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Abstract

Current commonsense reasoning research fo-

cuses on developing models that use common-

sense knowledge to answer multiple-choice

questions. However, systems designed to an-

swer multiple-choice questions may not be

useful in applications that do not provide a

small list of candidate answers to choose from.

As a step towards making commonsense rea-

soning research more realistic and useful, we

propose to study open-ended commonsense

reasoning (OpenCSR) — the task of answer-

ing a commonsense question without any pre-

defined choices — using as a resource only a

knowledge corpus of commonsense facts writ-

ten in natural language. OpenCSR is challeng-

ing due to a large decision space, and because

many questions require implicit multi-hop rea-

soning. As an approach to OpenCSR, we

propose DRFACT, an efficient Differentiable

model for multi-hop Reasoning over knowl-

edge Facts. To evaluate OpenCSR meth-

ods, we adapt three popular multiple-choice

datasets, and collect multiple new answers to

each test question via crowd-sourcing. Exper-

iments show that DRFACT outperforms strong

baseline methods by a large margin.1

1 Introduction

The conventional task setting for most current

commonsense reasoning research is multiple-

choice question answering (QA) — i.e., given

a question and a small set of pre-defined an-

swer choices, models are required to determine

which of the candidate choices best answers the

question. Existing commonsense reasoning mod-

els usually work by scoring a question-candidate

pair (Lin et al., 2019; Lv et al., 2020; Feng et al.,

2020). Hence, even an accurate multiple-choice

∗ The work was mainly done during Bill Yuchen Lin’s
internship at Google Research.

1Our code and data are available at the project website —
https://open-csr.github.io/. The human anno-
tations were collected by the USC-INK group.
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Figure 1: We study the task of open-ended com-

monsense reasoning (OpenCSR), where answer candi-

dates are not provided (as in a multiple-choice setting).

Given a question, a reasoner uses multi-hop reasoning

over a knowledge corpus of facts, and outputs a ranked

list of concepts from the corpus.

QA model cannot be directly applied in practical

applications where answer candidates are not pro-

vided (e.g., answering a question asked on a search

engine, or during conversation with a chat-bot).

Because we seek to advance commonsense rea-

soning towards practical applications, we pro-

pose to study open-ended commonsense reason-

ing (OpenCSR), where answers are generated ef-

ficiently, rather than selected from a small list

of candidates (see Figure 1). As a step to-

ward this, here we explore a setting where the

model produces a ranked list of answers from a

large question-independent set of candidate con-

cepts that are extracted offline from a corpus of

common-sense facts written in natural language.

The OpenCSR task is inherently challenging.

One problem is that for many questions, find-

ing an answer requires reasoning over two or

https://open-csr.github.io/
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more natural-language facts from a corpus. In

the multiple-choice QA setting, as the set of can-

didates is small, we can pair a question with an

answer, and use the combination to retrieve rel-

evant facts and then reason with them. In the

open-ended setting, this is impractical: instead one

needs to retrieve facts from the corpus using the

question alone. In this respect, OpenCSR is simi-

lar to multi-hop factoid QA about named entities,

e.g. as done for HotpotQA (Yang et al., 2018).

However, the underlying reasoning chains of

most multi-hop factoid QA datasets are relatively

clear and context-independent, and are thus eas-

ier to infer. Commonsense questions, in contrast,

exhibit more variable types of reasoning, and the

relationship between a question and the reasoning

to answer the question is often unclear. (For ex-

ample, a factoid question like “who starred in a

movie directed by Bradley Cooper?” clearly sug-

gests following a directed-by relationship and then

a starred-in relationship, while the underlying rea-

soning chains of a question like “what can help

alleviate global warming?” is relatively implicit

from the question.) Furthermore, annotations are

not available to identify which facts are needed

in the latent reasoning chains that lead to an an-

swer — the only supervision is a set of questions

and their answers. We discuss the formulation of

OpenCSR and its challenges further in Section 3.

As shown in Fig. 1, another challenge is that

many commonsense questions require reasoning

about facts that link several concepts together.

E.g., the fact “trees remove carbon dioxide from

the atmosphere through photosynthesis” cannot

be easily decomposed into pairwise relationships

between “trees”, “carbon dioxide”, “the atmo-

sphere”, and “photosynthesis”, which makes it

more difficult to store in a knowledge graph (KG).

However, such facts have been collected as sen-

tences in common-sense corpora, e.g., Generics-

KB (Bhakthavatsalam et al., 2020). This motivates

the question: how can we conduct multi-hop rea-

soning over such a knowledge corpus, similar to

the way multi-hop reasoning methods traverse a

KG? Moreover, can we achieve this in a differen-

tiable way, to support end-to-end learning?

To address this question, we extend work by Seo

et al. (2019) and Dhingra et al. (2020), and pro-

pose an efficient, differentiable multi-hop reason-

ing method for OpenCSR, named DRFACT (for

Differentiable Reasoning over Facts). Specifically,

we formulate multi-hop reasoning over a corpus as

an iterative process of differentiable fact-following

operations over a hypergraph. We first encode all

fact sentences within the corpus as dense vectors

to form a neural fact index, such that a fast re-

trieval can be done via maximum inner product

search (MIPS). This dense representation is sup-

plemented by a sparse fact-to-fact matrix to store

symbolic links between facts (i.e., a pair of facts

are linked if they share common concepts). DR-

FACT thus merges both neural and symbolic as-

pects of the relationships between facts to model

reasoning in an end-to-end differentiable frame-

work (Section 4).

To evaluate OpenCSR methods, we construct

new OpenCSR datasets by adapting three exist-

ing multiple-choice QA datasets: QASC (Khot

et al., 2020), OBQA (Mihaylov et al., 2018), and

ARC (Clark et al., 2018). Note that unlike fac-

toid questions that usually have a single correct

answer, open-ended commonsense questions can

have multiple correct answers. Thus, we collect a

collection of new answers for each test question by

crowd-sourcing human annotations. We compare

with several strong baseline methods and show

that our proposed DRFACT outperforms them by

a large margin. Overall DRFACT gives an 4.6%

absolute improvement in Hit@100 accuracy over

DPR (Karpukhin et al., 2020), a state-of-the-art

text retriever for QA, and 3.2% over DrKIT (Dhin-

gra et al., 2020), a strong baseline for entity-

centric multi-hop reasoning. With a relatively

more expensive re-ranking module, the gap be-

tween DRFACT and others is even larger. (Sec. 5)

2 Related Work

Commonsense Reasoning. Many recent

commonsense-reasoning (CSR) methods focus on

multiple-choice QA. For example, KagNet (Lin

et al., 2019) and MHGRN (Feng et al., 2020) use

an external commonsense knowledge graph as

structural priors to individually score each choice.

These methods, though powerful in determining

the best choice for a multi-choice question, are

less realistic for practical applications where

answer candidates are typically not available.

UnifiedQA (Khashabi et al., 2020) and other

closed-book QA models (Roberts et al., 2020)

generate answers to questions by fine-tuning a

text-to-text transformer such as BART (Lewis

et al., 2020a) or T5 (Raffel et al., 2020), but a
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disadvantage of closed-book QA models is that

they do not provide intermediate explanations for

their answers, i.e., the supporting facts, which

makes them less trustworthy in downstream

applications. Although closed-book models exist

that are augmented with an additional retrieval

module (Lewis et al., 2020b), these models mainly

work for single-hop reasoning.

QA over KGs or Text. A conventional source

of commonsense knowledge is triple-based sym-

bolic commonsense knowledge graphs (CSKGs)

such as ConceptNet (Speer et al., 2017). How-

ever, the binary relations in CSKGs greatly limit

the types of the knowledge that can be encoded.

Here, instead of a KB, we use a corpus of generic

sentences about commonsense facts, in particular

GenericsKB (Bhakthavatsalam et al., 2020). The

advantage of this approach is that text can rep-

resent more complex commonsense knowledge,

including facts that relate three or more con-

cepts. Formalized in this way, OpenCSR is a

question answering task requiring (possibly) iter-

ative retrieval, similar to other open-domain QA

tasks (Chen et al., 2017) such as HotpotQA (Yang

et al., 2018) and Natural Questions (Kwiatkowski

et al., 2019). As noted above, however, the sur-

face of commonsense questions in OpenCSR have

fewer hints about kinds of multi-hop reasoning re-

quired to answer them than the factoid questions in

open-domain QA, resulting in a particularly chal-

lenging reasoning problem (see Sec. 3).

Multi-Hop Reasoning. Many recent models

for open-domain QA tackle multi-hop reasoning

through iterative retrieval, e.g., GRAFT-Net (Sun

et al., 2018), MUPPET (Feldman and El-Yaniv,

2019), PullNet (Sun et al., 2019), and GoldEn (Qi

et al., 2019). These models, however, are not end-

to-end differentiable and thus tend to have slower

inference speed, which is a limitation shared by

many other works using reading comprehension

for multi-step QA (Das et al., 2019; Lee et al.,

2019). As another approach, Neural Query Lan-

guage (Cohen et al., 2020) designs differentiable

multi-hop entity-following templates for reason-

ing over a compactly stored symbolic KG, but this

KG is limited to binary relations between entities

from an explicitly enumerated set.

DrKIT (Dhingra et al., 2020) is the most similar

work to our DRFACT, as it also supports multi-hop

reasoning over a corpus. Unlike DRFACT, DrKIT

is designed for entity-centric reasoning. DrKIT

begins with an entity-linked corpus, and computes

both sparse and dense indices of entity mentions

(i.e., linked named-entity spans). DrKIT’s funda-

mental reasoning operation is to “hop” from one

weighted set of X entities to another, by 1) find-

ing mentions of new entities x′ that are related to

some entity in X , guided by the indices, and then

2) aggregating these mentions to produce a new

weighted set of entities. DrKIT’s operations are

differentiable, and by learning to construct appro-

priate queries to the indices, it can be trained to

answer multi-hop entity-related questions.

Prior to our work DrKIT been applied only on

factoid questions about named entities. In CSR,

the concepts that drive reasoning are generally

less precise than entities, harder to disambiguate

in context, and are also much more densely con-

nected, so it is unclear to what extent DrKIT would

be effective. We present here novel results using

DrKIT on OpenCSR tasks, and show experimen-

tally that our new approach, DRFACT, improves

over DrKIT. DRFACT mainly differs from DrKIT

in that its reasoning process learns to “hop” from

one fact to another, rather than from one entity to

another, thus effectively using the full information

from a fact for multi-hop reasoning.

3 Open-Ended Commonsense Reasoning

Task Formulation. We denote a corpus of knowl-

edge facts as F , and use V to denote a vocab-

ulary of concepts; both are sets consisting of

unique elements. A fact fi ∈ F is a sentence

that describes generic commonsense knowledge,

such as “trees remove carbon dioxide from the

atmosphere through photosynthesis.” A concept

cj ∈ V is a noun or base noun phrase mentioned

frequently in these facts (e.g., ‘tree’ and ‘carbon

dioxide’). Concepts are considered identical if

their surface forms are the same (after lemma-

tization). Given only a question q (e.g., “what

can help alleviate global warming?”), an open-

ended commonsense reasoner is supposed to an-

swer it by returning a weighted set of concepts,

such as {(a1=‘renewable energy’, w1), (a2=‘tree’,

w2), . . .}, where wi ∈ R is the weight of the pre-

dicted concept ai ∈ V .

To learn interpretable, trustworthy reasoning

models, it is expected that models can output in-

termediate results that justify the reasoning pro-

cess — i.e., the supporting facts from F . E.g., an

explanation for ‘tree’ to be an answer to the ques-
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= carbon dioxide is the major greenhouse gas
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greenhouse gas

= trees remove carbon dioxide from 

the atmosphere through photosynthesis .

= the atmosphere contains oxygen, 

carbon dioxide, and water.

Question: What can help 
alleviate global warming?

Modeling a knowledge 

corpus as a hypergraph.

tree
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Figure 2: A motivating example of how DrFact works for OpenCSR. We model the knowledge corpus as a

hypergraph consisting of concepts in V as nodes and facts in F as hyperedges. Then, we develop a differentiable

reasoning method, DrFact, to perform multi-hop reasoning via fact-following operations (e.g., f1 → f2).

tion above can be the combination of two facts: f1
= “carbon dioxide is the major ...” and f2 = “trees

remove ...”, as shown in Figure 1.

Implicit Multi-Hop Structures. Commonsense

questions (i.e., questions that need common-

sense knowledge to reason) contrast with better-

studied multi-hop factoid QA datasets, e.g., Hot-

potQA (Yang et al., 2018), which primarily fo-

cus on querying about evident relations between

named entities. For example, an example multi-

hop factoid question can be “which team does the

player named 2015 Diamond Head Classic’s MVP

play for?” Its query structure is relatively clear and

self-evident from the question itself: in this case

the reasoning process can be decomposed into q1
= “the player named 2015 DHC’s MVP” and q2 =

“which team does q1. answer play for”.

The reasoning required to answer common-

sense questions is usually more implicit and rel-

atively unclear. Consider the previous example in

Fig. 1, q = ‘what can help alleviate global warm-

ing?’ can be decomposed by q1 = “what con-

tributes to global warming” and q2 = “what re-

moves q1. answer from the atmosphere” — but

many other decompositions are also plausible. In

addition, unlike HotpotQA, we assume that we

have no ground-truth justifications for training,

which makes OpenCSR even more challenging.

4 DrFact: An Efficient Approach for

Differentiable Reasoning over Facts

In this section we present DRFACT, a model for

multi-hop reasoning over facts. More implemen-

tation details are in Appendix B.

4.1 Overview

In DRFACT, we propose to model reasoning as

traversing a hypergraph, where each hyperedge

corresponds to a fact in F , and connects the con-

cepts in V that are mentioned in that fact. This

is shown in Figure 2. Notice that a fact, as a hy-

peredge, connects multiple concepts that are men-

tioned, while the textual form of the fact maintains

the contextual information of the original natural

language statement, and hence we do not assume

a fixed set of relations.

Given such a hypergraph, our open-ended rea-

soning model will traverse the hypergraph starting

from the question (concepts) and finally arrive at a

set of concept nodes by following multiple hyper-

edges (facts). A probabilistic view of this process

over T hops is:

P (c | q) = P (c | q, FT )
∏T

t=1
P (Ft | q, Ft−1)P (F0 | q)

Intuitively, we want to model the distribution

of a concept c ∈ V being an answer to a ques-

tion q as P (c | q). This answering process

can be seen as a process of multiple iterations of

“fact-following,” or moving from one fact to an-

other based on shared concepts, and finally mov-

ing from facts to concepts. We use Ft to repre-

sent a weighted set of retrieved facts at the hop t,

and F0 for the initial facts below. Then, given the

question and the current retrieved facts, we itera-

tively retrieve the facts for the next hop. Finally,

we score a concept using retrieved facts.

4.2 Pre-computed Indices

Dense Neural Fact Index D. We pre-train a

bi-encoder architecture over BERT (Devlin et al.,
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Figure 3: The overall workflow of DRFACT. We encode the hypergraph (Fig. 2) with a concept-to-fact sparse

matrix E and a fact-to-fact sparse matrix S. The dense fact index D is pre-computed with a pre-trained bi-encoder.

A weighed set of facts is represented as a sparse vector F . The workflow (left) of DRFACT starts mapping a

question to a set of initial facts that have common concepts with it. Then, it recursively performs Fact-Follow

operations (right) for computing Ft and At. Finally, it uses learnable hop-weights αt to aggregate the answers.

2019), which learns to maximize the score of facts

that contain correct answers to a given question,

following the steps of Karpukhin et al. (2020)

(i.e., dense passage retrieval), so that we can use

MIPS to do dense retrieval over the facts. Af-

ter pre-training, we embed each fact in F with a

dense vector (using the [CLS] token representa-

tion). Hence D is a |F| × d dense matrix.

Sparse Fact-to-Fact Index S. We pre-compute

the sparse links between facts by a set of connec-

tion rules, such as fi → fj when fi and fj have

at least one common concept and fj introduces at

least two more new concepts that are not in fi (see

Appendix B (2) for more). Hence S is a binary

sparse tensor with the dense shape |F| × |F|.

Sparse Index of Concept-to-Fact Links E. As

shown in Figure 2, a concept can appear in mul-

tiple facts and a fact also usually mentions mul-

tiple concepts. We encode these co-occurrences

between each fact and its mentioned concepts into

a sparse matrix with the dense shape |V| × |F| —

i.e., the concept-to-fact index.

4.3 Differentiable Fact-Following Operation

The most important part in our framework is how

to model the fact-following step in our formula-

tion, i.e., P (Ft | Ft−1, q). For modeling the trans-

lation from a fact to another fact under the con-

text of a question q, we propose an efficient ap-

proach with a differentiable operation that uses

both neural embeddings of the facts and their sym-

bolic connections in the hypergraph.

The symbolic connections between facts are

represented by the very sparse fact-to-fact matrix

S, which in our model is efficiently implemented

with the tf.RaggedTensor construct of Ten-

sorFlow (Dhingra et al., 2020). S stores a pre-

computed dependency between pairs of facts, Sij .

Intuitively, if we can traverse from fi to fj these

facts should mention some common concepts, and

also the facts’ semantics are related, so our Sij

will reflect this intuition. The fact embeddings

computed by a pre-trained bi-encoder are in the

dense index of fact vectors D, which contains rich

semantic information about each fact, and helps

measure the plausibility of a fact in the context of

a given question.

The proposed fact-follow operation has two par-

allel sub-steps: 1) sparse retrieval and 2) dense

retrieval. The sparse retrieval uses a fact-to-fact

sparse matrix to obtain possible next-hop facts.

We can compute F s
t = Ft−1S efficiently thanks

to the ragged representation of sparse matrices.

For the neural dense retrieval, we use a maxi-

mum inner product search (MIPS) (Johnson et al.,

2019; Guo et al., 2020) over the dense fact embed-

ding index D:

zt−1 = Ft−1D

ht−1 = g(zt−1,qt)

F d
t = MIPSK(ht−1, D)

We first aggregate the dense vectors of the facts

in Ft−1 into the dense vector zt−1, which is fed

into a neural layer with the query embedding at

the current step, qt (encoded by BERT), to create

a query vector ht−1. Here g(·) is an MLP that

maps the concatenation of the two input vectors to
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a dense output with the same dimensionality as the

fact vectors, which we named to be fact-translating

function. Finally, we retrieve the next-hop top-K

facts F d
t with the MIPSK operator.

To get the best of both symbolic and neural

world, we use element-wise multiplication to com-

bine the sparse and dense retrieved results: Ft =
F s
t ⊙ F d

t . We summarize the fact-following oper-

ation with these differentiable steps:

Ft = Fact-Follow(Ft−1, q) (1)

= Ft−1S ⊙MIPSK(g(Ft−1D,qt), D)

After each hop, we multiply Ft with a pre-

computed fact-to-concept matrix E, thus generat-

ing At, a set of concept predictions. To aggregate

the concept scores, we take the maximum score

among the facts that mention a concept c. Finally

we take the weighted sum of the concept predic-

tions at all hops as the final weighted concept sets

A =
∑T

t=1
αtAt, where αt is a learnable parame-

ter. Please read Appendix B for more details.

Equation 1 defines a random-walk process on

the hypergraph associated with the corpus. We

found that performance was improved by making

this a “lazy” random walk—in particular by aug-

menting Ft with the facts in Ft−1 which have a

weight higher than a threshold τ :

Ft = Fact-Follow(Ft−1, q) + Filter(Ft−1, τ).

We call this as self-following, which means that

Ft contains highly-relevant facts for all distances

t′ < t, and thus improve models when there are

variable numbers of “hops” for different questions.

Initial Facts. Note that the set of initial facts F0

is computed differently, as they are produced us-

ing the input question q, instead of a previous-hop

Ft−1. We first use our pre-trained bi-encoder and

the associated index D via MIPS query to finds

facts related to q, and then select from the retrieved

set those facts that contain question concepts (i.e.,

concepts that are matched in the question text), us-

ing the concept-to-fact index E.

4.4 Auxiliary Learning with Distant Evidence

Intermediate evidence, i.e., supporting facts, is

significant for guiding multi-hop reasoning mod-

els during training. In a weakly supervised setting,

however, we usually do not have ground-truth an-

notations as they are expensive to obtain.

To get some noisy yet still helpful supporting

facts, we use as distant supervision dense retrieval

based on the training questions. Specifically, we

concatenate the question and the best candidate

answer to build a query to our pre-trained index D,

and then we divide the results into four groups de-

pending on whether they contain question/answer

concepts: 1) question-answer facts, 2) question-

only facts, 3) answer-only facts, and 4) none-facts.

Then, to get a 2-hop evidence chain, we first

check if a question-only fact can be linked to an

answer-only fact through the sparse fact-to-fact

matrix S. Similarly, we can also get 3-hop distant

evidence. In this manner, we can collect the set of

supporting facts at each hop position, denoted as

{F ∗

1
, F ∗

2
, . . . , F ∗

T }.

The final learning objective is thus to optimize

the sum of the cross-entropy loss l between the fi-

nal weighed set of concepts A and the answer set

A∗, as well as the auxiliary loss from distant ev-

idence — i.e., the mean of the hop-wise loss be-

tween the predicted facts Ft and the distant sup-

porting facts at that hop F ∗

t , defined as follows:

L = l(A,A∗) +
1

T

T∑

t=1

l(Ft, F
∗

t )

5 Experiments

5.1 Experimental Setup

Fact corpus and concept vocabulary

We use the GenericsKB-Best corpus as the main

knowledge source2. In total, we have 1,025,413

unique facts as our F . We use the spaCy toolkit

to prepossess all sentences in the corpus and then

extract frequent noun chunks within them as our

concepts. The vocabulary V has 80,524 concepts,

and every concept is mentioned at least 3 times.

Datasets for OpenCSR

To facilitate the research on open-ended com-

monsense reasoning (OpenCSR), we reformat-

ted three existing multi-choice question answer-

ing datasets to allow evaluating OpenCSR meth-

ods. We choose three datasets: QASC, OBQA,

and ARC, as their questions require commonsense

knowledge about science and everyday objects

and are presented in natural language. By apply-

ing a set of filters and rephrasing rules, we se-

lected those open-ended commonsense questions

that query concepts in our vocabulary V .

2It was constructed from multiple commonsense knowl-
edge corpora and only kept naturally occurring generic state-
ments, which makes it a perfect fit for OpenCSR.
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Stat. \ Data ARC QASC OBQA Overall

# All Examples 6,600 8,443 5,288 20,331

# Training Set 5,355 6,883 4,199 16, 437

# Validation Set 562 731 463 1,756

# Test Set 683 829 626 2,138

Avg.#Answers 6.8 7.6 7.7 7.5

Single-hop % 66.91% 59.35% 50.80% 59.02%

Table 1: Statistics of datasets for OpenCSR (v1.0).

As we know that there can be multiple correct

answers for a question in OpenCSR, we employed

crowd-workers to collect more answers for each

test question based on a carefully designed anno-

tation protocol. In total, we collect 15,691 an-

swers for 2,138 rephrased questions for evalua-

tion, which results in 7.5 answers per question on

average. Please find more details about crowd-

sourcing and analysis in Appendix A.

We show some statistics of the OpenCSR

datasets and our new annotations in Table 1. To

understand the multi-hop nature and the difficulty

of each dataset, we use a heuristic to estimate the

percentage of “single-hop questions”, for which

we can find a fact (from top-1k facts retrieved by

BM25) containing both a question concept and an

answer concept. The ARC dataset has about 67%

one-hop questions and thus is the easiest, while

OBQA has only 50%.

Evaluation metrics.

Recall that, given a question q, the final output of

every method is a weighted set of concepts A =
{(a1, w1), . . . }. We denote the set of true answer

concepts, as defined above, as A∗ = {a∗
1
, a∗

2
, . . . }.

We define Hit@K accuracy to be the fraction of

questions for which we can find at least one cor-

rect answer concept a∗i ∈ A∗ in the top-K con-

cepts of A (sorted in descending order of weight).

As questions have multiple correct answers, re-

call is also an important aspect for evaluating

OpenCSR, so we also use Rec@K to evaluate the

average recall of the top-K proposed answers.

5.2 Baseline Methods

We present baseline methods and an optional re-

ranker component for boosting the performance

on OpenCSR. Table 3 shows a summary of the

comparisions of the three methods and our DrFact.

Direct Retrieval Methods. The most straightfor-

ward approach to the OpenCSR task is to directly

Methods BM25 DPR DrKIT DrFact (ours) 

Knowledge 

Corpus Structure

A set of 

docs

A set of 

docs

Mention-Entity 

Bipartite Graph

Concept-Fact 

Hypergraph

Multi-hop 

Formulation
N/A N/A

Entity-

Following
Fact-Following

Index for 

Dense Retrieval
N/A

Dense Fact 

Embeddings

Dense Mention

Embeddings

Dense Fact 

Embeddings

Sparse Retrieval 

Method
BM25 N/A

Entity-

Entity/Mention 

Co-occurrence

Fact-to-Fact, 

Concept-to-Fact 

Matrix

# models for

Multi-Hop
N/A N/A

Multiple 

Models

A single model 

(self-following) 

Intermediate 

Supervision
N/A N/A N/A

Auxiliary 

Learning

Table 3: Comparisons of the four retrieval methods.

retrieve relevant facts, and then use the concepts

mentioned in the top-ranked facts as answer pre-

dictions. BM25 is one of the most popular un-

supervised method for retrieval, while the Dense

Passage Retrieval (DPR) model is a state-of-the-

art trainable, neural retriever (Karpukhin et al.,

2020). Following prior work with DPR, we used

BM25-retrieved facts to create positive and (hard-

)negative examples as supervision. For both meth-

ods, we score a concept by the max3 of the rele-

vance scores of retrieved facts that mention it.

DrKIT. Following Dhingra et al. (2020), we use

DrKIT for OpenCSR, treating concepts as enti-

ties. DrKIT is also an efficient multi-hop reason-

ing model that reasons over a pre-computed in-

dexed corpus, which, as noted above (Sec. 2), dif-

fers from our work in that DrKIT traverses a graph

of entities and entity mentions, while DRFACT tra-

verses a hypergraph of facts.

Multiple-choice style re-ranking (MCQA). A

conventional approach to multiple-choice QA

(MCQA) is to fine-tune a pre-trained language

model such as BERT, by combining a question and

a particular concept as a single input sequence in

the form of “[CLS]question[SEP]choice” and

using [CLS] vectors for learning to score choices.

We follow this schema and train4 such a multiple-

choice QA model on top of BERT-Large, and use

this to re-rank the top-K concept predictions.

5.3 Results and Analysis

Main results. For a comprehensive understand-

ing, we report the Hit@K and Rec@K of all meth-

ods, at K=50 and K=100, in Table 2. The over-

all results are the average over the three datasets.

3We also tried mean and sum, but max performs the best.
4Specifically, we fine-tune BERT-Large to score truth an-

swers over 9 sampled distractors, and use it to rank the top-
500 concepts produced by each above retrieval method.
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ARC QASC OBQA Overall

Metric = Hit@K (%) H@50 H@100 H@50 H@100 H@50 H@100 H@50 H@100

BM25 (off-the-shelf) 56.95 67.35 58.50 66.71 53.99 66.29 56.48 66.78

DPR (Karpukhin et al., 2020) 68.67 78.62 69.36 78.89 62.30 73.80 66.78 77.10

DrKIT (Dhingra et al., 2020) 67.63 77.89 67.49 81.63 61.74 75.92 65.62 78.48

DRFACT (Ours) 71.60 80.38 72.01 84.56 69.01 80.03 70.87 81.66

BM25 + MCQA Reranker 76.87 80.38 75.75 80.22 79.23 84.03 77.28 81.54

DPR + MCQA Reranker 76.72 83.16 81.66 87.45 77.16 83.39 78.51 84.67

DrKIT + MCQA Reranker 78.44 83.37 84.00 86.83 79.25 84.03 80.56 84.74

DRFACT + MCQA Reranker 84.19 89.90 89.87 93.00 85.78 90.10 86.61 91.00

Metric = Rec@K (%) R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

BM25 (off-the-shelf) 21.12 28.08 16.33 20.13 14.27 20.21 17.24 22.81

DPR (Karpukhin et al., 2020) 28.93 38.63 23.19 32.12 18.11 26.83 23.41 32.53

DrKIT (Dhingra et al., 2020) 27.57 37.29 21.25 30.93 18.18 27.10 22.33 31.77

DRFACT (Ours) 31.48 40.93 23.29 33.60 21.27 30.32 25.35 34.95

BM25 + MCQA Reranker 39.11 42.96 29.03 32.11 36.38 39.46 34.84 38.18

DPR + MCQA Reranker 43.78 51.56 40.72 48.25 36.18 43.61 40.23 47.81

DrKIT + MCQA Reranker 43.14 49.17 39.20 44.37 35.12 39.85 39.15 44.46

DRFACT + MCQA Reranker 47.73 55.20 44.30 50.30 39.60 45.24 43.88 50.25

Table 2: Results of the Hit@K and Rec@K (K=50/100) on OpenCSR (v1.0). We present two groups of methods

with different inference speed levels. The upper group is retrieval-only methods that are efficient (< 0.5 sec/q),

while the bottom group are augmented with a computationally expensive answer reranker (≥ 14 sec/q).

We can see that DRFACT outperforms all baseline

methods for all datasets and metrics. Comparing

with the state-of-the-art text retriever DPR, DR-

FACT improves by about 4.1% absolute points in

Hit@50 accuracy overall. With the expensive yet

powerful MCQA reranker module DRFACT gives

an even large gap (∼ 8% gain in H@50 acc).

The performance gains on the QASC and

OBQA datasets are larger than the one on ARC.

This observation correlates the statistics that the

former two have more multi-hop questions and

thus DRFACT has more advantages. As shown

in Figure 4, we can see that DRFACT consistently

outperforms other retrieval methods at different K

by a considerable margin.

Interestingly, we find that with the MCQA

reranker, DrKIT does not yield a large improve-

ment over DPR, and it usually has a lower than

other methods. We conjecture this is because

that entity-centric reasoning schema produces too

many possible concepts and thus is more likely to

take more irrelevant concepts at the top positions.

The results on Rec@K in bottom section of Ta-

ble 2 show that even our DRFACT+MCQA model

only recalls about 50% of the correct answers in

top-100 results on average. This suggests that

OpenCSR is still a very challenging problem and
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Figure 4: The curve of Hit@K accuracy in overall.

Please find the curve of Rec@K in Figure 7.

future works should focus on improving the ability

of ranking more correct answers higher.

Run-time efficiency analysis. We use Table 4

to summarize the online inference speed of each

OpenCSR method. At inference time, DPR will

make one call to BERT-base for encoding a ques-

tion and do one MIPS search. Similarly, DrKIT

and DRFACT with T hops will make one call to

BERT-base for query encoding and do T MIPS

searches. However, since the entity-to-mention
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Methods Major Computations Speed (sec/q)

BM25 Sparse Retrieval 0.14

DPR BERT-base + MIPS 0.08

DrKIT BERT-base + T*(MIPS+ spe2m) 0.47

DRFACT BERT-base + T*(MIPS+ spf2f ) 0.23

X+ MCQA X + K * BERT-Large + 14.12

Table 4: The major competitions of each method and

their online (batch-size=1) inference speed in sec/q.

ARC QASC OBQA Overall

T=1 69.3% 70.1% 65.0% 68.1%

T=2 71.1% 72.2% 68.3% 70.5%

T=3 ✓ 71.6% 72.0% 69.0% 70.9%

w/o. Self-follow 70.9% 70.4% 68.4% 69.9%

w/o. Aux. loss 70.6% 70.1% 68.0% 69.6%

Table 5: Ablation study of DRFACT (H@50 test acc).

matrix (spe2m) of DrKIT is much larger than the

fact-to-fact matrix (spf2f ) of DRFACT, DrKIT is

about twice as slow as DRFACT. The MCQA

is much more computationally expensive, as it

makes K calls to BERT-Large for each combina-

tion of question and choice. Note that in these ex-

periments we use T=2 for DrKIT, T=3 for DR-

FACT and K=500 for the MCQA re-rankers.5

Ablation study. Varying the maximum hops

(T={1,2,3}) — i.e., the number of calls to

Fact-Follow — indicates that overall perfor-

mance is the best when T=3 as shown in Table 5.

The performance with T=2 drops 0.7% point on

OBQA. We conjecture this is due to nature of the

datasets, in particular the percentage of hard ques-

tions. We also test the model (with T=3) without

the auxiliary learning loss (Sec. 4.4) or the self-

following trick. Both are seen to be important to

DRFACT. Self-following is especially helpful for

QASC and OBQA, where there are more multi-

hop questions. It also makes learning and infer-

ence more faster than an alternative approach of

ensembling multiple models with different maxi-

mum hops as done in some prior works.

Qualitative analysis. We show a concrete exam-

ple in Fig. 5 to compare the behaviour of DPR and

DRFACT in reasoning. DPR uses purely dense re-

trieval without any regularization, yielding irrele-

vant facts. The fact f2 matches the phrase “sepa-

5We note the MCQA-reranker could be speed up by scor-
ing more choices in parallel. All run-time tests were per-
formed on NVIDIA V100 (16GB), but MCQA with batch-
size of 1 requires only ∼5GB. This suggests more parallel
inference on a V100 could obtain 4.5 sec/q for MCQA.

Q: “What will separate iron filings from sand? ”

magnets attract magnetic metals through magnetism (in F2)

iron filings show the magnetic fields . (in F0)

magnets produce a magnetic field with a north … (in F1)

f1= angle irons reinforce the thinnest section of the ring .”

f3= stainless steel has a rough surface just after filing .”

f2= sieves are used for separating fossils from sand...”

DPR

DrFact

Figure 5: A case study to compare DPR and DRFACT.

rating...from sand,” but does not help reason about

the question. The f3 shows here for the seman-

tic relatedness of “steel” and “iron” while “fill-

ing” here is not related to question concepts. Our

DRFACT, however, can faithfully reason about the

question via fact-following over the hypergraph,

and use neural fact embeddings to cumulatively

reason about a concept, e.g., magnet. By back-

tracking with our hypergraph, we can use retrieved

facts as explanations for a particular prediction.

6 Conclusion

We introduce and study a new task — open-ended

commonsense reasoning (OpenCSR) — which is

both realistic and challenging. We construct three

OpenCSR versions of widely used datasets target-

ing commonsense reasoning with a novel crowd-

sourced collection of multiple answers, and eval-

uate a number of baseline methods for this task.

We also present a novel method, DRFACT. DR-

FACT is a scalable multi-hop reasoning method

that traverses a corpus (as a hypergraph) via a

differentiable “fact-following” reasoning process,

employing both a neural dense index of facts and

sparse tensors of symbolic links between facts,

using a combination of MIPS and sparse-matrix

computation. DRFACT outperforms several strong

baseline methods on our data, making a significant

step towards adapting commonsense reasoning ap-

proaches to more practical applications. Base on

the multi-hop reasoning framework of DRFACT,

we hope the work can benefit future research on

neural-symbolic commonsense reasoning.
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* Ethical Considerations

Crowd-workers. This work presents three

datasets for addressing a new problem, open

common-sense reasoning. The datasets are all de-

rived from existing multiple-choice CSR datasets,

and were produced by filtering questions and using

crowd-workers to annotate common-sense ques-

tions by suggesting additional answers. Most of

the questions are about elementary science and

common knowledge about our physical world.

None of the questions involve sensitive personal

opinions or involve personally identifiable infor-

mation. We study posted tasks to be completed

by crowd-workers instead of crowd-workers them-

selves, and we do not retrieve any identifiable pri-

vate information about a human subject.

Data bias. Like most crowdsourced data, and in

particular most common-sense data, these crowd-

sourced answers are inherently subject to bias: for

example, a question like “what do people usually

do at work” might be answered very differently by

people from different backgrounds and cultures.

The prior multiple-choice CSR datasets which our

datasets are built on are arguably more strongly

biased culturally, as they include a single correct

answer and a small number of distractor answers,

while our new datasets include many answers con-

sidered correct by several annotators. However,

this potential bias (or reduction in bias) has not

been systematically measured in this work.

Sustainability. For most of the experiments,

we use the virtual compute engines on Google

Cloud Platform, which “is committed to purchas-

ing enough renewable energy to match consump-

tion for all of their operations globally.”6 With

such virtual machine instances, we are able to use

the resources only when we have jobs to run, in-

stead of holding them all the time like using phys-

ical machines, thus avoiding unnecessary waste.

Application. The work also evaluates a few pro-

posed baselines for OpenCSR, and introduced a

new model which outperforms them. This raises

the question of whether harm might arise from ap-

plications of OpenCSR—or more generally, since

6https://cloud.google.com/

sustainability

OpenCSR is intended as a step toward making

multiple-choice CSR more applicable, whether

harm might arise more generally from CSR meth-

ods. Among the risks that need to be considered

in any deployment of NLP technology are that re-

sponses may be wrong, or biased, in ways that

would lead to improperly justified decisions. Al-

though in our view the current technology is still

relatively immature, and unlikely to be fielded in

applications that would cause harm of this sort, it

is desirable that CSR methods provide audit trails,

and recourse so that their predictions can be ex-

plained to and critiqued by affected parties. Our

focus on methods that provide chains of evidence

is largely a reflection of this perceived need.
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Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020b. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. KagNet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2829–2839, Hong
Kong, China. Association for Computational Lin-
guistics.

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang,
Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang,

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SJxstlHFPH
https://openreview.net/forum?id=SJxstlHFPH
https://doi.org/10.18653/v1/P19-1222
https://doi.org/10.18653/v1/P19-1222
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
http://proceedings.mlr.press/v119/guo20h.html
http://proceedings.mlr.press/v119/guo20h.html
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://aaai.org/ojs/index.php/AAAI/article/view/6319
https://aaai.org/ojs/index.php/AAAI/article/view/6319
https://aaai.org/ojs/index.php/AAAI/article/view/6319
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282


4622

Guihong Cao, and Songlin Hu. 2020. Graph-
based reasoning over heterogeneous external knowl-
edge for commonsense question answering. In The
Thirty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 8449–8456. AAAI Press.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2381–2391, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D. Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 2590–2602, Hong Kong, China. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,
21(140):1–67.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4430–4441, Florence,
Italy. Association for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California,
USA, pages 4444–4451. AAAI Press.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4231–
4242, Brussels, Belgium. Association for Computa-
tional Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2369–2380, Brussels, Belgium. As-
sociation for Computational Linguistics.

https://aaai.org/ojs/index.php/AAAI/article/view/6364
https://aaai.org/ojs/index.php/AAAI/article/view/6364
https://aaai.org/ojs/index.php/AAAI/article/view/6364
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D19-1261
https://doi.org/10.18653/v1/D19-1261
https://doi.org/10.18653/v1/D19-1261
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/P19-1436
https://doi.org/10.18653/v1/P19-1436
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259


4623

Appendix

In this appendix, we show more details of

our dataset construction (Appx. A), details of

model implementation and experiments for re-

produciblility (Appx. B), and more related works

(Appx. C). As we have submitted our code as sup-

plementary material with detailed instructions for

running baselines, we will skip some minor details

here. We will make our code and data public after

the anonymity period.

A Constructing OpenCSR Datasets

A.1 Reformatting Questions and Answers

In this section, we introduce how we refor-

mat the existing three datasets and crowd-source

annotations of multiple answers for evaluating

OpenCSR. To convert a multiple-choice question

to an open-ended question, we first remove ques-

tions where the correct answer does not contain

any concept in V and the few questions that re-

quire comparisons between original choices, as

they are designed only for multiple-choice QA,

e.g., “which of the following is the most . . . ” Then,

we rephrase questions with long answers to be an

open-ended question querying a single concept.

For example, an original question-answer pair

such as (Q:“The Earth revolving around the sun

can cause ”, A:“constellation to appear in one

place in spring and another in fall”) is now

rephrased to (Q*=“The Earth revolving around the

sun can cause what to appear in one place in spring

and another in fall?”, A*=“constellation”). Specif-

ically, we combine the original question (Q) and

original correct choice (A) to form a long state-

ment and rephrase it to be a new question (Q*)

querying a single concept (A*) in the original an-

swer, where we use the least frequent concept as

the target. This question-rephrasing largely im-

prove the number of answerable questions, partic-

ularly for the OBQA dataset. All are English data.

A.2 Crowd-sourcing More Answers

Note that there can be multiple correct answers

to an open-ended question in OpenCSR while the

original datasets only provide a single answer.

Thus, we use Amazon Mechanical Turk7 (AMT)

to collect more answers for the test questions to

have a more precise OpenCSR evaluation.

7https://www.mturk.com/

0 5 10 15 20 25 30
# Answer Concepts

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 6: Distribution of # answers of test questions.

We design a three-stage annotation protocol as

follows:

• S1) Multiple-Choice Sanity Check. We

provide a question and 4 choices where only

one choice is correct and the other 3 are

randomly sampled. Only the workers who

passed this task, their following annotations

will be considered. This is mainly designed

for avoiding noise from random workers.

• S2) Selection from Candidates. To im-

prove the efficiency of annotation, we take

the union of top 20 predictions from BM25,

DPR, DrKIT, and DrFact and randomly shuf-

fle the order of these concepts (most of them

are about 60∼70 candidates). workers can

simply input the ids of the concepts that they

think are good answers to the question (i.e., a

list of integers separated by comma). There

are three different workers for each question

and we take the candidates which are selected

by at least two workers. Note that we also

put the correct answer we already have in

the candidates and use them as another san-

ity check to filter out noisy workers.

• S3) Web-based Answer Collection. We

generate an URL link to Google Search of the

input question to help workers to use the Web

for associating more correct answers to the

question (the input here is a string for a list of

concepts separated by comma). We also pro-

vide our concept vocabulary as a web-page so

one can quickly check if a concept is valid.

After careful post-processing and multiple

rounds of re-assignment, we have in total 15k an-

swers for 2k questions, and the distribution of

number of answers are in Figure 6 and Table 1.

https://www.mturk.com/
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B Details of Implementation and Our

Experiments

B.1 DrFact Implementation

We present some concrete design choices within

our DrFact implementation which are abstractly il-

lustrated in the main content of the paper.

(1) Pre-training Dense Fact Index D. As

we mentioned in Sec. 4, we follow the steps

of Karpukhin et al. (2020) to pre-train a bi-

encoder question answering model on top of

BERT (Devlin et al., 2019). To create negative

examples, we use the BM25 results which do not

contain any answer concept. We use BERT-base

(uncased L-12 H-768 A-12) in our imple-

mentation and thus d = 768 in our experiments.

(2) Sparse Fact-to-Fact Index S. We use a set of

rules to decide if we can create a link fi → fj (i.e.,

Sij = 1) as follows:

• i 6= j. We do not allow self-link here but use

self-following as we described in Sec. 4.

• |I| >= 1 where I is the set of concepts that

are mentioned in both fi and fj . Note that we

remove the most frequent 100 concepts (e.g.,

human) from I .

• |I| < |fi|. We do not create links when all

concepts in fi are mentioned in fj , which are

usually redundant.

• |fj | − |I| >= 2. We create links only when

there are more than two unseen concepts in fj
which are not in fi, such that the fact-to-fact

links create effective reasoning chains.

We also limit that a fact can be followed by at

most 1k different facts. Additionally, we append

the links from our distant supervision of justifica-

tions as well if they were filtered out before.

(3) Hop-wise Question Encoding qt. We encode

the question q with BERT-base and then use its

[CLS] token vector as the dense representation

for q. For each hop, we append a hop-specific

layer to model how the question context changes

over the reasoning process — qt = MLPθt(q).

(4) Fact Translating Function g. The translating

function accepts both the vector representation of

previous-hop facts Ft−1 and the hop-wise ques-

tion vector qt and uses an MLP to map the con-

catenation of them to a vector used for a MIPS

query: ht−1 = MLPθg([Ft−1;qt]). Thus, ht−1

has the same dimension as a fact vector in U .

(5) Hop-wise Answer Weights αt. We use the

shared query vector to learn how to aggregate pre-
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Figure 7: The curve of Rec@K in overall data.

dictions at different hops. For a T -hop DrFact

model, we learn to transform the q to a T -dim vec-

tor where αt is the t-th component.

B.2 Hyper-parameters and Training Details

We now present the details and final hyper-

parameters that we used in our experiments. For

all methods, we tune their hyper-parameters on the

validation set and then use the same configurations

to train them with the combination of the training

and validation sets for the same steps.

BM25. We use the off-the-shelf implementation

by elasticsearch8, which are open-source and un-

supervised. For the run-time analysis, we use In-

tel(R) Xeon(R) CPU @ 2.00GHz and the localhost

webserver for data transfer.

DPR. We use the source code9 released by the

original authors. The creation of negative contexts

are the same when we pre-train our dense fact in-

dex D, which are sampled from BM25 results.

DrKIT. We use the official source code10 for

our experiments. We did minimal modifications

on their code for adapt DrKIT towards building

dense index of mentions for the OpenCSR cor-

pus and datasets. For fair comparisions between

DPR, DrKIT and DrFact, we all use BERT-base

as question and mention/fact encoder. We use

200 as the dimension of mention embeddings and

T=2 as the maximum hops. We found that us-

ing T=3 will cause too much memory usage (due

to denser entity-to-mention matrix) and also result

8https://github.com/elastic/

elasticsearch
9https://github.com/facebookresearch/

DPR
10https://github.com/google-research/

language/tree/master/language/labs/drkit

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/google-research/language/tree/master/language/labs/drkit
https://github.com/google-research/language/tree/master/language/labs/drkit
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in a very slow training speed. Non-default hyper-

parameters are: train batch size=8 due to the limit

of our GPU memory, entity score threshold=5e-3

(out of {5e-2, 5e-3, 5e-4, 1e-4}) to filter numer-

ous long-tail intermediate concepts for speeding

up training and inference.

DrFact. Similar to DrKIT, we also implement

DrFact in TensorFlow for its efficient implemen-

tation of tf.RaggedTensor which are essen-

tial for us to compute over large sparse ten-

sors. We record the default hyper-parameters

in our submitted code. We use a single V100

GPU (16GB) for training with batch size of

24 (using 15GB memory) and learning rate as

3e-5, selected from {1e-5, 2e-5, 3e-5, 4e-5,

5e-5}. The entity score threshold=1e-4, and

fact score threshold=1e-5, which are all selected

from {1e-3, 1e-4, 1e-5} based on the dev set.

Model Parameters. DPR, DrKIT and DrFact are

all based on the BERT-base, which are 110 million

parameters (after pre-training index). DrKIT and

DrFact additionally have several MLP layers on

top of ‘[CLS]’ token vectors, which are all less

than 1 million parameters. The MCQA-reranker

model is based on BERT-Large, and thus has 345

million parameters.

C Discussion on Other Related Work

Other Open-Domain QA models. Recent

open-domain QA models such as REALM (Guu

et al., 2020), Path-Retriever (Asai et al., 2020),

ORQA (Lee et al., 2019), and RAG (Lewis

et al., 2020b), mainly focus on QA over the

full Wikipedia corpus like DrKIT (Dhingra et al.,

2020) does. Some of them explicitly use the links

between pages to form reasoning chain, while

a few them rely on expensive QA-oriented pre-

training. Moreover, as DPR (Karpukhin et al.,

2020) already shows better performance (see their

Table 4) than most prior works with a simpler

method, we thus use DPR as the major baseline

for evaluation in this work.


