficiently. To summarize, in this paper
we introduce the following main results:

• Derivation of a differentiable macroscopic traffic model based
on ARZ model [Aw and Rascle 2000; Zhang 2002] (Sec. 3);

• Analytical formulation of differentiable Intelligent Driver Model
[Treiber et al. 2000] for agent-based vehicle dynamics (Sec. 4);

• Differentiable conversion between deterministic and proba-
bilistic instantiation of two traffic models (Sec. 5);

• Application of the first differentiable hybrid traffic simulation
framework to traffic control (Sec. 6).

In our experiments, we observe up to an order of magnitude speedup
in runtime performance, in both forward simulation and back propa-
gation process, compared to a baseline differentiable simulator based
on automatic differentiation.

2 PREVIOUS WORK
2.1 Traffic models
The preponderance of macroscopic models are based on the density
and flux of the traffic flow; [Lighthill and Whitham 1955; Richards
1956] suggested one of the earliest models based on this idea; the
LWR model is a non-linear PDE on the density of vehicles. To
overcome the limitations of this model, [Payne 1971; Whitham 2011]
added a momentum term to the LWR model, which allowed for more
complex traffic dynamics than before. However, modeling traffic flow
as isotropic [Cassidy and Windover 1995; Daganzo 1995] led to non-
physical behavior, such as negative velocity. Based on the observation
that traffic flow is anisotropic, [Aw and Rascle 2000; Zhang 2002]
modified the momentum term in the previous model. The ARZ model
has been used to visually simulate the traffic flow [Sewall et al.
2010], and to solve traffic congestion problems [Yu and Krstic 2019].
Because of the basic assumption, the computational cost of these
macroscopic models is proportional to the length of the simulated
road, not the number of vehicles therein. Therefore, they are often
more computationally efficient than the other models for large-scale
environments. However, they are not suitable for simulations where
fine details, such as the behavior of individual vehicles, are needed.

Microscopic models describe the motion of individual vehicles,
typically tracking velocity, the bumper-to-bumper distance to its lead-
ing vehicle, and the relative velocity between them [Kesting et al.
2007]. The research history dates back to [Gazis et al. 1959, 1961]
and [Newell 1961]. Modern variations of the model often include
behavioral traits of individual vehicles, which make the simulation
more realistic and descriptive. [Bando et al. 1995; Gipps 1981; Jiang
et al. 2001; Treiber et al. 2000] are such models. These models
are widely adopted in current agent-based traffic simulators, such
as [Lopez et al. 2018]. Since every individual vehicle observes its
surrounding environments and decides its actions in these models,
we can get more fine-grained details of vehicle motions than in the

macroscopic models. However, their computational cost is propor-
tional to the number of vehicles in the scene, which makes them
harder to be adopted for large-scale simulations.

Hybrid models seek to combine these models in various fashions
to take advantage of their complementary properties; [Bourrel and
Lesort 2003; Magne et al. 2000; Mammar et al. 2006; Sewall et al.
2011] fall into this category and show the computational gains we
can get from these models. This hybridization is commonly a spatial
one, with different parts of a network running under distinct regimes.
That is, these models often simulate only the regions of interest
with microscopic models for accuracy and use macroscopic models
elsewhere to maintain the overall flow correctness while attaining
computational efficiency. This typically necessitates a technique for
converting between different traffic flow representations [Bourrel and
Lesort 2003]. In this work, we adopt this hybrid approach to support
large-scale scenarios and let our simulator be more general so that
users can select the simulation modes based on their needs.

2.2 Differentiable models
Differentiable models have been widely used in graphics and robotics
applications like visualization [Li et al. 2018; Nimier-David et al.
2019], design [Cascaval et al. 2021; Du et al. 2020], and control [Hei-
den et al. 2021]. This paradigm enables gradient information to flow
across complicated functions, and facilitates the machine learning
process by improving sample efficiency [Mora et al. 2021; Shen et al.
2021]. They often show better results in finding optimal solutions for
various high-dimensional problems [Hu et al. 2020; Ma et al. 2021].

Related to traffic simulation, there especially have been a num-
ber of differentiable simulations for a variety of systems including
rigid bodies [de Avila Belbute-Peres et al. 2018; Qiao et al. 2020],
ariticulated bodies [Qiao et al. 2021b], soft bodies [Du et al. 2021;
Geilinger et al. 2020; Qiao et al. 2021a], cloth [Li et al. 2022], and
fluids [Holl et al. 2020; Takahashi et al. 2021].

Because many traffic models are differentiable in nature, we can
apply this technique to traffic simulation and control. Recently, [An-
delfinger 2021] has presented a differentiable agent-based traffic
simulation, and showed how it can be used to solve traffic signal
control problems. However, the scope of this work was limited to
microscopic models for traffic, and the implementation relies on
automatic differentiation, which can be computationally inefficient.
In addition to traffic, this hybrid differentiable simulation framework
can potentially generalize to other large-scale, multi-agent systems,
such as crowds, insects, fluids, grains, etc. [Colas et al. 2022; Hädrich
et al. 2021; He et al. 2020; Ishiwaka et al. 2021] as well.

3 MACROSCOPIC MODEL
In a macroscopic traffic model, traffic evolution is described by a
system of Partial Differential Equations (PDEs) on the road network.

3.1 Formulation
The ARZ [Aw and Rascle 2000; Zhang 2002] model describes ve-
hicle flow in a single lane of traffic through the following system of
differential equations in one dimension:

q𝑡 + f (q)𝑥 = 0, f (q) = q𝑢 =

[
𝜌𝑢

𝑦𝑢

]
(1a)
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where q(𝑥, 𝑡) = [𝜌 (𝑥, 𝑡), 𝑦 (𝑥, 𝑡)]⊺; 𝜌 denotes the density of traffic
(cars per car length), 𝑦 is the relative flow of traffic, and 𝑢 is the
velocity of traffic. As per the notation, these terms are observed at
a certain position 𝑥 at a time 𝑡 , and they are related to each other as
follows:

𝑦 (𝜌,𝑢) = 𝜌
(
𝑢 − 𝑢eq (𝜌)

)
(1b)

𝑢eq (𝜌) = 𝑢max
(
1 − 𝜌𝛾

)
(1c)

where 𝑢max denotes the maximum velocity, or speed limit, of the
given lane, and 0 < 𝛾 < 1 is a constant tuning parameter. Concep-
tually, 𝑢eq represents a ‘comfortable’ velocity based on density. We
used 𝛾 = 0.5 in all of the experiments.

Note that the system (1a) is a conservative system, where the sum
of 𝜌 and 𝑦 over the entire lane is conserved, excluding the incoming
and outgoing fluxes at the borders of the lane.

3.2 Numerical Solution
Conservation laws like the ARZ system of PDEs are typically dis-
cretized with the Finite Volume Method (FVM) [LeVeque et al. 2002]
and integrated explicitly in time. The discretized quantities in a lane
are Q𝑛

𝑖
, where 𝑛 refers to the time step and 𝑖 refers to the 𝑖th cell.

The solution procedure follows:

(1) Compute wave speeds _ and fluxes f (from Eq. (1a)) by solving
the Riemann problem at the interface of each adjacent cell.

(2) Compute global time step Δ𝑡 ≤ max |_ |; in this work we
choose a conservative, constant Δ𝑡 .

(3) Integrate: Q𝑛+1
𝑖

= Q𝑛
𝑖
− Δ𝑡

Δ𝑥 [f (q(𝑏)) − f (q(𝑎))]. q(𝑎) and

q(𝑏)) are the intermediate states identified between
(
Q𝑛
𝑖−1,Q

𝑛
𝑖

)
and

(
Q𝑛
𝑖
,Q𝑛

𝑖+1

)
respectively. Δ𝑥 is the length of cell 𝑖.

Details can be found in [Sewall 2011]; Appendix A.1 reproduces
the six relevant cases for the ARZ Riemann problems.

3.3 Differentiation
Our differential technique built on this requires analytical gradients
of the above; these gradients form the basis of still other gradients
that are used in solving more complex traffic control problems.

In our update scheme, we compute the gradients of Q𝑛+1
𝑖

using
Q𝑛
𝑖−1,Q𝑛

𝑖
, and Q𝑛

𝑖+1:

𝜕Q𝑛+1
𝑖

𝜕Q𝑛
𝑖−1

= − Δ𝑡

Δ𝑥

[
−f ′(q(𝑎)) 𝜕q(𝑎)

𝜕Q𝑛
𝑖−1

]
(2a)

𝜕Q𝑛+1
𝑖

𝜕Q𝑛
𝑖

= I − Δ𝑡

Δ𝑥

[
f ′(q(𝑏)) 𝜕q(𝑏)

𝜕Q𝑛
𝑖

− f ′(q(𝑎)) 𝜕q(𝑎)
𝜕Q𝑛

𝑖

]
(2b)

𝜕Q𝑛+1
𝑖

𝜕Q𝑛
𝑖+1

= − Δ𝑡

Δ𝑥

[
f ′(q(𝑏)) 𝜕q(𝑏)

𝜕Q𝑛
𝑖+1

]
(2c)

We thus need the Jacobian f (q) and the partial derivatives 𝜕q(𝑎)
𝜕Q𝑛

𝑖−1
,

𝜕q(𝑎)
𝜕Q𝑛

𝑖
, 𝜕q(𝑏)

𝜕Q𝑛
𝑖

, 𝜕q(𝑏)
𝜕Q𝑛

𝑖+1
; this arises from differentiating solutions to

Riemann problems as shown in Appendix A.2. The analytical gradi-
ents computed here play an important role in accelerating our traffic
simulator, as shown in Section 6.

3.3.1 Time step sizes. We have derived these gradients under
the assumption that Δ𝑡 is constant and satisfies the CFL and stability
conditions [LeVeque et al. 2002] for the entire simulation. It would
be possible to have a dynamic Δ𝑡 , since this is also differentiable
(the speed _ is determined by the eigenvalues of the flux function f).
However, for the sake of the hybrid approach we ultimately use, we
use a constant Δ𝑡 to ensure that the microscopic simulation is stable.

3.3.2 Continuity issues. We have computed the gradients above
assuming that the update scheme is differentiable, and in fact, we can
see that it is continuous and piece-wise differentiable across most
cases suggested in Appendix A.

We do not prove it thoroughly here, as it is generally trivial when
we keep in mind that lim𝑢𝑙→𝑢𝑟 q𝑚 = q𝑙 . However, Case 1 is excep-
tional; there is a shock between the phase states 𝑞𝑙 and 𝑞𝑚 , which
makes the two states discontinuous. Specifically, we cannot guaran-
tee that 𝑞𝑚 converges to 𝑞𝑙 when _𝑠 < 0 converges to 0. Therefore,
the gradients we compute when _𝑠 is near zero could become un-
stable. However, in most cases in our simulation, these cases rarely
happened and did not affect the quality of our solution even when
we used the possibly unstable gradients as they are; it is possible that
numerical viscosity plays a role here.

4 MICROSCOPIC MODEL
In a microscopic traffic model, traffic flow is described by interactions
between multiple discrete vehicles that follow certain rules. Here
we use the Intelligent Driver Model (IDM) [Treiber et al. 2000] to
simulate such vehicles.

4.1 Formulation
Under the microscopic viewpoint, we can describe the state of a
discrete vehicle as

q(𝑡) =
[
𝑝 (𝑡)
𝑣 (𝑡)

]
, (3)

where 𝑝 and 𝑣 denote the position and velocity of the vehicle respec-
tively for a given time 𝑡 .

Using these states to describe discrete vehicles occupying a lane,
IDM describes the motion of each individual vehicle based on its
relationship with the vehicle directly ahead of it; the leading vehicle.
For the 𝑖th vehicle, let ℎ(𝑖)th its leading vehicle. According to the
IDM, the acceleration of the 𝑖th vehicle is determined as follows:

Δ𝑝 = 𝑝ℎ (𝑖) (𝑡) − 𝑝𝑖 (𝑡) − 𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖) (4a)

Δ𝑣 = 𝑣𝑖 (𝑡) − 𝑣ℎ (𝑖) (𝑡) (4b)

𝑠opt = 𝑠min + 𝑣𝑖 (𝑡)𝑇pref +
𝑣𝑖 (𝑡)Δ𝑣

2
√
𝑎max𝑎pref

(4c)

𝑎𝑖 (𝑡) = 𝑎max

[
1 −

(
𝑣𝑖 (𝑡)
𝑣targ

)𝛿
−
(
𝑠opt

Δ𝑝

)2]
(4d)

There are various hyperparameters included in the model. They
characterize a vehicle’s motion; see Appendix B.1 for more details. In
our experiments, we randomly initialized those hyperparameters for
every single vehicle. Note that we compute 𝑠opt before we compute
the acceleration term. It represents the optimal space that the vehicle
should have to avoid collision to its leading vehicle.
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With the acceleration 𝑎𝑖 (𝑡), we can update the vehicle’s state using
Euler’s method.

4.2 Differentiation
Based on this update scheme, we can compute the analytical gradients
of the IDM. Since the derivation is straightforward, we offer the
analytical gradients in Appendix B.2. Note that compared to the
macroscopic model, there is no significant theoretical challenge that
we have to deal with in the IDM.

5 MACRO-MICRO-MACRO CONVERSION
Our traffic simulation can transition between the continuous, flow-
based macroscopic model and the discrete, agent-based microscopic
model. We need to consider the differentiation across the interfaces.

5.1 Macro to Micro
Given a lane in the macroscopic regime that flows into a microscopic
lane, we must convert the continuous representations therein to dis-
crete vehicles at their junction. This can be done in a deterministic or
stochastic fashion.

5.1.1 Deterministic Instantiation. Assume that 𝜌 (𝑡) is the density
of the traffic flow at the end of a macro lane on time 𝑡 , and 𝑣 (𝑡) is
the velocity. We can set a flux capacitor (c.f. [Sewall 2011]) at the
interface; this counts the total number of vehicles 𝑁𝑑 (𝑡) that have
reached this point:

𝑁𝑑 (𝑡) =
⌊∫ 𝑡

0
𝜌 (𝑡)𝑣 (𝑡)𝑑𝑡

⌋
(5)

where ⌊𝑥⌋ is the floor function that gives the greatest integer less
than or equal to the real number 𝑥 . 𝑁𝑑 (𝑡) will then start from 0, and
we will instantiate a vehicle when it increases by 1. The velocity
of the instantiated vehicle is set to be the macroscopic traffic flow’s
velocity.

5.1.2 Stochastic Instantiation. Another possible interpretation
of the macro to micro conversion is as a Poisson process. The flux of
the traffic flow can be viewed as the intensity of a Poisson process.
In each time step of length 𝑑𝑡 , the number of instantiated vehicles
𝑋 (𝑡) follows a Poisson distribution 𝑋 (𝑡) ∼ 𝑃 (𝜌 (𝑡)𝑣 (𝑡)𝑑𝑡), 𝑃 (𝑋 =

𝑘) = 𝑒−𝜌 (𝑡 )𝑣 (𝑡 )𝑑𝑡 (𝜌 (𝑡)𝑣 (𝑡)𝑑𝑡)𝑘𝑘!−1. Similarly, the total number of
vehicles 𝑁𝑠 (𝑡) can be expressed as

𝑁𝑠 (𝑡) =
∫ 𝑡

0
𝑋 (𝑡) (6)

As above, the velocity of the emitted discrete vehicle is the velocity
of the macroscopic state at the junction of the two lanes.

5.2 Micro to Macro
Compared to the macro to micro conversion, agent-based information
can be converted to a continuum representation more simply. The
density of a cell at the interval (𝑙, 𝑟 ] in a macro lane can be defined as

𝜌 (𝑙, 𝑟 ) = 1

𝑟 − 𝑙

𝑛∑︁
𝑖=1

1(𝑙,𝑟 ] (𝑝𝑖 ) (7)

where 1(·) is the indicator function that identifies vehicles that lie in
the interval, 𝑛 is the number of vehicles and 𝑝𝑖 is the position of 𝑖𝑡ℎ

vehicle. The velocity of this cell can be the average velocities of all
the vehicles therein.

5.3 Differentiation
We have described two types of discrete processes: instantiation
of vehicles, and the indicator function. Automatic differentiation is
able to compute the gradients of velocities 𝑣 but cannot handle the
gradients of densities 𝜌 . To backpropagate derivatives to the densities
𝜌 , we first create an ancillary variable 𝑎𝑖 = 1 for each discrete vehicle.
We rewrite Equation 7 as:

𝜌 (𝑙, 𝑟 ) = 1

𝑟 − 𝑙

𝑛∑︁
𝑖=1

1(𝑙,𝑟 ] (𝑝𝑖 ) · 𝑎𝑖 (8)

Since we always set 𝑎𝑖 = 1, the equation constantly holds for forward
simulation. But 𝑎𝑖 can also receive the gradients for discrete vehicles
from the following macro lanes. Let 𝐿 be the loss function; then for
each vehicle in (𝑙, 𝑟 ]:

𝜕𝐿

𝜕𝑎𝑖
=

𝜕𝐿

𝜕𝜌 (𝑙, 𝑟 ) (9)

The next challenge for differentiation is the vehicle instantiation
process in the macro to micro conversion. We will start with the
deterministic strategy: assume that the total number of vehicles reach
𝑛 and 𝑛 + 1 at time 𝑡1 and 𝑡2, respectively. We therefore have the
following equation

𝑛 + 1 = 𝑛 +
∫ 𝑡2

𝑡1

𝜌 (𝑡)𝑣 (𝑡)𝑑𝑡 = 𝑛 + 𝑎𝑖 (10)

where the 𝑖𝑡ℎ vehicle is the one instantiated at 𝑡2. So for 𝑡 ∈ (𝑡1, 𝑡2],
𝜕𝐿

𝜕𝜌 (𝑡) =
𝜕𝐿

𝜕𝑎𝑖
𝑣 (𝑡)𝑑𝑡 (11)

For the stochastic case, we can first compute the expectation value
of the total number of vehicles according to the Poisson distribution

𝐸 [𝑁𝑠 (𝑡)] =
∫ 𝑡

0
𝐸 [𝑋 (𝑡)] =

∫ 𝑡

0
𝜌 (𝑡)𝑣 (𝑡)𝑑𝑡 . (12)

We notice that the expectation value of 𝑁𝑠 (𝑡) is the same as the flux
capacitor in the deterministic strategy. Similarly, we can find time
𝑡1 and 𝑡2 when the total number of vehicles reach 𝑛 and 𝑛 + 1. For
all time step 𝑡 ∈ (𝑡1, 𝑡2], 𝜕𝐿

𝜕𝜌 (𝑡 ) = 𝜕𝐿
𝜕𝑎𝑖

𝑣 (𝑡)𝑑𝑡 . Intuitively, if 𝜕𝐿
𝜕𝑎𝑖

≤ 0,
it means the density is higher than the desired level and we need to
decrease the intensity of the Poisson process. We will also validate
in our numerical experiments that such estimation of gradients can
effectively optimize our objective function.

6 EXPERIMENTAL RESULTS
We show the effectiveness of our differentiable hybrid traffic simu-
lator with application to solve a variety of traffic problems. We first
show that we can accelerate the differentiable traffic simulator with
the analytical gradients that we have computed above by comparing
it against a baseline simulator using automatic differentiation. At the
same time, we will justify the use of the hybrid model by comparing
its computation time with other approaches in large-scale scenarios.
Then, we prove the correctness and efficacy of our analytical gradi-
ents by solving parameter estimation problems. Lastly, we conduct
experiments with traffic control problems to illustrate how we can
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integrate our simulator with neural networks and how we can use our
simulator to solve real-world traffic problems.

We have implemented our traffic simulator with Python, and used
PyTorch 1.9 [Paszke et al. 2019] for automatic differentiation. All
experiments were run on an Intel® Xeon® W-2255 CPU @ 3.70GHz,
and traffic rendering was mainly based on our own implementation
on Unity Engine.

6.1 Acceleration
6.1.1 Analytical Gradients. Here we present how our analytical
gradients can contribute to the acceleration of both forward simula-
tion and backward propagation in our simulator. We have compared
our simulator to the baseline simulator that relies on automatic dif-
ferentiation to compute the gradients in the system. For all of the
simulations, we have computed the gradients of the states at the
last time step with respect to the states at the initial time step. For
macroscopic and microscopic simulations, we used a single lane.
For hybrid simulation, we used 3 lanes, which is the minimum case
to cover both macro-to-micro and micro-to-macro conversion. The
first and third lanes are set as macroscopic lanes and the second one
is a microscopic lane. To show how the computation time changes
with the scale of the simulation, we have experimented with different
scales of settings.

Table 1 shows that our analytical gradient allows us to run both
forward simulation (FW) and back propagation (BP) of the system
much faster than the baseline framework. In macroscopic and hybrid
simulations, the speedup was up to 4x times for forward simulation,
and 18x for back propagation. In the microscopic simulation, the
speedup was up to 6x times for forward simulation, and 7x times
for back propagation. This shows the computational efficiency of
our framework, which is necessary to implement large-scale traffic
simulation.

6.1.2 Hybrid Model. In this paper, we selected the hybrid model
to run large-scale traffic simulations in interactive time, while not
losing their fidelity. To justify this design choice, here we present
the average frame rate for simulating a large environment, which
includes approximately 10K vehicles. Note that we can specify the
ratio 𝜖 of the vehicles which would be simulated using a microscopic
model; 𝜖 could be regarded as an interpolant between the two models,
where 𝜖 = 0 means macroscopic and 𝜖 = 1 means microscopic
approach. We measured the average frame rate for different 𝜖 using
single core; see Figure 2. Note that the average frame rates decreases
as 𝜖 increases and thus the simulation becomes more "microscopic".

6.2 Parameter Estimation Problem
One of the most fundamental problems that we can solve with our
framework is the parameter estimation problem. There are many
parameters involved in our system; the speed limit is the most typical
example. In our formulation, we focus on retrieving preceding states
in the system based on given subsequent ones. The simplest form of
this problem would be, assuming 0 ≤ 𝑡 ≤ 1, estimating the initial
state q(0) given the last state q(1). This problem is considered to be
the most basic formulation to solve, as it only requires fundamental
gradients computed analytically.

Table 1. Comparison of our technique against automatic differentiation
for various types of simulations. Scale denotes number of time steps
taken and the number of cells (for macroscopic, and hybrid)/ number of
vehicles (microscopic). FW: forward simulation; BP: backpropagation.
Ours outperforms autodifferentiation in both forward passes and back-
propagation, by up to a factor of 18.77, 7.84, and 15.27 in macroscopic,
microscopic, and hybrid traffic simulation, respectively.

Scale 10/1K 50/5K

M
ac

ro
sc

op
ic

FW(Auto) 5.28s±0.16s 125.88s±5.66s
FW(Ours) 1.42s±0.04s 30.06s±0.88s
Speedup 3.71x 4.19x
BP(Auto) 2.42s±0.20s 71.08s±6.01s
BP(Ours) 0.18s±0.03s 3.79s±0.25s
Speedup 13.73x 18.77x

M
ic

ro
sc

op
ic

FW(Auto) 1.54s±0.08s 66.74s±1.67s
FW(Ours) 0.45s±0.02s 10.86s±0.24s
Speedup. 3.42x 6.15x
BP(Auto) 1.58s±0.06s 45.36s±0.95s
BP(Ours) 0.20s±0.03s 7.10s±0.42s
Speedup 7.84x 6.39x

H
yb

ri
d

FW(Auto) 11.81s±0.42s 310.67s±15.02s
FW(Ours) 3.41s±0.06s 66.52s±0.47s
Speedup 3.47x 4.67x
BP(Auto) 2.70s±0.11s 111.06s±3.09s
BP(Ours) 0.38s±0.02s 7.27s±0.13s
Speedup 7.13x 15.27x
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Fig. 2. Comparison on the average frame rate (FPS) under the hybrid
model, with different 𝜖. The total number of vehicles is set to be 10K,
and the 𝜖 value denotes the ratio of microscopic vehicles among them.

In our experiments, the simulation length was set as 10 seconds for
every setting. Theoretically, we can use any simulation lengths for
this experiment, but we found out that too long simulation lengths
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(a) Macroscopic (b) Microscopic

(c) Hybrid (Macro-Micro-Macro) (d) Hybrid (Micro-Macro-Micro)

Fig. 3. Parameter estimation problem. For given final states of the
system, one has to estimate the initial states that lead to the final states.
(a)–(d) Our results rendered in blue exhibit much faster convergence
to the correct solutions than the other state-of-the-art gradient-free
optimization methods by up to one order of magnitude.

make this problem much harder than it should be and 10 seconds is a
proper length to prove our approach’s efficacy. Under this setting, we
have to estimate the initial traffic states that would end up in the given
final traffic states in 10 seconds. For a proposed estimate qest (0), we
can compute the estimation error with the following loss function,
where 𝑛 denotes the size of the state vector:

𝐿 =
1

𝑛
|q(1) − qest (1) |2

We have compared our framework with other gradient-free opti-
mization algorithms: CMA-ES [Hansen 2006], SLSQP [Kraft et al.
1988], and Nelder-Mead [Nelder and Mead 1965] algorithm. Exper-
iments were run five times with randomly initialized initial states
for each of the algorithms and for each of the simulation modes.
In the hybrid setting, we used 3 sequentially connected lanes. One
of the experiments was done for macro-micro-macro lanes, and the
other was done for micro-macro-micro lanes. The loss graph for each
setting is shown in Figure 3. We can observe that our framework
retrieves more precise initial states faster than other algorithms for
every setting.

6.3 Traffic Control Problems
Our differentiable traffic simulator can be integrated with neural net-
works to enhance its ability to learn and control a given task. To test
our framework’s capability, we have experimented with the “inter-
section signal control problem” (ITSCP) for macroscopic and hybrid
simulation, and the pace car problem for microscopic simulation.

For all the experiments, we used two fully connected layers as
our neural network, where each of the layers has 256 nodes. The
neural network is trained to emit proper control input, which would

Fig. 4. 4x4 Grid of Intersections. Hybrid traffic simulation at a 4x4 grid
of intersections: the density of each cell is rendered in red, which
shows the volume of traffic agents to cross the intersection. One has
to optimize time allocations for traffic lights at each intersection to
maximize overall traffic flow.

(a) Macroscopic (b) Hybrid

Fig. 5. ITSCP. (a), (b) Learning graphs for macroscopic and hybrid sim-
ulations. Our framework shows better convergence rates and results
than other RL algorithms.

be fed into our simulator. Then we can compute the gradient of the
aggregated reward of each episode with respect to each control input
therein, and apply gradient descent to directly maximize the reward.
Note that this approach is same as analytical policy gradient (APG)
method. Then we compare our results to other baseline gradient-free
RL algorithms, as they are widely used to solve these kinds of control
problems.

6.3.1 ITSCP. ITSCP is one of the most widely studied traffic
control problems, because of its significance in controlling traffic
congestion in urban environment [Eom and Kim 2020]. We have
devised a scenario that falls into this category, where an agent has to
compute the optimal time allocations for traffic lights (Figure 4).

In this scenario, there are two different traffic lights at a given
intersection: one is green across the West-East direction (WE-light),
and the other one is across the North-South direction (NS-light).
When one of the lights is turned on, the other one has turned off
automatically. In a single signal phase, the WE-light is turned on first,
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(a) Time = 0 sec, Initial States

(b) Time = 10 sec, Target Speed Limit = 30 m/sec

(c) Time = 20 sec, Target Speed Limit = 10 m/sec

Fig. 6. Pace Car Problem. Sequence of simulation images in time order, from top to bottom. (a) A pace car rendered in green guides following
vehicles to maintain a target speed limit, which varies over time. It fails when it runs too fast, too slow, or goes out of the lane. (b) When a high
target speed limit (30 m/sec) is given, the pace car accelerates fast, and keeps a wide distance from its following vehicles to let them run fast. (c)
However, when the target speed limit is reduced (10 m/sec), it swiftly decelerates and keeps short distance from the following vehicles, to prevent
them from running over the target speed limit.

and then the NS-light is turned on next. There are multiple signal
phases during the entire simulation, and the agent has to determine
optimal time allocations for each light in each signal phase.

The input to the neural network is given as the schedule of incom-
ing traffic flow for every lane. Our experiments were inspired by a
synthetic traffic scenario devised for another ITSCP experiment [Wei
et al. 2018]. We also followed a conventional scheme to compute the
reward [Eom and Kim 2020]. The reward for an action is computed as
the weighted sum of traffic flow that crosses the intersection (𝑅𝑓 ) and
the length of waiting queue in each lane (𝑅𝑞), which is formulated as
follows:

𝑅 = 𝑐1 · 𝑅𝑓 + 𝑐2 · 𝑅𝑞 .
For our experiments, 𝑐1 is set as 1 and 𝑐2 is set as -1, to maximize the
traffic flow and minimize the length of waiting queue. In macroscopic
environments, the length of the queue is computed as the number of
cells that have speed less than certain threshold. In hybrid environ-
ments, the traffic flow is computed as the number of discrete vehicles
crossing the intersection, as the central part of an intersection is
simulated with a microscopic model.

For comparison, we used three baseline model-free RL algorithms;
DDPG [Lillicrap et al. 2015], PPO [Schulman et al. 2017], and
SAC [Haarnoja et al. 2018]. Note that these algorithms do not use
gradient information that our simulator provides. In contrast, our
gradient-based optimization algorithm uses this information to op-
timize the objective function. Experiments were run five times for
each algorithm, and Figure 5 shows the learning graphs of both
macroscopic and hybrid environment. In the macroscopic setting,
our framework converged to the near-optimal solution very quickly,
while DDPG failed to learn at all and PPO and SAC learned, but
not to the extent of ours. In hybrid setting, our framework and SAC
both succeeded in converging to the best solution, but ours converged
faster than SAC. Also, Table 2 shows that our best reward is better
than any other algorithms for both settings.

6.3.2 Pace Car Problem. In this problem, we assume there is a
discrete pace car, which runs in front of other vehicles that follow
the IDM. The pace car leads the vehicles to enforce a specified
target speed limit, which is often smaller than the lane’s speed limit
(Figure 6).

Fig. 7. Pace Car Learning Graph. Our result rendered in blue shows
far better performance (as indicated by higher reward values) than
other algorithms, which make no significant gains in learning even
after long periods.

Table 2. Comparison of maximum rewards from each control problem.
Our framework is able to find better solutions (indicated by higher
reward values) than the other baseline, model-free RL algorithms
(DDPG, PPO, or SAC) for every experiment setting (Macro, Micro, or
Hybrid).

Ours DDPG PPO SAC
Macro 124.38 113.62 104.53 115.73
Micro 4482.87 4.97 3218.19 3373.99
Hybrid 208.48 174.18 158.18 191.51

The optimal solution for this problem is clear to the human ob-
server; all vehicles should maintain the desired speed limit. However,
the pace car has to determine both acceleration and steering at every
frame to remain on the road and lead the vehicles at the same time.
To introduce even more complexity, in our experiments, we used a
speed limit target that varies over time. Therefore, the neural network
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receives other vehicle’s states and the speed limit as input, and has to
compute the optimal acceleration and steering for next several frames,
which is quite challenging. The reward is formulated as follows:

𝑅 =

𝑡∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐶max − (𝑣targ − 𝑣𝑖, 𝑗 )2 (13)

where 𝐶max denotes an arbitrary constant value, 𝑡 and 𝑛 denote
number of frames and number of vehicles respectively. 𝑣targ and 𝑣𝑖, 𝑗

represent the target speed limit and 𝑗th vehicle’s speed at the given
frame 𝑖.

We also used three baseline RL algorithms for comparison, each
of which were run 5 times. The learning graph in Figure 7 and the
maximum rewards in Table 2 show that our framework achieved
far better overall reward than the other algorithms. PPO and SAC
also succeeded in accomplishing initial high rewards but their per-
formance soon plunged. Our framework continuously learned and
achieved better and improved results.

7 CONCLUSIONS
We have proposed a novel differentiable hybrid traffic simulator. In
our simulator, gradients of traffic states across the time steps are
computed analytically and propagated across lanes modeled under
complimentary but deeply different regimes. This was made possible
with our novel discrete-continuous differentiable conversion module.
Further, our analytic formulation is much more efficient than one
based on automatic differentiation; therefore, our technique can offer
real-time traffic simulation, as shown in Figure 8, that would not
have been possible otherwise.

We have also shown that we can use the gradients to solve clas-
sic traffic problems. For the parameter estimation problems, our
framework is able to find far better estimates than other gradient-free
optimization algorithms. For control problems, our framework suc-
ceeded in finding near-optimal policies, which was not possible with
other model-free RL algorithms.

7.1 Generalization
The concept of hybrid simulation is applicable to many different types
of dynamical systems, such as fluids [Golas et al. 2012; Mohamed
and Mohamad 2010; Narain et al. 2010], crowd [Narain et al. 2009;
Treuille et al. 2006], and many other multi-agent systems [Zheng
et al. 2017]. And, our method to differentiate the conversion between
macro and micro traffic flow is applicable to a broad range of dynam-
ical systems that are simulated by hybrid techniques, transitioning
between continuous and discrete simulation domains. In general,
other deterministic or stochastic instantiation process can also take
advantage of our technique introduced in this paper. For example, the
micro and macro representations for crowd share many similarities
with traffic. The conversion between individual pedestrians and the
crowd flow is analogous to the process of instantiating and removing
vehicles in the roads. We also hypothesize that the algorithmic and
computational framework on differentiable hybrid simulation, as pro-
posed here, can also be extended to hybrid control of complex and
autonomous systems [Branicky et al. 1998; Fierro et al. 2001].

7.2 Limitations and Future Directions
Given these promising results, we plan to further augment the capa-
bility and application of our simulator. First, while hybrid techniques
are naturally suited to metropolitan-scale scenarios, we have not yet
applied this differentiable hybrid technique to these; we expect to
achieve even higher performance improvements from these mega-
scale experiments. We can also integrate realistic vehicle motions,
such as lane changing, to further capture complex traffic dynamics
in higher fidelity. Finally, we used simulated data for solving traffic
control problems in this paper, but we expect that our simulator is
applicable to real-world data as well.

Fig. 8. Large-scale Hybrid Traffic simulation. These traffic scenes con-
sist of many hundreds of vehicles across an urban scene simulated
and controlled in real time using a differentiable hybrid traffic model.
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A SOLUTION TO THE RIEMANN PROBLEM IN ARZ MODEL
A.1 Formulation
For the given left state ql and right state qr, we can determine the intermediate state q0 as follows.

Case 0 : 𝑢𝑙 = 𝑢𝑟
𝑞0 = 𝑞𝑙 (14)

Case 1 : 𝑢𝑙 > 𝑢𝑟

𝑞0 =

{
𝑞𝑙 if _𝑠 ≥ 0

𝑞𝑚 if _𝑠 < 0
(_𝑠 =

𝜌𝑚𝑢𝑚 − 𝜌𝑙𝑢𝑙

𝜌𝑚 − 𝜌𝑙
) (15)

Case 2 : 𝑢𝑟 − 𝑢𝑚𝑎𝑥𝜌
𝛾

𝑙
< 𝑢𝑙 < 𝑢𝑟

𝑞0 =


𝑞𝑙 if _0𝑙 ≥ 0

𝑞𝑚 if _0𝑚 ≤ 0

𝑞(0) if _0𝑙 < 0, _0𝑚 > 0

(16)

where

_0𝑙 = 𝑢𝑙 − 𝑢𝑚𝑎𝑥𝛾𝜌
𝛾

𝑙

_0𝑚 = 𝑢𝑚 − 𝑢𝑚𝑎𝑥𝛾𝜌
𝛾
𝑚

= 𝑢𝑟 − 𝑢𝑚𝑎𝑥𝛾𝜌
𝛾

𝑙
+ 𝛾 (𝑢𝑟 − 𝑢𝑙 ) .

Case 3 : 𝑢𝑙 ≤ 𝑢𝑟 − 𝑢𝑚𝑎𝑥𝜌
𝛾

𝑙

𝑞0 =

{
𝑞𝑙 if _0𝑙 ≥ 0

𝑞(0) if _0𝑙 < 0
(17)

Case 4 : 𝜌𝑙 = 0, 𝜌𝑟 > 0

𝑞0 = 𝑞𝑙 =

[
0
0

]
(18)

Case 5 : 𝜌𝑙 > 0, 𝜌𝑟 = 0

Same as Case 3.

From above, 𝑞𝑚 is given as

𝜌𝑚 = (𝜌𝛾
𝑙
+ 𝑢𝑙 − 𝑢𝑟

𝑢𝑚𝑎𝑥
)
1
𝛾

𝑢𝑚 = 𝑢𝑟

𝑦𝑚 = 𝜌𝑚 (𝑢𝑚 − 𝑢𝑒𝑞 (𝜌𝑚)),
and 𝑞(0) is given as

𝜌 (0) = (
𝑢𝑙 + 𝑢𝑚𝑎𝑥𝜌

𝛾

𝑙

(𝛾 + 1)𝑢𝑚𝑎𝑥
)
1
𝛾

𝑢 (0) = 𝜌𝑙

𝜌𝑙 + 1
(𝑢𝑙 + 𝑢𝑚𝑎𝑥𝜌

𝛾

𝑙
)

𝑦 (0) = 𝜌 (0) (𝑢 (0) − 𝑢𝑒𝑞 (𝜌 (0))) .

A.2 Differentiation
We can see from the above formulation that we have to compute the partial derivatives of 𝑞𝑙 , 𝑞𝑚, and 𝑞(0) with respect to 𝑞𝑙 and 𝑞𝑟 , as those
values comprise the solutions of the Riemann problem. We can compute the partial derivatives as shown below.

The Jacobian of f is:

f ′(q) =
[
𝑢𝑒𝑞 + 𝜌𝑢 ′𝑒𝑞 1

𝑦𝑢 ′𝑒𝑞 − 𝑦2

𝜌2

2𝑦
𝜌 + 𝑢𝑒𝑞

]
(19)

Partial derivatives of ql
𝜕𝑞𝑙

𝜕𝑞𝑙
= 𝐼2×2
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𝜕𝑞𝑙

𝜕𝑞𝑟
=

[
0 0
0 0

]
Partial derivatives of qm

𝜕𝑞𝑚

𝜕𝑞𝑙
=

[
𝜕𝜌𝑚
𝜕𝜌𝑙

𝜕𝜌𝑚
𝜕𝑦𝑙

𝜕𝑦𝑚
𝜕𝜌𝑙

𝜕𝑦𝑚
𝜕𝑦𝑙

]
where

𝜕𝜌𝑚

𝜕𝜌𝑙
=

1

𝛾
(𝜌𝛾

𝑙
+ 𝑢𝑙 − 𝑢𝑟

𝑢𝑚𝑎𝑥
)
1−𝛾
𝛾 (𝛾𝜌𝛾−1

𝑙
+ 1

𝑢𝑚𝑎𝑥

𝜕𝑢𝑙

𝜕𝜌𝑙
),

𝜕𝜌𝑚

𝜕𝑦𝑙
=

1

𝛾
(𝜌𝛾

𝑙
+ 𝑢𝑙 − 𝑢𝑟

𝑢𝑚𝑎𝑥
)
1−𝛾
𝛾 ( 1

𝑢𝑚𝑎𝑥

𝜕𝑢𝑙

𝜕𝑦𝑙
),

𝜕𝑦𝑚

𝜕𝜌𝑙
=

𝜕𝜌𝑚

𝜌𝑙
(𝑢𝑚 − 𝑢𝑒𝑞 (𝜌𝑚)) + 𝜌𝑚 (−𝑢 ′𝑒𝑞 (𝜌𝑚) 𝜕𝜌𝑚

𝜕𝜌𝑙
),

𝜕𝑦𝑚

𝜕𝑦𝑙
=

𝜕𝜌𝑚

𝑦𝑙
(𝑢𝑚 − 𝑢𝑒𝑞 (𝜌𝑚)) + 𝜌𝑚 (−𝑢 ′𝑒𝑞 (𝜌𝑚) 𝜕𝜌𝑚

𝜕𝑦𝑙
).

𝜕𝑞𝑚

𝜕𝑞𝑟
=

[
𝜕𝜌𝑚
𝜕𝜌𝑟

𝜕𝜌𝑚
𝜕𝑦𝑟

𝜕𝑦𝑚
𝜕𝜌𝑟

𝜕𝑦𝑚
𝜕𝑦𝑟

]
where

𝜕𝜌𝑚

𝜕𝜌𝑟
=

1

𝛾
(𝜌𝛾

𝑙
+ 𝑢𝑙 − 𝑢𝑟

𝑢𝑚𝑎𝑥
)
1−𝛾
𝛾 (− 1

𝑢𝑚𝑎𝑥

𝜕𝑢𝑟

𝜕𝜌𝑟
),

𝜕𝜌𝑚

𝜕𝑦𝑟
=

1

𝛾
(𝜌𝛾

𝑙
+ 𝑢𝑙 − 𝑢𝑟

𝑢𝑚𝑎𝑥
)
1−𝛾
𝛾 (− 1

𝑢𝑚𝑎𝑥

𝜕𝑢𝑟

𝜕𝑦𝑟
),

𝜕𝑦𝑚

𝜕𝜌𝑟
=

𝜕𝜌𝑚

𝜌𝑟
(𝑢𝑚 − 𝑢𝑒𝑞 (𝜌𝑚)) + 𝜌𝑚 ( 𝜕𝑢𝑟

𝜕𝜌𝑟
− 𝑢 ′𝑒𝑞 (𝜌𝑚) 𝜕𝜌𝑚

𝜕𝜌𝑟
),

𝜕𝑦𝑚

𝜕𝑦𝑟
=

𝜕𝜌𝑚

𝑦𝑟
(𝑢𝑚 − 𝑢𝑒𝑞 (𝜌𝑚)) + 𝜌𝑚 ( 𝜕𝑢𝑟

𝜕𝑦𝑟
− 𝑢 ′𝑒𝑞 (𝜌𝑚) 𝜕𝜌𝑚

𝜕𝑦𝑟
).

Partial derivatives of q̃(0)

𝜕𝑞(0)
𝜕𝑞𝑙

=

[
𝜕𝜌 (0)
𝜕𝜌𝑙

𝜕𝜌 (0)
𝜕𝑦𝑙

𝜕𝑦 (0)
𝜕𝜌𝑙

𝜕𝑦 (0)
𝜕𝑦𝑙

]
where

𝜕𝜌 (0)
𝜕𝜌𝑙

=
1

𝛾
(
𝑢𝑙 + 𝑢𝑚𝑎𝑥𝜌

𝛾

𝑙

(𝛾 + 1)𝑢𝑚𝑎𝑥
)
1−𝛾
𝛾 ( 1

(𝛾 + 1)𝑢𝑚𝑎𝑥
) ( 𝜕𝑢𝑙
𝜕𝜌𝑙

+ 𝑢𝑚𝑎𝑥𝛾𝜌
𝛾−1
𝑙

),

𝜕𝜌 (0)
𝜕𝑦𝑙

=
1

𝛾
(
𝑢𝑙 + 𝑢𝑚𝑎𝑥𝜌

𝛾

𝑙

(𝛾 + 1)𝑢𝑚𝑎𝑥
)
1−𝛾
𝛾 ( 1

(𝛾 + 1)𝑢𝑚𝑎𝑥
) ( 𝜕𝑢𝑙
𝜕𝑦𝑙

),

𝜕𝑦 (0)
𝜕𝜌𝑙

=
𝜕𝜌 (0)
𝜕𝜌𝑙

(𝑢 (0) − 𝑢𝑒𝑞 (𝜌 (0))) + 𝜌 (0) ( 𝜕𝑢 (0)
𝜕𝜌𝑙

− 𝑢 ′𝑒𝑞 (𝜌 (0))
𝜕𝜌 (0)
𝜕𝜌𝑙

),

𝜕𝑦 (0)
𝜕𝑦𝑙

=
𝜕𝜌 (0)
𝜕𝑦𝑙

(𝑢 (0) − 𝑢𝑒𝑞 (𝜌 (0))) + 𝜌 (0) ( 𝜕𝑢 (0)
𝜕𝑦𝑙

− 𝑢 ′𝑒𝑞 (𝜌 (0))
𝜕𝜌 (0)
𝜕𝑦𝑙

).

𝜕𝑞(0)
𝜕𝑞𝑟

=

[
0 0
0 0

]
B DIFFERENTIATING IDM
B.1 Hyperparameters
In the IDM, following hyperparameters are used to describe different behavioral traits of discrete vehicles [Treiber et al. 2000].
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• 𝑠𝑚𝑖𝑛 : Minimum desired distance to the leading vehicle.
• 𝑇𝑝𝑟𝑒 𝑓 : Desired time to move forward with current speed.
• 𝑎𝑚𝑎𝑥 : Upper bound of the computed acceleration.
• 𝑎𝑝𝑟𝑒 𝑓 : Comfortable braking deceleration, positive value.
• 𝑣𝑡𝑎𝑟𝑔: Target velocity it wants to maintain.
• 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 : Length of the 𝑖-th vehicle.

B.2 Differentiation
First we compute the gradients of ai (𝑡) with respect to pi (𝑡), vi (𝑡), ph(i) (𝑡), and vh(i) (𝑡), where ℎ(𝑖)-th vehicle is the leading vehicle of 𝑖-th
vehicle.

𝜕ai (𝑡)
𝜕pi (𝑡)

= −2𝑎𝑚𝑎𝑥

𝑠𝑜𝑝𝑡
2

(𝑝ℎ (𝑖) (𝑡) − 𝑝𝑖 (𝑡) − 𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖) )3
,

𝜕ai (𝑡)
𝜕ph(i) (𝑡)

= 2𝑎𝑚𝑎𝑥

𝑠𝑜𝑝𝑡
2

(𝑝ℎ (𝑖) (𝑡) − 𝑝𝑖 (𝑡) − 𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖) )3
,

𝜕ai (𝑡)
𝜕vi (𝑡)

= 𝑎𝑚𝑎𝑥 (−𝛿
𝑣𝑖 (𝑡)𝛿−1

𝑣𝑡𝑎𝑟𝑔
𝛿

− 2
𝑠𝑜𝑝𝑡

(𝑝ℎ (𝑖) (𝑡) − 𝑝𝑖 (𝑡) − 𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖) )2
𝜕𝑠𝑜𝑝𝑡

𝜕𝑣𝑖 (𝑡)
),

𝜕ai (𝑡)
𝜕vh(i) (𝑡)

= 𝑎𝑚𝑎𝑥 (−2
𝑠𝑜𝑝𝑡

(𝑝ℎ (𝑖) (𝑡) − 𝑝𝑖 (𝑡) − 𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖) )2
𝜕𝑠𝑜𝑝𝑡

𝜕𝑣ℎ (𝑖) (𝑡)
),

where
𝜕𝑠𝑜𝑝𝑡

𝜕𝑣𝑖 (𝑡)
= 𝑇𝑝𝑟𝑒 𝑓 +

2𝑣𝑖 (𝑡) − 𝑣ℎ (𝑖) (𝑡)
2
√
𝑎𝑚𝑎𝑥𝑎𝑝𝑟𝑒 𝑓

,

𝜕𝑠𝑜𝑝𝑡

𝜕𝑣ℎ (𝑖) (𝑡)
=

−𝑣𝑖 (𝑡)
2
√
𝑎𝑚𝑎𝑥𝑎𝑝𝑟𝑒 𝑓

.

Now for arbitrary 𝑖 and 𝑗 , we can compute the gradient of the state of the 𝑖-th vehicle with respect to that of the 𝑗-th vehicle by plugging in the
above values. Note that the gradient is non-zero only when 𝑗 equals to 𝑖 or ℎ(𝑖).

𝜕pi (𝑡 + 1)
𝜕pj (𝑡)

=


1 if 𝑗 = 𝑖

0 if 𝑗 = ℎ(𝑖)
0 if 𝑒𝑙𝑠𝑒

(20)

𝜕pi (𝑡 + 1)
𝜕vj (𝑡)

=


Δ𝑡 if 𝑗 = 𝑖

0 if 𝑗 = ℎ(𝑖)
0 if 𝑒𝑙𝑠𝑒

(21)

𝜕vi (𝑡 + 1)
𝜕pj (𝑡)

=


Δ𝑡 (−2𝑎𝑚𝑎𝑥

𝑠𝑜𝑝𝑡
2

(𝑝ℎ (𝑖 ) (𝑡 )−𝑝𝑖 (𝑡 )−𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖 ) )3 ) if 𝑗 = 𝑖

Δ𝑡 (2𝑎𝑚𝑎𝑥
𝑠𝑜𝑝𝑡

2

(𝑝ℎ (𝑖 ) (𝑡 )−𝑝𝑖 (𝑡 )−𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖 ) )3 ) if 𝑗 = ℎ(𝑖)
0 if 𝑒𝑙𝑠𝑒

(22)

𝜕vi (𝑡 + 1)
𝜕vj (𝑡)

=


1 + Δ𝑡𝑎𝑚𝑎𝑥 (−𝛿 𝑣𝑖 (𝑡 )𝛿−1

𝑣𝑡𝑎𝑟𝑔
𝛿 − 2

𝑠𝑜𝑝𝑡

(𝑝ℎ (𝑖 ) (𝑡 )−𝑝𝑖 (𝑡 )−𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖 ) )2 (𝑇𝑝𝑟𝑒 𝑓 + 2𝑣𝑖 (𝑡 )−𝑣𝑗 (𝑡 )
2
√
𝑎𝑚𝑎𝑥𝑎𝑝𝑟𝑒𝑓

)) if 𝑗 = 𝑖

Δ𝑡𝑎𝑚𝑎𝑥 (−2
𝑠𝑜𝑝𝑡

(𝑝ℎ (𝑖 ) (𝑡 )−𝑝𝑖 (𝑡 )−𝑙𝑒𝑛𝑔𝑡ℎℎ (𝑖 ) )2
−𝑣𝑖 (𝑡 )

2
√
𝑎𝑚𝑎𝑥𝑎𝑝𝑟𝑒𝑓

) if 𝑗 = ℎ(𝑖)
0 if 𝑒𝑙𝑠𝑒

(23)
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