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Abstract—We consider the problem of sequential manipulation
and tool-use planning in domains that include physical interac-
tions such as hitting and throwing. The approach integrates a
Task And Motion Planning formulation with primitives that ei-
ther impose stable kinematic constraints or differentiable dynam-
ical and impulse exchange constraints at the path optimization
level. We demonstrate our approach on a variety of physical
puzzles that involve tool use and dynamic interactions. We then
compare manipulation sequences generated by our approach to
human actions on analogous tasks, suggesting future directions
and illuminating current limitations.

I. INTRODUCTION

In this paper we address manipulation planning problems

that involve sequencing constrained interactions such as stable

pushes with a tool or sliding an object along a wall, as

well as dynamic interactions such as hitting a ball in the

air. These creative manipulation capabilities are a hallmark of

intelligence. Betty the Crow (see Fig. 1 top-left) demonstrated

the ability to use a sequence of hooks to retrieve a piece

of food [33], and Koehler’s apes stacked crates to reach a

hanging bunch of bananas (bottom-left) [12]. Humans easily

perform such sequential manipulation planning tasks naturally

and flexibly (bottom-right).

Evidence from cognitive science suggests that people have

an “intuitive physics engine” [2] which can be used to simulate

the outcome of an action or tool manipulation [22], and

have dedicated neural architectures near the motor cortex for

implementing this capability [8]. But a typical physics engine

only predicts outcomes for an action, not how to choose those

actions.

Consider if we had a precise and efficiently invertible

physical simulator available. Candidates for this were proposed

in terms of fully (auto-) differentiable physical simulations

[29, 7], which have the potential to embed control synthesis

and planning within end-to-end trainable systems [28]. Invert-

ing a simulation means that we can in principle formulate

any objectives or constraints on the end result or trajectory

of the simulation and solve for the inputs (control signals of

an embedded robot, or parameters of the scene or kinematics)

that render the desired constraints true. For instance, if we

could efficiently invert a correct physical simulation, we could

constrain the end result to be a cleaned-up kitchen and solve

for the motor inputs that make a PR2 reach this state starting

from a messy kitchen.

Fig. 1. From left to right: A crow solving a sequential hook problem [33],
classical intelligence test with apes [12], our solver using a stick to hit a flying
blue ball to get it into the green area, using a hook to get a second hook to
reach for the red ball, a human subject on the same task.

Unfortunately, efficient general inversion of a physical sim-

ulator is implausible as it defies what we know about the

fundamental complexities of task and path level planning [15],

as well as control synthesis. The complexity of inverting a

physical simulator is implicit in the non-unimodality of the

resulting optimization problem. In sequential manipulation, the

underlying structure is determined by contacts or—on a higher

level—by decisions on which object is manipulated and how.

Both imply discontinuities in the physical effects and local

optima w.r.t. the global inverse problem. Our approach is to

explicitly model such structure:



Approach 1: Use logic to express the combinatorics of

possible physical interactions and respective local optima.

This follows the paradigm of Mixed-Integer Program (MIP)

formulations in hybrid control synthesis [5]. However, it ex-

tends this to 1st-order logic, leveraging the strong generaliza-

tion over objects of classical AI formulations. It also follows

the standard task and motion planning (TAMP) approach of

using logic to describe the task level, but now describes the

combinatorics of possible physical interactions.

In addition, a precise physical simulation is very powerful

as it can predict many kinds of interactions, including high

frequencies of contact switches. Eventually, we are not in-

terested in modeling anything possible, but rather in modeling

interactions that are useful for goal-directed manipulation. The

classical manipulation literature emphasizes the importance

of stable interaction modes and funnels [19, 17, 3]. A mode

can mean that contact activities are phase-wise constant [21],

but also that the relative transformation between objects is

held constant, allowing for a kinematic abstraction of the

interaction. We adopt this view in our approach:

Approach 2: Restrict the solutions to a sequence of modes;

consider these as action primitives and explicitly describe the

kinematic and dynamic constraints of such modes. This dras-

tically reduces the frequency of contact switches or kinematic

switches to search over, and thereby the depth of the logic

search problem. It also introduces a symbolic action level

following the standard TAMP approach, but grounds these

actions to be modes w.r.t. the fundamental underlying hybrid

dynamics of contacts.

Combining the two approaches, the core of our method is to

introduce explicit predicates and logical rules that flexibly de-

scribe possible sequences of modes, mixing modes that relate

to physical dynamics for some objects and stable kinematic

relations for others. All predicates are grounded as smooth and

differentiable constraints on the system dynamics. Leveraging

an optimization-based TAMP method, this enables efficient

reasoning across a spectrum of manipulation problems. We

demonstrate our approach on physical puzzles that involve

tool use and dynamic interactions such as inertial throwing or

hitting. We also collected data of humans solving analogous

trials, helping us to discuss prospects and limitations of the

proposed approach.

II. RELATED WORK

Differentiable Physics & Contact-Invariant Optimization:

[7] have recently observed that a standard physical simula-

tion, which iterates solving the linear complementary problem

(LCP), is differentiable and can be embedded in PyTorch. On

toy problems it was shown that, using gradient-based optimiza-

tion, one can infer controls or scene parameters conditional to

observations or desired effects. Earlier, Todorov introduced a

novel invertible contact model [29] that laid the foundation for

MoJuCo [30], a differentiable physics engine that allows for

inverse physical dynamics. Closely related, contact-invariant

optimization (CIO) [21] proposes a simplified differentiable

contact model that relaxes the discrete contact structure to

allow for smooth optimization, but still implies a combina-

torics of local optima of the general inverse problem. CIO

gave impressive demonstrations of complex human motions,

including typical locomotion optimization and manipulation

tasks. CIO also followed the approach of phase-wise contact

invariance, where the (continuous-valued) activity of a contact

interaction is constrained to be constant during a phase.

These methods have not yet been demonstrated to bridge

to higher-level tool-use or task planning, and have not been

integrated in AI planning or TAMP approaches. They reduce

the overall problem to a single (differentiable) non-linear

program, which seems promising only when the underlying

problem does not generate a combinatorics of local optima.

Mixed-Integer Programming in Hybrid Control: In control

synthesis the structure of hybrid contact processes is typically

described explicitly [5] (see also [23] for a critical discussion).

The resulting problems are MIP that can be addressed with

standard optimizers that typically involve branch-and-bound.

Our approach is similar, except that we use logic rules to

describe the discrete structure of the problem, leading to a

non-linear program with discrete 1st order decision variables

(in a sense a “Mixed-Logic Program”). The solver we use [32]

is very similar to branch-and-bound MIP solvers, but leverages

several bounds approximations for computational efficiency.

Posa et al. [23] criticize explicitly introducing discrete

decision variables and instead propose non-linear programs

without discrete variables for the overall path optimization

problem (using LCP-type terms). This follows CIO in avoiding

discrete structure, but also raises the question of local optima

in task-level domains.

None of the above control approaches have yet been demon-

strated to bridge to higher-level task-planning and tool-use.

Task and Motion Planning: Typical TAMP approaches rely

on a discretization of the configuration space or action/skeleton

parameter spaces to leverage constraint satisfaction methods

[16, 13, 14], and/or combine a standard sample-based path

planner with a task planner [27, 4, 1]. To our knowledge,

no prior work exists that aims to integrate dynamic physical

interaction or sequential tool use in TAMP methods. Comput-

ing physical paths in a high-dimensional configuration space

(our robot will be 14D) is hard to address using sample-

based planners. Toussaint and Lopes [31, 32] proposed an

optimization-based TAMP approach that combines a logic

task-level description with a non-linear programming formu-

lation of the resulting path optimization problem. We extend

this framework to include physical primitives.

Exploitation of Contacts in Manipulation: Exploiting rather

than avoiding contacts is a core concept for dexterous robot

manipulation [19]. Stable pushes [17] and sequences of stable

grasps [3] have been shown to enable robust manipulation

strategies. Eppner et al. [6] studied in detail how humans

exploit contacts in manipulation. The idea that exploitation-

of-contact-modes should be part of a manipulation planner

underlies previous work on sequential manipulation planning

[26, 10]. Sieverling et al. [25] further developed the idea

towards sequencing modes to reduce uncertainty via funneling.



Our approach draws great inspiration from these works, aiming

to incorporate such ideas in an AI- and optimization-based

planning approach.

III. PROBLEM FORMULATION AND LGP FORM

Consider the configuration space X = R
n × SE(3)m of

an n-dimensional robot and m rigid objects, in an initial

configuration x0 ∈ X. We aim to find a path x : [0, T ] → X

min
x

∫ T

0

fpath(x̄(t)) dt+ fgoal(x(T ))

s.t. x(0) = x0, hgoal(x(T )) = 0, ggoal(x(T )) ≤ 0 ,

∀t ∈ [0, T ] : hpath(x̄(t)) = 0, gpath(x̄(t)) ≤ 0 . (1)

Here, (h, g)path define path constraints which depend on

x̄(t) = (x(t), ẋ(t), ẍ(t)) and describe what is physically and

kinematically feasible. The function fpath defines control costs,

which in our experiments we choose as sum-of-squares of joint

accelerations. And (f, h, g)goal specify arbitrary objectives or

constraints on the final configuration. In our experiments this

will be a single equality constraint expressing contact between

an object and a target.

Following our approach, we now introduce more structure to

the problem. We assume that 1) feasible mode transitions are

described by first order logic action operators, 2) in a given

mode the path constraints (h, g)path are smooth, and 3) at a

mode transition the path constraints are smooth functions of

x̂ = (x, ẋ, ẋ′), where ẋ is the velocity before, and ẋ′ is the

velocity after an (optional) instantaneous impulse exchange.

Under these assumptions, the problem takes the form of a

Logic-Geometric Program (LGP) [31, 32],

min
x,a1:K ,s1:K

∫ T

0

fpath(x̄(t)) dt+ fgoal(x(T ))

s.t. x(0) = x0, hgoal(x(T )) = 0, ggoal(x(T )) ≤ 0,

∀t ∈ [0, T ] : hpath(x̄(t), sk(t)) = 0,

gpath(x̄(t), sk(t)) ≤ 0

∀k ∈ {1, ..,K} : hswitch(x̂(tk), ak) = 0,

gswitch(x̂(tk), ak) ≤ 0,

sk ∈ succ(sk-1, ak) . (2)

The key difference to the unstructured problem (1) is that

the path and switch constraints (h, g)path and (h, g)switch are

smooth and differentiable functions for a fixed mode sk or

switch ak. We assume that the logic level involves only

discrete variables (in contrast to recent TAMP approaches

that introduce continuous logic variables to represent belief

or geometry dependent preconditions [16]). All ak and sk
are therefore discrete. We call the sequence a1:K a skeleton,

which in the TAMP context refers to the sequence of dis-

crete decisions excluding all continuous action parameters. In

TAMP, given a skeleton, one needs to find action parameters

(e.g. grasp poses) that render the skeleton feasible. In our

formulation, we use the notation P(a1:K) to denote the path

optimization problem (2) for a given skeleton. As (h, g)path

and (h, g)switch are smooth, all objectives and constraints in

P(a1:K) are smooth and our implementations are differentiable

to provide constraint Jacobians and pseudo-Hessians when the

costs fpath,goal are sum-of-squares terms. Solving P(a1:K) im-

plicitly solves for all action parameters jointly and optimally:

E.g. when the sequence involves a grasp first, a hit second, and

a placement third, then all parameters of these actions (grasp

pose, hitting angle, placement pose) are jointly optimized to

yield the overall optimal manipulation path.

The LGP formulation can be viewed as an instance of MIP,

as it is classically used to formulate control problems in hybrid

systems [5]. It replaces integers by a first order logic state sk
which indicates the mode, and thereby allows us to tie the

notion of high-level actions of a classical TAMP formulation

to modes in the path optimization problem. In contrast to CIO

it explicitly introduces a logic process description of mode

transitions that bears a discrete search problem. It thereby

explicates the structure of local optima that is otherwise

implicit in the relaxation.

Comparing 2 to the previous formulation [32], the path

constraints within a mode are now functions of x̄, rather than

only (x, ẋ), as they need to describe inertial motion, and the

switch constraints are functions of x̂ to account for impulse

exchanges. We also explicitly refer to the action decision ak
rather than only pairs of consecutive modes (sk-1, sk) to define

switch constraints. To motivate these additions, consider a

flying ball which is hit with a tool in the air. The modes

before and after the hit are identical; there were no kinematic

switches or stable contacts created. However, the interaction

calls for an equality constraint on the path that models contact

and impulse exchange.

In practice, to ensure applicability of the solver, we assume

that each object has a sphere-swept convex geometry (which

makes distance computation convex, and ensures distance

normals to be differentiable).

A. The Notion of Modes

The previous section defined a specific notion of mode in

terms of properties of the path constraints. To better relate to

previous work we briefly discuss highly related notions.

A contact mode is a phase of the path where contact

activations are constant (cf. CIO [21]). In classical con-

strained optimization and LCP formulations, contact activation

is boolean and indicates a non-zero Lagrange parameter or

non-zero interaction force; in CIO contact activity is relaxed to

a continuous number, which is kept constant within a contact

mode.

A kinematic mode is a phase of the path during which

path feasibility (including physical correctness) is defined

by smooth constraint functions hpath, gpath. To relate to [26,

10, 32], the path constraints define the piece-wise smooth

manifolds of feasible paths with local tangent spaces TzX =
{ẋ(t) | x(t) = z, x feasible} at configuration z ∈ X; a

kinematic mode is a phase during which the path stays within

a smooth manifold. Transitioning to another mode implies a

non-smooth change of tangent space.

A stable mode is a phase of a feasible path in which the

relative transformation between two objects is constant. This



refers to resting objects, but also to stable pushes [17, 3] and

grasps.

In the case of a physical domain, feasible paths are smooth

exactly when contact activity does not alter, and therefore the

two notions of contact mode and kinematic mode coincide. A

stable mode is a special case of a kinematic mode, which

excludes sliding, relative rotation, and impulse exchange.

However, the manipulation literature suggests that many ma-

nipulation strategies are composed of stable modes, which mo-

tivates us to explicitly account for stable modes. Stable modes

offer transitions between kinematic and dynamic descriptions

of the path constraints by, for example, introducing a joint

between two objects that is constrained to zero velocity. Note

that in CIO [21], all contacts were in fact assumed to be stable

modes.

The core of our approach is to introduce predicates and

logical rules that flexibly describe possible sequences of

modes, mixing modes that relate to physical dynamics for

some objects and stable kinematic relations for others.

IV. INCORPORATING PHYSICS IN LGP

Table I lists the predicates we use to impose constraints on

the path optimization. These relate the logic level to the path

optimization level, and appear only in the effects of action

operators. We will first describe these predicates, and then the

action operators that control them.

A. Resting and Stable Relations

In typical scenes, most objects are resting in a stable

position or in a grasp. Including their degrees of freedom in

the optimization and solving for the contact interactions in

each time step—only to describe zero motion—is inefficient.

Typical game engines therefore treat resting objects differently

from dynamic objects.

We follow this intuition and exclude objects resting on

another object or in a grasp from physical dynamics. These

objects are treated kinematically, as in previous work. Namely,

operator effects create a static joint between the object and

its parent. For our experiments, it was sufficient to consider

only two types of static joints: static free (represented as

7D translation-quaternion joints) for grasping, (staFree X Y),

and static “on” (represented as 3D xyφ-translation-orientation

joints) for an object resting on another, (staOn X Y).

As in typical path optimization methods we use a (gener-

alized) coordinate vector q(t) ∈ R
d(t) to represent the world

configuration x(t) ∈ R
n×SE(3)m. While x(t) is of constant

dimensionality, q(t) changes dimensionality with t. When all

objects are initially at rest, q(0) has the dimensionality of

the articulated robot. When action operators create stable or

dynamic joints their degrees-of-freedom (DOFs) are added to

the configuration vector. The static joints are introduced as

DOFs, but are constrained to have zero velocity. Thereby they

represent action parameters (e.g. grasp poses) that are fully

embedded as decision variables in the joint path optimization.

TABLE I
PREDICATES TO IMPOSE CONSTRAINTS ON THE PATH OPTIMIZATION.

(touch X Y) distance between X and Y equal 0

[impulse X Y] ImpulseExchange eq & skip smoothness con-
straints on X Y

(staFree X Y) create stable (constrained to zero velocity) free
(7D) joint from X to Y

(staOn X Y) create stable 3D xyφ joint from X to Y

(dynFree X) create dynamic (constrained to gravitational iner-
tial motion) free joint from world to X

(dynOn X Y) create dynamic 3D xyφ joint from X to Y

(inside X Y) point X is inside object Y → inequalities

(above X Y) Y supports X to not fall → inequalities

(push X Y Z) (see text)

B. Inertial Motion

To describe objects following inertial motion, operator ef-

fects create a dynamic joint between the object and world (for

unconstrained flight) or supporting objects (e.g., for inertial

sliding on a table). In our experiments we consider two types

of dynamic joints: 7D free for free flight, (dynFree X), and

xyφ for one object sliding on another, (dynOn X Y). For the

set qd of dynamic joints we have the Euler-Lagrange equations

M(q)q̈d + F (q, q̇) = 0 (assuming kinematically articulated

and stable joints to be rigid), which are imposed as equality

constraints on the path. In the time discretized path optimiza-

tion, care must be taken in deciding when to start and stop

imposing these constraints when dynamic joints are created

or destroyed. In the time slice when a joint switches, we

generally impose zero acceleration constraints directly on the

switching object (except on impulse exchange); the dynamics

constraints start a time step later and end one time step earlier.

The acceleration q̈d is defined by finite differences from three

consecutive configurations. The dynamics constraint is trivially

differentiable w.r.t. these configurations, assuming M and F

are approximately constant.

C. Impulse Exchange

To model impulse exchange we introduce an [impulse X Y]

predicate, where the bracket notation indicates that it is non-

persistent. Unlike in the standard frame assumption, this literal

is automatically deleted after one time step. It thereby adds

constraints to the path optimization only at a single time slice

(but is a function of 3 consecutive configurations). We adopt

the classical impulse exchange model of Moore and Wilhelms

[20]. Let v1 and v2 be the change in velocities of object 1 and

2 across one time slice, and ω1 and ω2 the angular velocity

changes. We define the exchanged impulse as R = m2v2.

(If (3) holds, we could equivalently define R = −m1v1.)

Further let c be the shortest distance or penetration unit normal

vector between the two convex objects, and p1 and p2 the

object center to collision point vectors for each object. In the



unconstrained case we impose

m1v1 +m2v2 = 0 (3)

I1ω1 − p1 ×R = 0 (4)

I2ω2 + p2 ×R = 0 (5)

(I − cc⊤)R = 0 (6)

where the last line constrains the exchanged impulse to

align with the contact normal. In an inelastic collision we

additionally impose zero relative velocity along the contact

normal, which we drop to allow for elastic collisions. When

the dynamics of one object is constrained to an xyφ slide after

the impulse exchange, we project the first equation using the

projection matrix P = I − zz⊤ where z is the plane normal.

This means that the impulse is not propagated through the

joint to the supporting object (typically table).

To ensure differentiability of this constraint we extend

implementations of Gilbert-Johnson-Keerthif and Minkowski

Portal Refinement to return simplex information from which

the correct Jacobian for the distance or penetration normal

vector is computed. As our objects are modeled as sphere-

swept convex shapes, these Jacobians are stable and smooth

at distance 0. Therefore the full impulse exchange constraint

is smoothly differentiable.

D. Geometric Predicates

We additionally introduce three geometric predicates (touch

X Y), (inside X Y), and (above X Y) to model constraints of

transitioning into a mode. A touch is modeled by constraining

the differentiable distance or penetration function to zero. The

inside constraint means that a grasp center X is constrained

to be inside the object Y (by a fixed margin of 2cm). When

Y is a box, these are six inequality constraints, one for each

face of the box. The above constraint requires the center of

mass of X to be horizontally inside the convex support the

object Y (by a fixed margin of 2cm). When the supporting

object is a table, these are four inequality constraints, one for

each edge of the table. Finally, the (push X Y Z) predicate

is designed specifically to impose geometric constraints for a

straight-line push. It is modeled kinematically by introducing

a static xyφ-joint and an actuated translational x-joint created

between table Z and object Y, which allows the object to move

along a straight line. Further, the pushing object X and Y touch

and the touch normal is aligned with the straight line.

In summary, the predicates we introduced allow us to

distinguish and switch between dynamic and kinematic han-

dling of objects. Modeling stable relations explicitly allows

us to include abstractions such as stable grasping or stable

resting. The geometric predicates allow us to define necessary

geometric constraints to transition between modes.

E. Action Operators

Table II lists all action operators and those effect predicates

that translate to path constraints. We briefly discuss each

action:

A grasp creates a 7D static gripper-object joint and imposes

the grasp center to be inside the object. The inside constraint

TABLE II
ACTION OPERATORS AND THE PATH CONSTRAINTS THEY IMPLY.

grasp(X Y) [inside X Y] (staFree X Y)

handover(X Y Z) [inside Z Y] (staFree Z Y)

place(X Y Z) [above Y Z] (staOn Z Y)

throw(X Y) (dynFree Y)

hit(X Y) [touch X Y] [impulse X Y] (dynFree Y)

hitSlide(X Y Z) [touch X Y] [impulse X Y] (above Y Z) (dynOn Y Z)

hitSlideSit(X Y Z) “hitSlide(X Y Z)” “place(X Z)”

push(X, Y, Z) komo(push X Y Z)

could be set as a persistent predicate implying continuous in-

equality constraints for the duration of the grasp. However, as

a static transformation between gripper and object is created,

it is sufficient to set this constraint only once, at the creation

of the grasp. The non-persistent literal [inside X Y] has this

effect.

A handover is, from the perspective of the path optimiza-

tion, nothing but a grasp. However, we introduce a separate

action operator which has the additional effect that the gripper

X is free to grasp other objects after the handover.

A place is analogous to a grasp of the object by a table or

supporting object, except that the static DOFs (action param-

eters) are the xyφ position and orientation of the placement,

and the object Y needs to be above Z.

A throw is the creation of a dynamic free joint for the object.

The smoothness constraint on the object motion will imply that

the object starts with its previous position and velocity (e.g.,

when attached to the gripper).

A hit is like a throw, but allowing for an additional touch and

impulse exchange between X and Y at the time of the hit (non-

persistent predicates). Note that this rule equally describes

hitting a previously free flying object, or hitting out of the

gripper, or from a resting position.

A hitSlide is like a hit, but attaches the object Y dynamically

to slide planar over the table or object Z, and persistently

constrains Y to stay above Z. Note that the impulse exchange

constraint knows Y is constrained to slide over Z and accounts

for this in the impulse exchange equation.

A hitSlideSit is an instantaneous sequence of two mode

transitions: the (typically flying) object X hits Y to slide on

Z, and X itself comes to rest on Z. This pinpoints a limitation

of the current approach: we only allow for a single action to

happen in a single time instance. The combination of a hitSlide

and a simultaneous sit currently needs to be represented as a

new action.

A push is kinematically modeled as a straight line push:

there is a static xyφ-joint and an actuated translational x-joint

created between table Z and object Y, which allows the object

to move along a straight line. Further, the pushing object X

and Y touch and the touch normal is aligned with the straight

line.

In addition, the STRIPS rules we used1 to define the full ac-

tion operators involve the additional predicates object, gripper,

1Please see demo/fol.g in the source code.



held, busy, animate, on, and table to express the preconditions

of action operators. For instance, a grasp is an abstraction that

only holds for a gripper, not other objects. animate states that

an object is currently (kinematically or dynamically) moving

and is a precondition for that object to hit or push another; on

is an effect of place and a precondition for push.

V. SOLVER USED

We use the existing Multi-Bound Tree Search (MBTS)

method to solve the resulting LGP problem [32]. This solver

does best-first search w.r.t. multiple bounds that can be evalu-

ated for a given skeleton. More precisely, the logic described

above defines a decision tree. Every node in this decision

tree is associated with a skeleton a1:K which defines the

conditional path optimization problem P(a1:K). This non-

linear program is expensive to solve. To guide tree search,

MBTS exploits multiple levels of simplified versions of this

non-linear program, each of which is a bound (optimistic w.r.t.

feasibility and cost) of the next. Namely P1(a1:K) evaluates

cost and feasibility of only the last pose associated with the

skeleton. This is an inverse kinematics problem that relies on

projecting the potential effects of all previous actions into

a final configuration of “effective kinematics”. The bound

P2(a1:K) evaluates cost and feasibility of a coarser time

discretization of the path which uses two time frames per

action; one just before the action and a second just after the

action. This is a powerful approach for checking the geometric

feasibility of action sequences. The bound P3(a1:K) is the

fine path optimization problem P(a1:K) discretized in time.

As detailed in [32], we note that the path and sequential pose

optimization includes jointly optimizing all action parameters

along the whole skeleton. This means that the pose in which an

object is initially grasped is optimal w.r.t. all following events

involving this object. Therefore, the method can optimize

grasping a hook in order to later reach for a ball with this

hook. (Cf. the end-state comfort effect in human manipulation

[24].)

MBTS is a best-first search on all bound levels and therefore

guarantees optimality iff the computed bounds are “correct”.

In our domains, computing these bounds means optimizing a

smooth but non-convex non-linear program (NLP). We employ

a Gauss-Newton solver within an Augmented Lagrangian

(Method of Multipliers) iteration to handle the constraints.

This converges only to local optima of the NLP, and only

approximately, so we lose strict optimality guarantees. For

instance, evaluation of the coarsest bound P1 might return an

infeasibility of an action only because a single run got stuck in

a local optimum. Since this is assumed to be a strict bound for

P2 and P3, and generalizes to other branches in the tree with

the same action, a whole sub-tree might be tagged infeasible

and lost.

In our experience, P1 and P2 rarely suffer from convergence

to local optima or false infeasibility. The full path optimization

P3 is less robust and compromises the optimality guarantee

of our method, but still frequently converges to the same

optimum. We will empirically investigate the consistency of

Fig. 2. In the 6 investigated problems the goal is to reach for the red ball
or get the blue ball in the green area. Solutions involve using a hook to pull
a desired object, push-sliding a ball along a wall, pushing a ball onto a strip
of paper to then pull it closer, hitting a ball with a stick, throwing a box at a
ball, and using a hook to reach for another hook to reach a ball.

problem 1 2 3 4 5 6

tree size 12916 34564 7312 12242 12242 3386

branching 10.66 13.63 9.25 10.52 10.52 7.63

Fig. 3. Size of decision trees of depth 4, and branching factor estimate (4th
root). For problem 6 we had to limit the logic to exclude dynamic interactions,
otherwise the tree size would have been 349252 with branching factor 24.31.

optimization convergence in the next section. The aim of

explicitly modeling modes was to capture the multi-modal

complexity of the overall manipulation planning problem.

Convergence consistency of our bound evaluations is an in-

dicator for how this modeling leaves a simpler structured

problem for the conditional path optimization.

VI. EXPERIMENTS

The source code2 and a supplementary video3 for our

experiments are available for reference.

We investigated our method on 6 problems as illustrated

and described in Fig. 2. The problems were designed to cover

a spectrum of types of interactions, including the need to

use tools, hit objects, or throw objects in order to reach

the goal. The accompanying video illustrates the problems,

and the source code includes the precise scene descriptions.

The video displays the computed paths x, not a simulation

of their execution. The solver surprised us in finding much

larger varieties of solutions than anticipated. For instance, in

problem 1 a natural solution is grasping the hook, pulling the

ball, and grasping it. Our method also found solutions that

involve hitting the ball, or sliding the hook to the ball to hit

it. Handovers are much more frequent than anticipated. The

solver exploited the combinatorics of manipulations that are

possible with the given primitives beyond what we had in mind

when designing the problems.

2https://github.com/MarcToussaint/18-RSS-PhysicalManipulation
3https://www.youtube.com/watch?v=-L4tCIGXKBE

https://github.com/MarcToussaint/18-RSS-PhysicalManipulation
https://www.youtube.com/watch?v=-L4tCIGXKBE


Fig. 4. For 5 runs for each problem we display cost of the best solution
found, for bounds P2 (dotted) and P3 (solid), over time.

To get an idea of the branching factor (which varies over

the tree depth) Fig. 3 provides the tree size for skeletons of

length 4 (3 is the minimum, most found solutions are of length

4-6). Clearly, cutting the tree search as proposed by MBTS is

essential for efficient search in such trees.

The solver is an anytime method. For each problem we

ran it until 12 solutions (with different skeletons) were found

or 400 seconds were exceeded. The solver then presents and

ranks solutions by their cost. Fig. 4 displays traces of runs

for each problem, i.e., the cost of the best found solution over

time, descending as a step function whenever a better solution

is found, and the total number of solutions found. While the

dotted line displays the cost of the lower bound P2 for the

best solution, the solid line displays the full path costs P3.

All runs reliably found solutions at around 50 seconds, except

for problem 6. This problem is special in that it only affords

one stereotypical solution: grasp first hook, pull second, grasp

second, pull ball, grasp ball, and somewhere in between place

a hook down to allow for the final grasp. The depth of this

solution required around 150 seconds. The variance in the cost

of the best solution found shows that not all optimizations

converge to the global optimum (each Pi is non-convex).

Fig. 5 displays the mean run times of the Gauss-Newton

methods for solving the bounds P1,P2,P3, where P3 is the

full path. We display these separating runs that turned out as

feasible vs infeasible. The optimization times increase with

the depth of the manipulation sequence, as well as with the

Fig. 5. Mean run times for the computation of the different bounds (solving
P1,P2,P3), depending on feasibility and infeasibility.

bound level. Interestingly, especially for the coarse bounds

P1 and P2, the run times are significantly shorter for feasible

solutions. This also holds for the full path optimization P3, but

less so. A major part of the computation time is spent on trying

to solve infeasible problems. Therefore, reliable indicators or

classifiers to predict infeasibility earlier could significantly

speed up the solver.

For problem 1 we investigated convergence consistency

across 10 runs: whenever a specific skeleton was evaluated

more than 5 times for a particular bound across all trials, we

investigated whether the evaluations converged to consistent

optima. Concerning bounds P1 and P2, we found 100%

consistency in terms of feasibility (all runs agreed on the feasi-

ble/infeasible label for a skeleton) except for a single skeleton

which bound P1 labeled feasible only 4 out of 5 times. The

corresponding cost estimates were equally consistent, with a

mean variance of only 0.00133 for P1 and 0.0080 for P2

for a skeleton. The full path evaluation P3 converges less

consistently to the same optima. For 11 out of 24 skeletons the

runs were 100% consistent with very low cost variance; for the

remaining skeletons the consistency was mixed. This explains

the variance of best solutions found in Fig. 4. Nevertheless,

all runs consistently found good solutions.

We also performed a study of 5 human subjects on problems

analogous to our problems 1, 3, and 6, see Fig. 6. The

right column displays frequencies of action primitives used

along the skeleton for our method (solid) and the humans

(striped). While we do not want to claim our method is a

model for human decision making, it is interesting to compare

to. In particular, we mention differences and limitations of

our method in view of human execution. The first striking

difference when watching the videos is the frequency of “re-

initiations” of primitives executed by humans in a reactive

manner, e.g. a frequent re-positioning of the tool to re-initiate

pushing the same object. In the planned solutions, such re-

initiations of the same interaction mode are largely missing

as they would be considered sub-optimal. This underlines that

our method only addresses a planning problem, rather than

the problem of reactive and adaptive execution of such plans.

Second, our method currently does not assume a fixed “true”

friction coefficient between objects; instead, when the skeleton

includes an inertial slide, the object slides nearly friction-
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Fig. 6. 5 subjects were studied on 4 tasks analogous to our problems 1, 3,
and 6 (where for problem 1 we tested also a high-friction puck replacing the
ball).

less, and if the skeleton includes a push, the object resides

stably at the pushing object. To solve problem 1, our method

generates about equal numbers of solutions with inertial ball

motions as well as with stable pushes. The human decisions

depend on their perceptual estimate of the friction of the

puck or ball. On problem 4, humans exploited the wall to

slide along considerably more often than our algorithm. Our

algorithm occasionally finds the slide-along-the-wall manip-

ulation sequence (see video), it also finds shorter sequences

that are preferred by the method but not by humans. Finally,

especially in problem 5, the planner generates throw-box-to-

hit-ball sequences that fulfill the impulse exchange equations

but include extremely flat angles of impact (as in billiards),

which are too precise for a human to accurately replicate. This

shows a deficit of assuming deterministic physics for making

such dynamic manipulation decisions.

VII. CONCLUSIONS

Our approach is, to our knowledge, the first to embed dy-

namic physical manipulations in a TAMP framework, combin-

ing a discrete logic level for sequences of possible interaction

modes with a continuous path optimization level. We tackled

sequential manipulation and tool-use planning problems, a

hallmark of intelligent behavior. While this work focuses on

the technical formulation, it also serves as a foundation for

future work on modeling animal and human behavior on such

problems, which need to address the limitations discussed

above.

We already mentioned several limitations when comparing

to the human execution of manipulation tasks. We emphasize

that the proposed method is only a planner, not a framework

for executing such plans. As our method generates several

alternative plans, reactive execution could leverage sample-

efficient reinforcement learning mechanisms to select and

switch between plans on the fly, depending on their success.

We believe that the predicates and logic rules of physical in-

teractions can be reduced in future work to a more fundamental

set, in particular by using a factored representation. This could

address the inefficiencies we mentioned in the context of

the hitSlideSit operator. We also note that the efficiency of

the solver could be improved by combining LGP with more

efficient AI planners [11, 9]. Particularly interesting is the idea

in angelic semantics [18] to not only leverage lower bounds

but also higher (pessimistic) bounds. Exploiting a hierarchy

of bounds will remain crucial for efficiency. New bounds

could be formulated specifically for physical reasoning, for

instance an efficiently computable bound that only includes

touch constraints — as this is a highly discriminative indicator

of the feasibility of physical interactions.
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