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Abstract. Two differentiable pinching theorems are verified via the Ricci flow and
stable currents. We first prove a differentiable sphere theorem for positively pinched subman-
ifolds in a space form. Moreover, we obtain a differentiable sphere theorem for submanifolds
in the sphere S

n+p under extrinsic restriction.

1. Introduction. The sphere theorem is an important topic in the study of curvature
and topology of Riemannian manifolds. Recently, S. Brendle and R. Schoen [6] proved a re-
markable differentiable sphere theorem for Riemannian manifolds whose sectional curvatures
lie in the interval (1/4, 1] by developing the theory and techniques of Ricci flow introduced
by R. Hamilton [9]. This improves the topological sphere theorem for quarter-pinched Rie-
mannian manifolds, which was firstly taken up by H. E. Rauch [16] in 1951, and solved by
M. Berger [2] and W. Klingenberg [10] around 1960. In 1977, K. Grove and K. Shiohama
[8] proved a topological sphere theorem for complete and connected Riemannian manifolds
whose sectional curvature K and diameter d(M) satisfy K ≥ 1 and d(M) > π/2. Some other
sphere theorems for Riemannian manifolds have also been obtained, see [1, 14, 15, 17, 25],
etc.

In 1973, H. B. Lawson and J. Simons [11] proved a topological sphere theorem for
closed submanifolds in a unit sphere by using the nonexistence for stable currents on compact
submanifolds in a sphere. Let Fn+p(c) denote the complete simply connected space form with
constant sectional curvature c. K. Shiohama and H. W. Xu [18] improved Lawson-Simons’
result and proved a topological sphere theorem for complete submanifolds in F

n+p(c) with
c ≥ 0. Recently, H. W. Xu and J. R. Gu [20] obtained an optimal differentiable sphere
theorem for complete submanifolds with pinched scalar curvature in F

n+p(c) with c ≥ 0.
Let KM denote the sectional curvature of a Riemannian manifold M . Under the pinching
condition of sectional curvature, H. W. Xu and G. X. Yang [23] proved a topological sphere
theorem for compact submanifolds in the spherical space form.
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THEOREM 1.1. Let M be a compact, oriented n(≥ 4)-dimensional submanifold in the

space form F
n+p(c) with c > 0. If the sectional curvature of M satisfies

KM >
c

2
+

n

8
H 2 ,

then M is homeomorphic to the standard n-sphere Sn.

Let h be the second fundamental form of a compact submanifold in a Riemannian man-
ifold. In 1986, H. Gauchman [7] proved that if M is an n-dimensional closed minimal sub-
manifold in S

n+d , and if ||h(u, u)||2 < 1
3 for any unit vector u ∈ UM , where UM is the

unit tangent bundle over M , then M is a totally geodesic sphere. H. W. Xu, W. Fang and
F. Xiang [21] generalized this rigidity result to the case where M is an n-dimensional closed
submanifold with parallel mean curvature in S

n+d . On the other hand, P. F. Leung [12] proved
that if ‖h(u, u)‖2 < 1

3 holds for any unit tangent vector u at any point on the submanifold,
then it is a homotopy sphere. The result was improved to be a topological sphere theorem for
complete submanifolds in a sphere by H. W. Xu and W. Fang [19], and further improved to
be a differentiable sphere theorem by H. W. Xu and E. T. Zhao [24].

THEOREM 1.2. Let M be an n-dimensional complete submanifold in the unit sphere

S
n+p . If

‖h(u, u)‖2 <
1

3
, for all u ∈ UM ,

then M is diffeomorphic to the standard n-sphere Sn.

Let h̊ be the trace free second fundamental form of a submanifold in a Riemannian
manifold. In [22], H. W. Xu, F. Huang and F. Xiang investigated the pinching theorem of h̊

for the submanifolds with parallel mean curvature in a sphere, which extends Gauchman’s
theorem in [7].

In this paper, using the convergence result of Ricci flow by S. Brendle [5], we obtain
several differentiable sphere theorems for complete submanifolds which generalize Theorems
1.1 and 1.2. We first prove the following

THEOREM 1.3. Let M be an n(≥ 4)-dimensional oriented complete submanifold in

F
n+p(c) with c > 0. Assume that the sectional curvature of M satisfies

(1) KM >
(n − 2)c

n
+

nH 2

8
,

then M is diffeomorphic to the standard n-sphere Sn.

Next, we investigate the differentiable pinching problem of h̊ and prove the following

THEOREM 1.4. Let M be an n-dimensional complete submanifold in the unit sphere

S
n+p . If

‖̊h(u, u)‖2 <
1

3
, for all u ∈ UM ,

then M is diffeomorphic to the standard n-sphere Sn.
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In fact, Theorem 1.4 is a consequence of the following theorem and Lemma 3.2 in
Section 3.

THEOREM 1.5. Let M be an n-dimensional complete submanifold in an (n + p)-

dimensional point-wise δ(> 1/4)-pinched Riemannian manifold Nn+p . Set Kmax(x) :=

maxπ⊂TxN K(x, π), where K(x, π) is the sectional curvature of Nn+p for x ∈ N and 2-

plane π ∈ TxN . If

||̊h(u, u)||2(x) <
4

9
Kmax(x)

(

δ −
1

4

)

, for all u ∈ UxM , x ∈ M ,

where infx∈N Kmax(x) > 0, then M is diffeomorphic to a spherical space form. In particular,
if M is simply connected, then M is diffeomorphic to the standard n-sphere Sn.

2. Preliminaries. Let Mn be an n-dimensional complete submanifold isometrically
immersed into an (n + p)-dimensional Riemannian manifold Nn+p . The following conven-
tions of indices are used throughout.

1 ≤ A,B,C, . . . ≤ n + p ,

1 ≤ i, j, k, . . . ≤ n ,

n + 1 ≤ α, β, γ, . . . ≤ n + p .

Choose a local orthonormal frame field {eA} in Nn+p such that e′
is are tangent to M . Let

{ωA} be the dual frame field of {eA} and {ωAB} the connection 1-forms of Nn+p . Restricting
these forms to M , we have

ωαi =
∑

j

hα
ijωj , h

α
ij = hα

ji .

The curvature tensor of N and M are denoted by RABCD and Rijkl , respectively. The
second fundamental form of M is denoted by h and the mean curvature normal field by ξ . Set
H = ‖ξ‖ and cα = 1

n

∑

i hα
ii . Then we have

h =
∑

α,i,j

hα
ij ωi ⊗ ωj ⊗ eα ,

ξ =
∑

α

cαeα ,

H =

√

∑

α

c2
α ,

(2) Rijkl = Rijkl +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk) .

The trace free second fundamental form of M is defined by

h̊ =
∑

i,j,α

h̊α
ijωi ⊗ ωj ⊗ eα ,
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where h̊α
ij = hα

ij − cαδij . Let UM denote the unit tangent bundle on M and UxM its fiber

over x ∈ M . Then UM =
⋃

x∈M UxM , where UxM = {u ∈ TxM : ‖u‖ = 1}.

LEMMA 2.1. Let Mn be a submanifold in a Riemannian manifold Nn+p . Then

‖̊h(u, v)‖ ≤ h̊x ,

for all unit vectors u, v ∈ UxM at each point x ∈ M , where h̊x := maxw∈UxM ‖̊h(w,w)‖.

PROOF. If u 	= ±v, set y = u+v
‖u+v‖

and z = u−v
‖u−v‖

. Then

h̊(u, v) =
1

4
[̊h(u + v, u + v) − h̊(u − v, u − v)]

=
1

4
[‖u + v‖2h̊(y, y) − ‖u − v‖2h̊(z, z)] .

Using the triangle inequality, we get

‖̊h(u, v)‖ ≤
1

4
h̊x(‖u + v‖2 + ‖u − v‖2)

≤ h̊x .(3)

If u = ±v, then ‖̊h(u, v)‖ = ‖̊h(u, u)‖ ≤ h̊x . This completes the proof. ✷

LEMMA 2.2. Let Mn be a submanifold in a Riemannian manifold Nn+p . Then

〈h(ei , ei), h(ej , ej )〉 ≥ −h̊2
x ,

for any orthonormal frame field {ei} at each point x ∈ M .

PROOF.

‖h(ei , ei)‖
2 + ‖h(ej , ej )‖

2 − 2〈h(ei, ei), h(ej , ej )〉

= ‖̊h(ei , ei)‖
2 + ‖̊h(ej , ej )‖

2 + 2〈̊h(ei, ei), ξ〉 + 2〈̊h(ej , ej ), ξ〉 + 2H 2

− 2(〈̊h(ei, ei), h̊(ej , ej )〉 + 〈̊h(ei , ei), ξ〉 + 〈̊h(ej , ej ), ξ〉 + H 2)

= ‖̊h(ei , ei)‖
2 + ‖̊h(ej , ej )‖

2 − 2〈̊h(ei, ei), h̊(ej , ej )〉

≤ 4h̊2
x ,

where Lemma 2.1 is used in the last inequality. Hence we have

(4) 〈h(ei , ei), h(ej , ej )〉 ≥
1

2
(‖h(ei , ei)‖

2 + ‖h(ej , ej )‖
2) − 2h̊2

x .

Thus,

〈h(ei, ei), h(ej , ej )〉 =
1

2
〈h(ei , ei), h(ej , ej )〉 +

1

2
〈h(ei , ei), h(ej , ej )〉

≥
1

2

[

1

2
(‖h(ei , ei)‖

2 + ‖h(ej , ej )‖
2) − 2h̊2

x

]

−
1

2
‖h(ei, ei)‖ · ‖h(ej , ej )‖

=
1

4

[

‖h(ei, ei)‖
2 + ‖h(ej , ej )‖

2
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−2‖h(ei, ei)‖ · ‖h(ej , ej )‖
]

− h̊2
x

≥ −h̊2
x .

✷

S. Brendle [5] obtained the following useful result.

LEMMA 2.3. Let (M, g0) be a compact Riemannian manifold of dimension n ≥ 4.

Assume that

(5) R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234 > 0 ,

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1]. Then the normalized

Ricci flow with initial metric g0

∂

∂t
g(t) = −2 Ricg(t) +

2

n
rg(t)g(t) ,

exists for all time and converges to a positive constant sectional curvature metric as t → ∞.

Here rg(t) denotes the mean value of the scalar curvature of g(t).

Inequality (5) is closely related to the positivity of the isotropic curvature. We refer the
readers to [13] for isotropic curvature. As a matter of fact, R1313+λ2R1414+R2323+λ2R2424−

2λR1234 > 0 holds for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1] if and
only if M ×R has positive isotropic curvature (see [5, 6]). It follows from Berger’s inequality
that every manifold with positively pointwise 1/4-pinched sectional curvatures satisfies the
curvature condition (5) in Lemma 2.3. In fact, we have the following Berger’s inequality [3]

|Rijkl | ≤
2

3

(

Kmax − Kmin
)

,

for all distinct indices i, j , k, l. Here Kmax and Kmin are the maximum and minimum of the
sectional curvatures at a point of M . The curvature assumption implies that Kmax < 4Kmin.
So we have

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

≥ 2(1 + λ2)Kmin −
4

3
|λ|

(

Kmax − Kmin
)

≥ 2(1 + λ2)Kmin − 4|λ|Kmin

= 2(1 − |λ|)2Kmin

≥ 0 .

Observe that at least one of the second and last inequalities is strict, which implies R1313 +

λ2R1414 + R2323 + λ2R2424 − 2λR1234 > 0. In fact, the 1/4-pinched differentiable sphere
theorem is an immediate consequence of Lemma 2.3.

We also need the following topological lemma due to H. B. Lawson and J. Simons [11].
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LEMMA 2.4. Let Mn be a compact submanifold in a unit sphere Sn+p . Let k and l be

positive integers with k + l = n. If the following inequality

n
∑

j=k+1

k
∑

i=1

(2‖h(ei , ej )‖
2 − 〈h(ei , ei), h(ej , ej )〉) < k · l ,

holds for any orthonormal basis {e1, e2, . . . , en} of tangent space TxM at any point x ∈ M ,
then there does not exist any stable k-current, and

Hk(M,Z) = Hl(M,Z) = 0 ,

where Hi(M,Z) is the i-th homology group of M with integer coefficients.

3. Proof of theorems. We first give the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. Since KM >
(n−2)c

n
+ nH 2

8 > 0, we obtain that M is a
compact submanifold by Myers’ Theorem.

Suppose that {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. We extend
{e1, e2, e3, e4} to an orthonormal frame {e1, . . . , en}. From the Gauss equation (2) we get

Rij ij = c +
∑

α

hα
iih

α
jj −

∑

α

(hα
ij )2 .

From the assumption we obtain

∑

α

hα
iih

α
jj −

∑

α

(hα
ij )2 >

nH 2

8
−

2c

n
.

This together with (1) implies

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

> (1 + λ2)

(

2(n − 2)

n
c +

nH 2

4

)

− 2λ
∑

α

(hα
13h

α
24 − hα

14h
α
23)

≥ (1 + λ2)

(

2(n − 2)

n
c +

nH 2

4

)

− |λ|
∑

α

n
∑

i=3

[(hα
1i)

2 + (hα
2i)

2]

≥ (1 + λ2)

(

2(n − 2)

n
c +

nH 2

4

)

− |λ|

[

∑

α

(hα
11 + hα

22)

( n
∑

i=3

hα
ii

)

−

(

n(n − 2)H 2

4
−

4(n − 2)c

n

)]

≥ (1 + λ2)

(

2(n − 2)

n
c +

nH 2

4

)

− |λ|
n2

4
H 2 + |λ|

(

n(n − 2)H 2

4
−

4(n − 2)c

n

)

=
2(n − 2)

n
(1 − |λ|)2c +

n

4
(1 − |λ|)2H 2

≥ 0 .
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Hence, the inequality (5) holds for all λ ∈ [−1, 1], which implies that M is diffeomorphic

to a spherical space form by Lemma 2.3. On the other hand, since KM >
(n−2)c

n
+ nH 2

8 ≥

c
2 + nH 2

8 , from Theorem 1.1 we know that M is homeomorphic to S
n. Combining the results

above, we get that M is diffeomorphic to S
n. ✷

In the following we consider the submanifolds with restriction on h̊.

LEMMA 3.1. Let M be an n(≥ 4)-dimensional submanifold in an (n+p)-dimensional

point-wise δ(> 1/4)-pinched Riemannian manifold Nn+p . If

(6) ‖̊h(u, u)‖2(x) <
4

9
Kmax(x)

(

δ −
1

4

)

, for all u ∈ UxM , x ∈ M ,

where infx∈N Kmax(x) > 0, then inequality (5) is satisfied for all orthonormal four-frames

{e1, e2, e3, e4} and λ ∈ [−1, 1].

PROOF. For any point x ∈ M , let h̊x := maxw∈UxM ‖̊h(w,w)‖. We suppose
{e1, e2, e3, e4} to be an orthonormal four-frame and λ ∈ [−1, 1]. By the Gauss equation
we have

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

= R1313 + 〈h(e1, e1), h(e3, e3)〉 − ‖h(e1, e3)‖
2

+ λ2[R1414 + 〈h(e1, e1), h(e4, e4)〉 − ‖h(e1, e4)‖
2]

+ [R2323 + 〈h(e2, e2), h(e3, e3)〉 − ‖h(e2, e3)‖
2]

+ λ2[R2424 + 〈h(e2, e2), h(e4, e4)〉 − ‖h(e1, e4)‖
2]

− 2|λ|[R1234 + 〈h(e1, e3), h(e2, e4)〉 − 〈h(e1, e4), h(e2, e3)〉].

Applying Lemma 2.1, Lemma 2.2 and h(ei, ej ) = h̊(ei, ej ), i 	= j , we obtain

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

≥ R1313 − 2h̊2
x + λ2[R1414 − 2h̊2

x ]

+ R2323 − 2h̊2
x + λ2[R2424 − 2h̊2

x ]

− 2|λ|[R1234 + 2h̊2
x ].

Since we have Berger’s inequality |R1234| ≤ 2
3 (Kmax − Kmin), the assumption (6) implies

that

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

> (2 + 2λ2)

[

Kmin −
8

9
Kmax

(

δ −
1

4

)]

− 2|λ|

[

2

3
(Kmax − Kmin) +

8

9
Kmax

(

δ −
1

4

)]

≥ (2 + 2λ2)

[

δKmax −
8

9
Kmax

(

δ −
1

4

)]

− 2|λ|

[

2

3
(1 − δ)Kmax +

8

9
Kmax

(

δ −
1

4

)]

=
2

9
(1 + λ2 − 2|λ|)(δ + 2)Kmax

≥ 0 .
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This completes the proof of the Lemma 3.1. ✷

Now we give the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. Since ‖̊h(u, u)‖2(x) < 4
9 (δ − 1

4 )Kmax for any u ∈ UxM ,
from the Gauss equation, we know that the sectional curvature of M is bounded from bellow
by 2+δ

9 Kmax ≥ 2+δ
9 infx∈M Kmax(x) > 0. By Myers’ Theorem, M is a compact submanifold.

When n = 2, it’s easy to see that M is diffeomorphic to S
2 or RP

2. When n = 3,
Hamilton’s Theorem [9] says that M is diffeomorphic to a spherical space form. When n ≥ 4,
by Lemma 2.3 and Lemma 3.1, we see that M is diffeomorphic to a spherical space form.
In particular, if M is simply connected, then M must be diffeomorphic to the standard unit
n-sphere Sn. This completes the proof of Theorem 1.5. ✷

LEMMA 3.2. Let Mn be an n-dimensional complete submanifold in the unit sphere

S
n+p . If

‖̊h(u, u)‖2 <
1

3
, for all u ∈ UM ,

then M is simply connected.

PROOF. It is easy to see that the sectional curvature of M is bounded by 1
3 from below.

Hence M is compact by Myers’ Theorem.
Let {e1, e2, . . . , en} be any orthonormal basis of the tangent space at any point x ∈ M .

Using Lemma 2.1 and Lemma 2.2, we have

‖h(ei , ej )‖ = ‖̊h(ei, ej )‖ <
1

3
,

〈h(ei , ei), h(ej , ej )〉 > −
1

3
,

for any unit vector field ei and ej (i 	= j ). Hence for any 1 ≤ k ≤ n − 1,

n
∑

j=k+1

k
∑

i=1

(2‖h(ei, ej )‖
2 − 〈h(ei , ei), h(ej , ej )〉)

<

n
∑

j=k+1

∑

i=1

(

2

3
+

1

3

)

= kl .

By Lemma 2.4, there does not exist any stable integral current in M .
Suppose that π1(M) 	= 0. Since M is compact, it follows from a classical theorem due

to Cartan and Hadamard (see [4]) that there exists a minimal closed geodesic in any nontrivial
homotopy class in π1(M). Then we get a contradiction. Therefore, π1(M) = 0 and M is
simply connected. ✷

Theorem 1.4 is an immediate consequence of Lemma 3.2 and Theorem 1.5.
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