
Differentiable Learning-to-Group Channels via

Groupable Convolutional Neural Networks

Zhaoyang Zhang1 Jingyu Li2 Wenqi Shao1 Zhanglin Peng2 Ruimao Zhang2 Xiaogang Wang1 Ping Luo3

1CUHK-SenseTime Joint Laboratory, The Chinese University of Hong Kong 2SenseTime Research 3 The Univesity of Hong Kong

{zhaoyangzhang@link, weqish@link, xgwang@ee}.cuhk.edu.hk

{lijingyu, pengzhanglin, zhangruimao}@sensetime.com pluo@cs.hku.hk

Abstract

Group convolution, which divides the channels of Con-

vNets into groups, has achieved impressive improvement

over the regular convolution operation. However, existing

models, e.g. ResNeXt, still suffers from the sub-optimal per-

formance due to manually defining the number of groups as

a constant over all of the layers. Toward addressing this

issue, we present Groupable ConvNet (GroupNet) built by

using a novel dynamic grouping convolution (DGConv) op-

eration, which is able to learn the number of groups in an

end-to-end manner. The proposed approach has several ap-

pealing benefits. (1) DGConv provides a unified convolu-

tion representation and covers many existing convolution

operations such as regular dense convolution, group convo-

lution, and depthwise convolution. (2) DGConv is a differ-

entiable and flexible operation which learns to perform var-

ious convolutions from training data. (3) GroupNet trained

with DGConv learns different number of groups for differ-

ent convolution layers. Extensive experiments demonstrate

that GroupNet outperforms its counterparts such as ResNet

and ResNeXt in terms of accuracy and computational com-

plexity. We also present introspection and reproducibility

study, for the first time, showing the learning dynamics of

training group numbers.

1. Introduction

Convolutional Neural Networks (ConvNets) have

achieved remarkable successes in computer vision. For

example, ResNet [7] was a pioneer work on building very

deep networks with shortcut connections. This strategy

exposes depth of network as an essential dimension of Con-

vNets to achieve good performance. Other than tailoring

network architectures on depth and width [28, 11, 27, 29],

ResNeXt [33] proposed a new dimension “cardinality”,

utilizing group convolution to design effective and efficient

ConvNets. The main hallmark of group convolution is

(a) Regular Convolution (b) Group Convolution

(d) Dynamic Convolution (c) Depthwise Convolution

Figure 1. Illustration of different convolution strategies, where the

blue circles represent input and output channels, and the lines are

the connections between them. (a) Regular convolution. Every

input channel is connected to every output channel. (b) Group

convolution with cardinality 4 and width 2. (c) Depthwise convo-

lution. Each input channel is connected to only one output chan-

nel, so this convolution can be understood as linear transformation

for each channel. (d) Our proposed dynamic grouping convolution

(DGConv). The grouping strategy of DGConv is learned end-to-

end together with the network parameters , so the group number

and connection location are changing dynamically. This example

is one candidate strategy with 2 groups and non-adjacent channel

connection. During the test stage, the DGConv can be simply im-

plemented by group convolution with the group number learned

from training, which reduces the computations and parameters.

proven to be compact and parameter-saving, which means

that ResNeXt improves accuracy and reduces network

parameters, outperforming its counterpart ResNet.

Although group convolution is easy to implement, ap-

plying group convolution in previous networks such as

ResNeXt still has drawbacks.

First, when designing network architectures by using

group convolutions, the number of groups for each hid-

den layer has been treated as a hyper-parameter typically.

3542

The group number is often defined by human experts and

kept the same for all hidden layers of a ConvNet. Sec-

ond, previous work employed homogeneous group convo-

lutions, leading to sub-optimal solution. For instance, one

of the most practical setting of ResNeXt is “32x4d” that

applies group convolution with 32 groups, which is found

by trial and error. However, convolution layers in different

depths of a ConvNet typically learn different visual features

which represent different abstractions and semantic mean-

ings. Thus, uniformly reducing model parameters via group

convolutions may suffer from decreasing performance.

To address the above issues, this work introduces an au-

tonomous formulation of group convolution, naming Dy-

namic Grouping Convolution (DGConv), which generally

extends many convolution operations with the following ap-

pealing properties. (1) Dynamic grouping . The core of

DGConv is to train the convolution kernels and the group-

ing strategy simultaneously. As shown in Fig. 1, DGConv

is able to learn grouping strategy (i.e. group number and

connections between channels in a group) during training.

In this way, each DGConv layer can have individual group-

ing strategy. Moreover, by imposing a regularization term

on computational complexity, we can control the overall

model size and computational overhead. (2) Differentia-

bility. The learning of DGConv is fully differentiable and

can be trained in an end-to-end manner by using stochastic

gradient descent (SGD). Thus, DGConv is compatible with

existing ConvNets. (3) Parameter-saving. The extra pa-

rameters to learn the grouping strategy in DGConv is just

scaled in log2(C), where C is the number of channels of a

convolution layer. This extra number of parameters is far

less than the parameters of the convolution kernels, which

are proportional to the scale1 of C2.

Furthermore, the extra parameters could be discarded af-

ter training. In the testing stage, only the parameters of

the convolution kernels will be stored and loaded. Fig. 2

shows an example of the group numbers learned by DG-

Conv, which is able to achieve comparable performance

with respect to its counterpart, but significantly reducing pa-

rameters and computations.

This work makes three key contributions. (1) We pro-

pose a novel convolution operation, Dynamic Grouping

Convolution (DGConv), which is able to differentiably learn

the number of groups for group convolution, unlike existing

work that treated the group number as a hyper-parameter.

To our knowledge, this is the first time to learn group num-

ber in a differentiable and data-driven way. (2) DGConv can

be used to replace previous convolutions and build state-

of-the-art deep networks such as the proposed Groupable

ResNeXt in section 3.3, where the group number for each

convolution layer is automatically determined during end-

1The kernel parameters are Cin
×Cout, which indicate the input chan-

nel size and the output channel size.

layers

#group

Figure 2. Comparison of group numbers in ResNeXt and Group-

Net. We employ ResNeXt50 32×4d as an example here, which

has 32 groups with width 4. And G-ResNeXt50 96 denotes the

ResNeXt50 trained with DGConv, where 96 represents the con-

straint setting (will be discussed later). The y-axis indicates num-

ber of groups, and the x-axis is the number of channels in different

convolution layers.

to-end training. (3) Extensive experiments demonstrate that

Groupable ResNeXt is able to outperform both ResNet and

ResNeXt, by using comparable or even smaller number of

parameters. For example, it surpasses ResNeXt101 by 0.8%

top-1 accuracy in ImageNet with slightly less parameters

and computations. Moreover, we study the learning dynam-

ics of group numbers, showing interesting findings.

2. Related Work

Group Convolution. Group convolution (GConv) is a

special case of sparsely connected convolution. In regular

convolution, we produce Cout output channels by applying

convolution filters over all C in input channels, resulting in

a computational cost of C in × Cout. In contrast, GConv

reduces this cost by dividing the C in input channels into

G non-overlapping groups. After applying filters over each

group, GConv generates Cout output channels by concate-

nating the outputs of each group. GConv has a complexity

of Cin
×Cout

G
.

GConv is firstly discussed in AlexNet [12] as a

model distributing approach to handle memory limitation.

ResNeXt [33] presented an additional dimension for net-

work architecture i.e. “cardinality” by using GConv, leading

to a series of further researches on applying group convolu-

tion in portable neural architecture design [35, 19, 36, 10].

To the extreme, group convolution partitions each channel

into a single group, which is known as depthwise convolu-

tion. It has been widely used in efficient neural architecture

design [9, 19, 36, 25].

Moreover, CondenseNet [10] and FLGC [31] learned

the connections of group convolution, but the number of

groups is still a predefined hyper-parameter. CondenseNet

and FLGC treated connection learning as a pruning prob-

lem, where unimportant filters are abolished. In contrast,

3543

DGConv learns both the group number and the channel con-

nections of each group.

Neural Architecture Search. Recently, there has been

growing interests in automating the design process of neu-

ral architectures, usually referred as Neural Architecture

Search (NAS) and AutoML. For example, NASNet [38, 37]

and MetaQNN [1] lead the trend of architecture search by

using reinforcement learning (RL). In NASNet, the network

architecture is decomposed into repeatable and transferable

blocks, such that the control parameters of the architec-

tures can be limited in a finite searching space. The se-

quence of these architecture parameters was generated by

a controller RNN, which is trained by maximizing rewards

(e.g. val accuracy). These methods were extended in many

ways such as progressive searching [13], parameter shar-

ing [21], network transformation [3], resource-constrained

searching [30], and differentiable searching like DARTS

[15] and SNAS [34]. Evolutionary algorithm is an alterna-

tive to RL. The architectures are searched by mutating the

best architectures found so far [23, 24, 32, 20, 14]. How-

ever, all the above methods either treated the group number

as a hyper-parameter, or searched its value by using sam-

pling methods such as RL. In contrast, DGConv is the first

model that can optimize the group number in a data-driven

way and a differentiable end-to-end manner together with

the network parameters.

3. Our Approach

3.1. Dynamic Grouping Convolution (DGConv)

We first present conventional convolution and group con-

volution, and then introduce DGConv.

Regular Convolution. Let a feature map of a ConvNet

be F ∈ R
N×Cin

×H×W , where N,C,H,W represent num-

ber of samples in a minibatch, number of channels, height

and width of a channel respectively. If a regular convolu-

tion is applied on F with kernel size k × k and stride 1
with padding, the output feature map is denoted as O ∈
R

N×Cout
×H×W , where every output unit oij ∈ R

N×Cout

is

oij =

k−1∑

m=0

k−1∑

n=0

f(i+m)(j+n)ωmn, (1)

where i ∈ {1, ..., H}, j ∈ {1, ...,W}, and f(i+m)(j+n) ∈

R
N×Cin

represents the hidden units of the input feature

map F . And ωmn ∈ R
Cin

×Cout

represents the convolution

weights (kernels).

Group Convolution. Group convolution (GConv) can

be defined as a regular convolution with sparse kernels.

GConv is often implemented as concatenation of separated

convolution over grouped channels,

oij = o1ij ∪ · · · ∪ o
γ
ij ∪ · · · ∪ oGij and

o
γ
ij =

∑k−1
m=0

∑k−1
n=0 f

γ

(i+m)(j+n)ω
γ
mn,

(2)

where G is the group number, γ ∈ [1, G], and ∪ means

the concatenation operation. In context of GConv, we

have ωγ
mn ∈ R

C
in

G
×

C
out

G and f
γ

(i+m)(j+n) ∈ R
N×

C
in

G .

To the extreme, when every channel is a group i.e. G =
C in = Cout, Eqn.(2) expresses the depthwise convolution

[9, 25, 19, 36]. Both GConv and depthwise convolution re-

duce computational resources and can be efficiently imple-

mented in existing deep learning libraries. However, intrin-

sic hyper-parameter G is manually designed, making per-

formance away from idealism.

Dynamic Grouping Convolution. Dynamic grouping

convolution (DGConv) extends group convolution, enabling

to learn grouping strategies, that is, group number and chan-

nel connections of each group. The strategies can be mod-

eled by a binary relationship matrix U ∈ {0, 1}C
in
×Cout

.

DGConv can be defined as

oij =
k−1∑

m=0

k−1∑

n=0

f(i+m)(j+n)(U ⊙ ωmn), (3)

where ⊙ denotes elementwise product. It is note-worthy

that Eqn.(3) has rich representation capacity. Many convo-

lution operations can be treated as special cases of DGConv.

To build some intuition on flexibility of DGConv, several il-

lustrative examples are presented in the following:

(1) Let U = 1, where 1 is a matrix of ones. Since we

have 1 ⊙ ωmn = ωmn, DGConv represents a regular con-

volution, as shown in Fig. 3 (a). (2) Let U = I , where I is

an identity matrix. Then I ⊙ ωmn becomes a matrix with

diagonal elements while the off-diagonal elements are ze-

ros as depicted in Fig. 3 (b), implying that every channel

is independent. Thus, DGConv becomes a depthwise con-

volution [9]. (3) If U is a binary block-diagonal matrix as

shown in Fig. 3 (d), then U ⊙ ωmn divides channels into

groups. Since all diagonal blocks of U are constant matrix

of ones, DGConv expresses a conventional group convolu-

tion (GConv), which groups adjacent channels as a group.

(4) If U is an arbitrary binary matrix such as Fig. 3 (f), this

leads to unstructured convolution.

Therefore, by appropriately constructing binary relation-

ship matrix U ,the proposed DGConv is expected to repre-

sent a large variety of convolution operations.

Discussions. We have defined DGConv as above. Al-

though it has huge potential to boost learning capacity of

CNN due to its flexibility in convolution representation,

some foreseeable difficulties are also introduced.

First, since Stochastic Gradient Descent (SGD) can only

optimize continuous variables, training a binary matrix by

directly using SGD can be challenging. Second, the ma-

trix U ∈ {0, 1}C
in
×Cout

introduces a large amount of extra

parameters into the convolution operation, making the deep

networks difficult to train. Third, updating the entire matrix

U without any constraint in the training stage could learn

3544

(a) (b) (c)

(d) (e) (f)

[0, 0, 1] [0, 1, 0]

(g)

Figure 3. Illustration of structures with relationship matrix U. The hollow circle and solid black circle indicate ‘0’ and ‘1’ respec-

tively. A matrix of ones(a), identity matrix(b) and block diagonal matrix(d) imply regular convolution, depthwise convolution and group

convolution (GConv) respectively. (c) and (e) show Dynamic Grouping Convolution (DGConv) under two non-adjacent group strategies

respectively, one with a group number of 4 and the other with 2. (f) is a random group strategy, while it cannot been achieved under our

constraint. (g) illustrates the construct process of DGConv when g = [0, 0, 1] and g = [0, 1, 0]. The binary relationship matrix U disables

weights of ω via elementwise product operation.

a unstructured relationship matrix U as illustrated in Fig. 3

(f). In this case, DGConv is not a valid GConv, making

learned convolution operation inexplicable.

Therefore, for DGConv, special construction of U is re-

quired to maintain the group structures and reduce the extra

number of parameters.

3.2. Construction of the Relationship Matrix

Instead of directly learning the entire matrix U , we de-

compose it into a set of K small matrixes,

{Uk|Uk ∈ {0, 1}C
in

k
×Cout

k , ∀C in
k < C in, ∀Cout

k < Cout}.

We see that each small matrix Uk is of shape C in
k × Cout

k ,

where C in
k < C in and Cout

k < Cout. Then we define U as

U = U1 ⊗ U2 ⊗ · · · ⊗ UK , (4)

where ⊗ denotes a Kronecker product. Therefore, we have∏K
k=1 C

in
k = C in and

∏K
k=1 C

out
k = Cout, implying that

the C in-by-Cout large matrix U is decomposed into a set of

small submatrixes by using a sequence of Kronecker prod-

ucts [2].

Construction of Submatrix. Here we introduce how to

construct each submatrix Uk. As an illustrative example,

we suppose C in = Cout, which is a common setting in

ResNet and ResNeXt. To pursue a most parameter-saving

convolution operation, we further represent Uk by a single

binary variable as follow:
{

Uk = gk1+ (1− gk)I, ∀gk ∈ g,

g = sign(g̃),
(5)

where 1 denotes a 2-by-2 constant matrix of ones, I denotes

a 2-by-2 identity matrix and gk indicates the k-th compo-

nent. g̃ ∈ R
K is a learnable gate vector taking continues

value, and g ∈ {0, 1}K is a binary gate vector derived from

g̃. The sign(·) represents a sign function,

sign(x) =

{
0, x < 0.
1, x > 0.

(6)

By combing Eqn.(5), Eqn.(4) could be written as

U = (g11+ (1− g1)I)⊗ · · · ⊗ (gK1+ (1− gK)I). (7)

Constructing relationship matrix U by Eqn.(7) not only re-

markably reduces the amount of parameters but also makes

U have group structure. First, note that the parameters to

be optimized are g̃, the above construction method there-

fore reduces the number of parameters of U from C in ·Cout

to log2 C
in. For example, if there is 1, 024 channels of a

convolution layer, we can learn the block diagonal matrix

U in Eqn.(7) by using merely 10 parameters, remarkably

reducing the number of training parameters, which previ-

ously is more than 106. Second, we see that U constructed

by Eqn.(7) is a symmetric matrix with diagonal element of

ones. Moreover, each row or column of U has the same

elements. Hence, U has a group structure. For example,

when K = 3 and g1 = 1, g2 = 1, g3 = 0, Eqn.(7) becomes

1 ⊗ 1 ⊗ I , which is a 8-by-8 matrix of 2 groups as shown

in Fig. 3 (e); when g1 = 0, g2 = 1, g3 = 0, Eqn.(7) be-

comes I ⊗ 1 ⊗ I , which is a 8-by-8 matrix of 4 groups as

shown in Fig. 3 (c). They show that our proposed DGConv

can group non-adjacent channels. Fig. 3 (g) shows the dy-

namical process of actual of DGConv when g = [0, 0, 1]
and g = [0, 1, 0]. It can be observed that the position of

‘1’ in g can control the group structure of U and U ⊙ ωmn.

Note that we use only 3 continuous parameters g̃1, g̃2, g̃3 to

produce g1, g2, g3, enabling to learn the large 8-by-8 matrix

3545

that originally needs 64 parameters to train. A more general

case when C in 6= Cout is discussed in Appendix A.

Training Algorithm of DGConv. Here we introduce the

training algorithm of DGConv. Note that every DGConv

layer is trained in the same way, implying that it can be eas-

ily plugged into a deep ConvNet by replacing the traditional

convolution operations.

The training of DGConv can be simply implemented

in existing software platforms such as PyTorch and Ten-

sorFlow. To see this, DGConv is computed by combin-

ing Eqn.(3), (4), (5), and (6). All these equations define

differentiable transformations except the sign function in

Eqn.(6). Therefore, the gradients from the loss function

can be propagated down to the binary gates g in Eqn.(5),

by simply using auto differentiation (AD) in the above plat-

forms. The only remaining thing to deal with is the sign

function in Eqn.(6). The optimization of binary variables

has been well established in the literature [22, 18, 17, 26],

which can be also used to train DGConv. The gate params

are optimized by Straight-Through Estimator similar to re-

cent network quantization approaches, which is guaranteed

to converge [5]. Furthermore, Appendix B also provides

the explicit gradient computations of DGConv, facilitating

implementation of DGConv in the platforms without auto

differentiation.

3.3. Groupable Residual Networks

DGConv is closely related to ResNet and ResNeXt,

where ResNeXt extends ResNet by dividing channels into

groups. DGConv can be also used with residual learn-

ing by simply replacing the traditional group convolutions

of ResNeXt with the proposed dynamic grouping convo-

lutions, as shown in Fig. 4. We name this new network

architecture Groupable ResNeXt. Table 1 compares the ar-

chitecture of Groupable-ResNeXt50 (G-ResNeXt50) to that

of the original ResNeXt50.

Resource-constrained Groupable Networks. Besides

simply replacing convolution layers by using DGConv

layers in a deep network, we also provide a resource-

constrained training scheme. Different DGConv layers can

have different group numbers, such that how and where to

reduce computations are totally dependent on training data

and tasks.

Towards this end, we propose a regularization term de-

noted by ζ to constrain the computational complexity of

Groupable-ResNeXt, where ζ is computed by

ζ =

L∑

ℓ=1

ζℓ and ζℓ =

Cin∑

i=1

Cout∑

j=1

uij , ∀uij ∈ U (8)

where L denotes the number of DGConv layers and uij

denotes an element of U . It is seen that ζℓ represents the

number of non-zero elements in U , measuring the number

1x1 conv, 256
BN, 64
ReLU

3x3 conv, 128,
group = 32

1x1 conv, 256

BN, 64
ReLU

BN, 64

ReLU

1x1 conv, 256
BN, 64
ReLU

3x3 DConv, 128

1x1 conv, 256

BN, 64
ReLU

BN, 64

ReLU

Figure 4. Comparison of the residual building blocks of

ResNeXt50 32×4d (left) and Groupable-ResNeXt50 (right). We

simply replace all group convolution layers with dynamic group-

ing convolution layers.

of activated convolution weights (kernels) of the ℓ-th DG-

Conv layer. Thus, ζ can be treated as a measurement of

the model’s computational complexity. In fact, it can be de-

duced by Eqn.(7) that the sum of each row or each column

of U can be calculated as
∏K

k=1(1 + gk). Substituting it to

Eqn.(8) gives us

ζ =

L∑

ℓ=1

ζk =

L∑

ℓ=1

Cℓ ·

Kℓ∏

k=1

(1 + gℓk), (9)

where gℓk and Kℓ indicate gk and K in the ℓ-th layer, respec-

tively. Here we assume Cℓ = C in = Cout. Let o represent

the desire computational complexity of the entire network,

our objective is to search a deep model that

minimize L({ωℓ}
L
ℓ=1, {g̃ℓ}

L
ℓ=1) · [

o

ζ
]a,

subject to ζ ≤ o

where [o
ζ
]a is a weighted product to approximate the Pareto

optimal problem [30] and a is a constant value. We have

a = 0 if ζ ≤ o, implying that the complexity constraint is

satisfied. Otherwise, a = α is used to penalize the model

complexity when ζ > o. For the value of α, [30] empiri-

cally set α = −1 or −0.07 and this setting works well in

reinforcement learning by using rewards. However, these

empirical values make the regularizer too sensitive in our

problem. In our experiments, we have α = −0.02 as a con-

stant.

The above loss function can be optimized by using SGD.

By setting the value of o, we can learn deep neural networks

under different complexity constraints, allowing us to carry

on careful studies on the trade-off between model accuracy

and computational complexity.

3546

(c) (d)

(a)

(b)

Figure 5. Learned number of groups for each DGConv layer in Groupable-ResNeXt, including: (a) G-ResNeXt101, b = 32, (b) G-

ResNeXt101, b = 96, (c) G-ResNeXt50, b = 32 and (d) G-ResNeXt50, b = 96. The x-axis denotes the number of channels in DGConv

layers under network’s input to output direction, and the y-axis is the group number of corresponding layers.

stage output ResNeXt50 32x4d G-ResNeXt50

conv1 112× 112 7× 7, 64, stride 2 7× 7, 64, stride 2

maxpool 56× 56 3× 3, stride 2 3× 3, stride 2

conv2 56× 56

1× 1, 128
3× 3, 128 G = 32

1× 1, 256

× 3

1× 1, 128
3× 3, 128 DGConv

1× 1, 256

× 3

conv3 28× 28

1× 1, 256
3× 3, 256 G = 32

1× 1, 512

× 4

1× 1, 256
3× 3, 256 DGConv

1× 1, 512

× 4

conv4 14× 14

1× 1, 512
3× 3, 512 G = 32

1× 1, 1024

× 6

1× 1, 512
3× 3, 512 DGConv

1× 1, 1024

× 6

conv5 7× 7

1× 1, 1024
3× 3, 1024 G = 32

1× 1, 2048

× 3

1× 1, 1024
3× 3, 1024 DGConv

1× 1, 2048

× 3

Table 1. Comparison of network structures between

ResNeXt50 32×4d and Groupable-ResNeXt50. In

ResNeXt50 32×4d, G = 32 is a hyper-parameter, indicat-

ing group number in channel domain. Groupable-ResNeXt50

replaces all group convolution layers in ResNeXt50 32×4d by

using DGConv layers, keeping others unchanged.

4. Experiments

Implementation. We conduct experiments on the chal-

lenging ImageNet [4] benchmark, which has 1.2 million im-

ages for training and 50k images for validation. Following

Section 3.3 and [33], we construct 50-layer and 101-layer

Groupable ResNeXts. In the training stage, each input im-

age is of size 224 × 224 that is randomly cropped from

randomly horizontal flipped. The overall batch size is 512,

partitioned to 16 GPUs (32 samples per GPU). We train the

networks by using SGD with momentum 0.9 and weight de-

cay 1e−4. We adopt the cosine learning rate schedule [16]

and weight initialization of [6]. In the evaluation stage, the

error is evaluated on a single 224 × 224 center crop. For

Groupable ConvNets, the continuous gates g̃ are the only

extra parameters required to train. We initialize them as

small values 1e−8 or −1e−8 randomly.

Resource Constraint. In experiments, we derive the re-

source constraint o by o =
∑

L

ℓ=1
C2

ℓ

b
, where b denotes a

scale of complexity of the group convolution layers in the

entire network. For an example, when b = 32,
∑

L

ℓ=1
C2

ℓ

b
is

equivalent to the number of parameters of all GConv lay-

ers in ResNeXt 32× 4d, and o represents the complexity of

GConv layers in ResNeXt 32×4d. When b = 64, o is 0.5×
complexity compared to the ResNeXt 32 × 4d, and so on.

By setting b, we are able to control the overall complexity

of Groupable ConvNets.

Comparisons. We first evaluate the performance of

Groupable-ResNeXt and its counterparts ResNet/ResNeXt.

For fair comparison, we re-implement ResNet and ResNeXt

under the settings of Section. 4, achieving comparable

results to the original papers (e.g. top-1 accuracy of

ResNeXt101, 32 × 4d, 79.1% (ours) vs. 78.8%[33]). Ta-

ble 2 shows the results, and Fig. 5 shows the learned group

numbers. Although maintaining similar module topology

as ResNeXt, Groupable-ResNeXt learns optimal grouping

strategies for group convolution. Compared to ResNet50

and ResNeXt50, G-ResNeXt50 obtains 1.5% / 0.5% higher

top-1 accuracy. This trend is also observed in deeper ar-

chitectures ResNet101 and ResNeXt101, and the gains of

top-1 accuracy are enlarged to 1.7% and 0.8%.

Fig.2 and Fig.5 show the learned group numbers. Ta-

ble 2 reports performance of G-ResNext50(b = 32) and

G-ResNeXt101(b = 32), which correspond to Fig.5 (d)

and Fig.5 (a). Unlike ResNeXt that shares uniform group

3547

Architecture Params# Top-1 Accuracy

ResNet50 25 M 76.4

InceptionV3 23 M 77.5

IBN-Net50-a 25 M 77.5

SE-ResNet50 28 M 77.7

ResNeXt50 25 M 77.8

DenseNet161(k=48) 29 M 77.8

DenseNet264(k=32) 33 M 77.9

G-ResNeXt50(b=32, ours) 25M 78.4

ResNet101 44 M 78.0

SE-ResNet101 48 M 78.4

ResNeXt101 44 M 78.8

DenseNet-232 (k=48) 55 M 78.8

G-ResNeXt101(b=32, ours) 43M 79.9

Table 2. Comparisons of top-1 and top-5 accuracy on ImageNet

when the number of #parameters in different networks are almost

the same. Our approach shows superior performance to its coun-

terparts. Groupable-ResNeXt is abbreviated as G-ResNeXt. The

accuracy is evaluated on a signle 224× 224 crop of image. We set

scale constant b of the model complexity in Groupable-ResNeXt

to 32, so as to keep proximate parameter size with their counter-

part ResNet and ResNeXt. We choose ResNeXt of setting 32×4d,

which outperforms other settings in [33]

number, diverse group numbers could be observed in G-

ResNext. An interesting phenomenon is that different net-

works manifest some homology. That is, when preserv-

ing the overall model complexity, DGConv tends to allocate

more computation in lower layers. This is an evidence that

the representation ability of ConvNet is highly related to the

design of lower layers.

He et al. [33] found that, when the network complexity is

similar, the networks with larger cardinality perform better

than those deeper or wider. The performance gain comes

from stronger representations. We suggest that the repre-

sentations could be even stronger by adjusting the grouping

strategy at each layer using DGConv.

Learning dynamics of DGConv. For every DGConv

layers in G-ResNeXt50 (b = 32), we plot the learning pro-

cedure of group numbers and value of gates g in Fig. 6.

To our observation, DGConv appears some features. First,

different DGConv layer shows different learning dynamics.

Second, similar to Fig. 5, lower layers prefer fewer groups

than higher layers. Therefore, lower layers tend to have

fewer groups corresponding to more parameters, implying

that they are essential for extracting texture-related features.

Complexity vs. Accuracy. The resource constraint o

allows us to learn optimal grouping strategies subject to

a given model complexity threshold. We then explore

the trade-off between complexity of group convolution and

model accuracy. Table 3 shows our results, where “FLOPs”

denotes computational complexity of all group convolution

layers in a network. We set the FLOPs of ResNeXt as

baseline and show complexity of Groupable-ResNeXt by

proportion. By modifying b, we alter the constraint o and

learn Groupable-ResNeXt of various capacity. For exam-

ple, when b = 64, o is equivalent to the size of group con-

volutions with group number 64 uniformly, and Groupable-

1281
64

128

256

128 128 256 256 256 256 512

5121
64

128

256

512 512 512 512 1024 1024 1024

(a) Learning dynamics of group Number in different layers

1281.0

0.5

0.0

0.5

1.0

128 128 256 256 256 256 512

5121.0

0.5

0.0

0.5

1.0

512 512 512 512 1024 1024 1024

(b) Learning dynamics of gate values g̃ in different layers

Figure 6. Learning dynamics of group number and learnable gate

vector g̃ during training Groupable-ResNeXt50 on ImageNet. (a)

visualizes how the number of group in different depth evolves with

training. (b) shows the corresponding learning process of gate val-

ues g̃. The number of channels is plotted for each layer (in the

bottom).

ResNeXt will be regularized to choose group strategy less

than 0.5× ResNeXt’s complexity.

From Table 3, we see that G-ResNeXt50 achieves com-

parable top-1 accuracy with ResNeXt50 in the b = 96 set-

ting, and G-ResNeXt101 achieves comparable top-1 accu-

racy with ResNeXt101 in the b = 256 setting. These re-

sults indicate that DGConv is able to learn more efficient

group strategy than regular GConv when preserving accu-

racy. He et al. [33] suggests that learning wide cardinality

has stronger representation than wide depth or width, and

we learn dynamic grouping to improve representation learn-

ing of wide cardinality.

Furthermore, we also see the strong robustness of dy-

namic grouping convolution, even when the computational

complexity of group convolution is significantly reduced.

For example, when FLOPs decrease from 0.70× to 0.47×,

G-ResNeXt101 is able to preserve its accuracy (about

79.8% top-1 accuracy).

Deeper or Wider Networks. Next we extend our exper-

iments to more complex networks. We expand ResNet101

to ∼ 2× complexity by increasing its width, depth, and car-

dinality respectively. When expanding on cardinality, we

implement both the regular GConv and DGConv. Table 4

reports our results. The larger ResNet and ResNeXt are

implemented by following [33, 8]. G-ResNeXt101 is con-

strained to the size of ResNeXt101 2× 64d. In Table 4, we

see that increasing the model complexity consistently im-

proves network performance (e.g. the original ResNet101 is

78.2%). Besides, increasing cardinality brings larger im-

provement than increasing the network depth and width

(e.g. 79.8%/79.6%/80.1% vs. 78.6%/78.8%). Among the

last three networks with larger cardinality, G-ResNeXt101

(b = 2) outperforms corresponding ResNext101 (2 × 64d)

3548

Architecture Settings GConv FLOPs top-1 top-5

ResNeXt50 32× 4d 1.00× 77.9 93.9

G-ResNeXt50 b = 32 0.83× 78.4 94.0

G-ResNeXt50 b = 48 0.61× 78.2 93.9

G-ResNeXt50 b = 64 0.39× 78.0 93.9

G-ResNeXt50 b = 96 0.27× 78.0 93.9

G-ResNeXt50 b = 128 0.20 77.8 93.8

ResNeXt101 32× 4d 1.00× 79.1 94.2

G-ResNeXt101 b = 32 0.70× 79.9 94.7

G-ResNeXt101 b = 48 0.58× 79.7 94.6

G-ResNeXt101 b = 64 0.47× 79.8 94.7

G-ResNeXt101 b = 96 0.22× 79.5 94.5

G-ResNeXt101 b = 128 0.22× 79.4 94.5

G-ResNeXt101 b = 256 0.14× 79.0 94.3

Table 3. Trade-off between complexity and accuracy. Here GConv

FLOPs represents the computational complexity of all group con-

volution layers in the corresponding network architecture. The

FLOPs of ResNeXt50/101 is regarded as baselines, and we re-

port complexity of other models as proportions of them. All G-

ResNeXt models outperform baselines at top1 accuracy with much

less computation. Even given only about ∼ 1/4 FLOPs, both G-

ResNeXt50/101 achieve comparable top1/top5 accuracy with re-

spect to baselines.

Architecture Settings Complexity top-1 top-5

ResNet200 (depth) 1× 64d 2× ResNet101 78.6 94.1

ResNet101 (wider [8]) 1× 100d 2× ResNet101 78.8 94.4

ResNeXt101 (card.) 64× 4d 2× ResNet101 79.8 94.7

ResNeXt101 (card.) 2× 64d 2× ResNet101 79.6 94.6

G-ResNeXt101 (card.) b = 2 2× ResNet101 80.1 94.7

Table 4. Network performance on ImageNet when increasing num-

ber of parameters to 2× ResNeXt101. All of above networks are

re-implemented under the same settings for fair comparison. G-

ResNeXt represents Groupable-ResNeXt. To keep proximate pa-

rameter size with ResNeXt101 2×64d, the scale constant b of the

model complexity in G-ResNeXt is set to 2. G-ResNeXt achieves

the highest top1/top5 accuracy among all architectures.

by 0.5% top-1 accuracy. G-ResNeXt101 increases cardinal-

ity by using DGConv. We show that DGConv is superior to

regular GConv even in more complex networks.

Reproducibility. We verify the reproducibility of DG-

Conv. We retrain G-ResNeXt101 by maintaining train-

ing strategy and hyper-parameters, but initialize gates g as

1 × 10−8 or −1 × 10−8 randomly with different random

seeds. We name the retrained models ”G-ResNeXt101R2”

and ”G-ResNeXt101R3”. Table 5 reports their perfor-

mances. All models are trained with constraint b = 32,

showing comparable top-1 accuracy. These results indicate

that DGConv is able to consistently express strong represen-

tation ability. We also see that the learned models have sim-

ilar performance with slightly different grouping strategy,

showing the flexibility of DGConv. Detailed group number

distribution can be seen in Appendix D.

Evaluation of Learned Architecture We extend our ex-

periments to the architecture learned by DGConv. We re-

place group numbers of each GConv layers in ResNeXt

with the group numbers learned by G-ResNeXt. Then

Architecture Settings #Params top-1 top-5

G-ResNeXt101 b = 32 43.3× 106 79.9 94.7

G-ResNeXt101R2 b = 32 43.8× 106 79.8 94.5

G-ResNeXt101R3 b = 32 43.0× 106 79.6 94.5

Table 5. Reproducibility experiments results. G-ResNeXt101R2

and G-ResNeXt101R3 are re-trained under the same setting as

G-ResNeXt. After training, these three models approach proxi-

mate results and top1/top5 accuracy even they use different ran-

dom seeds for initialization, which shows that DGConv is robust

to randomness.

Architecture Settings top-1 top-5

ResNeXt50 32× 4d 77.9 93.9

G-ResNeXt50 b = 32 78.4 94.0

ResNeXt50∗ learned by b = 32 78.3 94.0

G-ResNeXt50 b = 96 78.0 93.9

ResNeXt50∗ learned by b = 96 78.0 93.9

ResNeXt101 32× 4d 79.1 94.2

G-ResNeXt101 b = 32 79.9 94.7

ResNeXt101∗ learned by b = 32 79.8 94.7

G-ResNeXt101 b = 96 79.5 94.5

ResNeXt101∗ learned by b = 96 79.5 94.5

Table 6. Performance of ResNeXt using group number learned by

DGConv, denoted by ResNeXt∗. To demonstrate the effectiveness

of the structures learned by DGConv, we just simply replace the

group numbers in ResNeXt50 by the numbers learned from G-

ResNeXt.

the formed models are directly trained on ImageNet from

scratch. Table. 6 reports their performance. As we can see,

the ResNeXt models learned by DGConv perform compa-

rable top-1 and top-5 accuracy with G-ResNeXt, superior to

the 32× 4d baseline. The results manifest strong represen-

tation in the learned structure.

5. Conclusion

In this work, we propose a novel architecture Groupable

ConvNet (GroupNet) for computation efficiency and per-

formance boosting. GroupNet is able to differentiably learn

group strategy for convolution operation on a layer-by-layer

basis. It has been demonstrated that GroupNet outperforms

ResNet and ResNeXt in terms of both accuracy and compu-

tational complexity. To achieve GroupNet, we develop dy-

namic grouping convolution (DGConv), providing an uni-

fied representation for convolution operation. DGConv can

be easily plugged into any deep network model and is ex-

pected to learn a better feature representation for convolu-

tion layer.

6. Acknowledgement

This work is supported in part by SenseTime Group

Limited, and in part by the General Research Fund through

the Research Grants Council of Hong Kong under Grants

CUHK14202217, CUHK14203118, CUHK14205615,

CUHK14207814, CUHK14213616.

3549

References

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. arXiv preprint arXiv:1611.02167, 2016.

[2] Kim Batselier and Ngai Wong. A constructive arbitrary-

degree kronecker product decomposition of tensors. Numer-

ical Linear Algebra with Applications, 24(5):e2097, 2017.

[3] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun

Wang. Reinforcement learning for architecture search by

network transformation. arXiv preprint arXiv:1707.04873,

2017.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[5] Yin Penghang et al. Understanding straight-through estima-

tor in training activation quantized neural nets. 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

conference on computer vision, pages 630–645. Springer,

2016.

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[10] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet us-

ing learned group convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2752–2761, 2018.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[13] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 19–34, 2018.

[14] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical repre-

sentations for efficient architecture search. arXiv preprint

arXiv:1711.00436, 2017.

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[16] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016.

[17] Ping Luo, Ruimao Zhang, Jiamin Ren, Zhanglin Peng,

and Jingyu Li. Switchable normalization for learning-to-

normalize deep representation. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2019.

[18] Ping Luo, Peng Zhanglin, Shao Wenqi, Zhang Ruimao,

Ren Jiamin, and Wu Lingyun. Differentiable dynamic nor-

malization for learning deep representation. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research,

pages 4203–4211, Long Beach, California, USA, 09–15 Jun

2019. PMLR.

[19] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 116–131, 2018.

[20] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya

Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz

Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving

deep neural networks. In Artificial Intelligence in the Age

of Neural Networks and Brain Computing, pages 293–312.

Elsevier, 2019.

[21] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018.

[22] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European Conference

on Computer Vision, pages 525–542. Springer, 2016.

[23] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. arXiv preprint arXiv:1802.01548, 2018.

[24] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-

ena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey

Kurakin. Large-scale evolution of image classifiers. In Pro-

ceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 2902–2911. JMLR. org, 2017.

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[26] Wenqi Shao, Tianjian Meng, Jingyu Li, Ruimao Zhang, Yu-

dian Li, Xiaogang Wang, and Ping Luo. Ssn: Learning

sparse switchable normalization via sparsestmax. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 443–451, 2019.

[27] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Thirty-First

AAAI Conference on Artificial Intelligence, 2017.

3550

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016.

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,

2018.

[31] Xijun Wang, Meina Kan, Shiguang Shan, and Xilin Chen.

Fully learnable group convolution for acceleration of deep

neural networks. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2019.

[32] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1379–1388, 2017.

[33] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1492–

1500, 2017.

[34] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

Snas: stochastic neural architecture search. arXiv preprint

arXiv:1812.09926, 2018.

[35] Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang. In-

terleaved group convolutions. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4373–

4382, 2017.

[36] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6848–6856, 2018.

[37] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

[38] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018.

3551

