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Abstract

The b-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition
receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling
infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous
infections as well as life-threatening invasive diseases. Here, using in vivomodels of infection, we show that the requirement
for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes
apparent during infection and cannot be recapitulated in vitro. Transcript analysis revealed that this differential requirement
for Dectin-1 is due to variable adaptation of C. albicans strains in vivo, and that this results in substantial differences in the
composition and nature of their cell walls. In particular, we established that differences in the levels of cell-wall chitin
influence the role of Dectin-1, and that these effects can be modulated by antifungal drug treatment. Our results therefore
provide substantial new insights into the interaction between C. albicans and the immune system and have significant
implications for our understanding of susceptibility and treatment of human infections with this pathogen.
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Introduction

The immune system of healthy individuals has effective

mechanisms for preventing fungal infection, yet immunosuppres-

sive infections, such as HIV/AIDS, and modern immunosuppres-

sive and invasive medical interventions can substantially increase

the risk of infection with numerous fungal pathogens. Candida

albicans is one such microorganism, which is normally found as a

commensal on host epithelial surfaces, colonizing more than 50%

of individuals [1]. However, in severely immunocompromised

patients, those enduring invasive clinical procedures or those

requiring extended stays in intensive care units, Candida species are

the most important etiological agent of life-threatening, invasive

systemic and bloodstream fungal infections [1].

In addition to life-threatening invasive infections, superficial

mucocutaneous infections with Candida species are also common,

even in immuno-competent individuals. While the underlying

mechanisms are still incompletely understood, a link to defects in

Th17 immunity have been identified in some patients [2]. Indeed,

mutations in STAT1, STAT3, IL-17 and IL17RA all result in

susceptibility, especially to mucocutaneous candidiasis [2]. Fur-

thermore, C-type lectin receptors (CLR) and their intracellular

signalling pathways, particularly the CARD9 pathway, are now

recognized to play a predominant role in driving these and other

protective antifungal immune responses [3]. CLRs are required for

the recognition and ingestion of fungi by phagocytes, the induction

of antimicrobial effector mechanisms and inflammatory mediators,

and they direct and modulate adaptive immunity, including Th17

responses [3].

One such CLR is the b-glucan receptor, Dectin-1, which can

mediate multiple cellular functions through its cytoplasmic

signalling domain including phagocytosis, the respiratory burst,
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and the production of soluble factors, such as cytokines,

chemokines and eicosanoids [3]. The importance of Dectin-1

has been exemplified in our recent studies that have implicated it

in the control of antifungal immunity in humans [4,5]. An essential

role for Dectin-1 has also been demonstrated in mouse models by

several groups, where loss of Dectin-1 resulted in a failure to

mount protective inflammatory responses and an inability to

control fungal growth [6,7,8,9,10]. During infection with C.

albicans, these defects resulted in systemic and mucosal suscepti-

bility [6,7,8,9]. Surprisingly another group found no role for

Dectin-1 in immunity to systemic infections with this pathogen,

however, this study was performed using a different strain of C.

albicans and a different mouse genetic background [11]. As innate

recognition of C. albicans can be influenced by both fungal and

mouse strain [9,12,13,14], we have explored the contribution of

these variables to Dectin-1-mediated recognition of this pathogen.

Results

Dectin-1 dependency is Candida albicans strain specific
Using 129Sv mice, we had found that Dectin-1 was essential for

controlling systemic infection with C. albicans strain SC5314 [6]. In

contrast, Iwakura’s group had found that Dectin-1 was not

required for the control of this pathogen; their experiments being

performed using C57BL/6 mice and the C. albicans strain

ATCC18804 [11]. To explore the contribution of mouse and/or

fungal strain to the Dectin-1-mediated recognition of this

pathogen, we backcrossed our 129/Sv background knockout mice

for nine generations onto the C57BL/6 background (data not

shown), and then assessed the role of Dectin-1 in both mouse

backgrounds with both strains of C. albicans. Consistent with our

earlier results [6], Dectin-12/2 mice (clec7A2/2) on a 129/Sv

background showed significantly enhanced susceptibility to

infection with C. albicans SC5314 (Figure 1A). Moreover, similarly

enhanced susceptibility to this strain of C. albicans was also

observed in the knockout mice on a C57BL/6 background. In

contrast, loss of Dectin-1 had no effect on susceptibility to C.

albicans ATCC18804 on either murine background (Figure 1B).

Thus Dectin-1-mediated control of systemic C. albicans infection is

not dependent on the genetic background of the mice.

Strains of C. albicans have been subdivided into 17 clades based

on multilocus sequence typing [15] and as the two strains used in

these experiments (SC5314 and ATCC18804) come from different

clades (1 and 5, respectively), we explored the possibility that

Dectin-1 dependency is associated with different clades of C.

albicans. Wild type and Dectin-12/2 mice were infected with

representative isolates from several clades (listed in Table S1), as

well as two additional isolates from clade 1 (i.e. the same clade as

SC5314), and survival of these animals was assessed over time.

Dectin-1 was required to control infection with roughly half of the

strains tested (Figure 2A), as evidenced by significantly increased

mortality in the knockout mice. However, this receptor was not

required to control infection with other strains from clade 1

(Figure 2B). Thus we conclude that Dectin-1 dependency is C.

albicans strain-specific, but does not correlate with particular clades

of this pathogen.

Strain-specific Dectin-1-dependency corresponds with
enhanced fungal burdens and dysregulated cytokine
responses during systemic infection
To gain further insight into the mechanisms underlying the

difference in Dectin-1 dependency between C. albicans SC5314

and ATCC18804, we examined fungal burdens and cytokine

responses in the kidneys of infected wild-type and Dectin-12/2

mice. These analyses were performed on day 9, a time point

chosen when the animals were just starting to succumb to the

infection (see Figure 1). In line with our survival analysis, we

observed significantly higher fungal burdens in the Dectin-12/2

animals infected with C. albicans SC5314, using both high-dose

(Figure 3A) and low-dose inocula (Figure 3B). Moreover, these

mice also had substantially altered levels of cytokines known to be

critical for controlling C. albicans infection, as we reported

previously [6] (Figure 3C). In contrast, loss of Dectin-1 had no

effect on fungal burdens or cytokine responses in mice infected

with C. albicans ATCC18804 (Figure 3A–C).

We also assessed the possibility that these in vivo differences may

be related to the virulence of the individual strains. Indeed, a 4- to

10-fold higher inoculum of ATCC18804 was required to induce a

level of mortality in mice that was roughly equivalent to that of

SC5314 (Figure 1 and Table S1). We therefore examined kidney

fungal burdens and cytokine responses with the Dectin-1-

independent s20175.016 C. albicans strain, which was roughly

equivalent in virulence to SC5314 (Figure 2 and Table S1).

However, as we observed for ATCC18804, neither fungal burdens

nor cytokines responses were affected by Dectin-1 deficiency

during infection with s20175.016 (Figure 3A–C). Taken together,

these results demonstrate that the absence of Dectin-1 results in

substantially increased fungal burdens, dysregulated cytokine

responses and enhanced susceptibility to infection, but only with

specific strains of C. albicans.

Dectin-1 dependency cannot be recapitulated in vitro
Given the clear-cut difference in Dectin-1 dependency between

infections with SC5314 and ATCC18804 in vivo, we reasoned that

there might be substantial differences in the cell wall b-glucan

content of these fungal strains. However, the cell walls of these

strains grown in vitro revealed nearly identical levels of glucos-

amine, glucose and mannose, reflecting equivalent amounts of

chitin, b-glucan and mannan, respectively (Figure 4A). To confirm

this crude biochemical analysis and verify that the cell walls of

SC5314 and ATCC18804 were also similar from an immunolog-

ical perspective, we compared recognition of these fungal strains

using wild type and Dectin-12/2 thioglycollate-elicited macro-

phages in vitro. Using fluorescently labelled live yeast cells, and

zymosan particles as a positive control [6], we demonstrated that

Author Summary

Dectin-1 is a pattern recognition receptor recognising the
fungal cell-wall component, b-glucan, and plays an
essential role in controlling C. albicans infections in both
mouse and man. Candida albicans is part of the normal
human microflora, yet is capable of causing superficial
mucosal infections as well as life-threatening invasive
diseases, particularly in patients whose immune function is
compromised. Here we found that the contribution of
Dectin-1 is limited to specific strains of C. albicans; effects
which are due to the differential adaptation of these
pathogens during infection. Importantly, C. albicans strains
showed variations in both the composition and nature of
their cell walls, and it was these differences which
influenced the role of Dectin-1. Crucially, we found that
we could alter the fungal cell wall, and subsequent
interactions with the host, using antifungal drugs. These
findings have substantial implications for our understand-
ing of the factors contributing to human susceptibility to
infections with C. albicans, but also treatment strategies.

Strain-Specific Recognition by Dectin-1
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Figure 1. Dectin-1 dependence is related to fungal strain and not mouse background. Survival analysis of 129/Sv and C57BL/6 wild-type
and Dectin-12/2 mice following infection with (A) C. albicans SC5314 or (B) ATCC18804. The data shown are representative of at least two
independent experiments. Also shown are number of animals per group (n) and dosage used for infection. *; p,0.05. See also Table S1.
doi:10.1371/journal.ppat.1003315.g001

Figure 2. Dectin-1 dependence is not related to the clade of C. albicans. Survival analysis of 129/Sv wild-type and Dectin-12/2 mice following
infection with strains from (A) several different clades of C. albicans, or (B) two additional isolates from clade 1 as indicated. The data shown are
representative of at least two independent experiments. Also shown are number of animals per group (n) and dosage used for infection. *; p,0.05.
See also Table S1.
doi:10.1371/journal.ppat.1003315.g002

Strain-Specific Recognition by Dectin-1
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they bound to macrophages at equivalent levels. Importantly, the

binding of both strains and zymosan was Dectin-1 dependent

(Figure 4B). Consistent with these observations, both strains

induced inflammatory cytokine responses, determined by measur-

ing TNF, to similar levels and in a Dectin-1 dependent manner

(Figure 4C). Moreover, we demonstrated the Dectin-1 dependent

nature of recognition of these strains using human monocytes

deficient in Dectin-1, isolated from individuals homozygous for the

Y238X polymorphism of the receptor [5] (Figure 4D). Thus the

yeast forms of these strains demonstrate an equivalent requirement

for Dectin-1 recognition in vitro.

The exposure of b-glucans on C. albicans, and hence recognition

by Dectin-1, may be restricted to the yeast form of this fungus

[16], although this is controversial [17]. Nevertheless, we explored

the possibility that the strain-linked dependence for Dectin-1 may

stem from differential recognition of fungal hyphae, particularly as

this morphological form is abundant in kidney lesions in vivo [6].

However, as we found for yeast cells, co-culture of thioglycollate-

elicited macrophages with pre-formed live C. albicans hyphae of

both strains induced similar levels of TNF (Figure 4E). Impor-

tantly, these responses were equivalently Dectin-1 dependent.

Similar results were also obtained when the hyphae were killed

using UV-irradiation (see Figure 5B). Thus the exposure of b-

glucans on in vitro generated hyphae, and subsequent recognition

by Dectin-1, does not differ between the two strains of C. albicans.

We then considered the possibility that differential exposure of

b-glucans by these C. albicans strains may be occurring under

conditions of hypoxia, mimicking the conditions in vivo and which

we have shown to alter cell wall b-glucan content and immune

recognition of Aspergillus [18]. We therefore first examined the

growth of several C. albicans strains from different clades and

observed no obvious effects of hypoxia on the growth of these

organisms, when compared to cells grown under normoxic

conditions (Figure 5A). Subsequently, we examined the inflam-

matory response of wild type and Dectin-12/2 thioglycollate-

elicited macrophages to UV-irradiated SC5314 and ATCC18804

Figure 3. Loss of Dectin-1 is associated with increased fungal burdens and dysregulated cytokine responses with specific strains of
C. albicans. Fungal burdens in the kidneys of 129/Sv wild-type and Dectin-12/2 mice at day 9 post-infection with a (A) high or a (B) low dose of
various C. albicans strains, as indicated. (C) Characterisation of cytokine levels in the kidneys of 129/Sv wild-type and Dectin-12/2 mice at day 9 post-
infection with a high dose (as in A) of various C. albicans strains, as indicated. Shown are data from two pooled (A, B) and one representative (C)
experiment. Each experiment involved 7–10 mice per group. Bar indicates the mean.*; p,0.05.
doi:10.1371/journal.ppat.1003315.g003

Strain-Specific Recognition by Dectin-1
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Figure 4. The dependence of Dectin-1 cannot be recapitulated in vitro. (A) Cell wall biochemical composition of in vitro grown C. albicans
SC5314 and ATCC18804 yeast cells, as indicated. (B) Relative binding of fluorescently-labelled live C. albicans yeast cells or zymosan (Zy) to C57BL/6
wild-type and Clec7A2/2 thioglycollate-elicited peritoneal macrophages, as indicated. (C) Measurement of TNF in culture supernatants from C57BL/6
wild type versus Clec7A2/2 peritoneal macrophages after stimulation with live C. albicans yeast cells or zymosan (Zy), as indicated. (D) Measurement
of TNF and IL-6 responses from homozygous Y238X patients after stimulation with C. albicans yeast cells or heat-killed yeast (HK; strain ATCC MYA-
3573), as indicated. Results were normalized to the treated cells from normal individuals. (E) Measurement of TNF responses from 129S/Sv wild type
versus Clec7A2/2 peritoneal macrophages after stimulation with live C. albicans hyphae, as indicated. Data shown are means 6 SEM of pooled data
from at least two independent experiments, except for (E), which is the mean 6 SD of a representative experiment.
doi:10.1371/journal.ppat.1003315.g004

Figure 5. Dectin-1-responsiveness but not dependence is induced by hypoxia in vitro. (A) Growth of various strains of C. albicans under
normoxia or hypoxia, as indicated. (B) Measurement of TNF responses from C57BL/6 wild type versus Clec7A2/2 peritoneal macrophages after
stimulation with UV-irradiated C. albicans yeast or hyphae, grown under normoxic or hypoxic conditions, as indicated. (C) Quantitation of b-glucan
exposure on UV-irradiated C. albicans hyphae, grown in vitro under conditions of normoxia or hypoxia, as indicated, and stained with soluble Dectin-
1. (D) Fold change in FKS gene expression in C. albicans hyphae under normoxic versus hypoxic conditions, as indicated. Data shown (mean6 SD) are
from one representative experiment.
doi:10.1371/journal.ppat.1003315.g005

Strain-Specific Recognition by Dectin-1
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yeast cells and hyphae, which were grown under normoxic or

hypoxic conditions (Figure 5B). In all cases, there were no

substantial differences in TNF production between SC5314 and

ATCC18804, and these responses all required Dectin-1. Interest-

ingly, yeast and hyphal cells from both strains that were grown

under hypoxia were more inflammatory, inducing much higher

levels of TNF and displaying a greater Dectin-1 dependency

(Figure 5B). Consistent with these observations, when grown under

hypoxia, we detected higher levels of exposed b-glucans on cells

from both strains under these conditions (Figure 5C), which

correlated with an increased expression of genes involved in b-

glucan synthesis (Figure 5D). Thus, we conclude that the strain

dependency for Dectin-1 is not recapitulated in vitro, at least using

the parameters examined here.

Dectin-1 dependency is not related to the level of fungal
b-glucan exposure in vivo
Following infection of mice, C. albicans cell-wall b-glucans are

thought to be initially masked and only become exposed after

several days [17]. Indeed, early during infection, at day 3, we

observed that fungal burdens (Figure 6A) and cytokine responses

(Figure 6B) were not influenced by the loss of Dectin-1,

irrespective of the C. albicans strain. This suggested that the

fungal-strain dependency for Dectin-1 could be related to

differential unmasking of b-glucans at later time points in vivo.

To explore this, we examined the exposure of b-glucans in vivo at

day 9 after infection, a time point when these carbohydrates

become exposed [17], and where we had observed significant

differences in fungal burdens and cytokine responses (see Figure 2).

Surprisingly, when staining with an anti-b-glucan antibody, we

observed equivalent exposure of b-glucans in both strains

(Figure 6C). To verify that this result reflected immunological

recognition by Dectin-1, we also examined b-glucan exposure

using a soluble version of this CLR as a probe (Figure 6D). In fact,

using this approach, we found that the ATCC18804 strain

exposed significantly more b-glucan than SC5314. Thus, these

results paradoxically suggest that the strain-linked Dectin-1

dependence observed in vivo does not correlate with the level of

exposed b-glucan.

Dectin-1-mediated recognition is linked to cell wall
composition and architecture in vivo
Interactions of C. albicans with the innate immune system

involve many different fungal cell wall pathogen associated

molecular patterns (PAMPs) [19]. We therefore tested whether

induced modifications in the cell wall structure, and hence PAMP

exposure, would alter innate recognition of the ATCC18804

strain. For these experiments we examined the effects of

caspofungin, an echinocandin antifungal drug whose actions

significantly change cell wall architecture and have previously

been shown to influence b-glucan exposure [17,20]. As before,

equivalent fungal burdens were observed in the kidneys of wild

type and Dectin-12/2mice infected with ATCC18804 (Figure 7A).

However, while treatment with caspofungin significantly reduced

fungal burdens in the kidneys of wild-type mice, it had no effect on

colonization in the kidneys of the Dectin-12/2 animals; i.e. the

clearance of this organism following treatment with caspofungin

was now Dectin-1-dependent (Figure 7A). Thus changes in cell

wall architecture can alter the dependency on Dectin-1, following

infection with an otherwise Dectin-1-independent strain of C.

albicans.

To gain insight into the cell wall components that contribute to

the Dectin-1-independence of ATCC18804, we compared the

expression profiles of a range of selected genes in both

ATCC18804 and SC5314 cells isolated from the kidneys of

infected wild-type and Dectin-1-knockout mice. The genes

Figure 6. Dectin-1 dependence is not related to b-glucan exposure in vivo. (A) Fungal burdens in the kidneys of 129/Sv wild-type and
Dectin-12/2 mice at day 3 post-infection with various C. albicans strains, as indicated. (B) Characterisation of cytokine levels in the kidneys of 129/Sv
wild-type and Dectin-12/2 mice at day 3 post-infection of various C. albicans strains, as indicated. Images and quantitation of b-glucan expression on
fungal cells isolated from the infected kidneys of C57BL/6 mice at day 9 and stained with (C) anti-b-glucan antibodies or (D) soluble Dectin-1
(FcDectin-1). Control cells were stained with secondary antibody only. Data shown are from a representative experiment. Bar indicates the mean.*;
p,0.05. ns, not significant.
doi:10.1371/journal.ppat.1003315.g006

Strain-Specific Recognition by Dectin-1
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examined encoded many cell wall-associated and secreted

functions, including genes involved in chitin and b-glucan

biosynthesis, cell wall remodelling, adhesion, secreted proteases,

iron assimilation, and transcription factors that regulate cell wall

biogenesis (Table S2). We found that the expression of many of

these genes did not differ significantly between these strains, or

during infection in wild-type versus Dectin-12/2 mice. However,

several cell-wall associated genes were differentially expressed

under these conditions. Interestingly, the ATCC18804 strain

appeared more adaptable to the immunological status of the host,

as suggested by the relatively large subset of ATCC18804 genes

(60%) that displayed significant differences in expression in the

wild-type versus the Dectin-12/2 animals (Figure 7B, right panel).

Notably, the virulence related genes ALS3, CSA2 and SAP5 were

expressed at lower levels in ATCC18804 versus SC5314, in both

wild-type and Dectin-12/2 animals, possibly reflecting the

differences in virulence of these strains (Figure 7B and see

Figure 1).

Of particular interest was the chitin synthase gene CHS3

(Figure 7B, red arrow), which was strongly and reproducibly up-

regulated in ATCC18804, versus SC5314, but only in wild type

mice. Furthermore, two other genes implicated in chitin regulation

(PGA31 and CHT2, [21]) also displayed significant differential

expression between strains. This suggested that there may be

differences in chitin levels in ATCC18804 and SC5314 in vivo. To

explore this possibility, we determined the levels of this cell-wall

component in fungal cells isolated directly from infected mouse

kidneys using Calcofluor White. Consistent with the increased

expression of these chitin-related genes described above, we

detected significantly elevated chitin levels in ATCC18804 cells

compared to SC5314 cells (Figure 7C). Moreover, TEM analysis

revealed substantial differences in the architecture of their cell

walls (Figure 7D).

These data indicate that the Dectin1-dependent differences in

pathogenicity of SC5314 and ATCC18804 correlate with

differences in chitin levels during infection in vivo. To test whether

differences in chitin levels cause differential Dectin-1 dependence,

we exploited our previous observation that in vitro treatment of C.

albicans with Calcoflour White and CaCl2 induces high-chitin

levels (Figure 7E) which can be maintained in vivo by treating mice

with caspofungin [22]. Mirroring our in vivo findings (see Figure 6),

we observed increased b-glucan exposure on high-chitin contain-

ing cells generated in vitro (Figure 7F). Using these in vitro treated

fungal cells, we observed significantly increased resistance of

Dectin-12/2 mice following infection with high-chitin SC5314

(Figure 7G), compared to normal-chitin containing cells. In other

words, the control of infection with high-chitin cells showed a

reduced dependence on Dectin-1. Furthermore, using a model of

peritoneal infection, we found that the inflammatory response to

high-chitin SC5314 cells was Dectin-1 independent (Figure 7H).

In contrast, the peritoneal inflammatory response to SC5314 cells

with normal chitin levels required Dectin-1, as we had shown

previously [6]. We conclude that variation in adaptability of

individual strains of C.albicans in vivo results in substantial

differences in cell wall architecture and exposure of PAMPs,

particularly chitin, which significantly influences the innate

recognition pathways utilized by the host during infection.

Discussion

Fungal strain-dependent requirement for Dectin-1 in
protective anti-Candida immunity
Direct comparisons of previous studies on the role of Dectin-1

have been complicated by the use of different strains of C. albicans

and different mouse genetic backgrounds [6,11]. While mouse

background can influence the immune response to Candida

[23,24], we have found that the discrepancies between these

earlier studies on Dectin-1 stems from the use of different strains of

C. albicans. Indeed, in complete agreement with the study by

Iwakura [11], we could demonstrate that Dectin-1 was not

involved in immunity to C. albicans ATCC18804, in terms of

cytokine responses, fungal burdens or resistance to infection. In

contrast, and consistent with our previous observations [6,7], we

found an absolute requirement for Dectin-1 for all these

parameters in the control of infections with C. albicans SC5314.

Notably, in both cases, these phenotypes were obtained irrespec-

tive of the mouse background tested. However, it is important to

note that mouse strains do express different isoforms of Dectin-1

and that this can influence the type of immune response mounted

[9,13]. Furthermore, with other fungal pathogens, such as

Coccidioides, these isoform differences can directly relate to

resistance or susceptibility during systemic infection [25].

We also explored the possibility that Dectin-1 dependency

correlated with the clade of C. albicans, but did not find any such

association. This result is not particularly surprising, as the

multilocus sequence typing used to assign strains to their various

clades relies on sequence differences in just seven genes, none of

which are related to fungal morphogenesis or cell wall architecture

[15]. Furthermore, previous analyses have also not revealed any

association between clade and fungal virulence or type of infection

[26,27].

Differential adaptation of C. albicans strains in vivo and
effect on immune recognition
Despite significant differences in the strain-specific Dectin-1

dependency in vivo, this phenotype could not be recapitulated in

vitro. Unexpectedly, the composition of the cell walls of in vitro

grown C. albicans ATCC18804 and SC5314 were nearly identical.

Indeed, we found that macrophages could recognise and respond

similarly to yeast and hyphal cells from both strains in a Dectin-1-

Figure 7. Dectin-1 dependence in vivo is related to changes in the fungal cell wall and chitin content. (A) Box and whisker graph
showing fungal burdens in the kidneys of 129/Sv wild-type and Dectin-12/2 mice at day 7 post-infection with ATCC18804, with and without
caspofungin treatment, as indicated. (B) Comparative expression analysis of genes encoding selected cell wall associated and secreted proteins, as
indicated, on fungal mRNA isolated from the kidneys of 129/Sv mice infected with SC5314 or ATCC18804 at day 7. See also Table S2. (C) Confocal
images and quantitation of chitin levels in fungal cells isolated from the kidneys of 129/Sv mice infected with SC5314 and ATCC18804 at day 7, as
indicated. (D) TEM images (left) and quantification of cell wall thickness (right) of fungal cells isolated from the kidneys of 129/Sv mice infected with
SC5314 and ATCC18804 at day 7. Scale bar = 50 nm. (E) Confocal images and quantitation of chitin levels of in vitro cultured normal and high chitin
SC5314 fungal cells, as indicated. Scale bar = 10 mm. (F) Flow cytometric analysis of exposed b-glucan on low and high-chitin containing in vitro
grown C. albicans SC5314, using soluble Dectin-1 as a probe. The filled histograms represent secondary only control and the blue histogram indicates
FcDectin-1 staining. (G) Survival analysis of 129/sv Dectin-12/2 or wt mice following infection with 36104 CFU high-chitin or normal-chitin containing
C. albicans SC5314. (H) Intraperitoneal inflammation, as measured by neutrophil influx, 4 hr after i.p. infection with 16105 CFU high-chitin or normal-
chitin containing C. albicans SC5314 in Dectin-12/2 or wt mice, as indicated. All data shown are from a representative experiment, except for (H)
which is pooled data from two experiments. Bar indicates the mean.*; p,0.05. ns, not significant.
doi:10.1371/journal.ppat.1003315.g007
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dependent manner. We also studied the effect of hypoxia in vitro,

which although understudied in this fungal species in the context

of infection, is increasingly being appreciated to have a major

influence on fungal adaptation and pathogenesis in vivo, including

alterations in the cell wall [28,29,30]. In fact, in Aspergillus, we have

recently shown that hypoxia enhances total and surface exposed b-

glucan, leading to enhanced Dectin-1-dependent leukocyte

inflammatory responses [18]. Consistent with these observations,

we observed that hypoxia augments Dectin-1-dependent inflam-

matory responses to C. albicans, yet there was no difference in the

leukocyte responses in vitro to each of the fungal strains tested.

Interestingly, different strains of C. albicans have also been observed

to have a variable dependency on TLR4 in vivo [31,32,33], but for

this pattern recognition receptor these differences could be

recapitulated in vitro and are thought to be related to differences

in exposure of TLR4 ligands on the fungi [12]. Never-the-less, our

observations highlight an inadequacy of studying Candida-host

interactions in vitro.

We then examined the possibility that the dependency for

Dectin-1 was related to the differential display of b-glucans in vivo,

which occurs later during infection [17]. Consistent with this

notion, we detected a substantial requirement for Dectin-1 at late

stages of infection (day 9), with the appropriate fungal strain,

whereas the control of all strains in the kidney was largely Dectin-1

independent at an earlier time point (day 3). Surprisingly, more b-

glucan was exposed on the surface of the Dectin-1-independent

strain (ATCC18804) in vivo, than the Dectin-1-dependent strain

(SC5314) later during infection. However, altering the cell-wall

architecture of ATCC18804 with caspofungin, converted this

organism into a Dectin-1-dependent strain. Caspofungin inhibits

the catalytic subunit of b-(1,3)-glucan synthase, which produces

the b-1,3- glucan ligands that are recognised by Dectin-1 [34,35].

Treatment with this echinocandin markedly alters the cell wall,

inducing substantial changes in the b-glucan and chitin levels,

which both become exposed at the cell surface [17,20,36].

Intriguingly, these alterations are thought to enhance Dectin-1

mediated recognition by unmasking cell-wall b-glucans [17].

However, ATCC18804 already possessed high levels of exposed b-

glucans in untreated mice, hence other alterations in the cell wall

were probably responsible for the conversion to a Dectin-1-

dependent phenotype.

To identify factors that were contributing to the in vivo

differences between these C. albicans strains, we analysed the

expression of a number of selected cell-wall-associated genes in

fungal cells isolated directly from infected kidneys. C. albicans is

known to undergo substantial transcriptional reprogramming

during infection, relating to changes in metabolism, stress

responses, morphology and virulence [37,38,39,40,41]. Our

analyses also revealed the dynamic regulation of cell wall- related

genes upon infection, but we also observed significant differences

in gene expression patterns between the two C. albicans strains

during infection. This highlights strain-specific differences in host

adaptation in vivo, and is consistent with previous observations

[39,40]. Remarkably, we also found striking differences in gene

expression within the same strain, when comparing cells isolated

from wild-type versus Dectin-12/2 mice. For example, CRH11

and UTR2 encode GPI-anchored chitin-glucan cross-linking

enzymes that were more highly expressed during infections of

wild-type mice compared to the Dectin-12/2 animals. These

proteins are known to be antigenic [42] and the genes are up-

regulated in response to caspofungin [43]. In S. cerevisiae,

orthologues of these genes are included in a subset that is a

signature for cell wall stress and a hallmark of activation of cell

wall integrity pathways [44]. Thus, these data indicate that

substantial changes in the C. albicans cell wall occur during

infection, that there are strain-specific differences in host

adaptation in vivo, and that this adaptation can be influenced by

the immunological status of the host.

Of particular interest was the differential regulation of genes

involved in regulating chitin biosynthesis, including CHS3, PGA31

and CHT2. Notably, CHS3 encodes Chs3p, a class IV chitin

synthase which is responsible for the synthesis of short chitin-

rodlets which make up the majority of the cell wall chitin in both

yeast and hyphae [45]. These transcriptional analyses therefore

suggested that there were differences in the amounts of chitin

between these fungal strains in vivo; a conclusion we confirmed by

demonstrating elevated chitin levels in ATCC18804 cells isolated

from infected kidneys. Moreover, TEM analysis also demonstrated

substantial differences in the architecture of their cell walls. We

have previously shown that increased cell wall chitin in C. albicans

can modulate inflammatory leukocyte responses in vitro [20].

Furthermore, we demonstrated here that high-chitin levels reduce

the dependence on Dectin-1 in vivo, despite the presence of

exposed b-glucans on the fungal cells. Thus variations in chitin

content and differences in cell wall structure provide a rational

explanation, at least in part, for the strain-specific differences in

Dectin-1 dependency in our mouse models. While the mechanisms

underlying these effects await further elucidation, our data indicate

that detection of exposed b-glucans on fungal cells does not

necessarily correlate with recognition by Dectin-1 in vivo.

Implications for human infections
These observations have significant implications for our

understanding of C. albicans infection in humans. We previously

identified a polymorphism (Y238X) which could render individ-

uals susceptible to infections with C. albicans and other fungi [5].

This polymorphism is common in many populations, yet its

clinical penetrance is low, indicating that other factors are

influencing susceptibility to infection [5]. Our data suggest that

the effect of this polymorphism may only become apparent in

individuals if they are infected with a Dectin-1-dependent strain of

C. albicans. This link between host genotype and fungal strain needs

to be explored in greater detail if we are to understand the

contribution of polymorphisms of Dectin-1 and other PRRs to

human disease susceptibility.

Our results also have implications for anti-fungal drug therapy.

We have demonstrated, for example, that caspofungin treatment

of ATCC18804 infections alters cell wall architecture and enables

enhanced clearance in vivo. However, this treatment was not

effective under conditions of Dectin-1 deficiency. Moreover,

enhanced cell wall chitin levels can confer enhanced resistance

to echinocandins [22,36,46], and reduce the dependency on

Dectin-1 (Figure 4). These results underpin our previous in vitro-

based observations suggesting that antifungal therapy should be

targeted at more than one cell wall component [36].

In conclusion, our results provide substantial new insights into

the interaction between C. albicans and its host and have significant

implications for our understanding of anti-Candida immunity and

drug treatment in humans.

Materials and Methods

Animals
Eight to 12-week old 129/Sv [6] and C57BL/6 (backcrossed for

at least nine generations) Clec7a2/2 (Dectin-12/2) and wild-type

(wt) mice were obtained from the specific pathogen free facilities of

the University of Cape Town and University of Aberdeen. All

animal experimentation was replicated at least twice using groups
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of 5–10 animals, unless otherwise stated. Mice were housed in

groups in individually ventilated cages and provided with food and

water ad libitum. Peritoneal thioglycollate-elicited macrophages

were prepared as described previously [6]. All animal experimen-

tation conformed to animal care and welfare protocols approved

by the Universities of Aberdeen (project license numbers 60/4007

and 06/4135) and Cape Town (license number: 06/035) and in

strict accordance with the guidelines for the usage of animal in

laboratory research of the South African Association for Labora-

tory Animal Science and the UK home office.

C. albicans strains and growth conditions
The C. albicans strains used in these experiments are listed in

Table S1. C. albicans was maintained on YPD (Sigma-Aldrich) or

Sabouraud (Oxoid) agar plates. For high chitin cells, cells were

grown in YPD containing 0.2 M calcium chloride (CaCl2) and

100 mg/ml of Calcofluor White. For yeast cell preparation,

cultures were incubated in Sabouraud broth (Oxoid) at 30uC for

24 h with shaking. To obtain hypoxic yeast cells, cultures were

incubated under 1% O2 and 5% CO2 for the indicated times.

Before use, the cells were washed in phosphate-buffered saline

(PBS), and the cell density adjusted to the desired level with PBS.

For inoculations, dosage was confirmed by viable cell counts on

agar plates. To generate hyphae, a defined number of yeast cells

were cultured at 37uC overnight in RPMI containing 10% heat-

inactivated FCS. To obtain hypoxic cells, hyphae were cultured

overnight under hypoxia, and washed as described above. Fungal

cells were used either live or killed, by heat (100uC for 30 min) or

UV-irradiation (6000 Joules), as indicated.

In vivo inoculations and analyses
Mice were inoculated intravenously with the indicated doses of

the various C. albicans strains in 100 ml sterile PBS. Mice were

monitored daily and sacrificed at the indicated time points, or

when judged to be moribund. In some experiments, mice were

treated with 33 mg/kg caspofungin daily ip, starting one day post

infection. Experiments were continued for a maximum of 21 days.

Fungal burdens and cytokines in lysates from infected kidneys

were determined as described previously [6]. Cytokines were

normalised to lysate protein concentrations (BCA protein assay kit,

Pierce).

Intraperitoneal infections were performed as described previ-

ously [6]. In brief, 16105 CFU in 100 ml PBS were injected i.p.

into wt and Dectin-12/2 mice and four hours post-infection,

peritoneal inflammatory cells were harvested in PBS containing

5 mM EDTA. Cells were stained with CD11b-PEcy7 and Ly6G-

APC (both from BD Biosciences) with neutrophils defined as

CD11b+ Ly6Ghi. Data was acquired on FACScalibur and

analysed using FlowJo.

Cell wall analysis
Cell wall mannan, b-glucan and chitin contents were deter-

mined by hydrolysis of these oligosaccharides and quantification

by high-performance anion-exchange chromatography, as de-

scribed previously [47]. To detect chitin, ex vivo isolated C. albicans

cells were stained and quantified using Calcofluor White, as

previously described [22]. TEM analysis was performed as

previously described [36].

To detect exposed b-glucan, C57BL/6J mice were injected in

the tail vein with 5.26104 CFU of either SC5314-GFP or

ATCC18804-GFP. SC5314-GFP and ATCC18804-GFP strains

were created by transformation with the pENO1-yEGFP3-NAT

plasmid and verified by PCR as described previously [17]. After

nine days, mice were sacrificed and the kidneys were harvested,

homogenized, and processed as described [17]. Homogenates

were stained with anti-b-glucan antibody (Biosupplies, Inc.,

Australia) at a concentration of 1.7 mg/ml, then stained with goat

anti-mouse Cy3 antibody (Jackson Immunoresearch) at a concen-

tration of 3.8 mg/ml. For soluble Dectin-1-Fc staining, homoge-

nates were instead stained with Alexa647-labelled Dectin-1-Fc

[48] at a concentration of 17 mg/ml and then with donkey anti-

human IgG Cy3 antibody (Jackson Immunoresearch) at a

concentration of 0.8 mg/ml. Cells were visualized by optical

sectioning fluorescence microscopy using a Zeiss Axiovision

Vivotome microscope (Carl Zeiss Microscopy, LLC). Live cells

were identified based on characteristic EGFP fluorescence.

Maximum projection images were quantified using Cellprofiler

(www.cellprofiler.org) as described [17]. Briefly, EGFP fluores-

cence was used to manually define individual cell segments and

average fluorescence intensity of b-glucan or Dectin-1-CRD

fluorescence was measured for the whole cell segment. Cells

labelled without primary antibody or Dectin-1-CRD were used as

negative controls. In vitro grown cells were stained with soluble

Dectin-1 at 5 mg/ml and then with anti-human IgG antibody

(used at 1:200) (Jackson Immunoresearch). Controls were stained

with secondary antibody only.

C. albicans gene expression analysis from normoxic and
hypoxic in vitro cultures
C. albicans normoxic and hypoxic grown hyphae were re-

suspended in Trizol reagent and chloroform to extract RNA.

Tubes were centrifuged at 16,0006g for 15 min at 4uC. The clear

upper layer was further extracted with an equal volume of 80%

EtOH. Samples were applied to RNeasy spin columns (Qiagen

RNA kit) following manufacturer’s instructions. RNA was eluted

with RNase free water.

RNA was DNase treated with DNA-free kit (Ambion) and

reverse transcribed with QuantiTect reverse transcription kit

(Qiagen, USA). Primers for all genes of interest were designed with

PrimerQuest (IDT) and manufactured by IDT, USA. Sequences

are: FKS1, Fwd-59-TGATACTGGTAATCATAGACCAAAAA-

39, Rev- 59-AACTCTGAATGGATTTGTAGAATAAGG-39,

FKS2, Fwd- 59-ACTTGCTAGCAGTCGCCAAT-39, Rev- 59-

ACCACCATGAGCGGTTAGAC-39, FKS3, Fwd- 59-ACCTCA-

ATATTCAGCTTGGTGCCC-39, Rev- 59-GGACAACTCATT-

CGACTTGACCGT-39, and EFB1, Fwd- 59-CATTGATGG-

TACTACTGCCAC-39, Rev- 59-TTTACCGGCTGGCAAG-

TCTT-39. All reactions were performed on BioRad MyIQ real-

time PCR detection system with IQ SYBR green supermix (Bio-

Rad, Hercules, CA). The DDCt method was used to assess changes

in mRNA abundance, using EBF1 as the housekeeping gene.

Relative transcript abundances for FKS1/2/3 are reported as

means plus/minus SEM that are normalized to EFB1 and

presented as relative to the normoxic values for each strain.

C. albicans gene expression analysis from infected tissue
C.albicans-enriched cortical shavings from two kidneys of the

same animal were fixed in RNAlater according to manufacturer’s

instructions (Qiagen, Crawley, UK) and combined into a single

sample for further processing. Approximately 3 mm3 of tissue

were transferred to 600 ml QIAzol reagent (Qiagen, Crawley,

UK), an equal volume of acid-washed glass beads added and the

material homogenised using FastPrep-24 bead mill (10620 sec

bursts at 6.0 m/sec setting, with 4 min intervals on ice) (MP

Biomedicals, Luton, UK). RNA extraction was carried out

according to standard procedures. Nucleic acids were precipitated

with RNA grade glycogen solution (Fermentas, Loughborough,

UK). The final RNA pellet was suspended in 100 ml DEPC-
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treated water (DEPC-H2O) and further purified using NucleoSpin

RNA Clean-up XS columns (Macherey-Nagel, Loughborough,

UK). After repeated DNase I (Invitrogen, Paisley, UK) treatment

the isolated RNA was assessed with NanoDrop ND-1000

spectrophotometer (Thermo Scientific, Loughborough, UK). Up

to 40 ng isolated RNA was used in qRT-PCR reactions with

ACT1 gene primers to verify complete removal of genomic DNA

(see below, and Table S2).

Total RNA (4.5 mg) was used in a cDNA synthesis reaction

primed with a cocktail of all the qRT-PCR reverse primers

(0.125 mM final primer concentration for each primer) (Table S2)

and SuperScript II Reverse Transcriptase (Invitrogen, Paisley,

UK). Single stranded cDNA was purified with QIAquick PCR

Purification Kit (Qiagen, Crawley, UK), and eluted in 50 ml

DEPC-H2O. qRT-PCR reactions were prepared in 10 ml volumes

containing 2 mL of at least 106 diluted cDNA templates and the

appropriate Universal Probes (Table S2) as per manufacturer’s

instructions, and run on a LightCycler 480 machine (Roche

Applied Science, Burgess Hill, UK) using a Monocolour Hydro-

lysis Probe programme. All reactions were run at least in duplicate,

with in-run ACT1 gene standard. The relative transcript abun-

dances normalised to ACT1 were calculated based on the

individually determined primer pair efficiencies with LightCycler

480 Software release 1.5.0.

In vitro analyses
To measure binding and cytokine production, live C. albicans

yeast cells were labelled with Rhodamine Green-X (Invitrogen) as

described [6]. Labelled yeast cells were then added (MOI 5:1 or

10:1) to thioglycollate-elicited macrophages, which had been

seeded the previous day at a density of 1–2.56105 cells/well in 24-

well plates in RPMI media. After incubation for 30 min at 4uC, to

allow particles to settle, followed by 30 min at 37uC, unbound

particles were removed by washing. Cells were then cultured for a

further 3 h at 37uC for analysis of proinflammatory cytokine

production. After incubation, supernatants were stored at 280uC

for subsequent TNF analysis. Cells were then lysed in 3% Triton

X-100 and fluorescence measured using a Titer-Tek Fluoroskan II

(Labsystems). TNF concentrations in the supernatants were

measured by ELISA (OptEIA TNF kit; BD Pharmingen).

Fluorescein isothiocyanate–labelled zymosan (Invitrogen) was used

as a control in these experiments. In some experiments, as

indicated, unlabelled UV-killed yeasts were used, the cells were not

washed after addition of the particles, and TNF responses were

assayed after overnight incubation at 37uC. The inflammatory

response to hyphae was measured similarly, except that the

thioglycollate-elicited peritoneal macrophages were directly added

to live or heat-killed hyphae and supernatant samples taken after

overnight incubation at 37uC. Isolation and stimulation of human

PMBCs was performed as described previously [5].

Statistics
All data were plotted using GraphPad Prism software. A two-

tailed Student’s t-test was used to analyse differences between two

groups. The Mann-Whitney U test was used to determine

statistical significance of differences between relative transcript

abundances in each of the in vivo experimental groups. The

reported values are arithmetical means of abundances normalised

to ACT1, with the appropriate p-values from two-tailed t-test in

pair-wise comparisons. Survival data were analyzed with the log

rank test. Results were considered statistically significant with p

values of less than 0.05.
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