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Differential affinity of FLIP and procaspase
8 for FADD’s DED binding surfaces regulates
DISC assembly
J. Majkut1,*, M. Sgobba1,*,w, C. Holohan1,*, N. Crawford1, A.E. Logan1, E. Kerr1, C.A. Higgins1, K.L. Redmond1,

J.S. Riley1, I. Stasik1, D.A. Fennell1,w, S. Van Schaeybroeck1, S. Haider1,w, P.G. Johnston1, D. Haigh1 & D.B. Longley1

Death receptor activation triggers recruitment of FADD, which via its death effector domain

(DED) engages the DEDs of procaspase 8 and its inhibitor FLIP to form death-inducing

signalling complexes (DISCs). The DEDs of FADD, FLIP and procaspase 8 interact with one

another using two binding surfaces defined by a1/a4 and a2/a5 helices, respectively. Here

we report that FLIP has preferential affinity for the a1/a4 surface of FADD, whereas pro-

caspase 8 has preferential affinity for FADD’s a2/a5 surface. These relative affinities con-

tribute to FLIP being recruited to the DISC at comparable levels to procaspase 8 despite lower

cellular expression. Additional studies, including assessment of DISC stoichiometry and

functional assays, suggest that following death receptor recruitment, the FADD DED pre-

ferentially engages FLIP using its a1/a4 surface and procaspase 8 using its a2/a5 surface;

these tripartite intermediates then interact via the a1/a4 surface of FLIP DED1 and the a2/a5

surface of procaspase 8 DED2.
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P
rogrammed cell death (apoptosis) plays a key role in
maintaining normal tissue homoeostasis1. Dysfunctional
apoptosis can result in autoimmune and neurodegenerative

diseases and cancer2–4. Apoptosis is orchestrated by the caspase
family of cysteine proteases whose activation is tightly
controlled5. Activation of initiator caspases is achieved through
adaptor-induced oligomerization and formation of multi-protein
complexes6,7.

The complex formed following activation of the CD95 (Fas)
and DR4/DR5 death receptors is called the death-inducing
signalling complex (DISC), which consists of the receptors, the
adaptor molecule FADD (Fas-Associated Death Domain),
procaspase 8, (FADD-like interleukin-1b-converting enzyme
(FLICE)) and its inhibitor FLIP (FLICE-like inhibitory pro-
tein)8–11. FADD is recruited to the DISC by homotypic inter-
actions between its death domains (DD) and the intracellular DD
of Fas, DR4 or DR5 (ref. 12). FADD also regulates cell death
signalling from TNFR1 Complex II and the Ripoptosome13,14.
Interaction with death receptors exposes the FADD N-terminal
death effector domain (DED), which recruits procaspase 8 by
interacting with its N-terminal tandem DEDs15. Procaspase 8
dimerization results in conformational changes in its catalytic
domains that lead to its activation and initiation of a proteolytic
apoptotic cascade16. Procaspase 10 also contains tandem DEDs
and can be recruited to the DISC, although its ability to
compensate for the loss of procaspase 8 is controversial10,17,18.
Three splice forms of FLIP have been identified: a long form
(FLIP(L)) and two short forms (FLIP(S) and FLIP(R)), all of
which contain tandem DEDs that can bind to FADD19,20. The
ratio of FLIP to procaspase 8 molecules at the DISC is a key
determinant of cell fate as FLIP can compete with procaspase 8
for DISC recruitment, preventing its activation21.

In recent years, several structural and biochemical studies have
shed new light on DISC assembly, and a new picture of this
multi-protein signalling complex is emerging22–26. In this study,
we have combined molecular modelling, functional assays and
quantitative DISC analyses to identify the favoured modes of
interaction and stoichiometry of the DEDs of FADD, FLIP and
procaspase 8 at the DR5 DISC. Our findings suggest a mechanism
of DISC assembly at the level of these DED-containing proteins
and reveal important differences between FLIP and procaspase 8
in terms of their preferred modes of interaction with FADD that
could be therapeutically exploited to promote apoptosis.

Results
DR5 DISC IP assay. To assess FADD, FLIP and procaspase 8
recruitment to the DR5 DISC, we developed a DISC IP assay
using a fully humanized DR5 agonistic antibody that binds the
extracellular domain of DR5 (ref. 27) (Supplementary Fig. 1A);
this DISC IP assay was validated using wild-type and FADD null
Jurkat cell lines (Supplementary Fig. 1B). In parental Jurkat cells,
FLIP(L) was present at the DISC exclusively in its caspase 8-
processed p43-form, and FLIP(S), the less-abundant splice form
in this cell line, was also recruited. Processing of DISC-recruited
procaspase 8 was also evident. As expected, in FADD null Jurkats,
crosslinked DR5 was unable to recruit FLIP or procaspase 8.

Assessment of DISC stoichiometry. To quantify the relative
levels of FLIP, procaspase 8 and FADD recruited to the DR5
DISC, quantitative western blot analyses of DR5 DISC IP samples
were performed using recombinant proteins for FLIP, FADD and
caspase 8 as standards, analysed alongside DISC IP samples from
A549, H460 and HCT116 cells (Fig. 1a). Standard curves for each
recombinant protein were generated (Fig. 1b), and from these, the
amounts of FLIP, FADD and caspase 8 present at the DR5 DISCs

formed in each cell line were calculated (Fig. 1c). Subsequently,
the ratios of the three proteins to one another were calculated for
each cell line model; the average ratios from three independent
experiments are shown in Fig. 1d. As expected, in the most
TRAIL-resistant cell line, A549, the ratio of FLIP to FADD and
FLIP to caspase 8 was highest, whereas the TRAIL-sensitive
HCT116 and H460 cells had lower FLIP:FADD and FLIP:caspase
8 ratios. These TRAIL-sensitive models also had higher caspase
8:FADD ratios than the A549 cell line. Notably, for every FADD
molecule recruited, there were approximately two FLIP/procas-
pase 8 molecules recruited. We also performed time-course
experiments in the A549 cell line, which showed that the ratio of
FLIP to caspase 8 and FADD remained relatively constant over
time (Fig. 1e). When the DISC IP was repeated in A549 cells with
lower amounts of DR5 agonistic antibody, the ratio of FLIP to
FADD and FLIP to caspase 8 were both close to one (Fig. 1f); this
suggests that for low levels of DR5 activation, there is a 1:1:1 ratio
of the DED proteins at the DISC. In addition, quantitative wes-
tern blotting was used to estimate the number of FLIP, FADD
and procaspase 8 molecules in A549 and H460 cells; FLIP was
expressed B20 and B50 times lower than procaspase 8 and B20
and B25 times lower than FADD in A549 and H460 cells
respectively; these ratios again correlated with the relative TRAIL
sensitivity of these cell lines.

Two potential orientations for the FLIP–FADD interaction. To
investigate the molecular basis for FLIP’s ability to compete with
procaspase 8 for DISC binding despite its apparent lower
expression, we employed computational techniques to study the
interaction between FLIP and FADD. A homology model of
human FLIP DED1 and DED2 based on the X-ray structure of
viral FLIP MC159 (PDB id 2BBR) was constructed (Fig. 2a). This
model indicated that the DED1/DED2 intra-molecular interface
involved interactions between F23 of DED1 a2 and hydrophobic
residues of DED2, which form a hydrophobic groove between a1
and a4 (Fig. 2b). On the DED2 surface, A98 is positioned between
a2 and a5 of DED1. F23 belongs to the hydrophobic patch of
DED1 and is highly conserved among DED-containing proteins;
the corresponding residues on DED2 and DED surfaces of FLIP
and FADD are F114 and F25 respectively, while in procaspase 8,
they are F24 and F122 in DED1 and DED2, respectively
(Supplementary Fig. 2A). A98 is also conserved in its hydrophobic
nature; however, in FLIP DED1, FADD DED and procaspase 8
DED1 and DED2 it is either histidine or tyrosine. The conserved
nature of the DEDs allowed us to develop a shorthand way of
depicting them as chevrons (Supplementary Fig. 2B).

We hypothesized that FLIP–FADD inter-molecular interac-
tions should follow similar principles to the DED1–DED2 intra-
molecular interactions. Protein–protein docking between FLIP
and FADD indicated two potential orientations for the FLIP–
FADD interaction: FLIP F114 binding into the FADD a1/a4
groove with a reciprocal interaction from FADD H9 into the a2/
a5 hydrophobic patch of FLIP DED2 (Fig. 2c), and FADD F25
binding into the a1/a4 groove of FLIP DED1 with a reciprocal
interaction from FLIP H7 into the a2/a5 hydrophobic patch of
FADD’s DED (Fig. 2d). Interestingly, the predicted docking
energies for the two orientations were significantly different.

Predominant orientation of the FLIP–FADD interaction. To
test the modelling predictions, we generated Flag-tagged F114A,
H7G and F114A/H7G mutant FLIP(S) expression constructs and
assessed the ability of the mutants to bind to the FADD DED in
GST pull-down assays. Interaction of the F114A mutant, but not
H7G, with rFADD was significantly attenuated (Fig. 3a). Simi-
larly, binding of FLIP(L) to FADD was abrogated by mutation of
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F114, but not H7 (Fig. 3b). Strikingly, even swapping the phenyl
of F114 to the phenol of tyrosine was sufficient to attenuate the
interaction between FLIP and FADD (Fig. 3c), further indicating
the importance of this residue. To confirm the predominant
direction of the FLIP–FADD interaction, we generated FADD
F25A, H9G and F25A/H9G mutants and performed a pull-down
assay using wild-type GST-FLIP(S) as bait. In agreement with the
above results, H9G, but not F25A, mutant FADD, interacted
significantly less than the wild-type protein (Fig. 3d). Further
analyses using wild-type GST-FLIP(S) as bait demonstrated that
mutating H9 to alanine had the same effect as mutating it to
glycine (Fig. 3e).

We subsequently assessed the ability of wild-type and mutant
FLIP(S) proteins to be recruited to the DR5 DISC and block
TRAIL-induced apoptosis. Consistent with the results from the
GST pull-down experiments, F114A mutant FLIP(S) also
exhibited diminished recruitment to the DISC in HCT116 cells,
whereas H7G FLIP(S) was recruited (Fig. 4a). Moreover, stable
overexpression of wild-type but not F114A mutant FLIP(S)
attenuated TRAIL-induced apoptosis (Fig. 4b), IETD-ase (caspase
8-like) and DEVD-ase (caspase 3/7-like) activity (Fig. 4c) in
HCT116 colorectal cancer cells. In contrast, H7G mutant FLIP
blocked TRAIL-induced caspase activation and apoptosis with a
similar efficiency to the wild-type protein (Fig. 4b,c). These
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Figure 1 | Assessment of DR5 DISC stoichiometry. (a) Quantitative western blot analysis of FLIP, FADD and caspase 8 levels in DR5 DISC IP samples

was carried out in A549, H460 and HCT116 cells seeded at 5� 106 and exposed the next day to equal amounts of the agonistic anti-DR5 antibody

crosslinked to magnetic beads for 30min. For each protein, 20% of the DISC IP sample was assessed alongside serial dilutions of each recombinant protein:

His-tagged FLIP(S); untagged FADD and p18-caspase 8. (b) Bands were detected and quantified using the Odyssey Infrared Imaging System (LI-COR

Biosciences). Standard curves were generated for each recombinant protein. These were second-order polynomials, from which the absolute amounts of

FLIP, FADD and caspase 8 recruited to the DISC were calculated. (c) Femtomoles (fmol) of FLIP, FADD and caspase 8 recruited to the DR5 DISC in A549,

H460 and HCT116 cells. For caspase 8, the levels of p53/55 and p41/p43-caspase 8 were added together. For FLIP, p43-FLIP(L) and FLIP(S) were

added together. The result of a representative experiment is presented. (d) Ratios of the fmol of FLIP to FADD and caspase 8, caspase 8 to FADD and

FLIP/caspase 8 to FADD recruited to the DR5 DISC in A549, H460 and HCT116 cells. The mean ratios and s.d. from three independent experiments are

shown. (e) Ratios of the amount of FLIP to FADD and caspase 8, caspase 8 to FADD and FLIP/caspase 8 to FADD recruited to the DR5 DISC in A549 cells

treated for 15, 30 and 60min with anti-DR5-conjugated magnetic beads. The mean ratios and s.d. from three independent experiments are shown. (f) The

ratios of DED-containing proteins to one another were calculated from DR5 DISC IP experiments using sub-lethal amounts of anti-DR5-conjugated

magnetic beads. In these experiments, A549 cells were treated with 25% the number of beads used in other experiments. The mean ratios and standard

deviations from three independent experiments are shown.
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findings were confirmed in H460 non-small cell lung cancer cells,
in which stably over-expressed wild-type and H7G mutant
FLIP(S) were recruited to the DISC and blocked processing of
caspase 8 to its p18-form (Fig. 4d), whereas the F114A mutant
form was not recruited and failed to block TRAIL-induced
caspase 8 processing. Mutation of F114 in FLIP(L) also attenuated
its recruitment to the DR5 DISC (Fig. 4e), while mutation of
additional amino acids on the a2/a5 surface of FLIP DED2
identified two further residues, K117 and K154, which are
involved in FLIP’s DISC recruitment (Fig. 4f). In contrast,
mutation of three residues (E4, E11 and E46) on the a1/a4
surface that molecular modelling suggested would be involved in
mediating the alternative orientation of the interaction had no
effect on FLIP’s DISC recruitment (Fig. 4f).

To confirm the results of the DISC IP assay, we further
investigated wild-type and mutant FLIP DISC recruitment by
immunoprecipitating caspase 8 from TRAIL-treated cells using
an antibody that recognizes its p18 subunit. In agreement with
the results described above, binding of F114A mutant FLIP(S)
and FLIP(L) to procaspase 8 was completely abrogated compared
with wild-type FLIP in TRAIL-treated cells; however, binding of
H7G mutant FLIP was similar to wild type (Fig. 4g).

We recently reported that Ren mesothelioma cells are resistant
to TRAIL, but are sensitized to TRAIL-induced apoptosis when

FLIP expression is downregulated by siRNA or the histone
deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA)28.
We found that stable overexpression of wild-type and H7G
mutant FLIP(S), but not the F114A mutant, blocked the
synergistic interaction between TRAIL and SAHA or FLIP
siRNA in Ren cells as assessed in cell viability analyses
(Supplementary Fig. 3A,B).

Collectively, the above experiments indicate that of the two
possible orientations for the FLIP–FADD interaction, the
orientation depicted in Fig. 2c is the predominant one during
TRAIL-induced apoptosis, in agreement with the docking
energies predicted for the two orientations. Furthermore, this
also appears to hold true not only for the TRAIL DISC but also
for TNFR1 Complex II, as H7G but not F114A mutant FLIP(S)
blocked apoptosis induced by this complex (Supplementary
Fig. 3C).

The FLIP ‘charged triad’ is also essential for FADD binding.
Earlier studies using viral FLIP MC159 suggested that so-called
‘charged triad’ E/D-RxDL motifs present in its DEDs were
important for its anti-apoptotic activity29,30; these charged triad
motifs are also present in cellular FLIP, FADD and DED1 of
procaspase 8 (ref. 30) (Supplementary Fig. 2A,B). We generated
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Flag-tagged versions of human FLIP(S) with mutations in the
charged triads of DED1 (R64A/D66A) and DED2 (R161A/
D163A) and a double mutant (R64A/D66A/R161A/D163A).
Unlike murine FLIP(R)31, human FLIP(S) required both the
DED1 and DED2 charged triads in order to interact with FADD
and be recruited to the DISC (Supplementary Fig. 4A,B).
Modelling analyses revealed why the charged triad in FLIP
DED2 is important: the E/D-RxDL motif acts as an ‘anchor’ that
maintains the structural topography of the hydrophobic region
formed by the a2 and a5 helices that engages H9 of FADD
(Supplementary Fig. 4C). It is likely that the charged triad motif
in FLIP DED1 is important for maintaining the ‘dumbbell’
structure of the tandem DEDs by orientating F23 into the
hydrophobic groove between a1 and a4 (Fig. 2b).

Predominant orientation of the procaspase 8–FADD interac-
tion. The results described above indicate that FLIP most effi-
ciently binds to the a1/a4 surface of FADD, suggesting that
procaspase 8 must engage this surface of FADD to initiate
apoptosis. To assess this, we generated a homology model of
procaspase 8 DED1 and DED2, again using viral FLIP MC159 as
template (Fig. 5a). As previously observed in FLIP, the highly
conserved F24 residue of procaspase 8 DED1 a2 is accom-
modated into a hydrophobic groove formed by DED2 a1/a4,

while Y106 points into the hydrophobic patch of DED1 a2/a5.
When protein–protein docking was assessed, two possible
orientations for the interaction were again obtained, with either
procaspase 8 F122 binding into the FADD a1/a4 groove with a
reciprocal interaction from FADD H9 into the a2/a5 hydro-
phobic patch of procaspase 8 DED2 (Fig. 5b) or FADD F25
binding into the a1/a4 groove of procaspase 8 DED1 with a
reciprocal interaction from procaspase 8 Y8 into the a2/a5
hydrophobic patch of FADD’s DED (Fig. 5c).

To assess the modelling predictions, we generated procaspase 8
F122A and Y8G single mutants and a F122A/Y8G double
mutant. Consistent with the modelling predictions, the Y8G,
but not the F122A mutant, exhibited significantly reduced
binding to the FADD DED, while binding of the double
mutant was further reduced (Fig. 5d). These results indicate
that the predominant mode of interaction for procaspase 8 and
FADD is the one depicted in Fig. 5c. Moreover, these results
and those presented in Figs 2–4 suggest that FLIP and procaspase
8 do not compete with one another for binding to FADD in the
manner previously thought, as each preferentially binds a
different surface of the FADD DED. This was supported by
pull-down studies in which we found that similar amounts
of FLIP(S) and procaspase 8 interact with recombinant
FADD regardless of the presence or absence of the other
protein (Fig. 5e).
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In DISC IP assays, similar results were obtained, with the
F122A mutant more efficiently recruited than Y8G (Fig. 6a).
Importantly however, unlike the wild-type protein, DISC-
recruited F122A mutant procaspase 8 was not significantly
processed into p41 or p24 fragments, the latter fragment
representing the N-terminal DED1/DED2 pro-domain detectable
with the anti-FLAG antibody. Furthermore, neither the F122A
nor the Y8G mutant forms of procaspase 8 could activate

executioner caspases 3/7 in caspase 8 null Jurkat cells treated with
TRAIL (Fig. 6b) nor initiate TRAIL-induced apoptosis in
procaspase 8-depleted HCT116 cells (Fig. 6c).

Using size exclusion chromatography, we found that TRAIL
treatment resulted in recruitment of procaspase 8 into high-
molecular weight (MW) complexes of B2MDa, where it was
detected predominantly as its partially processed p41/43 forms
(Fig. 6d). p18-caspase 8 was detected in lower MW fractions
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Figure 4 | Functional confirmation of the predominant orientation of the FLIP–FADD interaction. (a) Western blot analysis of DR5 DISC IP carried

out in HCT116 cells stably over-expressing wild-type and mutant FLIP(S). The DR5 DISC was captured 1 h after addition of anti-DR5-conjugated beads to

cells. Co-immunoprecipitation of FLIP, FADD and caspase 8 was assessed and pull down of DR5 confirmed. (b) Annexin V/propidium iodide flow cytometry

analysis of apoptosis in control HCT116 cells (EV) and HCT116 cells stably expressing wild-type (WT) or F114A or H7G mutant FLIP(S). Cells were

treated with 2 ngml� 1 rTRAIL for 16 h; mean values and s.d. are shown (n¼ 3). (c) Caspase 8-like (IETD-ase) and caspase 3/7-like (DEVD-ase) activity in

control HCT116 cells (EV) and HCT116 cells stably expressing wild-type (WT) or F114A or H7G mutant FLIP(S). Cells were treated with indicated

concentrations of rTRAIL for 16 h; mean values and s.d. are shown (n¼ 3). (d) Western blot analysis of DR5 DISC IP carried out in H460 NSCLC cells

stably over-expressing wild-type and mutant FLIP(S). The DR5 DISC was captured 1 h after addition of anti-DR5-conjugated beads to cells.

Co-immunoprecipitation of FLIP, FADD and caspase 8 was assessed and pull down of DR5 confirmed. (e) Western blot analysis of DR5 DISC IP carried out

in HCT116 cells transfected with wild-type and mutant Flag-FLIP(L) constructs. Cells were transfected for 24 h prior to treatment. The DR5 DISC was

captured 1 h after addition of anti-DR5-conjugated beads to cells. Co-immunoprecipitation of Flag-tagged FLIP(L) and FADD was assessed and pull down of

DR5 confirmed. (f) Western blot analysis of DR5 DISC IP carried out in HCT116 cells transfected with wild-type and mutant Flag-FLIP(S) constructs.
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(B60 kDa) from TRAIL-treated cells consistent with the
dissociation of the active p10/p18 hetero-tetramer from the
DISC. Interestingly, FADD was detectable in the high-MW
fractions prior to treatment, indicating that a proportion of
FADD is constitutively associated with macro-molecular com-
plexes (Fig. 6d); treatment with TRAIL significantly increased the
proportion of FADD in these high-MW complexes. Although
F122A procaspase 8 was recruited into these high-MW fractions
following TRAIL treatment, it was inefficiently processed into the
p41 fragment and no pro-domain fragment was detected
(Fig. 6e). In contrast, FLAG-tagged wild-type procaspase 8 was
detected exclusively as p41 and pro-domain fragments, indicative
of highly efficient processing.

Collectively, the results presented in Figs 5,6 indicate that
procaspase 8 predominantly uses Y8 on the a1/a4 surface of
DED1 to interact with FADD at the DISC and that F122 in the
a2/a5 DED2 binding interface is necessary for procaspase 8 to
undergo full processing and activation at the DISC.

A two-step model of DED protein assembly at the DISC. To
account for the above results, we propose a model of DISC
assembly, in which FADD binding to DR5 via its DD releases
both faces of the FADD DED to become available for forming

protein–protein interactions (Fig. 7a). Then, due to their relative
affinities for the two faces of the FADD DED, FLIP preferentially
binds to the a1/a4 surface and procaspase 8 to the a2/a5 surface
to form a tripartite FLIP–FADD–procaspase 8 DED complex
(Fig. 7a, step 1). Subsequently, these tripartite complexes interact
with one another via the DED surfaces in FLIP and procaspase 8
that are still available for forming protein–protein interactions
(the a1/a4 surface of FLIP and the a2/a5 surface of procaspase 8;
Fig. 7a, step 2). When FLIP(L) is recruited to FADD a1/a4,
interaction with procaspase 8 in an adjacent DED trimer would
allow interaction between the caspase-like domain of FLIP(L) and
the caspase domain of caspase 8, leading to formation of the
catalytically active but membrane-restricted and apoptosis-
incompetent p43-FLIP(L)-p41/43-caspase 8 enzyme32. When
FLIP(S) is recruited to FADD a1/a4, its lack of caspase-like
domain would mean that its interaction with procaspase 8 in an
adjacent trimer would not lead to the conformational changes in
the catalytic domain necessary to activate the procaspase. Thus,
recruitment of either FLIP splice form to FADD a1/a4 blocks
processing of procaspase 8 into an apoptosis-inducing caspase.
However, when FLIP levels become depleted, the more highly
expressed procaspase 8 starts to be recruited to the a1/a4 surface
of the FADD DED as well as its more favoured a2/a5 surface,
with the result that interactions between adjacent trimers can now
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lead to the formation of procaspase 8 homodimers and processing
into the apoptosis-competent caspase. Such a model of DISC
assembly proposes that ultimately procaspase 8-FLIP hetero-
dimerization or procaspase 8 homodimerization occurs as
depicted in Fig. 7b, with two flanking FADD DEDs.

This model is consistent with the DISC stoichiometry we
observed of two FLIP/caspase 8 molecules for every FADD
molecule (Fig. 1). The model also suggests that the interaction
between procaspase 8 and FLIP following assembly of the
initial tripartite complex is mediated via interactions between
DED2 of procaspase 8 and DED1 of FLIP. Molecular docking
studies suggested that procaspase 8 F122 would be critical for
mediating this interaction (Fig. 8a) and that between two
molecules of procaspase 8 (Fig. 8b). To assess this, we performed
pull-down assays using His-tagged FLIP or caspase 8 DED1/2
and Flag-tagged wild-type and mutant versions of full-length

and the DED-only region of procaspase 8. In contrast to its
interaction with FADD (Fig. 5), it was found that procaspase
8 is highly dependent on F122 rather than Y8 to interact with
itself and FLIP (Fig. 8c). These results are consistent with
those presented in Fig. 6 in which F122A procaspase 8 is
recruited to the DISC but is inefficiently processed and cannot
trigger apoptosis induction: procaspase 8 processing
occurs following homodimerization with another molecule of
procaspase 8 (which generates p41/43 and pro-domain
fragments and the active p10/p18 heterotetrameric enzyme in
two sequential cleavage events) or heterodimerization with
FLIP(L) (which generates p41/43 fragments via a single-cleavage
event).

The proposed two-step model also suggests that both
binding surfaces of the FADD DED are required to form an
apoptosis-competent DISC. To test this, we assessed the ability
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conjugated beads to cells. Co-immunoprecipitation of Flag-tagged procaspase 8 and FADD was assessed and pull down of DR5 confirmed. (b) Assessment

of caspase 3/7-like DEVD-ase activity in parental and caspase 8 null Jurkat cells treated with 50 ngml� 1 TRAIL for 6 h. The caspase 8 null cells

were transfected with empty vector (EV) and wild-type (WT), F122A and Y8G mutant procaspase 8 as indicated. Mean values and s.d. are shown (n¼ 3);
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of FADD F25A and H9G mutants to activate TRAIL-induced
apoptosis. Consistent with our model, wild-type FADD,
but neither the F25A nor H9G mutant, was able to induce
TRAIL-induced caspase 8 and caspase 3/7 activation when
transiently transfected into FADD null Jurkat cells (Fig. 8d). In
addition, due to its lower affinity for the FADD a2/a5 surface
and low expression levels compared with procaspase 8 (Fig. 1g),
our model would predict that only rarely or at supra-
physiological expression levels are FLIP homodimers generated
at the DISC; in the case of FLIP(L), the presence of such
homodimers is revealed by the detection of unprocessed p55-
FLIP(L) in the DISC IP obtained from Ren cells that highly
overexpress FLIP(L) (Fig. 8e). Also, the model predicts that
when FLIP(L) is the predominant form of FLIP recruited, caspase
8 will be detected predominantly in its p41/43 form, but when
FLIP(S) is the predominant splice form, procaspase 8
will be detected predominantly in its unprocessed p53/55
form; indeed, this is exactly what is observed in cells in which
each splice form is overexpressed (Fig. 8e) or selectively
downregulated (Fig. 8f).

Discussion
It is essential that activation of initiator caspases such as caspase 8
is tightly regulated. In this study, we identified the predominant
modes with which FADD interacts with procaspase 8 and its
endogenous inhibitor FLIP at the DR5 DISC. In addition to the
previously identified highly conserved phenylalanine (F) residue
in DED a2 (ref. 31), we identified another conserved aromatic
residue (H or Y) on a1 of FADD DED and DED1 of procaspase 8
that is also critical for DISC assembly. Indeed, we report for the
first time that both the a1/a4 and a2/a5 surfaces of all three
proteins are involved in regulating protein–protein interactions at
the DISC and are necessary for the pro-apoptotic functions of
FADD and procaspase 8. Overall, our results support a ‘two-step’
model of DISC assembly as depicted in Fig. 7a, in which binding
of the FADD DD to DR5 releases its DED24; then, due to their
preferential binding affinities, FLIP binds the FADD DED a1/a4
surface and procaspase 8 binds the a2/a5 surface. In the second
step, individual tripartite complexes interact with one another via
reciprocal interactions between the a1/a4 surface of FLIP and the
a2/a5 surface of procaspase 8, in which procaspase 8 F122 plays a
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Figure 7 | A novel two-step DISC model. (a) Proposed model of DISC assembly: following binding of TRAIL to DR5, the DD of the death receptor become

available for interaction with DD of FADD. Once bound via its DD to a DR, the DED of FADD (green chevrons) can form protein–protein interactions with

the DEDs of procaspase 8 (purple chevrons) and FLIP (orange chevrons) (step 1). Owing to their relative binding affinities, FLIP is primarily recruited to the

a1/a4 face of FADD and procaspase 8 to the a2/a5 surface to form intermediate tripartite complexes. Individual tripartite complexes then interact with

one another via interactions between the a1/a4 face of FLIP and the a2/a5 surface of procaspase 8 (step 2). When FLIP(S) is recruited to the a1/a4

surface of the FADD DED, procaspase 8 remains unprocessed; however, when FLIP(L) is recruited, interaction with procaspase 8 in an adjacent DED trimer

would allow interaction between the caspase-like domain of FLIP(L) and the caspase domain of caspase 8, leading to formation of the apoptosis-

incompetent, membrane-restricted but catalytically active p43-FLIP(L)-p41/43-caspase 8 enzyme that can act on local substrates such as RIPK1. When

FLIP levels become depleted (for example, at high levels of receptor stimulation), procaspase 8 is recruited more frequently to the a1/a4 surface of the

FADD DED as well as the a2/a5 surface, interactions between adjacent trimers can now lead to the formation of procaspase 8 homodimers and processing

into the apoptosis-competent caspase. (b) Molecular modelling of the proposed FADD-procaspase 8-FLIP/procaspase 8-FADD interactions at the DISC.
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key role. As levels of DISC stimulation increase, the levels of FLIP
become depleted, and procaspase 8 is recruited more frequently
to the FADD DED a1/a4 surface as well as the a2/a5 surface; this
in turn leads to formation of procaspase 8 homodimers when
neighbouring tripartite complexes interact (with F122 again
important), enabling the dimerization of its caspase domains that
is necessary to generate the active enzyme32. Our study also
resolves the role of the conserved E-RxDL charged triad motifs of
FLIP30,33,34, which maintain the structural topography and
correct spatial orientations of a2/a5 and a1/a4 helices.

Our proposed model is consistent with the preference for
FADD to engage procaspase 8 via its a2/a5 surface and FLIP with
its a1/a4 surface (Figs 3 and 5). This model also explains the
requirement for FLIP F114 for its interaction with FADD and
DISC recruitment and how by only binding the a1/a4 surface of
FADD, the FLIP H7G mutant can block TRAIL-induced
apoptosis almost as efficiently as the wild-type protein (Fig. 4).
In addition, this model can explain why F122A procaspase 8 can
interact with FADD and is recruited to the DISC, but does not get

efficiently processed and cannot activate apoptosis (Fig. 6): when
bound to FADD via the a1/a4 surface of its first DED, F122A
procaspase 8 does not efficiently engage another molecule of
procaspase 8 via its second DED. Moreover, as Y8G procaspase 8
must predominantly use its a2/a5 surface to bind other DEDs, it
has to compete directly with FLIP for binding to the a1/a4
surface of FADD; given the relative affinities of procaspase 8 and
FLIP for this surface of FADD, this explains why recruitment of
this mutant to the DISC is inefficient (Fig. 6a).

Recently proposed models of the interactions between the DDs
of FADD and the DDs of Fas predict that either four or five
FADD DEDs are positioned around the perimeter of a core
oligomeric complex that is held together by interactions between
the DDs of Fas and FADD15,24,35. It is possible that the FADD
DEDs in these complexes are spatially arranged to promote
interactions between procaspase 8 and FLIP molecules that are
recruited to adjacent FADD DEDs. Interestingly, our modelling
suggests that FADD-procaspase 8-FLIP/procaspase 8-FADD
DED complexes possess curvature (Fig. 7b) that could facilitate
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mutant Flag-tagged FADD constructs. Twenty-four hours following transfection, cells were treated with 50 ngml� 1 rTRAIL for 6 h prior to assessment of

caspase 3/7-like (DEVD-ase) and caspase 8-like (IETD-ase) activity. Mean values and s.d. are shown (n¼ 3); **Po0.01 compared with EV control as

determined by t-test. (e) Western blot analysis of DR5 DISC IP carried out in Ren mesothelioma cells overexpressing FLIP(L) or FLIP(S). The DISC was

captured 1 h after addition of anti-DR5-beads to cells. (f) Western blot analysis of DR5 DISC IP carried out in HCT116 colon cancer cells transfected

with 10 nM control siRNA (SC), FLIP(L)-specific siRNA (FL), FLIP(S)-specific siRNA (FS) or dual FLIP(L)/(S)-targeted siRNA (FT). Cells were transfected

for 24 h and co-treated with 10mM z-VAD-fmk to prevent apoptosis induced by FLIP silencing (z-VAD-fmk does not inhibit processing of p53/55-

procaspase 8 to p41/43-caspase 8, but does prevent further processing). The DR5 DISC was captured 1 h after addition of anti-DR5-Beads to cells.
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bridging interactions between adjacent FADD DEDs in such
higher-order structures. Our DED assembly model is also
consistent with the highly oligomeric nature of both proposed
DD assembly models and would predict a DISC of MW similar to
that observed by us (Fig. 6d) and others.

Although our two-step DISC DED assembly model differs with
the procaspase 8 chain model proposed by Dickens et al.25 and
Schleich et al.26, our results are similar to theB2:1–3:1 procaspase
8:FADD ratios obtained in several experiments in these studies
using quantitative mass spectrometry. However, our results differ
with the quantitative western analyses of Schleich et al.26 A
potential explanation for this difference is the use of GST-FADD
as a standard36, as we found that GST-FADD and GST-FLIP
proteins gave signals B5–10 times higher than equimolar
amounts of the untagged proteins (Supplementary Fig. S5);
although the reasons for this are unclear, using GST-FADD and
GST-FLIP proteins as standards could lead to a significant
underestimation of the amount FADD and FLIP at the DISC.

Work from our group and others implicate FLIP as a potential
anticancer therapeutic target11. Conventional homotypic DED
interaction models for DISC assembly suggest that therapeutically
targeting FLIP recruitment to the DISC may not be feasible
without disrupting procaspase 8 recruitment. The data presented
in this study challenge this notion as they indicate that there are
important differences between FLIP and procaspase 8 in terms of
their binding affinities and preferred modes of interaction with
the a1/a4 and a2/a5 surfaces of FADD that could be
therapeutically exploited to promote TRAIL agonist-induced
apoptosis. These results also have broader biological and clinical
implications as they reveal a novel model of DED protein
assembly that may also explain how the enzymatic activities of the
Fas DISC, TNFR1 Complex II and Ripoptosome are regulated.

Methods
Cell culture and transfection. HCT116 cells, which were a kind gift from
Professor B Vogelstein (Johns Hopkins University School of Medicine, Baltimore),
were cultured in McCoy’s medium supplemented with 10% FCS (Invitrogen,
Paisley UK). Jurkat, A549 and H460 cells were obtained from ATCC (Teddington,
UK). Jurkat cells were maintained in RPMI1640 supplemented with 10% FCS;
A549 and H460 cells were maintained in DMEM supplemented with 10% FCS.
REN cells stably over-expressing FLIPL, FLIPS or an empty vector (EV) control
were generated as previously described28 and maintained in F-12 (Ham) medium
supplemented with 10% FCS. All cell lines were maintained in 5% CO2 at 37 �C
and regularly screened for the presence of mycoplasma using the MycoAlert
Mycoplasma Detection Kit (Lonza, Basel, Switzerland). Cell lines were validated by
STR profiling. DNA transfection of HCT116 cells was carried out using Genejuice
reagent (Invitrogen). DNA transfection of Jurkat cells was carried out using Xtreme
gene-HP reagent (Roche). The non-silencing control (SC) siRNA, FLIP and caspase
8 siRNAs were obtained from Dharmacon (Chicago, IL). The siRNA sequences
were as follows: FLIP(L)/(S): 50-AAGCAGUCUGUUCAAGGAGCA-30; FLIP(L):
50-AAGGAACAGCUUGGCGCUCAA-30; FLIP(S): 50-AACAUGGAACUGCCUC
UACUU-30; caspase 8 UTR#1: 50-UAGCUGGUGGCAAUAAAUA-30 ; caspase 8
UTR#2: 50-UUAGCUGGUGGCAAUAAAU-30; and control sequence: 50-AAUUC
UCCGAACGUGUCACGU-30 . siRNA transfections were carried out using
OligofectAMINE (Invitrogen). All transfections were carried out according to
the manufacturers’ instructions.

Homology models of human FLIP and procaspase 8. The primary sequences of
human FLIP (sp O15519) and procaspase 8 (sp Q14790) were taken from UniProt
database. Homology models of the DEDs of human FLIP and procaspase 8 were
built with MODELLER9 version 8 (ref. 37) using the X-ray structure of viral FLIP
MC159 (PDB id 2BRR) as a template (ref. 29). A classification of DED-containing
proteins based on the high diversity of the a3 region helped us to refine the models
38. In this classification, DED of FADD, DED2 of FLIP, and both DEDs of
procaspase 8 belong to the same class (class I) and contain basic residues (K or R).
As observed in the NMR-solved structure of FADD (PDB id 2GF5)39, these
residues form a short a-helix (a3 helix). In contrast, both DEDs of viral FLIP
MC159 and the DED1 of human FLIP belong to a different DED class (II) because
they do not contain these basic residues. In the viral FLIP crystal structure, the a3
region is a loop. Thus, we refined the a3 region of FLIP DED2 and both procaspase
8 DEDs using the a3 helix of FADD DED as template. The three-dimensional
quality of the structures was validated using ProSa2003 programme (http://

www.came.sbg.ac.at/prosa_details.php)40. The models showing the best scores as
judged by consensus predictions carried out by MODELLER objective function and
ProSa2003 were chosen. PDB coordinate files are available from the corresponding
author subject to a confidentiality agreement.

Protein–protein docking analyses. The docking of FLIP-FADD, procaspase 8-
FADD, procaspase 8-procaspase 8, FLIP-FLIP and procaspase 8-FLIP DEDs was
performed with Hex software41. Firstly, manual positioning of the two possible
orientations for FLIP-FADD and procaspase 8-FADD was obtained, and these
were used as reference complexes in Hex. The HEX docking algorithm employs
molecular shape comparison using spherical harmonics and polar Fourier
correlations. The initial steric scan was set at N¼ 16 followed by a final search at
N¼ 25. This discards orientations where a steric clash occurs during the rigid
body-docking procedure that employs shape (steric) and electrostatic correlation.
The twist range angle was set at 360� with a step size of 5.5�. The docking
calculations were performed using 12 inter-molecular separations in steps of 7.5 Å.
The solutions with the lowest root mean square deviation (r.m.s.d.) with respect to
the reference complex was chosen.

Antibodies. Anti-FADD (A66-2, Pharmingen) (1:2,000), anti-PARP (C2-10,
eBioscience) (1:5,000), anti-FLAG-HRP (M2, Sigma) (1:2,000), anti-FLIP (NF6,
Alexis) (1:1,000), anti-caspase 8 (12F5, Alexis) (1:5,000), anti-GST-HRP (DG122-
2A7, Merck Millipore) (1:10,000), anti-caspase-10 (4C1, MBL) (1:1,000) and anti-
DR5 (catalogue number 3696, Cell Signalling) (1:2,000) antibodies were used in
western blot analyses. Caspase-8 p18 antibody (c20, Santa Cruz) (5 mg per sample)
was used for immunoprecipitation.

Expression constructs. Flag-tagged FLIPL, FLIPS, FADD and procaspase 8
expression constructs were generated in the pCMV-3Tag-6 vector (Agilent Tech-
nologies). GST-tagged FLIPS and FADD expression constructs were generated in
the pGEX-6P-3 vector (GE Healthcare). Mutagenesis was carried out using the
KOD Extreme polymerase (Novagen), with the template plasmid digested using
DpnI (New England Biolabs).

DR5 DISC assay. AMG655 (Conatumumab) was a kind gift from Amgen. This
fully humanized antibody, which recognizes the extracellular region of DR5, was
conjugated to Dynabeads using the antibody coupling kit from Invitrogen as per
the manufacturer’s instructions. For the DR5 DISC assay, 30 ml of Dynabeads
coated with 5 mg of AMG655 was added to 2� 106 cells and incubated for 1 h. The
cells were then lysed in DISC buffer (0.2% NP-40, 20mM Tris-HCL (pH 7.4),
150mM NaCl and 10% glycerol). The AMG655-coated Dynabeads were collected
and washed 5 times in DISC buffer prior to resuspension in Laemmli buffer and
analysis by western blotting. Supernatants and inputs were also collected and
analysed by western blotting.

Immunoprecipitation (IP) reactions. Protein lysates were prepared using CHAPS
buffer (10mM HEPES, 150mM NaCl, 1% CHAPS, pH 7.4). Lysates (2mg) were
pre-cleared overnight with sheep anti-rabbit IgG Dynabeads (Invitrogen). Anti-
caspase 8 antibody (2mg) was conjugated with sheep anti-rabbit IgG Dynabeads for
at least 1 h and then washed prior to incubation with pre-cleared lysates for at least
4 h. After several washes, Dynabeads were resuspended in Laemmli loading buffer
and heated at 95 �C for 5min prior to immunoblot analysis.

Caspase activity assay. Caspase 8 or caspase 3/7-GLO reagents (25 ml) (Promega)
were incubated with 1–10 mg of protein lysate diluted in cell culture medium in a
total volume of 50 ml for 1–2 h at room temperature. Luciferase activity was then
determined using a luminometer.

Recombinant protein purification and GST pull downs. GST, GST-tagged FLIPS
and GST-tagged FADD were expressed in IPTG-stimulated BL21 bacteria. Bacterial
cell lysates were purified using Glutathione-Sepharose beads (GE Healthcare
BioSciences AB) and dialysed using Slide-A-Lyzer Dialysis Cassettes (Thermo
Scientific). For pull downs, GST-tagged proteins (5 mg) were conjugated to
Glutathione–Sepharose beads and incubated with pre-cleared protein lysates
(500 mg) for 2 h at 4 �C with constant mixing. Beads were washed several times in
RIPA buffer and resuspended in Laemmli buffer prior to western blot analysis. For
quantitative western blotting and His-pull-downs, a His-tagged FLIPS expression
construct was generated in the pET45(b) vector and recombinant protein expressed
and purified from IPTG-stimulated BL21 bacteria using Ni-NTA agarose beads
(Qiagen). A His-tagged caspase 8 DED-only construct was similarly generated and
expressed. His-pull-down experiments were conducted using Ni-NTA agarose
beads in a manner similar to GST-pull down described above. For quantitative
western blotting of FADD, the GST-tag was cleaved from the GST-FADD fusion
protein using PreScission Protease (GE Helathcare). For quantitative western
blotting of caspase 8 recombinant p18-caspase 8 was purchased from Sigma.
The concentrations of all the recombinant proteins used in quantitative western
blotting applications were quantified using the micro-BCA system (Pierce).
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Quantitative DISC (Q-DISC) and western blot analyses. For the Q-DISC, cells
seeded the previous day at 5� 106 were exposed to crosslinked anti-DR5 antibody,
and 20% of each DISC IP was analysed for FLIP, FADD and caspase 8 recruitment.
For quantifying the number of protein molecules per cell, lysates from 100,000 cells
were prepared. Recombinant proteins for FLIP (His-tagged), FADD (untagged) and
caspase 8 (p18, Sigma) were used as standards. Anti-FADD (Pharmingen), anti-FLIP
(NF6, Alexis) and anti-caspase 8 (12F5, Alexis) antibodies were used in conjunction
with a goat anti-mouse IRDye 800CW secondary antibody, and bands were detected
and quantified using the Odyssey Infrared Imaging System (LI-COR Biosciences,
UK). For FLIP, the amounts of FLIP(S) and FLIP(L) were added together, while for
caspase 8, the bands corresponding to p53/p55 and p41/43 caspase 8 were added.
Uncropped western blots are presented in Supplementary Fig. 6.

Size exclusion chromatography. Cell lysates were prepared and subjected to size
exclusion chromatography using the Superose 6 10/300 GL column and AKTA
purifier (both GE Healthcare) as previously described8. Fractions of different MW
were collected and subjected to western blotting analyses. The MW of fractions was
assessed by comparison with a trace obtained from known MW standards (Sigma).

Statistical analysis. Experimental results were compared using a two-tailed
Student’s t-test; *Po0.05, **Po0.01 and ***Po0.001. All experiments were
replicated at least two times and in most cases, more than three times.
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