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Résumé — Simulation dynamique de séparateurs de mélanges liquide-vapeur avec une approche

différentielle algébrique et évaluation rigoureuse des propriétés physiques — La dynamique de

séparateurs de mélanges liquide-vapeur est simulé avec des propriétés physiques rigoureusement

calculées en utilisant une équation d’état pour modéliser chaque phase. La formulation fournit un

ensemble d’équations différentielles algébriques (DAE), dont les équations différentielles décrivent les

bilans matérielles et énergétiques et les équations algébriques décrivent les conditions d’équilibre à

l’intérieur du séparateur. PSIDE (Parallel Software for Implicit Differential Equations) [Lioen et al.,

1998] est utilisé pour résoudre l’ensemble des DAE avec efficacité. Dans cette approche, les équations

sont résolues simultanément, avec des itérations directes de température, de volumes de phase et de

nombre de moles de chaque composant dans chaque phase. Les résultats montrent l’efficacité de cette

méthode de simulation des séparateurs de mélanges liquide-vapeur.

Abstract — Differential-Algebraic Approach to Dynamic Simulations of Flash Drums with Rigorous

Evaluation of Physical Properties — The dynamics of flash drums is simulated with rigorous physical

properties calculations using an equation of state to model each phase present. The formulation results in

a set of differential-algebraic equations (DAE), whose differential equations describe the material and

energy balances and the algebraic equations result from the conditions for thermodynamic equilibrium

inside the drum. PSIDE (Parallel Software for Implicit Differential Equations) [Lioen et al., 1998] is

used to solve the set of DAE with an efficient differential–algebraic approach. In this approach, the

equations are solved simultaneously, with direct iterations in temperature, phase volumes and mole

number of each component in each phase. The results show the efficiency of this methodology for the

simulation of flash drums. 
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LIST OF SYMBOLS

cp Heat capacity [J/(mol.K)]

f, g, ĝ, h, ĥ, h* Arbitrary functions of the test model

F Input stream [mol/min]

G Vapor (gas) output stream [mol/min]

H
·
F Enthalpy flowrate of input stream [J/min]

H
·
G Enthalpy flowrate of vapor output stream [J/min]

H
·
L Enthalpy flowrate of liquid output stream [J/min]

L Liquid output stream [mol/min]

Nc Number of components of the system 

Np Number of phases of the system

Ni Mole number of component i in the drum [mol]

Ni,j Mole number of component i in phase j [mol]

P Pressure [MPa]

Q
·

Heat load [J/min]

Q
·
F Flash function

T Temperature [K]

U Internal energy of the system [J]

Uj Internal energy of phase j [J]

V Volume of the drum [m3]

xi Mole fraction of component i in liquid output stream

yi Mole fraction of component i in vapor output stream

zi Mole fraction of component i in input stream

µij Chemical potential of component i in phase j [J/mol]

INTRODUCTION

The ability to predict the dynamic behavior of separation

drums is important to devise control strategies that ensure

product quality and safe operation, especially at high pres-

sures. Quite often, dynamic simulations of flash drums are

based on simple thermodynamic models, such as ideal vapor

and liquid phases. To account for deviations from ideal liquid

phase behavior, some articles [1, 2] include activity coeffi-

cients in their models, but even with this extension, the pres-

sure range in which the model can be used with confidence is

limited. Calculations of heat effects are frequently based on

temperature-independent heat capacities, what is certainly a

good assumption when the temperature variation during the

simulated time interval is not very large. Though, for larger

temperature variations, use of temperature-dependent heat

capacities will typically improve accuracy. Furthermore, in

some cases, the time evolution of pressure is assumed before-

hand, based on the assumption it is controlled. More realistic

simulations, however, should be able to predict how pressure

evolves. Modern equations of state (EOS) can help overcome

many of these limitations as they can model the phase behav-

ior of many systems, including mixtures containing polar

components, polymers, and electrolytes, up to high pressures.

Therefore, it is interesting to develop a framework that can be

used to simulate the dynamics of separation vessels with

phases modeled by EOS.

Few papers on vessel dynamics discuss the use of EOS

[3-5]. This is by no means a trivial extension of dynamic

models based on simpler assumptions about phase behavior

because:

– vapor-liquid equilibrium calculations tend to be more diffi-

cult at high pressures than at low pressures, because of the

larger departure from ideal phase behavior and the proxim-

ity of the mixture critical point; 

– depending on calculation algorithm and problem specifica-

tions, it may be necessary to solve the equation of state to

find the molar volume at a given condition of temperature,

pressure and system composition. This is, by itself, an itera-

tive problem embedded inside the general structure of the

simulation model;

– expressions for properties, such as fugacity coefficients,

derived from EOS commonly used for process simulation

usually have more terms than those derived from excess

Gibbs free energy models, such as activity coefficients.

Furthermore, in the EOS most commonly used for chemi-

cal process design, properties are explicit functions of tem-

perature, volume, and number of moles of each component

in a given mixture. Depending on the values used for these

variables, EOS may predict, for example, negative pres-

sures and negative fugacity coefficients, both of which

have no physical meaning.

The model developed here assumes phase equilibrium

inside the vessel at each instant throughout the simulation.

With this assumption, the model constitutes a system of dif-

ferential algebraic equations (DAE). The mass and energy

balances for the separation vessel are differential equations

that enable computations of the time evolution of internal

energy (U) and number of moles of each component of the

fluid inside the separator (N). Since the tank volume (V) is

constant, the values of U and N should be determined

through numerical integration of mass and energy balances at

each instant. The algebraic equations of the model come

from the phase equilibrium conditions at specified values of

UVN, the so-called UVN flash problem, which is at the core

of our simulations of flash drum dynamics.

In spite of its importance for separator dynamics, few

papers address the UVN flash problem. The conditions for

thermodynamic equilibrium, at specified UVN, maximize

the system’s entropy. The difficulty with the direct applica-

tion of this formulation is the need for partial derivatives of

entropy with respect to internal energy, volume, and number

of moles. However, the most commonly thermodynamic

models used for chemical process design are written as func-

tions of temperature, volume, and number of moles. A fam-

ily of functions has been proposed [4] to overcome this diffi-

culty for many specifications, and in particular, used a UVN

flash algorithm with “nested” loops, in which pressure is an
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iteration variable. A disadvantage of this approach is the need

to solve the EOS for each phase in every iteration, since most

EOS have the form P = P(T, V, N) . The direct use of temper-

ature, phase volumes, and mole number of each component

in each phase as iteration variables has been suggested [4].

This approach was adopted [6] in the development of a pro-

cedure to simulate flash drum dynamics, in which a conven-

tional integrator for ordinary differential equations was used

and the algebraic equations of the model were solved sepa-

rately in every step. Attempts to solve the system directly

using a procedure available in MATLAB for DAE (ode15s

solver) were unsuccessful [6]. The most likely reason is that

the ode15s integrator can only solve linearly implicit ODE

systems of general form: M(t) · y' = f(t, y) with a mass matrix

M(t) that is non-singular, (usually) sparse and exclusively

time dependent [7]. The proposed formulation led to index-1

and index-2 DAE systems that can be rearranged in that form

only after an unacceptable manipulation of the algebraic con-

straints. Lee et al. [5] simulated the dynamic behavior of

flash drums using the Soave-Redlich-Kwong equation of

state to calculate physical properties. This DAE problem was

solved using MATLAB with application of the recursive

equation error method to overcome the difficulties introduced

by the use of the EOS.

In this work, we take a different path that enables us to

solve the DAE system directly and simultaneously. A signifi-

cant decrease on computational cost has been verified using

this procedure in comparison with previous work [6], in

which all the algebraic equations were solved separately in

every step. Using PSIDE, the algebraic constraints were

solved together with the discretized form of the differential

equations by a very efficient Newton process. Additionally,

PSIDE is capable of solving DAE systems with differential

index up to 3. It is important to notice that typical software

used to solve ODE and DAE systems, such as DASSL [8],

are able to solve systems of index up to 1 only.

Hence, the main purpose of this work is to predict the

dynamics of flash drums, with rigorous calculations of physi-

cal properties using EOS and solving the set of DAE’s

directly. The next section presents the PSIDE features. We

then discuss the model and present results of its application.

The article ends with the conclusions drawn from this

research.

1 PSIDE

We used PSIDE [9] to integrate the DAE system. PSIDE is

a code written in FORTRAN-77 capable of solving implicit

differential equations of the form: f(t, y, y') = 0, f, y ∈ ℜn,

t0 ≤ t ≤ tend, y(t0) = y0 and f(t0, y0, y'0) = 0. PSIDE integrator

is the four-stage Radau IIA method. The nonlinear systems

are solved by a modified Newton process, in which every

Newton iterate itself is computed by means of a parallel

iterative linear system solver for Runge-Kutta [10]. The

Radau IIA method is a class of implicit Runge-Kutta

method (IRK), powerful for the numerical solution of

implicit differential equations. As a Radau IIA method,

PSIDE combines high order with the property of L-stabil-

ity. It is a robust code that allows solving algebraic-differ-

ential systems with differential index up to 3, unlike classi-

cal software that generally have problems when solving

DAE systems with index higher than 1.

The differential index is, in a general way, closely linked

to the number of times that the system or a part of it should

be analytically differentiated in order to obtain a purely dif-

ferential system through algebraic manipulations. Therefore,

the procedure of differential index reduction is quite costly

and the possibility of working directly with higher-index sys-

tems represents a great advantage. 

The code allows the user to supply the analytical Jacobian

of the system, but, if not provided, it is calculated numeri-

cally, using finite differences. The user must provide the so-

called mass matrix (M), given by: 

where g (t, t, y') are the equations of the system and y' repre-

sents the derivatives of the dependent variables y with respect

to the independent variable t. 

2 FORMULATION

Consider the flash drum of constant volume shown in Figure 1.

The material balance of each component is given by:

i = 1, ..., c (1)

where t denotes time, Ni is the mole number of component i in

the drum, zi is the mole fraction in the input stream, xi and yi

are the mole fractions of component i in the liquid and in the

vapor outputs, respectively, and c is the number of components

in the system. In Equation 1, F, L, and G denote the molar

flowrates of the feed stream, liquid output, and vapor output,

respectively. Equation 1 can be readily adapted to problems

with fewer or more input and output streams. Example 1, in

the next section, will illustrate a situation with single input and

output streams and a single phase inside the drum.

Assuming that the mole fractions of the output streams are

identical to those of the phases inside the drum from where

they are withdrawn, then: 

i = 1, ..., c (2)

where Ni,1 and Ni,2 are the number of moles of component i

in the liquid and vapor phases inside the drum, respectively.
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The global energy balance is:

(3)

where H
·
F, H

·
L and H

·
G are the enthalpy flowrates of the input,

liquid output, and vapor output streams, respectively; Q
·

is

the heat load in the drum, and U is the internal energy of the

system.

To calculate the enthalpies of each phase or stream, we

compute the ideal gas contribution using heat capacity at

constant pressure data for ideal gases (Reid et al. [11]), to

which we add the residual enthalpy, calculated according to

the EOS. The internal energies of the phases inside the drum

are calculated in similar fashion by using ideal gas heat

capacity at constant volume data and residual internal energy

from the EOS.

Equations 2 and 3 constitute a set of (c + 1) ordinary dif-

ferential equations (ODE) that enables the computation of N

and U as functions of time. At specified values of UVN, the

equilibrium condition maximizes the system’s entropy. To

overcome the difficulty that the internal energy is not an

independent variable in the thermodynamic models most

commonly used for process design, Michelsen [4] defined a

new function, QF, given by:

(4)

where A denotes the Helmholtz free energy, U is the internal

energy in each step (obtained by integration of the energy

balance, Equation 3), R is the universal gas constant, and T is

the temperature. The equilibrium condition occurs at a sta-

tionary point of QF, but unfortunately not a minimum since

  
Q T V N

A U

RTF
( , , ) =

−

  

dU

dt
H H H Q

F L G
= − − +ɺ ɺ ɺ ɺ

(∂2Qf)/(∂T 2) = – Cp/T < 0, and the Hessian matrix is therefore

not positive definite, as required for a minimum. In this case,

the stationary point is a saddle point, where its value is equal

to the system’s entropy maximum.

The advantage of this formulation is that the independent

variables of function QF are T, V, and N that are also the

independent variables of the EOS most commonly used for

chemical process design. The Jacobian matrix of this set of

equations is the Hessian matrix (matrix of which the entries

are the second partial derivatives of the function) of QF. An

important feature of the Hessian matrix is that it is symmetri-

cal, reducing by approximately half the effort for calculating

derivatives.

One should notice that, because of volume conservation

and mass balances, not all phase volumes and mole numbers

can vary independently: the value in one of the phases can be

taken as a dependent variable. Differentiation of function QF

with respect to the independent variables in a system with p

phases gives [6]:

(5)

j = 1, ..., p j ≠ J (6)

(7)

i = 1, ..., c j = 1, ..., p j ≠ J

In these equations, Uj and Pj are the internal energy and the

pressure of the phase j, respectively, µij and fij are the chemi-

cal potential and fugacity of component i in phase j, respec-

tively. Subscript J denotes the dependent phase. Equation 5

ensures that the system internal energy matches the value

specified at each time step. Equations 6 and 7 provide the

conditions for equal phase pressures and chemical potentials.

Volume conservation and material balances provide addi-

tional equations:

(8)

i = 1, ..., c (9)

where Vj is the volume of phase j. 

Equations 2-3 and 5-9, together with the EOS applied to

liquid and vapor phases, form a DAE system with

[(p+1)(c+2)] equations in the same number of unknowns,
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Liquid output

L, T, P, HL, x

Feed stream

F, TF, PF, HF, z

Vapor output

G, T, P, HG, v

Figure 1

Schematics of a flash drum.



namely: Ni, Nij, Vj, Pj, T and U, with the component and

phase subscripts running from 1 to c and 1 to p, respectively. 

To characterize the differential index of the resulting DAE

system we can identify 3 kinds of variables:

– Differential variables, i.e., variables submitted to time

derivatives: Ni and U;

– Algebraic variables, i.e., variables not submitted to time

derivatives: Pj, Vj, T, L, and G. Algebraic constraints con-

tain variables, Pj, Vj, and T. Although, output flowrates L

and G do not appear in any algebraic equation. The first

kind of algebraic variables (Pj, Vj and T) were classified as

explicit algebraic variables and the second kind (L and G)

as non-explicit algebraic variables.

Based on this variable classification, we can present a gen-

eral model that contains all the properties of separation drums

dynamic mathematical model. The proposed model is

described by the equations: ,

constrained by the algebraic equations: g[t, x(t), y(t)] = 0. To

obtain the time derivative of variable y, this algebraic con-

straint must be differentiated, resulting in:

, where gy ≠ 0. This proce-

dure shows that the system is at least an index-1 DAE sys-

tem. As no information about the algebraic variable z is

provided, a new equation must be specified in the problem.

Two possibilities are considered:

a) A new algebraic constraint h[t, x(t), y(t), z(t)] = 0 is speci-

fied, where variable z(t) appears. To obtain the time deriv-

ative of variable z, this algebraic constraint must be differ-

entiated, resulting in: 

In this case, the index of the DAE system remains equal to

1, and the algebraic variables y and z can be both classi-

fied as explicit algebraic variables.

b) A new algebraic constraint h[t, x(t), y(t)] = 0 is specified,

where variable z(t) still does not appear. In this case, to

obtain the time derivative of variable z, this algebraic con-

straint must be differentiated twice. The first time differ-

entiation provides: ht + hx · fx + hy · fy = h*[t, x, y, z] = 0,

another time differentiation results in: 

In this case the system differential index is 2, algebraic

variable y is an explicit algebraic variable and z is a non-

explicit algebraic variable.

In Examples 1 to 4 below, we assume that the input

flowrate, mole fractions, temperature and pressure are

known, and that the output flowrates L and G are controlled,

both being explicit algebraic variables (similar to case (a)

dz

dt

h h f h g

h
h t x y z

t x y

z

= −
+ ⋅ + ⋅

= [ ]
∗ ∗ ∗

∗

ˆ
ˆ , , ,

dz
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h h f h g

h
h t x y z
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z
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ˆ

ˆ , , ,
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g g f

g
g t x y zt x

y

= −
+ ⋅

= [ ]ˆ , , ,

dx t

dt
f t x t y t z t

( )
= ( ) ( ) ( )⎡⎣ ⎤⎦, , ,

above). In Example 5, we consider that the pressure is known

(explicit algebraic variable), the output liquid flowrate L is

controlled (explicit algebraic variable) and the output vapor

flowrate G is unknown (non-explicit algebraic variable). In

Example 6, we consider that mole fraction of one of the com-

ponents in vapor phase is specified (related with a differential

variable), the output liquid flowrate L is controlled (explicit

algebraic variable) and the output vapor flowrate G is

unknown (non-explicit algebraic variable). DASSL and

PSIDE codes have been applied to solve Examples 1 to 4.

These examples are all index-1 DAE system. Examples 5

and 6 are both index-2 DAE system (similar to case (b)

above) and only PSIDE code was capable of solving them,

without using any reduction index procedure.

A TPN flash is solved to establish the thermodynamic

state of the input stream(s) and the corresponding enthalpy

flowrate(s) (Hf). Solution of a TVN flash [12] provided self-

consistent initial drum conditions. Thermodynamic proper-

ties were calculated using the Peng-Robinson [13] EOS with

one-fluid van der Waals mixing rules. All the necessary ther-

modynamic expressions were obtained and implemented

using the Thermath computer algebra package [14]. Pure

component properties were taken from reference [11] and

binary interaction parameters were set equal to 0 (zero).

The resulting model was implemented in FORTRAN and

directly solved as a DAE system using the PSIDE routine. 

3 RESULTS

The following examples illustrate the proposed approach for

different specifications. In all of them, CPU time was below

one minute in a 3 GHz Pentium IV processor, with 1 Gb of

RAM, using an integration step Δt = 0.1 units of time.

3.1 Example 1

This first example [3] consists in filling a vessel with pure

nitrogen. The vessel has inlet and outlet connections. There is

a control valve in the outlet, which is initially closed. The

coefficient of this valve is chosen to be equal to 2, the inter-

nal diameter of the pipe is 20 cm and the nominal valve size

is 15 cm. This control valve is modeled according to refer-

ence [15]. It is also assumed that there is a linear heat load

between the fluid and the wall of the vessel: Q
·

= – 3 (t – 30)

[kJ/s]. Table 1 presents the specifications and initial condi-

tions for this example. Figure 2 shows the dynamic change in

the molar volume of N2 and Figure 3 presents the evolution

of the vessel temperature and pressure. As expected, the pres-

sure increases with time. The initial heat load (for t < 30 s) is

positive and becomes negative afterwards, causing a maxi-

mum in temperature.
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3.2 Example 2

This example deals with a mixture of ethane(1), propene(2),

propane(3), n-butane(4), isobutane(5) and n-pentane(6)

whose composition is in the range of liquefied petroleum

gases (LPG) [6]. Table 2 presents the initial conditions, in

which a liquid and a vapor phase are in equilibrium inside the

drum. There is a single input stream and a liquid and a vapor

output streams. Table 3 presents the problem specification. 

Mass accumulates in the drum because the total flowrate

of the output streams is smaller than that of the input stream.

Moreover, the heavier components accumulate at a faster rate

because the liquid output flowrate is smaller than the vapor

output flowrate, as shown in Figure 4. Figures 5a and 5b

show mole fractions in the liquid and vapor phases, respec-

tively, as functions of time. Figure 6 shows the evolution of

temperature and pressure in the drum. The temperature pro-

file is particularly interesting because it passes through a

maximum and a minimum point as result of combining sev-

eral effects. The input stream is hotter (300 K) than the mix-

ture initially inside the drum (298.15 K). This has the imme-

diate effect of increasing the drum temperature in the

beginning of the simulation. This is later compensated by the

effect of input stream expansion when it enters the tank,

which is at lower pressure, causing a decrease in temperature.

682

TABLE 1

Specifications and initial conditions for example 1

Internal volume of the vessel (m3) 19.9

Initial vessel temperature (K) 293.15

Initial pressure in the vessel (MPa) 0.101325 

Input stream temperature (K) 293.15

Input stream pressure (MPa) 2

Input stream flowrate (kgmol/s) 0.12

TABLE 2

Initial conditions for example 2

Tank volume (m3) 4.4232

Initial tank temperature (K) 298.15

Initial mass in the tank (kgmol) 1.0

0.0108 (1), 0.3608 (2),

Initial mole fractions 0.1465 (3), 0.233 (4),

0.233 (5), 0.0159 (6)

TABLE 3

Specifications for example 2

Simulation time interval (min) [0, 500]

Input stream flowrate (kgmol/min) 0.12

Input stream pressure (MPa) 0.6 

Input stream temperature (K) 300 

0.1667 (1), 0.1667 (2),

Input stream mole fractions 0.1667 (3), 0.1667 (4),

0.1667 (5), 0.1667 (6)

Vapor output stream flowrate (kgmol/min) 0.060

Liquid output stream flowrate (kgmol/min) 0.040

Heat load (kJ/min) 0.0
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Figure 2

Specific volume of nitrogen inside the vessel (Example 1).
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Temperature and pressure inside the vessel (Example 1).



The difference between the input stream and tank pressures

becomes smaller afterward and the temperature increases as

result of mass accumulation in the tank. Our results have a

perfect match with those of the literature [6].

3.3 Example 3

We use the same mixture and initial conditions of Example 2,

presented in Table 2. However, the tank is closed and there is

a heat load that varies with time according to Q
·
6.26sin (0.01t)

[t in min and Q
·
in kJ/min]. 

The system was simulated during a period corresponding

to two complete disturbance cycles (400π = 1256.64 min). At

the initial condition, there are a liquid and a vapor phase in

the drum. Figure 7 shows the evolution of the liquid phase

volume in the tank. The heat load was chosen in such a way

that the liquid phase almost disappears in each cycle. The liq-

uid phase mole fractions of propane and n-pentane are shown

in Figure 8 and they also present periodic behavior, with

opposite patterns. As n-pentane is the heaviest component in

the system, its mole fraction in the liquid phase tends to

increase when the temperature increases. Propane is much

lighter and its liquid phase mole fraction has opposite pattern.

The specified disturbance is periodic. Hence it should be

expected that the system returned to the initial condition after

each complete cycle. This was indeed observed for all vari-

ables, showing the consistency of the results presented here.

3.4 Example 4

In this example, we consider the same system as in Examples

2 and 3 and the tank is closed, as in Example 3. Here, to test
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the consistency of our results, we compare a sinusoidal heat

load Q
·

= sin (0.01t) with a piecewise heat load, as described

in Table 4. We observe that the heat load defined in the

fourth time range of Table 4 is the negative of that one

defined in the second range. Therefore, these two heat

exchanges cancel each other and it is expected that after

300π min the system follows the same pattern as for the sinu-

soidal heat load. This behavior was indeed observed for all

state variables. As example, we show the time evolution of

the liquid phase volume in Figure 9.

An important aspect of this result is that the approach used

here can handle discontinuities without losing consistency.

3.5 Example 5

Examples 1-4 are of differential index 1. In this example, we

present a problem of differential index 2. In this case, the

same system of Examples 2-4 is considered, but the pressure

inside the tank is kept at 0.466 MPa, there is no heat load,

and the evolution of vapor stream flowrate G is determined

by solving the set of equations presented in Section 2. It

should be pointed out that the vapor stream flowrate G is

responsible for the higher differential index of the problem

(index 2), due to the fact that G is a non-explicit algebraic

variable. Figures 10 and 11 show the time evolution of G

and T, respectively. In the first minutes, there is a greater

accumulation of material inside the tank because the vapor
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TABLE 4 

Piecewise heat load used in example 4

Time Range (min) Heat Load (kJ/min), t (min)

0 < t < 80π Q
·
= sin (0.01t)

80π < t < 160π Q
·
= –10 sin [0.02 (t – 80π)]

160π < t < 240π Q
·
= sin (0.01t)

240π < t < 320π Q
·
= 10 sin [0.02 (t – 240π)]

320π < t < 400π Q
·
= sin (0.01t)



stream flow is set initially equal to zero. This accumulation

gives rise to an initial increase of temperature. Because of

this, the vapor stream flowrate increases very rapidly to keep

the pressure constant. This permits the temperature to

decrease again until steady state is reached.

3.6 Example 6

In this last example, we present another problem of differen-

tial index 2. The same system of Examples 2-5 is considered,

but the propane composition in vapor phase is maintained

constant, equal to 0.193, and the inlet pressure is 0.65 MPa.

There is no heat load, and the evolution of the vapor stream

flowrate G is determined by solving the set of equations pre-

sented in Section 2. Variable G is still responsible for the

higher differential index of the problem (index 2). Example 6

differs from Example 5 due to the fact that, in Example 6, the

additional condition has been applied to a differential vari-

able (variable N1), meanwhile in Example 5 the additional

condition was applied to an algebraic variable (variable P1).

Figure 12 shows the time evolution of G. Figure 13 shows

the time evolution of T and P.
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Figure 13

Temperature and pressure inside the tank (Example 6).
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CONCLUSIONS

The dynamics of separation drums was formulated as a sys-

tem of differential algebraic equations (DAE), using the

Peng-Robinson equation of state to calculate thermodynamic

properties. We used PSIDE to integrate the DAE system,

obtaining robust and efficient performance when solving the

problems discussed here. This approach joins accumulated

knowledge in numerical methods to rigorous thermodynamic

treatment of the system. As demonstrated in Examples 5 and

6, we succeeded in the direct solution of problems with dif-

ferential index higher than 1, which are usually a source of

difficulty for typical software used to solve DAE systems.

Given the generality of the formulation, we believe that

the procedure would work with other equations of state of

similar complexity, such as many cubic EOS, and with other

EOS that are non-cubic in molar volume, even though this

has not been tested yet.
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