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ARTICLE

Differential active site requirements for NDM-1 β-
lactamase hydrolysis of carbapenem versus
penicillin and cephalosporin antibiotics
Zhizeng Sun 1, Liya Hu 2, Banumathi Sankaran3, B.V.Venkataram Prasad2 & Timothy Palzkill1,2

New Delhi metallo-β-lactamase-1 exhibits a broad substrate profile for hydrolysis of the

penicillin, cephalosporin and ‘last resort’ carbapenems, and thus confers bacterial resistance

to nearly all β-lactam antibiotics. Here we address whether the high catalytic efficiency for

hydrolysis of these diverse substrates is reflected by similar sequence and structural

requirements for catalysis, i.e., whether the same catalytic machinery is used to achieve

hydrolysis of each class. Deep sequencing of randomized single codon mutation libraries that

were selected for resistance to representative antibiotics reveal stringent sequence

requirements for carbapenem versus penicillin or cephalosporin hydrolysis. Further, the

residue positions required for hydrolysis of penicillins and cephalosporins are a subset of

those required for carbapenem hydrolysis. Thus, while a common core of residues is used for

catalysis of all substrates, carbapenem hydrolysis requires an additional set of residues to

achieve catalytic efficiency comparable to that for penicillins and cephalosporins.
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β
-Lactam antibiotics (penicillins, cephalosporins, mono-
bactams, and carbapenems) represent the most frequently
prescribed antimicrobial agents due to their high efficacy

and low toxicity1. However, their efficacy is threatened by β-
lactamases, which inactivate the antibiotics by hydrolyzing the β-
lactam ring. Dissemination of β-lactamase-encoding genes con-
tributes significantly to the development of multidrug resistance
observed in various bacterial pathogens including carbapenem-
resistant Enterobacteriaceae2.

Based on primary amino-acid sequence homology, β-
lactamases fall into four classes: A, B, C, and D. Among these,
classes A, C, and D are serine hydrolases that employ an active
site serine to catalyze β-lactam hydrolysis, whereas class B con-
sists of metallo-β-lactamases (MBLs), which require one or two
zinc ions for activity3. MBLs are further classified into B1, B2, and
B3 subclasses based on sequence conservation and zinc coordi-
nation residues (Fig. 1a). Among the MBLs, subclass B1 enzymes
such as imipenemase (IMP)-, Verona integron-encoded metallo-
β-lactamase (VIM-), and New Delhi metallo-β-lactamase
(NDM)-type MBLs are the most clinically relevant4–7. In addi-
tion to their broad-spectrum activity, many of these enzymes are
encoded as gene cassettes and reside with other resistance genes
within integrons and plasmids that facilitate their rapid dis-
semination through horizontal gene transfer7. In addition,
although there has been recent progress in the development of
inhibitors8,9, MBLs are not susceptible to clinically available β-
lactamase inhibitors7. Therefore, MBLs pose a global threat to
public health.

A number of crystal structures of NDM-1 in complex with
various hydrolyzed β-lactam substrates have been reported10–13.
These suggest a catalytic mechanism for di-zinc MBLs in which

the substrate binds through interaction of the carbonyl oxygen of
β-lactam ring with the side chain of Asn233 and Zn1 and the
carboxyl group on the fused β-lactam ring interacts with Zn2 and
residue Lys224 (MBL numbering) (Fig. 1b)14. A hydroxide ion
that is stabilized by Zn1 and Zn2 then attacks the carbonyl carbon
of the β-lactam ring leading to cleavage of the C–N amide
bond13,15. Upon opening of the β-lactam ring, an anionic inter-
mediate is generated and the newly formed carboxylate interacts
with Zn1 and the amide nitrogen and carboxylate from the fused
ring interact with Zn213,15,16. The anionic intermediate is sub-
sequently protonated in the rate-limiting step and product is
released16.

Other than the ligands for the active site Zn ions, the active site
of NDM-1 is composed largely of hydrophobic residues. Lys224
and Asn233 are the only residues that make polar interactions
with the antibiotic substrate. Lys224 binds the C3/C4 carboxylate
of β-lactam substrates and Asn233 interacts with C6 carbonyl
oxygen and, after hydrolysis, the newly formed carboxylate of the
product11. These interactions are proposed to facilitate binding
and orienting the substrate and, based on hybrid quantum che-
mical/molecular mechanical (QMM-MM) simulations, retain
contact with intermediates throughout the catalytic cycle17.

Studies of enzyme kinetic parameters of purified NDM-1 β-
lactamase reveal a broad substrate profile with kcat/KM values of
~1–5 × 106M−1 s−1 for penicillins and carbapenems and ~1 ×
107M−1 s−1 for cephalosporins, whereas monobactams are not
hydrolyzed18. A study on kcat/KM values for thousands of
enzymes suggests an average kcat/KM value of ~105M−1 s−119.
Therefore, NDM-1 not only catalyzes the hydrolysis of a wide
range of β-lactams—it does so with high efficiency. This occurs
despite considerable differences in antibiotic structure beyond the
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Fig. 1 Active site residues of metallo-β-lactamases. a Sequence alignment of representative metallo-β-lactamases from subclasses B1, B2, and B3. The

amino acids highlighted in blue and yellow indicate the histidine and cysteine zinc binding site residues, respectively. NDM-1 residues are in bold. b

Schematic representation of β-lactam substrate binding (penicillin), anionic intermediate stabilization, and product release in the active site of di-zinc

metallo-β-lactamase NDM-1. The substrate binds to the active site through interaction of the carbonyl oxygen of the β-lactam ring with Zn1 and the

carboxyl group on the fused ring with Zn2 and residue Lys224. A hydroxide ion stabilized by Zn1 and Zn2 attacks the carbonyl carbon of the β-lactam ring,

leading to the formation of a carboxylate group and a nitrogen anion. The former is coordinated by Zn1 and the side chain of the conserved Asn233. The

latter is stabilized by Zn2 and protonated coincident with or after C–N bond cleavage. The proton donor for the anionic nitrogen is shown as the newly

formed carboxylate, however, the proton has also been proposed to be donated by a water. c Diagram of the NDM-1 β-lactamase structure highlighting

active site residues for which random mutant libraries were created (magenta). The zinc atoms are represented as orange spheres. The figure was

rendered with using coordinates from the Protein Data Bank accession code 3SPU18
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common β-lactam ring for penicillins, cephalosporins, and car-
bapenems (Fig. 2).

An interesting question is whether the high level of catalytic
efficiency observed for these varied substrates is achieved via
contributions from the same constellation of active site residues.
To address this, a codon randomization and functional selection
approach was used. This involved creating single codon rando-
mized libraries for residue positions in and near the active site of
NDM-1 and selecting for mutants from each library that support
growth of Escherichia coli (E. coli) in the presence of a repre-
sentative penicillin (ampicillin (AMP)), cephalosporin (cefotax-
ime (CTX)), and carbapenem (IMP) antibiotic (Figs. 1c, 2a). Deep
sequencing of functional mutants from each library yielded the
frequency of occurrence of each amino acid at each randomized
position after antibiotic selection. A comparison of the sequen-
cing results from each antibiotic selection revealed that wild-type
amino-acid residues predominate at eight residue positions in all
antibiotic selection experiments, implying that there is a core set
of residues that contribute to the hydrolysis of all classes of β-
lactams. However, the predominance of wild-type amino-acid
residues at several other residue positions was dependent on the
antibiotic used for selection, indicating context-dependent
sequence requirements. The majority of these positions showed
IMP-specific effects with substitutions tolerated for AMP and

CTX hydrolysis but not for IMP activity, suggesting more strin-
gent requirements for carbapenem hydrolysis.

The stringent sequence requirements for carbapenem hydro-
lysis were illustrated by the construction of a triple mutant
(K224R/G232A/N233Q) based on the sequencing results that
hydrolyzes AMP at wild-type levels while essentially losing the
ability to hydrolyze IMP, thereby disconnecting IMP and AMP
catalysis. The X-ray structure of the triple mutant revealed that
the mutations caused local conformational changes of an active
site loop leading to the loss of contacts between NDM-1 and β-
lactam substrates that are critical for IMP catalysis but not for
AMP catalysis. Taken together, the results indicate that the
overall sequence requirements in the active site vary between
the antibiotics with more stringent sequence requirements for the
hydrolysis of a representative carbapenem compared with that for
a penicillin and cephalosporin, despite the fact that all are cata-
lyzed at similar levels by the wild-type enzyme. Thus, hydrolysis
of IMP is a difficult task, suggesting that carbapenem hydrolysis
requires the contribution of significantly more residues near the
active site of NDM-1 β-lactamase.

Results
Deep sequencing of NDM-1 randomized codon libraries.
Crystal structures of NDM-1 β-lactamase in complex with
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hydrolyzed penicillin11,12, cephalosporin10, and carbapenem11,13

antibiotics have localized active site residues involved in substrate
binding and catalysis. In order to examine the importance of the
active site residues for hydrolysis of various β-lactam antibiotics,
randomized single codon libraries targeting 31 residues in and
near the active site of NDM-1 were constructed (Fig. 1c). Func-
tional mutants were selected from each library based on the
ability to confer growth on agar plates containing AMP, CTX, or
IMP (Fig. 2a). Appropriate concentrations of antibiotics were
used to select for phenotypically wild-type levels of β-lactam
resistance. Resistant clones were pooled and regions of the
blaNDM-1 gene containing randomized codons were PCR ampli-
fied with primers with unique barcode sequences for each
experiment. The barcode-tagged amplicons were then pooled and
analyzed using next-generation sequencing. A naive library con-
trol that was not subjected to antibiotic selection was included in
each experiment. The PCR amplicons that were pooled represent
124 experiments—each of the 31 random libraries selected with
three antibiotics and an unselected control (31 libraries × 4).

Computational processing of the sequencing data yielded 3.1 ×
107 total sequences for the 124 experiments (2.5 × 105 sequences
for each experiment on average) from which the number of

occurrences of each amino-acid type in each experiment was
determined (Methods) (Fig. 2b, Supplementary Data 1). For the
naive library, each amino-acid type occurred at a comparable
frequency at each position except for Gly65, Gly195, and Gly232,
in which glycine occurred at a significantly higher frequency than
other amino acids (Supplementary Data 1). This bias may occur
during PCR or Illumina sequencing as it was not observed by
Sanger sequencing of the NDM-1 gene from individual colonies.

To visualize sequence conservation among functional mutants
from the antibiotic-selected libraries, sequence logos were created
based on the deep sequencing results (Methods) (Fig. 3). The
NDM-1 active site residues can be placed into three groups based
on the frequencies of substitutions revealed by the sequencing
results (Figs. 3, 4). The first group includes residue positions
where the wild-type amino acid predominates among the
functional mutants selected on each of the antibiotics (Fig. 3a,
Supplementary Data 1). This group represents a core set of
residues that contribute strongly to the hydrolysis of all
antibiotics tested. These positions include the Zn2+-chelating
residues (His116, His118, Asp120, His196, Cys221, and His263)
indicating that both Zn2+ sites are required for hydrolysis of all of
the β-lactams tested and that substitution of alternative residues
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that could bind Zn2+ at these positions results in decreased
enzyme activity (Fig. 4). In addition to the zinc-chelating
residues, the wild-type aspartate at positions 84 and 199
predominated among functional mutants selected on each of
the antibiotics. Asp84 is part of an extensive hydrogen-bonding
network that forms the shell around the Zn2 site and,
presumably, substitutions disrupt this network (Fig. 4). Asp199
is part of a hydrogen-bonding network that links loop L6, L9 and
helix 5 near Zn1 and, similar to Asp84, substitutions may disrupt
this network.

The second group of residues exhibited context-dependent
sequence requirements (Fig. 3b). For these positions, the
distribution of amino acids found among functional clones
depends on the antibiotic used for selection. Residue positions in
this group include Trp87, Lys121, Gly195, Thr197, Gly220,
Lys224, Gly232, Asn233, and Ser262 (Figs. 3b, 4). For this group,
substitutions decrease NDM-1 activity towards IMP but not AMP
or CTX. Thus, more residues in the active site contribute to IMP
hydrolysis compared with AMP and CTX hydrolysis. This result
indicates that the sequence requirements for NDM function are
different for different substrates despite the wild-type enzyme

displaying similar catalytic efficiency for hydrolysis of all the
antibiotics.

The final and largest group of residue positions displayed a
wide range of amino acids among functional clones with no
dominant residue type (Fig. 3c). This group included residues
Met61through Ser69, Ala117, Pro194, Ser198, Asp225, Ala228,
and Asp236 (Figs. 3c, 4; Supplementary Data 1). These residue
positions do not have precise sequence requirements in order to
carry out their role in enzyme function. Note, however, that
although several residue types are consistent with function at
these positions, not all substitutions are allowed. For example,
cysteine occurs at a low frequency for many of these positions
(Supplementary Data 1).

It is qualitatively apparent from the sequence logos in Figs. 3a,
b that the sequence requirements for IMP hydrolysis are more
stringent than for AMP and CTX hydrolysis. In order to obtain a
quantitative assessment of sequence variability after selection, the
effective number of amino-acid substitutions (k*) was determined
at each position in the naive and antibiotic-selected libraries20,21.
The value of k* was calculated from the substitution frequencies
as described in Methods21. A k* value of 1 indicates that only one
amino-acid type is found in the library for a specific position,
whereas a k* value of 20 indicates that all 20 amino acids occur at
equal frequency, i.e., there is maximal diversity. k* values were
close to 20 for the naive libraries as expected for randomized
positions (Fig. 5).

The k* values for the residue positions after IMP selection are
lower than the corresponding values for the AMP and CTX-
selected clones for nearly every residue position (Fig. 5). However,
the difference is particularly apparent for the residues that exhibit
context-dependent sequence requirements including residues
Trp87, Lys121, Thr197, Gly220, Lys224, Gly232, Asn233, and
Ser262 (Fig. 5). For all of these positions, the effective number of
substitutions is highest for AMP, followed by CTX, and with
IMP-selected mutants having lower values. These results indicate
that more sequence diversity is tolerated at these residue positions
among the AMP- and CTX-selected mutants compared with
those among the IMP-selected mutants.

Validation of deep sequencing results. Deep sequencing of
antibiotic-selected mutation libraries of NDM-1 identified three
classes of residue positions based on tolerance to amino-acid
substitutions (Fig. 3). In order to validate the results using a
different method, a number of mutants from each class were
further characterized by determining antibiotic minimum inhi-
bitory concentrations (MICs) (Methods).
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Consistent with the deep sequencing results, the essential role
of zinc-chelating residues for all substrates has been well
characterized previously by site-directed mutagenesis studies22.
The Asp84 and Asp199 residues were also identified as essential
for all substrates by deep sequencing and, consistent with these
findings, glutamate substitutions at these positions markedly
decreased resistance toward the three β-lactam antibiotics as
indicated by reduced MICs (Table 1). In addition, amino-acid
substitutions at context-dependent residue positions Trp87,
Lys224, Gly232, and Asn233 confirmed that the effect of
mutations at these positions on the antibiotic resistance function
of NDM-1 depends on the antibiotic used for testing (Table 1).
Finally, substitutions at residue positions that can be freely
substituted and retain function for all antibiotics including the
F64H and D225E mutants, did not exhibit altered resistance levels
against any tested antibiotics, consistent with the deep sequencing
results (Table 1).

In order to further test the deep sequencing results, multiple
clones were randomly picked from naive libraries for two residue
positions for each of the three classes of positions from Fig. 3.
Clones from the naive libraries for residue positions Asp84 and
His263 were picked to represent the essential class, Lys224 and
Gly232 for the context-dependent class, and Val67 and Asp236
for the non-essential class. The amino-acid substitution for each
of these clones was determined by Sanger sequencing and their
antibiotic resistance levels were quantified by MIC values. The
relative fitness f au of each mutant compared with wild-type was
calculated from MIC values of E. coli cells containing wild-type or
mutant NDM-1 as described in Methods. In addition, the relative
fitness Fa

u of each mutant versus wild-type was determined from
the deep sequencing results based on the frequency of occurrence
of each mutant allele versus the occurrence of the wild-type allele
in naive and antibiotic selection experiments, as described in
Methods. If the frequencies obtained from deep sequencing are a
reflection of the in vivo activity of the mutants as measured by
MIC, there should be a correlation between the relative fitness
based on MIC values versus that determined from the frequency
of occurrence from sequencing. Plotting the f au values versus the
corresponding Fa

u values for each antibiotic selection experiment
tested this relationship. As shown in Supplementary Fig. 1, linear
regression analysis of the plots indicates a significant positive

correlation between f au and Fa
u for each antibiotic experiment.

Taken together, the MIC results for mutants from each selection
and those chosen from naive libraries are consistent with the
ability of deep sequencing experiments to sort mutants based on
levels of resistance for each antibiotic tested.

Effect of substitutions on catalysis and protein expression. The
antibiotic resistance levels provided by NDM-1 and its mutants
reflect their ability to hydrolyze the β-lactam antibiotics and the
steady-state level of the protein expressed in the periplasm. To
assess the effect of amino-acid substitutions on enzyme activity of
NDM-1 β-lactamase, the wild-type and mutant enzymes from
each of the three classes of positions from Fig. 3 were purified and
kinetic parameters kcat, KM, and kcat/KM were determined
(Table 2). In addition, steady-state protein expression levels were
measured by western blot using an antibody that recognizes the
StrepII tag present at the C-terminus of the wild-type and mutant
enzymes (Supplementary Fig. 2).

Because the zinc ligand residues in subclass B1 enzymes have
been extensively studied and substitutions at these positions are
known to decrease enzyme activity3, we focused on the residues
from the essential class that are not zinc ligands. The Asp84 and
Asp199 residues are essential for resistance to all tested antibiotics
based on sequencing results. Although not in position to contact
zinc or the β-lactam substrate, they make key hydrogen bonds
that link sections of the active site together. Therefore, they are
hypothesized to be important for NDM-1 structure and stability.
Enzyme kinetics results revealed glutamate substitutions at these
positions did not significantly affect catalytic efficiency (kcat/KM)
of NDM-1 β-lactamase against any tested antibiotic (Table 2) but
dramatically decreased cellular expression levels of the enzyme
(Supplementary Fig. 2). This indicates that residues Asp84 and
Asp199 are not essential for β-lactamase activity but are
important for the stable expression of NDM-1.

Mutations at context-dependent residue positions Trp87,
Lys224, Gly195, Gly232, and Asn233 displayed a substrate-
dependent effect on NDM-1 enzyme activity (Table 2). In general,
substitutions at these residues decreased the kcat/KM value for
IMP hydrolysis more than that observed for AMP and CTX
hydrolysis. For example, when compared with wild-type NDM-1,
the K224R mutant enzyme displayed a fourfold lower kcat/KM for
IMP hydrolysis but only a twofold lower AMP hydrolysis and
wild-type levels of CTX hydrolysis. In addition, the N233Q
enzyme displayed sevenfold lower IMP hydrolysis but twofold
lower and twofold higher levels of hydrolysis of AMP and CTX,
respectively. Further, AMP and CTX hydrolysis by NDM-1 was
increased by the N233H mutation, whereas imipenemase activity
was slightly decreased by the same mutation. Therefore, the
enzyme kinetics results are consistent with the sequencing results
and reveal the efficient hydrolysis of IMP has more stringent
sequence requirements at these residue positions than hydrolysis
of AMP or CTX by NDM-1 β-lactamase.

Finally, as expected based on the deep sequencing results,
amino-acid substitutions at non-essential residue positions Phe64
and Asp225 did not significantly compromise the β-lactamase
activity of NDM-1 (Table 2), confirming these positions can be
substituted and the enzyme retains high-level function. In
addition, western blot results show the F64H and D225E mutants
are expressed at similar levels as wild-type NDM-1, further
confirming these positions can be substituted without affecting
structure and function (Supplementary Fig. 2).

Combining substitutions greatly reduces carbapenem catalysis.
Deep sequencing of antibiotic-selected mutation libraries
demonstrated that the active site of NDM-1 β-lactamase has more

Table. 1 Antibiotic resistance levels of wild-type and

mutants

Expressed protein MIC (μgml–1)

Ampicillin Cefotaxime Imipenem

None 4 0.25 0.25
NDM-1 WT 4096 256 16
F64H 4096 256 16
D84E 256 16 1
W87P 2048 32 2
K121R 512 64 4
K121T 512 64 2
G195A 4096 256 8
D199E 1024 64 2
K224H 256 128 0.5
K224R 2048 256 4
D225E 4096 128 16
G232A 2048 64 1
N233H 4096 256 8
N233Q 2048 256 2

MIC minimum inhibitory concentration
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stringent sequence requirements for IMP hydrolysis compared to
the hydrolysis of AMP and CTX. This was particularly apparent
for the class of residue positions that exhibit context-dependent
sequence requirements including Trp87, Gly195, Thr197, Lys224,
Gly232, Asn233, and Ser262. These observations predict that it

should be possible to construct an NDM-1 variant that retains the
ability to hydrolyze AMP and CTX while losing the ability to
hydrolyze IMP. This idea was tested by combining substitutions
at positions Lys224, Gly232, and Asn233 that negatively affect
IMP hydrolysis but do not affect AMP or CTX hydrolysis. As
noted above, Lys224 and Asn233 are the only NDM residues that
make salt bridge or hydrogen-bonding interactions with β-lactam
substrates and Gly232 is positioned to make hydrophobic con-
tacts with substrate.

The mutations chosen for this experiment were K224R,
G232A, and N233Q, which significantly decrease IMP hydrolysis
while having modest effects on AMP and CTX hydrolysis
(Table 2). Each of the double mutant combinations, including
K224R/G232A, G232A/N233Q, and K224R/N233Q, resulted in
significantly decreased IMP hydrolysis compared with either of
the single mutant parents and wild-type NDM-1 with kcat/KM

values decreased 100-fold for K224R/G232A and G232A/N233Q
and 20-fold for K224R/N233Q compared with wild-type
(Table 3). In contrast, each of the double mutants retained high
levels of AMP hydrolysis activity (Table 3). Finally, the double
mutant K224R/N233Q still retained high levels of CTX hydro-
lysis, but the K224R/G232A and G232A/N233Q mutants
exhibited greatly reduced catalytic efficiency (kcat/KM) for CTX.

Further combining the substitutions resulted in a triple mutant,
K224R/G232A/N233Q, which is as active as the wild-type enzyme
in hydrolyzing AMP but exhibits a 600-fold reduction in kcat/KM

for IMP hydrolysis. The loss in IMP hydrolysis activity is at least
in part due to a greatly increased KM value, which was too high to
be accurately measured. In contrast, the triple mutant has a
threefold lower KM for AMP hydrolysis than wild-type NDM-1.
The triple mutant exhibits a similar pH profile as wild-type for
AMP hydrolysis, although with a narrower pH optimum,
suggesting it operates via a similar mechanism (Supplementary
Fig. 3). The triple mutant also exhibits a 50-fold reduction in kcat/
KM for CTX hydrolysis, due to a 10-fold increase in KM and 5-
fold decrease in kcat. Comparison of the K224R/N233Q mutant
with the triple mutant indicates the majority of the decreased
activity for CTX is due to the G232A substitution (Table 3). The
properties of the triple mutant are consistent with the view that
efficient IMP hydrolysis requires conservation of a larger number
of residues than are required for AMP hydrolysis. To investigate
whether this finding can be generalized to β-lactams in the same
class, the triple mutant K224R/G232A/N233Q was tested for
hydrolysis of another penicillin and carbapenem, i.e., benzylpe-
nicillin and meropenem. As shown in Supplementary Table 1,
compared with wild-type NDM-1 enzyme, the triple mutant
displays a 25-fold lower kcat/KM value for hydrolyzing benzylpe-
nicillin but a 250-fold lower kcat/KM value for hydrolyzing
meropenem. Therefore, the result is consistent with the idea that
more extensive amino-acid sequence information is required in
the active site of NDM-1 for carbapenem hydrolysis compared
with other β-lactam antibiotics.

Structural basis for activity of NDM-1 triple mutant. Although
wild-type NDM-1 enzyme displays comparable activity against
AMP, CTX, and IMP18, the triple mutant NDM-1 K224R/
G232A/N233Q preferentially hydrolyzes AMP (Table 3). In order
to understand the basis for its altered substrate specificity, the
structure of the triple mutant was determined by X-ray crystal-
lography to 1.75 Å resolution with four molecules in the asym-
metric unit (Supplementary Figs. 4, 5). In each chain of NDM-1
K224R/G232A/N233Q, there are zinc ions coordinated to the
histidine site and cysteine site. A water molecule or hydroxide ion
was found between the two zinc ions in each chain. An overlay of
the four chains revealed slight structural variations among them

Table. 2 Enzyme kinetic parameters for NDM-1 and mutants

Proteins Kinetic

parameters

Substratea

Ampicillin Cefotaxime Imipenem

NDM-1 KM (μM) 143 ± 3 6 ± 1 65 ±± 10
kcat (s−1) 550 ± 15 85 ± 16 238 ± 16
kcat/KM (μM−1

s−1)
3.84 ± 0.18 13.79 ± 1.49 3.71 ± 0.36

F64H KM (μM) 188 ± 31 6 ± 0.1 164 ± 19
kcat (s−1) 793 ± 24 83 ± 2 409 ± 15
kcat/KM (μM−1

s−1)
4.27 ± 0.57 14.80 ± 0.62 2.50 ± 0.20

D84E KM (μM) 82 ± 6 16 ± 0.2 70 ± 5
kcat (s−1) 597 ± 17 113 ± 3 153 ± 3
kcat/KM (μM−1

s−1)
7.29 ± 0.29 6.77 ± 0.23 2.20 ± 0.12

W87P KM (μM) 518 ± 36 6 ± 1 295 ± 54
kcat (s−1) 1823 ± 8 46 ± 3 351 ± 49
kcat/KM (μM−1

s−1)
3.53 ± 0.23 8.50 ± 1.84 1.20 ± 0.05

K121R KM (μM) 61 ± 3 4 ± 0.4 31 ± 9
kcat (s−1) 26 ± 0.35 13 ± 0.3 36 ± 2
kcat/KM (μM−1

s−1)
0.43 ± 0.03 3.69 ± 0.31 1.20 ± 0.28

K121T KM (μM) 231 ± 0.71 10 ± 2 117 ± 13
kcat (s−1) 246 ± 8 50 ± 0.3 50 ± 2
kcat/KM (μM−1

s−1)
1.06 ± 0.03 5.13 ± 0.79 0.43 ± 0.03

G195A KM (μM) 57 ± 14 4 ± 0.5 52 ± 15
kcat (s−1) 248 ± 24 32 ± 0.04 94 ± 11
kcat/KM (μM−1

s−1)
4.43 ± 0.67 7.74 ± 0.85 1.84 ± 0.31

D199E KM (μM) 11 ± 2 6 ± 0.4 6 ± 0.8
kcat (s−1) 23 ± 2 48 ± 0.7 17 ± 1
kcat/KM (μM−1

s−1)
2.10 ± 0.12 7.65 ± 0.40 2.81 ± 0.18

K224H KM (μM) 906 ± 26 26 ± 0.6 ND
kcat (s−1) 330 ± 6 111 ± 0.3 ND
kcat/KM (μM−1

s−1)
0.36 ± 0.004 4.24 ± 0.076 0.086 ±

0.002
K224R KM (μM) 179 ± 17 3 ± 0.2 69 ± 2

kcat (s−1) 294 ± 22 39 ± 2 62 ± 0.2
kcat/KM (μM−1

s−1)
1.65 ± 0.04 12.81 ± 0.28 0.90 ± 0.03

D225E KM (μM) 41 ± 9 4 ± 0.1 50 ± 8
kcat (s−1) 102 ± 0.8 38 ± 0.1 117 ± 8
kcat/KM (μM−1

s−1)
2.54 ± 0.56 9.78 ± 0.17 2.37 ± 0.24

G232A KM (μM) 178 ± 40 24 ± 2 ND
kcat (s−1) 417 ± 24 90 ± 1 ND
kcat/KM (μM−1

s−1)
2.39 ± 0.41 3.80 ± 0.25 0.63 ±

0.008
N233H KM (μM) 56 ± 3 3 ± 0.5 134 ± 43

kcat (s−1) 591 ± 6 55 ± 3 286 ± 30
kcat/KM (μM−1

s−1)
10.58 ± 0.61 20.42 ± 2.83 2.22 ± 0.49

N233Q KM (μM) 160 ± 13 1.1 ± 0.3 565 ± 84
kcat (s−1) 279 ± 23 25 ± 1 288 ± 31
kcat/KM (μM−1

s−1)
1.74 ± 0.01 22.95 ± 6.85 0.51 ± 0.02

ND not determined
aData are mean and standard deviations of at least two independent experiments
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with a root-mean-square deviation of 0.304 Å (Supplementary
Fig. 5). Substantial variation exists in the L3 loop bordering the
active site (Supplementary Fig. 5). This may reflect the flexibility
of the loop L3, which has been reported to undergo conformation
changes when substrate is bound to the wild-type NDM-1
enzyme12,23. The mutations of the triple mutant are in loop L10,
which surrounds the active site. The overall conformation of L10
is similar for the four chains except that main chains of Ala232

and Gln233 in chain B vary by about 1 Å from the other chains,
which may be due to high flexibility of the region. Flexibility in
this region is consistent with high B factor values for Ala232
(36.7 Å2 on average of four chains) and Gln233 (37.5 Å2 average).
In addition, the conformation of Arg224 varied among the four
chains in that the side chain of the residue in molecules A and D
orientates toward the active site and that of B and C is away from
the active site (Supplementary Fig. 5).

N

a b

C

Zn2

N233

Zn1

G235
A237

L234

L231

D236

G/A232

L234

Q233

D236

G235

Fig. 6 Crystal structure of the NDM-1 K224R/G232A/N233Q mutant. a Left panel, alignment of structure of wild-type NDM-1 (tan, PDB ID: 3SPU18) with

that of NDM-1 K224R/G232A/N233Q (dark cyan). The zinc ions are represented as orange and gray spheres in the wild-type and mutant NDM-1

structures, respectively. The water molecule between Zn1 and Zn2 is shown as a red sphere. The side chains of residues 232–237 are shown within the

boxed region of each structure. The box indicates the region of the structure shown in detail in panel B. The N- and C-termini are labeled. b Boxed region

from panel (a) showing alignment of the structure of wild-type NDM-1 (tan, PDB ID: 3SPU) with that of NDM-1 K224R/G232A/N233Q (dark cyan) for

residues 231 to 237. A large change in the conformation of the 231–237 region of the NDM-1 K224R/G232A/N233Q mutant is seen versus the structure of

wild-type NDM-1

Table. 3 Enzyme kinetic parameters for NDM-1 single and combinatorial mutants

Proteins Kinetic parameters Substratea

Ampicillin Cefotaxime Imipenem

NDM-1 WTb KM (μM) 143 ± 3 6 ± 1 65 ± 10
kcat (s−1) 550 ± 15 85 ± 16 238 ± 16
kcat/KM (μM−1 s−1) 3.84 ± 0.18 13.79 ± 1.49 3.71 ± 0.36

K224Rb KM (μM) 179 ± 17 3 ± 0.2 69 ± 2
kcat (s−1) 294 ± 22 39 ± 2 62 ± 0.2
kcat/KM (μM−1 s−1) 1.65 ± 0.04 12.81 ± 0.28 0.90 ± 0.03

G232Ab KM (μM) 178 ± 40 24 ± 2 ND
kcat (s−1) 417 ± 24 90 ± 1 ND
kcat/KM (μM−1 s−1) 2.39 ± 0.41 3.80 ± 0.25 0.63 ± 0.008

N233Qb KM (μM) 160 ± 13 1.1 ± 0.3 565 ± 84
kcat (s−1) 279 ± 23 25 ± 1 288 ± 31
kcat/KM (μM−1 s−1) 1.74 ± 0.01 22.95 ± 6.85 0.51 ± 0.02

K224R/G232A KM (μM) 93 ± 11 78 ± 18 ND
kcat (s−1) 108 ± 11 33 ± 6 ND
kcat/KM (μM−1 s−1) 1.16 ± 0.018 0.43 ± 0.02 0.038 ± 0.0028

G232A/N233Q KM (μM) 72 ± 11 70 ± 3 ND
kcat (s−1) 263 ± 11 29 ± 1 ND
kcat/KM (μM−1 s−1) 3.68 ± 0.43 0.42 ± 0.012 0.039 ± 0.0016

K224R/N233Q KM (μM) 43 ± 3 5.37 ± 0.43 ND
kcat (s−1) 263 ± 11 22 ± 0.20 ND
kcat/KM (μM−1 s−1) 6.08 ± 0.20 4.02 ± 0.28 0.17 ± 0.0013

K224R/G232A/N233Q KM (μM) 51 ± 6 78 ± 5 ND
kcat (s−1) 180 ± 5 18 ± 0.8 ND
kcat/KM (μM−1 s−1) 3.52 ± 0.34 0.24 ± 0.005 0.0064 ± 0.00012

ND not determined
aData are mean and standard deviations of at least two independent experiments
bValues are from Table 1 for comparison between wild-type, single, and combinatorial mutations at residues Lys224, Gly232, and Asn233
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Chain A of the NDM-1 K224R/G232A/N233Q structure was
used for comparison with the apo-NDM-1 wild-type structure
(PDB ID: 3SPU)23. The K224R/G232A/N233Q mutations do not
result in large changes in the overall structure of NDM-1 but do
cause a large change in the conformation of loop L10 where the
mutations occur (Fig. 6a). Specifically, although the side chain of
Arg224 in NDM-1 K224R/G232A/N233Q chain A has a similar
orientation as that of Lys224 in the wild-type protein, the side
chain of Gln233 in the mutant adopts a very different orientation
from that of Asn233 in the wild-type enzyme and is pointed out
of the active site (Fig. 6a). The main chain conformation of the
triple mutant is drastically altered between Ala232 and Asp236
(Fig. 6b). This has the effect of placing the side chain of Leu234 of
the mutant in the position of Asn233 in wild-type and the side
chain of Gln233 of the mutant in the position of Leu234 in wild-
type. As Asn233 in wild-type NDM-1 is predicted to form a
hydrogen bond with the carboxylate group of the reaction
intermediate of β-lactams, this interaction would be abolished in
the K224R/G232A/N233Q mutant, with the Asn233 hydrogen-
bonding group replaced by the Leu234 hydrophobic group. This
is further illustrated by superimposing the structure of apo-
NDM-1 K224R/G232A/N233Q on the available structures of
wild-type NDM-1 complexed with hydrolyzed AMP (PDB:3Q6X)
12 and IMP (PDB:5YPI)13 where the orientation of the
Gln233 side chain is seen oriented away from the hydrolyzed
AMP and IMP and is replaced by the hydrophobic Leu234 side
chain (Fig. 7). In addition, the methyl group of Ala232 in the
mutant protein protrudes toward the active site (Fig. 7b, e), which
may cause steric clash with β-lactams with bulky R2 groups such
as cephalosporins and carbapenems. Indeed, the G232A single

mutant results in an increase in KM for IMP from 65 μM to a not
measurable value ( > 600 μM) with only a very modest (1.3-fold)
increase in KM for AMP hydrolysis (Table 3). Attempts to obtain
the structure of the K224R/G232A/N233Q mutant in complex
with AMP, CTX, or IMP products by co-crystallization, as well as
soaking were not successful.

Discussion
As a broad spectrum and readily transferable MBL, NDM-1
confers resistance to nearly all β-lactam antibiotics in a wide
range of Gram-negative pathogens24,25. NDM-1 has broad spe-
cificity with kcat/KM values of 106–107M−1 s−1 for hydrolysis of
penicillins, cephalosporins, and carbapenems18. This is in con-
trast to serine active site β-lactamases such as TEM-1 that effi-
ciently hydrolyzes AMP (kcat/KM= 3.0 × 107M−1 s−1) but
essentially does not hydrolyze IMP26. Deep sequencing analysis of
the antibiotic-resistant clones identified both essential and
context-dependent residue positions. The former represents a
core set of residue positions where the wild-type residue is
indispensable for NDM-1 function against any of the tested
drugs. The context-dependent residue positions are those where
the wild-type residue is required for NDM-1-mediated resistance/
hydrolysis of IMP and/or CTX but not AMP. In addition, several
non-essential residues were identified where multiple amino-acid
substitutions are tolerated without compromising NDM-1 func-
tion against any tested β-lactam.

Non-essential residue positions are located largely on the
periphery of the active site and not positioned to interact with
zinc ions or bound substrate (Fig. 4). Essential core residue
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Fig. 7 Structural alignments of the NDM-1 triple mutant with NDM-1/product complexes. a Structure of wild-type NDM-1 (tan) in complex with hydrolyzed

ampicillin (3Q6X). Hydrolyzed ampicillin is shown in gray. Hydrogen bonds are indicated by thin black lines. b Structural alignment of wild-type NDM-1

(tan) with hydrolyzed ampicillin (gray) and the NDM-1 triple mutant (dark cyan). Hydrogen bonds are not shown for clarity. c Structural alignment from

panel (b) with the wild-type NDM-1 structure removed but leaving the hydrolyzed ampicillin from the wild-type structure in place. d Structure of wild-type

NDM-1 (tan) in complex with hydrolyzed imipenem (5YPI7). Hydrolyzed imipenem is shown in gray. e Structural alignment of wild-type NDM-1 (tan) with

hydrolyzed imipenem (gray) and the NDM-1 triple mutant (dark cyan). Hydrogen bonds are not shown for clarity. f Structural alignment from panel (e)

with the wild-type NDM-1 structure removed but leaving the hydrolyzed imipenem from the wild-type structure in place. Thin black lines indicate hydrogen

bonds. Thin red lines indicate close contacts with steric clash
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positions were found to be zinc ligand residues or charged resi-
dues that link loop structures together in the active site. The
essential zinc ligand residues comprised both the histidine site
(His116, His118, and His196) and the cysteine site (Asp120,
Cys221, and His263) and their functions have been well docu-
mented by site-directed mutagenesis studies22. In addition, resi-
due positions Asp84, Asp199, and Lys121, whose function in
NDM-1 is poorly understood, were also identified to be essential
for NDM-1 function for all antibiotics tested (Fig. 3 and Sup-
plementary Data 1). Examination of the NDM-1 structure reveals
that both side chain and main chain groups of these residues form
hydrogen bonds with multiple residues and serve to link loop
structures in the active site12 (Supplementary Fig. 6). Asp84
forms hydrogen bonds with His55, Val113, Thr115, and Lys121.
Asp199 interacts with Ala117, Ser141, and Thr197, whereas
Lys121 form hydrogen bonds with His118 and Ser26212 (Sup-
plementary Fig. 6). The metal-binding sites of MBLs are entirely
built on loops and turns. The inter-loop interactions mediated by
the Asp84, Asp199, and Lys121 residues may play a critical role in
maintaining the position of the loops and stability of NDM-1.
The contribution of residues in connecting networks of interac-
tions has been recognized as an important component of protein
structure27,28.

The IMP-1 MBL, similar to NDM-1, is a subclass B1 enzyme
with broad specificity and high clinical relevance3. Previous
saturation mutagenesis studies at 29 residue positions in and near
the active of IMP-1 also revealed the zinc-chelating residues are
essential for hydrolysis of penicillins, cephalosporins, and car-
bapenems29. The study also identified Asn233 as a substrate-
specific residue important for carbapenem but not penicillin
hydrolysis. The results for other positions, however, are difficult
to compare directly with the NDM-1 results because of the lim-
ited number of resistance mutants sequenced in the IMP-1
study29.

In contrast to subclass B1 enzymes, such as NDM-1 and IMP-
1, subclass B2 enzymes such as CphA contain a single zinc (Zn2)
and are inhibited on binding of a second zinc3,16. In addition,
they hydrolyze only carbapenems and are proposed to do so
through an altered catalytic mechanism compared with di-zinc
enzymes such as NDM-130,31. We previously generated rando-
mized, single codon libraries for 26 residues in and near the active
site of CphA and performed deep sequencing of mutants from
each library after selection for imipenemase function32. A com-
parison of the results as indicated by sequence logos reveals many
of the equivalent positions do not tolerate substitutions and are
thus required for IMP hydrolysis for both enzymes (Supple-
mentary Fig. 7). Strikingly, for three positions, the wild-type
residue is required for both enzymes but the identity of the
residue is different for NDM-1 versus CphA. These positions
include Asp/Gly84 (NDM/CphA), His/Asn116, and Gly/Asn220
(Supplementary Fig. 7). Thus, the residue type required for
function is dependent on whether the position is in the context of
the CphA or the NDM-1 enzyme. Such context-dependent
sequence requirements indicate epistasis at these positions. These
observations suggest that these positions may control the narrow
specificity of CphA. In this regard, it has been reported that a
N116H/N220G double mutant changes the substrate specificity of
CphA to include penicillins and cephalosporins, similar to sub-
class B1 enzymes such as NDM-133.

Similar to subclass B1 enzymes, such as NDM-1, subclass B3
enzymes contain two zincs in the active site and hydrolyze a
broad range of penicillins, cephalosporins, and carbapenems3,16.
The B3 enzymes, however, contain differences in the active site
including an altered Zn2-binding site where the Cys221 ligand in
B1 is replaced by Ser221, and instead His121 binds Zn2 in B3
enzymes. Although shifted in position compared with B1

enzymes, mutagenesis studies show His121 is critical for B3
enzyme function, as is Cys221 in NDM-134. In addition, Lys224,
which binds the substrate C3/C4 carboxylate in B1 enzymes is
absent in B3 enzymes and is replaced by Ser221 and Ser/
Thr22335,36 (Supplementary Fig. 8). Interestingly, saturation
mutagenesis studies of the Ser221 and Thr223 residues in the B3
AIM-1 enzyme, which are positioned to bind the C3/C4 car-
boxylate in a similar role as Lys224 in NDM-1, also are more
tolerant to substitutions for AMP hydrolysis compared with IMP
hydrolysis, similar to what is observed for Lys224 in this study37.
Further, B3 enzymes do not contain an equivalent residue as
Asn233 in NDM-1 but Gln157, which originates from a different
loop, has its terminal amide group in a similar position as that of
Asn233 in NDM-138 (Supplementary Fig. 8). Mutagenesis of
Gln157 in AIM-1 also shows similar results as that for Asn233 in
NDM-1, with tolerance to substitutions for AMP hydrolysis but
more stringent requirements for IMP37. Indeed, saturation
mutagenesis of eight active site positions in AIM-1 show the
general trend of relaxed sequence requirements for AMP
hydrolysis compared with IMP, as observed here for NDM-137.
Although this is a limited comparison, it suggests B3 enzymes
may also require more sequence information for carbapenem
versus penicillin hydrolysis.

The interesting question that arises from the NDM-1 experi-
ments is why does IMP hydrolysis require more precise sequence
information in the active site for efficient catalysis than CTX and,
in particular, AMP hydrolysis? A characteristic feature of carba-
penems, including IMP, is the chirality of the hydroxyethyl group
at the C6 position is S, whereas the acyl-amide side chain of
penicillins and cephalosporins is R. This leads to different inter-
actions between carbapenems and the active site versus penicillins
and cephalosporins. It has been noted that the altered chirality
forces the C6 carboxylate formed after bond cleavage of carba-
penems to orient differently than that for penicillins and cepha-
losporins. In available structures with hydrolyzed IMP and
meropenem, the carboxylate is shifted to a position between Zn1
and Zn2 where it displaces the bridging water11,13. The different
binding modes of carbapenems versus penicillins and cephalos-
porins could result in different sequence requirements for binding
and catalysis, as reflected in the deep sequencing results13. Also
along these lines, based on available structural information, car-
bapenems make fewer contacts with the enzyme than penicillins
and cephalosporins (Supplementary Figs. 9–12)10–12. Therefore,
the contacts that do occur with carbapenems may be critical and
very sensitive to perturbation. The structure of hydrolyzed IMP
bound to NDM-1 shows that the R2 group makes minimal
contacts with the enzyme, whereas the R1 hydroxyethyl group
interacts with the hydrophobic portion of the active site via
contact with Trp8713 (Supplementary Fig. 12). In contrast, AMP
makes multiple hydrophobic interactions with Leu59, Met61, and
Trp87, as well as a hydrogen bond with Gln11911,12 (Supple-
mentary Fig. 9). The multiple interactions of the AMP side chain
with the enzyme may buffer changes at individual residues
making the enzyme more robust to substitutions with respect to
AMP hydrolysis.

The more stringent sequence requirements for IMP hydrolysis
were further highlighted by the construction of a triple mutant,
K224R/G232A/N233Q, based on the sequencing information that
exhibited wild-type kcat/KM for AMP but a 600-fold decrease in
IMP hydrolysis.

Lys224 is a conserved residue that facilitates β-lactam substrate
binding to the active site through an electrostatic interaction with
the negatively charged C3/C4 carboxylate group common to β-
lactam antibiotics3. The crystal structure of the K224R/G232A/
N233Q triple mutant shows the side chain of Arg224 is posi-
tioned to interact with substrate but does not provide a clear
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rationale for why the substitution negatively affects carbapenem
hydrolysis compared with other substrates.

Gly232 and Asn233 are conserved residues that reside on the
critical L10 loop flanking the active site of NDM-112,23. Based on
structures of NDM-1 in complex with hydrolyzed β-lactams,
Gly232 makes hydrophobic interactions with the R2 group of
carbapenems and cephalosporins but not with AMP where there
is a dimethyl group at C-2 rather than an R group10–12 (Fig. 2a).
The methyl group of Ala232 may clash or limit the flexibility of
the R-2 groups of carbapenems and cephalosporins but not the
dimethyl group of AMP. Crystal structures also indicate the side
chain of Asn233 hydrogen bonds to the newly formed carboxylate
group resulting from cleavage of the β-lactam ring, implying that
it participates in β-lactam catalysis10–12. In the triple mutant, the
side chain of Gln233 flips away from the carbonyl oxygen of the
substrate and carboxylate of the product (Fig. 6), which would
eliminate the hydrogen bond, suggesting this interaction is
important for carbapenem but not penicillin catalysis. This is
consistent with previous observations that a N233A mutant of
NDM-1 retains high-level activity toward AMP but exhibits
decreased activity toward carbapenems. Further, changes in the
orientation of the main chain for positions 232–236 in the triple
mutant places the side chain of Leu234 near the carboxylate
group of hydrolyzed AMP and IMP (Fig. 7b, e), which could
affect substrate positioning relative to Zn1. As noted above, this
carboxylate group is in an altered position for the structures of
NDM-1 complexed with hydrolyzed IMP and meropenem com-
pared with structures with hydrolyzed AMP and ceftriaxone due
to the altered stereochemistry of the hydroxyethyl group of car-
bapenems (Fig. 7a, d). Thus, the loss of the Asn233 hydrogen
bond could differentially affect carbapenems versus penicillins
and cephalosporins.

The NDM-1 enzyme exhibits a broad substrate profile with
kcat/KM values for penicillins, cephalosporins, and carbapenems
in the 106–107M−1 s−1 range18. NDM-1 emerged in 2008 from a
patient infected with E. coli that encoded the enzyme6. The
ultimate bacterial origins and selective pressures that led to the
evolution of the broad substrate profile, however, are not known.
One possibility is that the broad substrate profile was shaped by
frequent exposure and selective pressure from all three classes of
β-lactam antibiotics. The results presented here, however, suggest
the possibility that the broad substrate profile could have evolved
from selective pressure exclusively from carbapenems in that the
residue positions and sequences required for penicillin and
cephalosporin hydrolysis are a complete subset of those required
for carbapenem hydrolysis, i.e., an NDM active site poised for
carbapenem hydrolysis is also competent for penicillin and
cephalosporin hydrolysis.

In summary, deep sequencing of random mutant libraries of
NDM-1 β-lactamase selected for β-lactam antibiotic resistance
together with biochemical analyses has shown that there is a core
set of residues that contribute strongly to the hydrolysis of all β-
lactam substrates but that additional residues are required to
attain levels of IMP hydrolysis similar to that observed for CTX
and AMP. Thus, hydrolysis of IMP is a more difficult task than
hydrolysis of AMP or CTX. A practical implication of the find-
ings of this study is that, if an inhibitor of NDM-1 is developed, it
should be used in combination with a carbapenem because the
stringent sequence constraints for carbapenem hydrolysis will
restrict the number of substitutions that are possible and are able
to confer inhibitor resistance and retain efficient carbapenem
hydrolysis.

Methods
Bacterial strains and plasmids. E. coli XL1-Blue (Stratagene) and E. coli BL21
(DE3)39 were used as the host strains for the construction of codon randomization

libraries and for over-production of wild-type and mutant NDM-1 enzymes,
respectively. The plasmid pTP470, which encodes chloramphenicol resistance and
is a lacIq-deletion derivative of pTP12340, contains the gene for NDM-1, whose
expression is under the control of the isopropyl β-D-1-thiogalactopyranoside
(IPTG)-inducible trc promoter. The Strep-tagII sequence is included at the C-
terminus of NDM-1 to allow for monitoring the expression of NDM-1 in E. coli by
immunoblotting with anti-Strep-tagII antibody41,42. For expression of mature
NDM-1, a truncated NDM-1 gene encoding mature NDM-1 enzyme (mNDM-1,
Gly36 to Arg270)18 was cloned between NdeI and XhoI restriction sites of a modified
pET28a vector (Novagen), in which the thrombin recognition sequence was
replaced with the tobacco etch virus (TEV) protease recognition sequence. Site-
directed mutagenesis was performed on NDM-1-StrepII-pTP470 and mNDM-1-
pET28a-TEV to obtain expression vectors for NDM-1-StrepII and His-NDM-1
mutants43.

Construction of NDM-1 single codon randomization libraries. NDM-1 single
codon random libraries were constructed by oligonucleotide directed mutagen-
esis32. First, to eliminate any wild-type NDM-1 background, a XhoI restriction site
was inserted near the target codon for randomization by oligonucleotide directed
mutagenesis (Supplementary Table 2). The insertion of the XhoI recognition
sequence was designed to also introduce a frameshift mutation in the NDM-1 gene
to ensure the insert mutant is non-functional. The XhoI insert mutant was then
used as the template for randomization of each codon by using partially over-
lapping (25 base pair (bp)) primers for PCR amplification (Supplementary
Table 2). The codon for the target residue was substituted by NNS (where N is any
of the four nucleotides and S is G or C) so that codons for all 20 amino acids were
represented in the library. The resulting mutagenesis reactions were treated with
the DpnI and XhoI restriction enzymes to eliminate non-mutagenized plasmids and
used for transformation into E. coli XL1-Blue by electroporation. A minimum of
300 colonies were pooled for each library construction and used for preparation of
plasmid DNA to obtain a single codon randomization library.

Selection of library mutants with resistance to β-lactams. In order to select for
functional NDM-1 mutants from each library, 100 ng of DNA from each plasmid
library was transformed into E. coli XL1-Blue by electroporation and the bacterial
cells were spread on Luria-Bertani (LB) agar plates containing 0.5 mM IPTG, 12.5
μg ml−1 chloramphenicol, and either 100 μg ml−1 AMP, 20 μg ml−1 CTX, or 1 μg
ml−1 IMP. These levels of antibiotics were determined to select for clones with near
wild-type β-lactamase activity. The transformed bacteria were also spread on the
LB agar plates containing 0.5 mM IPTG and 12.5 μg ml−1 chloramphenicol as
naive library control experiments. The transformation cultures were diluted
appropriately to produce approximately 1000 colonies on each selection plate. The
resulting colonies were pooled and used for plasmid preparation.

Preparation of NDM-1 library samples for deep sequencing. The plasmid DNA
obtained from pooled colonies for each library after each antibiotic selection was
used as template DNA for PCR reactions in preparation for deep sequencing. PCR
primers for amplification were designed to amplify the region of blaNDM-1 con-
taining the randomized codon of interest (Supplementary Table 2). The PCR
primers also contained a 7-bp barcode sequence that was unique for each pooled
library from each drug selection. The barcode sequences differ from each other by
at least 2 bp and the primers were designed so that the PCR amplicons were
approximately 150 bp in length. PCR products were purified from a 1.5% agarose
gel using QIAquick gel extraction kit (Qiagen) and the DNA concentration of each
sample was quantified using a Nanodrop instrument. The resulting purified PCR
products from each library and each antibiotic selection, as well as each naive
library were then pooled into a single tube. The pooled PCR products were ligated
with adapters for sequencing and Illumina paired-end MiSeq sequencing (2 × 150-
bp read length) was performed by the Human Genome Sequencing Center at
Baylor College of Medicine.

Analysis of Illumina deep sequencing data. Illumina MiSeq sequencing returned
FASTQ files containing the sequencing reads and quality information. The
sequencing data were quality checked using the Galaxy web server (https://
usegalaxy.org/), which showed that sequence quality was high (scores over 30) for
all nucleotide positions except those at the extreme end of the reads (Supple-
mentary Fig. 13). A custom Perl script was used to extract the mutant sequences for
each naive library and each antibiotic selection by using matches to the appropriate
barcode sequence, as well as the sequences 10-bp upstream and downstream of the
randomized codon20,32. This yielded 3.1 × 107 reads for the 124 experiments (31
libraries × 4) with 2.5 × 105 reads for each experiment on average. Because the
randomization codons for all libraries were located 30–40 bp from the 5′ terminus
of each PCR product and thus in a region of high quality, filtering was not per-
formed on the sequencing data. A custom Python script was then used to translate
codons to amino-acid sequences and count the occurrence of each amino-acid type
in each experiment, as shown in Fig. 2b and Supplementary Data 1.

Creation of sequence logos. In order to represent the predominant amino-acid
sequence types in the libraries after selection for antibiotic resistance, sequence
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logos were created32,44. The logos are based on the frequency of occurrence of each
amino acid in each experiment. However, for the Gly65, Gly195, and Gly232
libraries in which glycine was represented at a significantly higher frequency in the
naive libraries than other amino-acid types, the frequency of occurrence of each
amino acid in the antibiotic selection experiments was normalized to their fre-
quency of occurrence in the naive libraries to eliminate the library coverage bias or
sequencing bias.

Determination of β-lactam antibiotic resistance levels. NDM-1 and its mutants
were expressed in E. coli XL-1 Blue. The antibiotic resistance levels for AMP, CTX,
and IMP were determined by measuring the MIC of each drug for E. coli con-
taining NDM-1 wild-type or mutants using serial twofold dilutions of antibiotics.
For this purpose, 1:100,000 diluted overnight bacterial cultures were mixed with
serial twofold dilutions of antibiotics in 96-well plates in a final volume of 0.2 ml.
After 16-h incubation at 37 °C with shaking, bacterial growth was recorded by
reading the absorbance of the cultures at 600 nM (OD600) with a Tecan microplate
reader. The MIC was defined as the lowest concentration of antibiotic that inhibits
90% of cell growth (IC90), compared with a control culture without the antibiotic.
The plasmid encoding NDM-1 contains an IPTG-inducible trc promoter and 0.2
mM IPTG was included in the culture medium for IMP MIC determinations.
However, for AMP and CTX MIC determinations, IPTG was not included as the
level of uninduced expression of NDM-1 was sufficient for high-level resistance
against these antibiotics (4096 and 256 µg ml−1, respectively).

Relative fitness calculations. For each library, relative fitness was used to
examine the relationship between antibiotic resistance levels of NDM-1 mutants
compared with their frequency of occurrence in the antibiotic selection experi-
ments. For deep sequencing results of the libraries with or without antibiotic
selections, the relative fitness Fa

u of amino-acid substitution a at each position u was
calculated as described by Stiffler et al.40 using the equation below:

Fa
u ¼ log10

Na;sel
u

Na;naive
u

� �

� log10
Nwt;sel

u

Nwt;naive
u

� �

ð1Þ

where Na;sel
u and Na;naive

u represent the mutant allele count of amino acid a at
position u in the selected and unselected (naive) residue position library and
Nwt;sel
u and Nwt;naive

u represent the wild-type allele count in the selected and naive
residue at position u in the library, respectively. Basically, the Fa

u value reflects the
enrichment or depletion of mutant alleles under selection relative to that of the
wild-type allele. An Fa

u value close to 0 indicates the mutation occurs at equal
frequency to the wild-type amino acid at this position. A negative Fa

u value shows
that the substitution is less fit and occurs less frequently than the wild-type residue
at this position. A positive value, however, indicates that this amino acid occurs
more often upon selection than the wild-type residue such that the substitution
increases the fitness.

For the results of antibiotic resistance determinations, the relative fitness f au of
amino-acid substitution a at each position u was calculated using the equation
below:

f au ¼ log10 MICa
u

� �

� log10 MICwt
u

� �

ð2Þ

where MICa
u and MICwt

u represent the MIC values of the mutant allele and the
wild-type allele, respectively. An f au value of 0 indicates the amino-acid substitution
does not change antibiotic resistance function of NDM-1 β-lactamase. A negative
f au value indicates that the amino-acid substitution decreases the antibiotic
resistance function of the β-lactamase, whereas a positive f au value indicates that the
substitution increases the antibiotic resistance function of the β-lactamase.

Calculation of effective number of substitutions (k*). The effective number of
substitutions (k*) at each position was calculated using the equations below, where
S is the entropy, pi is the fraction of times the ith type appears at a position, and k is
the number of different amino-acid residue types that appear at a position20,21. A
k* value of one indicates that only one amino acid is observed at this position while
a value of 20 indicates that all amino acids are tolerated equally.

S ¼ �
X

k

i¼1

piðlog2 piÞ ð3Þ

k� ¼ 2S ð4Þ

Protein expression and purification. The mNDM-1-pET28a-TEV plasmid
encoding His-tagged-NDM-1 enzymes was used for protein expression in E. coli
BL21 (DE3) cells and subsequent purification for enzyme kinetics and protein
crystallization experiments. The E. coli cells containing the NDM-1 expression
plasmid were grown in LB medium containing 25 μg ml−1 kanamycin. Expression
of the His-tagged-NDM-1 protein was induced in mid-log-phase cultures with 0.5
mM IPTG at 20 °C for 16 h. The cells were pelleted and suspended in lysis buffer
(20 mM HEPES, 500 mM NaCl, 20 mM imidazole, pH 7.4) and lysed using a

French press. After centrifugation, soluble fractions in the supernatant were loaded
onto a HisTrapTM FF column (GE Healthcare) and His-tagged-NDM-1 was eluted
with an imidazole gradient in the lysis buffer. The His-tag was removed by incu-
bating with TEV protease for 24 h at 4 °C at a ratio of 1:50. The TEV protease was
removed by passing the preparation through the HisTrapTM FF column again.
NDM-1 β-lactamase in the column flow through fraction was concentrated with
Amicon concentrator units (EMD Millipore) and further purified by gel-filtration
chromatography using a Superdex 75 GL 16/600 sizing column (GE Healthcare)
with 20 mM HEPES, 100 mM NaCl, 50 μM ZnSO4, pH 7.4 as running buffer.
Fractions containing NDM-1 were pooled and concentrated. NDM-1 mutants were
purified and quantified in the same way as that for wild-type NDM-1. The purity of
wild-type NDM-1 and each of the mutant enzymes was > 90% based on sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The final
protein concentration of wild-type NDM-1 and mutants was determined by
measuring absorbance at 280 nm with a DU800 spectrophotometer (Beckman
Coulter) and using an extinction coefficient of ε280= 27,690M−1 cm−1, which was
calculated using the ExPASy ProtParam tool.

Determination of kinetic parameters. Enzyme kinetic parameters for the
hydrolysis of AMP, CTX, or IMP by wild-type or mutant NDM-1 β-lactamase was
performed at 25 °C in 50 mM HEPES (pH 7.4) supplemented with 10 μM ZnSO4,
in which NDM-1 exhibits maximal activity with β-lactam antibiotics18. Antibiotic
hydrolysis was monitored with a DU800 spectrophotometer (Beckman Coulter)
equipped with a thermostatically controlled cell by following the absorbance
change of AMP at 235 nm (Δε235nm=−900M−1 cm−1), CTX at 260 nm (Δε260nm
=−7250M−1 cm−1), and IMP at 300 nm (Δε300nm=−9000M−1 cm−1). Cuvettes
with 0.1- or 1-cm path lengths were used, depending on the substrate concentra-
tion being examined. For wild-type and most NDM-1 mutants, kcat and KM

parameters were determined under initial-rate conditions by fitting the initial
velocity (vo) at various substrate concentrations to the Michaelis–Menton equation
(v=Vmax [S]/(KM+ [S])) using GraphPad Prism5. When Vmax could not be
determined because KM was too high, the catalytic efficiency (kcat/KM) was
determined by analyzing the complete hydrolysis time courses at low antibiotic
concentration and fitting the data to the equation v= kcat/KM [E][S]32,45,46. Kinetic
parameters were averaged from at least two independent determinations. The
background rate of hydrolysis of each of the substrates in the absence of enzyme
was undetectable over the time frame of the initial velocity determinations.

Protein expression level determination. The effect of amino-acid substitutions
on steady-state expression levels of NDM-1 β-lactamase in E. coli was determined
by Western blotting32,42. For this purpose, overnight cultures of E. coli XL1-Blue
strains containing wild-type or mutant NDM-1-StrepII were diluted 1:100 into LB
medium containing 12.5 μg ml−1 chloramphenicol and grown at 37 °C with
shaking until the OD600 reached 0.6–0.9. Cells were collected by centrifugation and
lysed in B-PER (Thermo Scientific) containing 0.1 mgml−1 lysozyme and 0.02 mg
ml−1 DNaseI, whose volume was adjusted according to the OD600 of the culture to
ensure that same cell density was obtained. The same volumes of cell lysates were
subjected to SDS-PAGE and used for Western blotting. Because a StrepII tag was
fused to the C-terminus of wild-type or mutant NMD-1, their expression was
detected by probing with a horseradish peroxidase (HRP)-conjugated mouse
monoclonal anti-StrepII antibody (Novagen). In addition, the same membrane was
also probed with an antibody against DnaK (Enzo Life Sciences), which serves as a
loading control. The hybridization signal was quantified by densitometry using
ImageJ software (NIH).

X-ray structure determination of NDM-1 triple mutant. For crystallization of
NDM-1 K224R/G232A/N233Q, the protein was purified as a His-tagged version by
using HisTrapTM FF column (GE Healthcare). After removal of the His-tag by
TEV protease, NDM-1 K224R/G232A/N233Q was further purified using gel-
filtration chromatography using a Superdex 75 GL 16/600 sizing column (GE
Healthcare) with 20 mM HEPES, 150 mM NaCl, 2 mM DTT as running buffer.
The protein was concentrated to 40 mgml−1 and was screened for crystallization
using commercially available crystal screens from Hampton Research and Qiagen.
A Mosquito automated nanoliter liquid handler robot (TTP LabTech) was utilized
to mix protein solution (0.1 µl) and the reservoir solution (0.1 µl). The mixture was
left to equilibrate against the reservoir solution (70 µl) at 25 °C by using the
hanging-drop method. Crystals formed within a few days under various crystal-
lization conditions. For data collection, crystals were soaked in cryoprotectant
solution (25% glycerol diluted in reservoir solution) for 30 s and flash frozen in
liquid nitrogen. A 1.65 Å data set was collected on the 8.2.1 beamline (1 Å wave-
length) at the Advanced Light Source synchrotron in Berkeley, CA for the crystal
grown with 0.2 M LiCl, 0.1 M HEPES, pH 7.0, 20% (w/v) PEG6000.

Diffraction data for crystals of the apo-β-lactamase and its CTX complex of
NDM-1 K224R/G232A/N233Q were indexed, integrated and scaled using
HKL200047 (Table 4). The structures were solved by molecular replacement using
the program Phaser48 with chain A of AMP bound NDM-1 structure as a starting
model (PDB ID: 3Q6X)12. The structures of apo protein and protein/CTX were
solved to 1.75 Å and 1.60 Å, respectively. However, no density of CTX was
observed in the active site of the molecule for the protein/CTX structure. The apo
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protein structure was further refined by using PHENIX49 with several rounds of
manual remodeling in COOT50 between refinement cycles (Table 4). Simulated
annealing was performed on the partially refined model using PHENIX49.
Ramachandran statistics for the final refined structure are 98.24% favored and
0.22% outliers. The fully refined structure has been deposited in the Protein Data
Bank with the entry code 6C89. Structure figures were generated using Chimera51.

Code availability. The custom scripts used to process the next-generation
sequencing data as described above are available upon request from the corre-
sponding author.

Data availability
Coordinates and structure factors have been deposited in the Protein Data Bank
under accession code 6C89. All relevant data associated with the paper are available
upon request from the corresponding author.
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Table. 4 Data collection and refinement statistics for NDM-1

K224R/G232A/N233Q

Data collection
Space group P1
Cell dimensions
a, b, c (Å) 46.17, 68.86, 68.44
α, β, γ (°) 92.23, 77.03, 91.84

Resolution (Å) 38.06–1.75 (1.81–1.75)a

Rmerge 0.053 (0.325)a

I/σI 17.6 (3.3)a

Completeness (%) 91.07 (54.76)a

Redundancy 2.3 (2.2)a

Refinement
Resolution (Å) 38.06–1.75
No. reflections 75370
Rwork/Rfree 0.1554/0.1990
No. atoms
Protein 6807
Zn 8
Water 684

B-factors
Protein 18.68
Ligand/ion 27.06
Water 28.75

R.m.s. deviations
Bond lengths (Å) 0.006
Bond angles (°) 0.78

Four molecules in the asymmetric unit
aValues in parentheses are for highest-resolution shell
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