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Abstract. In this paper we continue the previous line of research on the analysis of the differential
properties of the lightweight block ciphers Simon and Speck. We apply a recently proposed technique
for automatic search for differential trails in ARX ciphers and improve the trails in Simon32 and
Simon48 previously reported as best. We further extend the search technique for the case of differen-
tials and improve the best previously reported differentials on Simon32, Simon48 and Simon64 by
exploiting more effectively the strong differential effect of the cipher. We also present improved trails
and differentials on Speck32, Speck48 and Speck64. Using these new results we improve the currently
best known attacks on several versions of Simon and Speck. A second major contribution of the paper
is a graph based algorithm (linear time) for the computation of the exact differential probability of the
main building block of Simon: an AND operation preceded by two bitwise shift operations. This gives
us a better insight into the differential property of the Simon round function and differential effect in
the cipher. Our algorithm is general and works for any rotation constants. The presented techniques
are generic and are therefore applicable to a broader class of ARX designs.

Keywords: symmetric-key, differential trail, tools for cryptanalysis, automatic search, ARX, Simon,
Speck, lightweight ciphers

1 Introduction

The past decade in technology has been marked by the ever decreasing size of computing devices.
This, in combination with their increasingly ubiquitous use e.g. as smart devices, wearable systems,
as part of the Internet of Things [13], has enabled humans to perform everyday activities more
efficiently. At the same time these new technologies have also created new security challenges.

An important problem today is the design of cryptographic algorithms that are both efficient
and secure, have small memory footprint and are low-cost and easy to implement and deploy on
multiple platforms. Finding an optimal compromise between these, often conflicting, requirements is
the difficult area researched by the field of lightweight cryptography. The applications of lightweight
cryptographic algorithms vary from mobile devices, through RFID tags to electronic locks and their
importance is likely to continue increasing in the future.

To address the persistent need for secure and efficient lightweight primitives, numerous propos-
als have been made in the past few years. In the area of symmetric-key encryption some of the
more prominent block ciphers that were proposed are: Present [7], Piccolo [18], Klein [10],
Twine [20], Katan and Ktantan [8], LED [11], HIGHT [12] and CLEFIA [19].

Most recently, in June 2013, yet two more algorithms have been put forth by researchers from the
National Security Agency (NSA) of the USA – the block ciphers Simon and Speck [4]. Compared
to their predecessors, the latter two have very competitive performance, small memory footprint
and beat most existing lightweight ciphers in terms of efficiency and compactness. Furthermore, the
two designs are very simple and elegant. They are both built on the ARX philosophy [21,14], using
only basic arithmetic operations such as modular addition, XOR, bitwise AND and bit rotation.



Evidence of the performance and implementation advantages of Simon and Speck exists in the
form of extensive results and comparisons to existing lightweight algorithms described in the design
document [4]. However the latter does not provide any security evaluation of the two ciphers and
no analysis of their cryptographic strength is given. Recently several external cryptanalytic results
on Simon and Speck became available: [3,2,1]. The first two in particular analyze the differential
properties of the ciphers and describe key-recovery attacks on reduced round variants.

Our Contribution. In this paper we further investigate the differential behavior of block ciphers
Simon and Speck. We apply a recently proposed technique for automatic search for differential
trails in ARX ciphers called threshold search [6]. We find better differential trails on Simon32 and
Simon48 than the ones reported by [2] and claimed to be the best and, we confirm the trail on
Simon64. Improved trails that cover one round more than the previously reported best trails [1]
on Speck32, Speck48 and Speck64 are found. We further extend the threshold search technique
for finding differentials. With the new tool we improve the differentials on Simon32, Simon48 and
Simon64 reported by [2] and we present new differentials on Speck32, Speck48 and Speck64.
We use these new results to improve the currently best known attacks on several versions of Simon

and Speck.

The second major contribution of the paper is an efficient algorithm for the computation of the
differential probabilities (DP) of the bitwise AND operation – the single source of non-linearity in
the round function of Simon. We describe algorithms for the computation of the exact DP of AND
with independent inputs and rotationally dependent inputs (one input is equal to the rotation of
the other one) as used in Simon. In addition, methods for computing the maximum DP over all
inputs and over all outputs of the AND operation are also proposed. All described algorithms have
linear time complexity in the word size. These algorithms are used in the threshold search and in
the differential search tool for Simon.

Finally, we briefly comment on the strong differential effect in Simon – a property already noted
in [3]. In addition we provide new insights into the clustering of differential trails that causes this
effect. A summary of the main results from the search on trails and differentials is provided in
Table 2. Note that in this table is mentioned a figure for the time complexity of the attacks on
Simon32 and Simon64 described in [2] that we were not able to verify. a

The outline of the paper is as follows. We begin with Sect. 2 where the XOR differential probabil-
ity of the AND operation is analyzed. Next in Sect. 3 are presented techniques for searching for trails
and differentials in ARX algorithms. The block ciphers Simon and Speck are briefly described in
Sect. 4. Full differential trails are presented in Sect. 5. Finally, in Sect. 6 we comment on the strong
differential effect of Simon. Sect. 9 concludes the paper.

A few words on notation: with xi is denoted the i-th bit of the n-bit word x (x0 is the LSB);
xi represents the modulo-2 complementation of xi i.e. xi = xi ⊕ 1; the symbols ∧ and ∨ denote
respectively bitwise logical AND and OR operations; the left and right rotation of the bits of x by r
positions is denoted respectively with x ≪ r and x ≫ r; |S| represents the cardinality of the set
S. The concatenation of the bit strings x and y is denoted by x|y.

a Since with one good pair in all the data the counting phase does not give the attacker unique partial key.



Table 1. Summary of attacks on Simon and Speck. All listed attacks are chosen-plaintext.a,b,cDiffers from [2].

Cipher Key #Rounds #Rounds Time Data Time Data
Size Total Attacked Sect. 7, 8 Sect. 7, 8 [2,1] [2,1]

Simon32 64 32 18 262 a 231.2

64 32 19 234 231.5

64 32 19 240 231

Simon48 72 36 19 246 246 252 246

72 36 20 252 246

96 36 19 269 246 276 246

96 36 20 275 246

Simon64 96 42 26 289 263 294 b 263

128 44 26 2121 263 2126 c 263

Speck32 64 22 10 229.2 229

64 22 11 255 231

Speck48 72/96 22 12 243 243 245.3 245

Speck64 96/128 26 15 261.1 261

96 26 16 280 263

96 26 16 273 264

128 27 16 280 263

128 27 16 273 264

2 The XOR Differential Probability of AND

2.1 Independent Inputs

Definition 1 (xdp& with independent inputs). Let α, β and γ be fixed n-bit XOR differences.
The XOR differential probability (DP) of the logical AND operation (xdp&) is the probability with which
α and β propagate to γ through the AND operation, computed over all pairs of n-bit inputs (x, y):

xdp&(α, β → γ) = 2−2n · |{(x, y) : ((x⊕ α) ∧ (y ⊕ β))⊕ (x ∧ y) = γ}| . (1)

In the remaining of the text the acronym DP will be used to denote XOR differential probability
unless specified otherwise. When the input differences α and β are independent, the DP xdp∧(α, β →
γ) can be efficiently computed according to the following theorem.

Theorem 1. For fixed n-bit XOR differences α, β and γ the probability xdp&(α, β → γ) is equal to

xdp&(α, β → γ) = 2−n ·
n−1
∏

i=0

(

(2 · (αi ∧ βi ∧ γi)) ∨ (αi ∧ βi)
)

∧ (αi ∧ βi ∧ γi) . (2)

Proof. Note that xdp&(α, β → γ) = 0 ⇐⇒ ∃i : 0 ≤ i < n : (αi ∧βi ∧γi) = 1. Therefore whenever

the probability is zero, the term (αi ∧ βi ∧ γi) evaluates to zero and hence the right hand-side of (2)
is also zero. If the probability is non-zero and αi = βi = γi = 0 at bit position i then (αi∧βi∧γi) = 1
which is multiplied by the number of valid pairs (xi, yi) (cf. Definition 1) i.e. 4 . If αi 6= βi then
exactly two pairs (xi, yi) satisfy the differential at bit position i irrespective of the value of γi. In

this case (αi ∧ βi) = 1 and it is multiplied by the number of valid pairs (xi, yi) which is 2. Therefore



Table 2. Summary of the best found differential trails and differentials in Simon and Speck; aMeasured as the
average prob. over 128 keys chosen at random and using the full codebook.

Cipher # rounds log2p, trail log2p, diff. # trails ref.

Simon32 12 −34 Sect. 5
−36 [2]

13 −36 −29.69 45083 Sect. 5
−28.56 experimentala Sect. 5

−36 −30.20 [2]

Simon48 15 −48 −42.11 112573 Sect. 5
−52 −43.01 [2]

Simon64 20 −70 −58.07 533163 Sect. 5
−70 −59.01 [2]

21 −72 −60.40 450536 Sect. 5
−72 −61.01 [2]

Speck32 8 −24 −24 1 Sect. 5
−24 −24 1 [1]

9 −31 −31 1 Sect. 5

Speck48 10 −40 −39.75 137 Sect. 5
−40.55 [1]

11 −47 −46.48 384 Sect. 5

Speck64 13 −58 −57.67 198 Sect. 5
−58.90 [1]

14 −60 −59.02 934 Sect. 5

for non-zero probability, the product on the right-hand size of (2) is a multiple of 2n. The latter
cancels with the term 2−2n (cf. Definition 1) and so the final expression is multiplied by 2−n. ⊓⊔

Theorem 1 implies the following corollary.

Corollary 1. Given n-bit input differences α, β and output difference γ, the probability xdp&(α, β →
γ) can be computed in O(n) time.

Proof. Follows directly from Theorem 1. ⊓⊔

2.2 Rotationally Dependent Inputs

Note that when the inputs to the AND operation are dependent on each other, the DP computed with
Theorem 1 is not accurate. In particular, let the two inputs x, y to AND be such that y = (x ≪ r). So,
an input XOR difference α applied to x will result into an input difference (α ≪ r) to y. Considering
the dependencies between the input variables, the DP in this case is defined as follows:

Definition 2 (xdp& with dependent inputs). For a fixed rotation constant r and n-bit input
difference α, the DP of the bitwise AND operation is defined as

xdp&(α, (α ≪ r) → γ) = 2−n ·
∣

∣{x :
(

x ∧ (x ≪ r)
)

⊕
(

(x⊕ α) ∧ ((x⊕ α) ≪ r)
)

= γ}
∣

∣ . (3)



In the following part of this section we describe a method for the computation of the probability
xdp&(α, (α ≪ r) → γ) (3) in linear time in the word size n. We begin by stating several necessary
definitions and lemmas.

A cycle of length t is a special subset of the set of indices I = {0, 1, . . . , n− 1}(= Zn) indicating
the bit positions of an n-bit word x (index 0 denotes the LS bit of x). More formally:

Definition 3. A cycle of length t is a set of bit indices Ci = {i, i+ r, i+ 2r, . . . , i+ (t− 1)r} ⊆ I,
where t ∈ N is such that i+ tr = i mod (n) and i is the smallest element of Ci.

In a cycle Ci of length t, i+(s− 1)r is said to be preceding element to i+ sr (1 < s < t). Moreover,
i + (t − 1)r is preceding element to i. Since each Ci for i ∈ I is an equivalence class, I can be
partitioned into disjoint cycles:

Lemma 1. For fixed r ∈ I, Ci ∩ Cj = ∅ iff i 6= j : 0 ≤ i, j < n and, I =
⋃

Ci.

Example 1. For n = 8 and r = 2 there are exactly 2 cycles each having length t = 4: C0 = {0, 2, 4, 6}
and C1 = {1, 3, 5, 7}.

By Definition 2, computing the probability xdp& is equivalent to counting the number of values
x that satisfy the differential (α, (α ≪ r) → γ). For simplicity, let r be such that the set of bit
indices I of x has a single cycle C0 = {0, r, 2r, . . . , n − r}. Within this cycle the bits of the input
and output differences are represented as a sequence of 3-tuples in the following way:

(α0, α(n−r), γ0), (αr, α0, γr), (α2r, αr, γ2r), . . . , (α(n−r), α(t−1)r, γ(n−r)) . (4)

Note that in sequence(4), for each 3-tuple the index of the second element is a preceding index of
the index of the first element.

Example 2. Let n = 5 and r = 2. Consider the input differences α = α4α3α2α1α0 and (α ≪ 2) =
α2α1α0α4α3 and the output difference γ = γ4γ3γ2γ1γ0. In this case there is a single cycle C0 of
length t = 5: C0 = {0, 1, 2, 3, 4}. The corresponding sequence of 3-tuples is:

(α0, α3, γ0), (α2, α0, γ2), (α4, α2, γ4), (α1, α4, γ1), (α3, α1, γ3) . (5)

The difference 3-tuples in (4) are satisfied by a number of possible bit assignments of x at
the corresponding positions: (x0, xn−r), (xr, x0), (x2r, xr), . . . , (xn−r, x(t−1)r). In order to efficiently
count the number of such assignments we use a variant of the technique proposed in [16] for the
computation of the DP of modular addition and XOR.

Any 2-tuple of bits of the form (xsr, x(s−1)r) can have 4 values {(0, 0), (0, 1), (1, 0), (1, 1)}, where
(0 ≤ s ≤ n − 1). These are viewed as a nodes of a graph. In total, for the full word length n the
graph has 4n nodes. A valid assignment of two consecutive 2-tuples (xsr, x(s−1)r) and (x(s+1)r, xsr),
(0 ≤ s < n− 1) is represented as a directed edge between the corresponding nodes. In this way we
can construct a directed acyclic graph (DAG) composed of (n−1) edge-disjoint bipartite subgraphs.
Each bipartite subgraph is formed by the nodes from two consecutive 2-tuples of bits of x and the
edges between them. A valid path from an initial node (x0, xn−r) to a final node (xn−r, xn−2r) in
the DAG corresponds to a value of x that satisfies the differential (α, (α ≪ r) → γ). A path is said
to be valid iff the initial and final nodes (x0, xn−r) and (xn−r, xn−2r) are consistent i.e. the value
assigned to xn−r in both nodes is the same.



The DAG constructed as explained above is represented as a sequence of 4×4 adjacency matrices,
each corresponding to one bipartite subgraph. Computing the probability xdp∧ is then equivalent
to counting the number of valid paths in the DAG. This can be performed in linear time in the word
size by a sequence of (n−1) multiplications of adjacency matrices. If the number of such paths is N ,
the final probability xdp&(α, β → γ) is N

2n . This process is further illustrated with the Example 3.

In case of more than one cycle the described process can be performed independently for each
cycle Cj , 0 ≤ j < m due to the fact that all cycles are disjoint (cf. Lemma 1). Let Nj be the number

of paths in the DAG for the j-th cycle. Then the DP is given by
∏m

1 Nj

2n .

Example 3. Assume the same setting as in Example 2: n = 5, r = 2 and let α = 001102 and
γ = 000002. Consider the resulting sequence of 3-tuples (5). In the DAG (Fig 1), the dependency
between the bits of x corresponding to two consecutive 3-tuples must be satisfied. For example,
an edge between (x0, x3) = (0, 1) corresponding to (α0, α3, γ0) = (1, 0, 0) and (x2, x0) = (1, 0)
corresponding to (α2, α0, γ2) = (0, 1, 0) is drawn, because x0 = 0 for both the nodes. However there
is no edge between (x2, x0) = (0, 0) and (x4, x2) = (0, 1) since, x0 is is not equal for both the nodes.
A valid path from an initial node (corresponding to the first 3-tuple (α0, α3, γ0) in the sequence (5))

0 0

α0α3

0
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0 0

x0x3

0 1

1 0

1 1
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Fig. 1. DAG used in the computation of xdp&(α, (α ≪ r) → γ) for n = 5, r = 2, α = 001102, γ = 000002. Every
path composed of thick edges is a valid path and hence a valid assignment of bits of x. The fading nodes denote the
bit assignments of x which do not satisfy the input output difference

to a final node (corresponding to the last 3-tuple (α3, α1, γ3)) in this graph is equivalent to a value
of x that satisfies the differential. A valid path implies that the initial and final nodes are consistent
with each other. For example, no path from the initial node (x0, x3) = (0, 1) is valid, because, all
final node have x3 = 0. Since the total number of valid paths in the graph is N = 4 the DP is
4
25

= 0.125.

The method for the computation of the probability xdp&(α, β → γ) described above supports the
following proposition.

Proposition 1. For fixed n-bit differences α and γ, the probability xdp&(α, (α ≪ r) → γ) can be
computed in O(n) time.



Impossible Input-Output Difference For a given (α, γ) an impossible difference can be of two
types. Any input/output difference which leads to a difference 3-tuple (αi, αi−r, γi) = (0, 0, 1), is
an impossible input/output difference. The other types of input difference can be detected while
computing the probability of the corresponding difference. Note that in the corresponding DAG, a
path can be invalid even if every bipartite directed subgraph valid, e.g. (α, γ) = (111112, 000002).
The following DAG shows this case.
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Fig. 2. DAG used in the computation of xdp&(111112, (111112 ≪ 2)→ 000002). Both the paths, composed of thick
edges and dashed edges, are invalid path, since there is contradiction in the bit value x3. However, each directed
bipartite subgraph is independently valid.

Proposition 2. For a fixed n-bit input difference α and rotation r,

DPmax(α) = maxγ xdp&(α, α ≪ r → γ) (6)

can be computed in O(n) time.

Finally, we note that the approach described above bears some similarity to the technique
proposed in [16] for the computation of the DP of modular addition and XOR. Similarly to [16] we
also map the problem of computing differential probabilities to the well-studied problem in graph
theory of counting the number of paths in a graph. Apart from this similarity however, we would
like to stress that the described method is fundamentally different than [16]. In the latter the nodes
of the graph represent information that is propagated over the bit positions (namely, the carries
and borrows resulting from the modular addition) and the edges represent the actual values of the
pairs. In our case, the nodes of the graph represent the values of the pairs, while the edges describe
the valid connections between the bits of those values so that the correct dependence due to the
rotation operation is preserved.

3 Automatic Search for Trails and Differentials

3.1 Threshold Search

In [15] Matsui proposed a practical algorithm for finding the best differential trail for the DES
block cipher. Given the best trail on i rounds and an over-estimation of the best probability for i+1



rounds the algorithm finds the best trail on i+1 rounds. Starting from i = 1 these steps are repeated
recursively until i+1 = n. In the process, the differential probabilities of the non-linear components
of the target cipher (the S-boxes in the case of DES) are obtained from a pre-computed difference
distribution table (DDT). The differentials for the i-th round are then processed in sorted order by
probability. For each, the recursion proceeds to round i+1) only if the estimated probability of the
trail for n rounds is equal to- or greater than the initial estimate.

Recently, in [6] a variant of Matsui’s algorithm is proposed which is applicable to the class of
ARX ciphers. What is special about the latter is that they do not have S-boxes. Instead they rely
on basic arithmetic operations such as addition modulo n to achieve non-linearity. Computing a full
DDT for the modular addition operation would require 4 × 23n bytes of memory and is therefore
impractical for n > 16. To address this, in [6] a partial DDT (pDDT) rather than the full DDT
is computed. A pDDT contains (a fraction of) all differentials that have probability above a fixed
probability threshold (hence the name – threshold search).

Since some (possibly many) differentials are missing from the initial (also called primary) pDDT,
at some point during the search it is likely that for a given input difference the algorithm will require
a matching differential that is not present in the primary pDDT. Such differentials are computed
on-demand and are stored in a secondary pDDT maintained dynamically during the search.

In order to prevent the size of the secondary pDDT from exploding while at the same time
keeping the probability of the constructed trails high, [6] further introduce the notion of highways
and country roads – resp. high and low probability differentials (w.r.t. the fixed threshold). Every
differential from the primary pDDT is a highway while every differential from the secondary pDDT
is a country road.

To further control the size of the country roads table, additional restrictions on the considered
differences can be added. For example, it may be required that every country road at given round i
is such that there is at least one transition at round i+1 that is a highway. This reduces the number
of possible country roads while at the same time ensures that the considered paths have relatively
high probability. This condition has been applied in the trail search for Simon. Another restriction
can be on the Hamming weight of the considered differences. Such restriction has been applied in
the differential search on Speck.

Several parameters control the performance of the threshold search technique. The most im-
portant ones are the probability threshold, which determines which differentials are considered as
highways and the maximum size of the primary pDDT (note that it may be infeasible to compute
and/or store all differentials that have probability above the threshold). The probability threshold
influences the probability of the final trail: the lower the threshold, the more paths are considered
and hence the more likely to find a high probability trail. At the same time, with the increase of the
number of explored paths, the complexity of the algorithm also grows and hence it takes longer to
terminate. The maximum size of the primary pDDT determines the precomputation time and the
memory requirements for the algorithm.

3.2 Extension to Differentials

We further extend the method outlined above to the case of differentials. Given the best trail found
by the threshold search and the corresponding array of best found probabilities for each round, a
differential search proceeds according to the above strategy but always starting from the same input
difference (corresponding to the best found trail). At every round are explored only paths whose



estimated probabilities are by at most a factor ε away from best probability (e.g. ε = 2−15). For
example, let Bi : 1 ≤ i ≤ n be the probabilities of the best found differentials resp. for 1, 2, . . . , n
rounds computed with the threshold search. Denote with p1, p2, . . . , pr−1 the probabilities of a
partially constructed trail up to round r − 1. At round r the differential search will explore all
transitions that have probability pr ≥ (εBn)/(p1 . . . pr−1Bn−r). A pseudocode of this procedure
applied to Simon is listed in Algorithm 1.

Algorithm 1 Search for clusters of trails belonging to the same differential.
Input: T = (T0, . . . ,Tn): the best found trail for n rounds with prob. Bn; B = (B1,B2, . . . ,Bn): probs. of best

found trails for up to n rounds; r: current round; H: pDDT (the highway table) for the non-linear component f
of the round function (e.g. for SIMON f(x) = (x ≪ 1)∧ (x ≪ 8); for SPECK f is the modular addition); ε: the
algorithm searches for trails with probs. at most ε times worse than the best found prob.

Output: Cluster of trails Ω for the differential (T0 = (α0, β0)→ Tn = (αn, βn)) and probabilitty pΩ(T0 → Tn) ≥ Bn.

1: (α0, β0)← T0; (αn, βn)← Tn; Ω ← T ; T ← ∅; pΩ ← Bn; r ← 1// Initialization
2: procedure cluster_trails(n, r, αr−1, βr−1, H, T,Ω, pΩ) do
3: if r = n then
4: // If at last round and trail matches output diff. add it to cluster and update the probability
5: if Tn = (αn, βn) then
6: add T to Ω; pΩ ← pΩ +Bn; T ← ∅
7: return
8: if r = 0 then
9: p0 = 1; T ← T0 = (α0, β0, p0).

10: C ← ∅ // Initialize the country roads table
11: pr,min ← (εBn)/(p1p2 · · · pr−1Bn−r) // The min. permissible probability for the new trail

12: for all γr : (pr(αr−1

f
−→ γr) ≥ pr,min) ∧ ((αr−1, γr, pr) /∈ H) do

13: add (αr−1, γr, pr) to C // Update country roads table
14: for all (α, γ, p) : α = αr−1 in H and all (α, γ, p) in C do
15: pr ← p, Bn ← p1p2 . . . prBn−r

16: // Proceed to next round only if the estimated prob. is at most ε times worse than the best
17: if Bn ≥ (εBn) then
18: αr = γr ⊕ βr−1 ⊕ (αr−1 ≪ 2); βr ← αr−1

19: add Tr = (αr, βr, pr) to T
20: call cluster_trails(n, r + 1, αr, βr, H, T,Ω, pΩ)
21: return Ω, pΩ

Note that a somewhat similar branch-and-bound approach has been applied by [3,2,1] to search
for differentials in Simon. The main difference is that according to the cited technique, at every
round is maintained an array of the best differentials encountered so far ranked by probability. The
search proceeds to the next round by considering the top N such differentials.

In our approach instead of storing intermediate differentials, we prune the search tree by limiting
the search to an ε region within the best found probability, since the latter is already known from
the threshold search.

Note that although the proposed technique searches for differentials starting with best trail
found with the threshold search, it can easily be modified to search for multiple input and output
differences, while keeping track of the best one. Finally, in order to improve the efficiency, the
differential search can be further parametrized by limiting the maximum Hamming weight of the
differences.



4 Description of SIMON and SPECK

The Simon and Speck families of lightweight block ciphers are defined for word sizes n = 16, 24, 32, 48
and 64 bits. The key is composed of m n-bit words for m = 2, 3, 4 (i.e. the key size mn varies be-
tween 64 and 256 bits) depending on the word size n. The block cipher instances corresponding to a
fixed word size n (block size 2n) and key size mn are denoted by Simon2n/mn and Speck2n/mn.

≪ (1)

≪ (8)

&

≪ (2)
kr

Fig. 3. SIMON round function

≫ (7/8)

≪ (2/3)
kr

Fig. 4. SPECK round function

Block cipher Simon has Feistel structure and its round function under a fixed round key k is
defined on inputs x and y as:

Rk(x, y) = ((y ⊕ f(x)⊕ k), x) . (7)

The function f(·) is defined as f(x) = ((x ≪ 1)∧(x ≪ 8))⊕(x ≪ 2), where the symbol ∧ denotes
the logical AND operation.

Block cipher Speck has structure similar to Threefish – the block cipher used in the hash
function Skein [9]. Its round function under a fixed round key k is defined on inputs x and y as:

Rk(x, y) = (fk(x, y), fk(x, y)⊕ (y ≪ β)) , (8)

where the function fk(·, ·) is defined as fk(x, y) = ((x ≫ α) + y) ⊕ k. The rotation constants are
α = 7, β = 2 for block size 32 bits and α = 8, β = 3 for all other block sizes. Although Speck is not
a Feistel cipher itself, it can be represented as a composition of two Feistel maps as described in [4].
The round functions of Simon and Speck are shown in Fig. 3 and Fig. 4 respectively. The number
of rounds, block size and key size of the block ciphers are summarized in the following table

5 Application to SIMON and SPECK

The trails obtained by using the threshold search technique and the differentials found with differ-
ential search tool (both described in Sect. 3) are presented in this section. The best found trails
for Simon and Speck are shown respectively on Table 5 and Table 6. In the tables,

∑

r log2pr



Block size Key size Key words Rounds

32 64 4 32

48 72 3 36
96 4 36

64 96 3 42
128 4 44

Table 3. Parameters for Simon

Block size Key size Key words Rounds

32 64 4 22

48 72 3 22
96 4 23

64 96 3 26
128 4 27

Table 4. Parameters for Speck

represents the probability of a single trail obtained as the sum of the probabilities of its transitions;
pdiff is the probability of the corresponding differential and #trails is the number of trails clustered
in the differential; max HW is the maximum Hamming weight allowed for the differences during the
search; pthres is the probability threshold used in the threshold search algorithm and pDDT denotes
the number of elements in the partial DDT.

Note that all trails shown in Table 5 and Table 6 were found using the technique described in
Sect. 3 by starting the search from the top round and proceeding downwards. The only exception is
the trail on Speck48. Since this trail begins with a very low probability transition, when starting
the search from the first round, it was computationally feasible to construct the shown trail only
up to round 6. The full trail on 11 rounds shown in Table 6 was found by starting the search from
a middle round (round 6) as has also been done in [1].

6 Differential Effect in SIMON

The clustering of multiple trails satisfying the same input/output difference (differential effect) in
Simon can be visualized by the digraph in Fig. 9. It depicts a cluster of more than 275 000 trails

satisfying the 21 round differential (4000000, 11000000)
21R
−−→ (11000000, 4000000). The thickness

of an edge in the digraph is proportional to the probability of the corresponding input and output
difference connected by this edge.

An interesting property clearly visible in the digraph in Fig. 9 is that it is composed of multiple
smaller subgraphs positioned at alternate levels. Each such subgraph represents a biclique. Clearly,
the bigger the number and size of such bicliques, the stronger the differential effect would be and
hence the larger the probability of the differential. Therefore, the ability to obtain good estimation
of the probability of a given differential for Simon is intimately related to the ability to identify
and characterize such complete bipartite subgraphs. Thus we take a closer look into those special
structures below.

∆i
L = 11, ∆i

R = 106

∆i+1

L = 40, ∆i+1

R = 11

∆i
L = 11, ∆i

R = 104

∆i+1

L = 60, ∆i+1

R = 11

∆i
L = 11, ∆i

R = 1006

∆i+1

L = 62, ∆i+1

R = 11

Fig. 5. Example of a bipartite subgraph embedded in the differential (graph) of Simon32.



Table 5. Differential trails for Simon32, Simon48 and Simon64.

Simon32 Simon32 Simon48 Simon64

r ∆L ∆R log2p ∆L ∆R log2p ∆L ∆R log2p ∆L ∆R log2p

0 400 1900 −0 0 40 −0 200020 80088 −0 4000000 11000000 −0
1 100 400 −2 40 0 −0 880008 200020 −4 1000000 4000000 −2
2 0 100 −2 100 40 −2 2 880008 −6 0 1000000 −2
3 100 0 −0 440 100 −2 880000 2 −2 1000000 0 −0
4 400 100 −2 1000 440 −4 200000 880000 −4 4000000 1000000 −2
5 1100 400 −2 4440 1000 −2 80000 200000 −2 11000000 4000000 −2
6 4200 1100 −4 101 4440 −6 0 80000 −2 60000000 11000000 −4
7 1D01 4200 −4 4044 101 −4 80000 0 −0 51000001 60000000 −4
8 500 1D01 −8 10 4044 −6 200000 80000 −2 4000004 51000001 −8
9 100 500 −3 4004 10 −2 880000 200000 −2 41000011 4000004 −4
10 100 100 −2 1 4004 −4 2 880000 −4 0 41000011 −8
11 500 100 −2 4000 1 −2 880008 2 −2 41000011 0 −0
12 1500 500 −3 0 4000 −2 200020 880008 −6 4000004 41000011 −8
13 4000 0 −0 80088 200020 −4 51000001 4000004 −4
14 200 80088 −6 60000000 51000001 −8
15 80888 200 −2 11000000 60000000 −4
16 4000000 11000000 −4
17 1000000 4000000 −2
18 0 1000000 −2
19 1000000 0 −0
20 4000000 1000000 −2
21 11000000 4000000 −2

∑
r
log2pr −34 −36 −48 −72

log2pdiff −34.00 −29.69 −42.11 −60.40
#trails 1 45083 112573 450536

log2pthres −4.05 −4.05 −4.05 −4.05
pDDT 128 128 128 128
Time: 36 min. 47 min. 132 min. > 778 min.

In Fig. 5 is shown an example of a complete bipartite subgraph (biclique) similar to the ones
composing the digraph in Fig. 9. Note that each node has the same left input difference ∆L due to
the Feistel structure of Simon.

Consider the pair of left and right input differences (∆i
L, ∆

i
R) = (11, 106) (hexadecimal values).

Through the non-linear component f(x) = (x ≪ 1)∧ (x ≪ 8) of the round function, the difference
∆i

L = 11 propagates to a set of output differences. This set has the form ∇ = 000* 000* 00*0 00*0,
where ∗ can take values 0/1. Note that for some assignments of the ∗ bits, the resulting difference
may have zero probability as was explained in Sect. 2.2, Fig 2. For ∇ = {0122, 0102, 0120} three
distinct output differences ∆i+1

L from one round of Simon are produced. They are shown as the
three lower level nodes in Fig. 5 and are obtained as ∇⊕ ((∆i

L ≪ 2)⊕∆i
R) = ∇⊕ (44)⊕∆i

R.

Another node with the same input difference ∆i
L to the round function, but with different

right difference ∆i
R e.g. (∆i

L, ∆
i
R) = (11, 104) (see Fig. 5) produces a corresponding set of output

differences ∇′, which may or may not have common elements with ∇ in general. For example, in
this case ∇′ = {0100, 0120, 0122} produced by the node (11, 104). In either case though, ∇ and
∇′ may still produce the same set of output differences (∆i+1

L , ∆i+1
R ). When this happens then a



Table 6. Differential trails for Speck32, Speck48 and Speck64.

Speck32 Speck48 Speck64

r ∆L ∆R log2p ∆L ∆R log2p ∆L ∆R log2p

0 8054 A900 −0 202040 82921 −0 9 1000000 −0
1 0 A402 −3 480901 94009 −7 8000000 0 −2
2 A402 3408 −3 80802 42084A −7 80000 80000 −1
3 50C0 80E0 −8 400052 504200 −7 80800 480800 −2
4 181 203 −4 820200 1202 −5 480008 2084008 −4
5 C 800 −5 9000 10 −4 6080808 164A0848 −7
6 2000 0 −3 80 0 −2 F2400040 40104200 −13
7 40 40 −1 800000 800000 −0 820200 1202 −8
8 8040 8140 −1 808000 808004 −1 9000 10 −4
9 40 542 −2 800084 8400A0 −3 80 0 −2
10 80A0 2085A4 −4 80000000 80000000 −0
11 808424 84A905 −7 80800000 80800004 −1
12 80008004 84008020 −3
13 808080A0 A08481A4 −5
14 40024 4200D01 −8

∑
r
log2pr −30 −47 −60

log2pdiff −30.00 −46.48 −59.02
#trails 1 384 934

max HW 7 7 7

log2pthres −5.00 −5.00 −5.00
pDDT 230 230 230

Time: ≈ 240 min. ≈ 260 min. > 207 min.

biclique is formed. This is shown in Fig. 5 where both ∇ and ∇′ result in the same set of output
differences (∆i+1

L , ∆i+1
R ) ∈ {(4, 11), (26, 11), (6, 11)}.

In general, when the sets ∇, ∇′ produced from two different pairs of input differences have high
(and possibly equal) probabilities, the complete subgraphs that are formed as a result, have thick
edges (corresponding to high probability). Such subgraphs contribute to the clustering of differential
trails in Simon.

Note that the described subgraphs may not be formed for all possible elements in ∇ of an
arbitrary node since, as already mentioned, some of them may propagate with 0 probability through
the non-linear component f . Furthermore, because the complete bipartite subgraphs depend on the
input differences, they can not occur at arbitrary positions in the digraph (Fig. 9). The frequent
occurrence of such special subgraph structures in Simon in large numbers is the main cause for the
strong differential effect observed experimentally using the tool for differential search.

7 Key Recovery Attack on Simon32

In this section we describe a key recovery attack on Simon32 with 64 bit key. The input difference
to Round-r is denoted as ∆r−1 and, bit positions i1, i2, .., it of x as x[i1, i2, .., it]. Also Kr denotes
the round key for the Round-(r + 1) and Er denotes the encryption function used with r rounds.



7.1 Attack on 19 Rounds

To attack 19 rounds of SIMON32 we add 2 rounds on top and 4 rounds at the bottom of a set of
four 13 round differentials. For this attack consider the following 13 round differentials

D1 : (0000, 0020) → (2000, 0)

D2 : (0000, 0040) → (4000, 0)

D3 : (0000, 0400) → (0004, 0)

D4 : (0000, 0800) → (0008, 0)

The truncated difference at the beginning of Round-0, for the above mentioned differentials look as
following:

(00*0 0000 1*00 0000, **00 001* *0*0 0000)

(0*00 0001 *000 0000, *000 01** 0*00 000*)

(0001 *000 0000 0*00, 01** 0*00 000* *000)

(001* 0000 0000 *000, 1**0 *000 00** 0000)

Observing the active and inactive bit positions of the above truncated differentials we can construct
a set 223 plaintexts where each P = (PL, PR) ∈ P has 9 bits, e.g. PL[0, 5, 6, 10, 11, 14, 15], PR[13, 14]
fixed to an arbitrary value. We can identify 225 pairs of plaintexts (for each differential) from P so
that the pairs satisfy the corresponding (∆2

L, ∆
2
R) after two rounds of encryption. For this we need

to guess the following round-key bits – (D1)K
0[12, 14], (D2)K

0[13, 15], (D3)K
0[1, 3], (D4)K

0[2, 4].
Hence with 4 key guesses, 4 sets of 223 pairs of plaintexts corresponding to a differential Di can be
identified (where each pair in a set follows the top 2-round differential obtained from Di). Note that
by varying some fixed bits of plaintexts in P we can identify 230.5 pairs for each differential and for
each (2 bits) key guess.
Each set of identified 230.5 pairs of plaintexts is filtered by verifying the fixed bits of the corresponding
truncated difference ∆18. This reduces the number of pairs to 230.5−18 = 212.5 for each differential.
In order to partially decrypt each pair of ciphertext it is necessary to guess the following key bits
(and linear combinations of key bits) from last 3 rounds.

DK
1 = {K18,K17[3, 5− 8, 12, 14],K16[6]⊕K17[4],K16[4]⊕K17[2]} (9)

DK
2 = {K18,K17[4, 6− 9, 13, 15],K16[7]⊕K17[5],K16[5]⊕K17[3]} (10)

DK
3 = {K18,K17[8, 10− 13, 1, 3],K16[11]⊕K17[9],K16[9]⊕K17[7]} (11)

DK
4 = {K18,K17[9, 11− 14, 2, 4],K16[12]⊕K17[10],K16[10]⊕K17[8]} (12)

In each differential we need to guess 25 bits (and linear combination of bits) from last 3 round-
keys. So, for any differential Di it is necessary to guess: 25+2 (from K0) = 27 bits. For key recovery
attack let us first consider the two differentials D1 and D2. Note that there are 19 bits common
between DK

1 and DK
2 . For detecting the correct key we maintain an array of counters of size 227 for

each D1 and D2. A counter is incremented when it is correctly verified using a partially decrypted
pair of plaintexts by comparing with corresponding ∆15. For each differential D1 and D2, we expect
to have (227 × 212.5)/214 = 225.5 increments. We expect approximately 4 correct pairs for each



differential and the probability of a counter being incremented is 1/22. So, it is expected to have
(14)

4 × 225.5 = 217.5 counters with 4 increments for each case. Let these two sets of counters be T1

and T2. Since DK
1 and DK

2 has 19 common key bits, after combining T1 and T2 we expect to obtain
217.5 × (217.5/219) = 216 candidates for 19 + 6 + 6 + 4 = 35 bits. Let us denote this set of counters
as T ′.

Next we partially decrypt 212 pairs of ciphertexts corresponding to D3 to verify the difference
∆15 for each 27 bit key guess. As described previously, we maintain an array of 227 counters. A
counter is incremented when it is verified correctly by a pair of ciphertexts. The expected number
of counters having value 4 is 217.5. Let us denote this set of counters as T3. D

K
3 and DK

1 ∪ DK
2 has

20 common round-key bits. Hence, combining T3 and T ′ we expect to get 216 × (217.5/220) = 213.5

candidates for 35 + (25 + 2 − 20) = 42 round-key bits (out of which 36 bits correspond to last 3
round keys).

Using the fourth differential D4 in a similar way we obtain 29 candidates for 42+(25−22)+2 = 47
bits of round-keys, from which we can determine 39 bits of last 3 round-keys.

In order to recover the key we should know all the last 4 round-keys. For the remaining 64−39 =
25 bits of last four round-keys we use exhaustive search. Hence the total number of key guesses is
29+25 = 234.

Attack Complexity The time complexity for encrypting plaintexts is 231.5. In the key guessing
phase 212 filtered pairs are decrypted for last 4 rounds for each 225 key guesses. This is done for
each differential. The partial decryption of ciphertext pairs (and increment of the counters) can be
done in steps with partial key guess at each step of the last four rounds. This is done by filtering
(due to the fixed bits of the truncated differences) at the beginning of Round-16 to Round-18. The
complexity for this process is given as:

4 · 4 · (212.5 · 216 + 212.5 · 29 · 27 + 212.5 · 22 · 22) ·
1

19
≈ 233 (13)

For identifying the 230.5 pairs with 4 key guesses for each differential requires 231.5 · 22 = 233.5 two
round encryptions. The complexity due to this part is 233.5 × 4 × (2/19) ≈ 232. Hence the total
complexity of the attack is ≈ 234.

We also show attacks on round-reduced Simon48 and Simon64. The details of these attacks
are described in appendix (C and D).

8 Key Recovery Attack on Speck32

In this section we describe a chosen plaintext (CP) attack on 11 rounds of Speck32 using the
same notations as in Section 7. To attack Speck32 we use the 9 round differential trail with
probability 2−30 given in Table 6. We add one round (Round-1) at the top of the trail and one
round at the bottom (Round-11) of the trail to cover 11 rounds in total. If we encrypt 230 pairs of
plaintexts such that (∆1

L = 8054, ∆1
R = A900), then it is expected to produce 230 × 1

230
= 1 pair of

plaintext satisfying the input/output differences at Round-2 and Round-10 and, 230× 1
228

= 4 pairs
of plaintexts satisfying the input/output differences at Round-2 and Round-9.

The key recovery attack is performed according to the following steps:



0100 0000 0000 0000
≪ (1)

≪ (8)

&

≪ (2)

0000 0000 0000 0000

*000 0000 0*00 0000

Kr

*000 0000 0*00 0001
≪ (1)

≪ (8)

&

≪ (2)

0100 0000 0000 0000

0*00 000* *000 00**

Kr+1

0*00 000* *000 01**
≪ (1)

≪ (8)

&

≪ (2)

*000 0000 0*00 0001

*000 0*** 0*00 ****

Kr+2

*000 0*** 0*01 ****
≪ (1)

≪ (8)

&

≪ (2)

0*00 000* *000 01**

Kr+3

Fig. 6. Truncated difference (in binary notation) in the last 4 rounds of the 18 and 19 round key-recovery attacks on
Simon32.



0100 000* 0000 01*0
≪ (1)

≪ (8)

&

≪ (2)

*000 0**0 0*01 **0*

Kr

0000 0000 0000 0001

0000 0000 0000 0001

≪ (1)

≪ (8)

&

≪ (2)

0100 000* 0000 01*0

0100 0000 0000 0000

Kr+1

Fig. 7. Top 2 rounds in the attack of Simon32

≫ (7)

1000 0000 0100 0000

1000 0001 0000 0000

≪ (2)

1000 0001 0100 0000

0000 0101 0000 0010

K9

Pr = 2−2(Round-10)

≫ (7)

0000 0000 0100 0000

1000 0000 0000 0000

≪ (2)

0000 0101 0100 0010

K10

Fig. 8. Differential trail for Round-10 and Round-11 in SPECK32



1. Filtering: The least significant 7 bits of difference after the modular addition at Round-10 are
always 100 0000. This implies that ∆10 should be of the form **** **** *100 0000, where *

denotes unknown bit values. Hence 230 pairs of plaintext/ciphertexts can be filtered by unrolling
the output difference of ciphertexts and verifying the 7 bits of ∆10. This reduces the number of
pairs to 230−7 = 223.

2. Partial Key Guessing: For the filtered pairs, we guess all 16 bits of K10 and 11 bits of K9(e.g.
K9[5−15]) and, one carry bit at bit position 5 (in the modular addition at Round-10). For each
of these 228 partial key (and carry bit) guess we keep a counter. A counter is incremented if
after partially decrypting (last 2 rounds) a pair of ciphertexts satisfies the difference (∆9

L, ∆
9
R) =

(8040, 8140). This will result in (228× 223)/225 = 226 increments of all the counters. Probability
of a counter getting incremented is 226/228 = 1

22
and, 4 pairs are expected to satisfy the condition

at the end of Round-9. Hence, number of counters incremented by 4 are 226 × ( 1
22
)4 = 218.

3. Exhaustive Search: For the remaining 64 − 27 = 37 bits from the last rounds keys K9,K8,K7

we use exhaustive search.

Attack Complexity The complexity for decrypting of 223 ciphertext pairs for each 228 guesses of
key bits and carry bit is, (228 · 223) · 1

11 ≈ 247. The total number of key guesses is 218 · 237 = 255.
Hence, total complexity is dominated by ≈ 255.

With the same attack strategy, we also attack Speck48 and Speck64. The details of those
attacks are described in appendix (A and B).

9 Conclusion

In this paper were presented new results on the differential analysis of lightweight block ciphers
Simon and Speck. In particular, by applying new techniques for the automatic search of trails
and differentials in ARX ciphers, several previous results were improved. Those improvements were
further used to mount the currently best known attacks on several versions of Simon and Speck. In
addition an efficient algorithm for the computation of the DP of the AND operation was presented.
A detailed analysis of the strong differential effect in Simon was given and the reason for it was
analyzed. The described methods are general and are therefore applicable to other ARX designs.
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Fig. 9. Clustering of multiple trails satisfying the 21 round differential (4000000, 11000000) → (11000000, 4000000)
in Simon64. The thickness of the edges between two nodes is proportional to the number of right pairs that follow
the differential. The graph depicts more than 275 000 differential trails in total.
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Appendix

A Attack on Speck48

To attack Speck48, with key size 72, we use 10 round differential in table with probability 2−39.46.
By adding one round at the top and one round at the bottom we can attack 12 rounds of the
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cipher. We encrypt 242 pairs of plaintext so that they satisfy the input difference (202040, 82921)
at the beginning of Round-2. The expected number of good pairs at the end of Round-11 is ≈ 4.
By partially decrypt the last round, 242 pairs of plaintext is filtered to yield 242−25 = 217 pairs of
plaintexts. Next, we guess 24 bits of the last round key and decrypt the last round. If we keep a
counter for each key guess, which are incremented when a key is suggested as correct candidate
by a pair of cipher texts, then the total number of increment is (224 × 217)/223 = 218. Since, the
probability of a counter having an increment is 218/224 = 1

26
, we expect exactly one counter having

4 increments, which corresponds to the correct key. By guessing the next two round key successively
in the same way we can recover the whole key. The complexity due to the key guessing phase of at-
tack is: 218×224× 1

12+218×224× 2
12+218×224× 3

12 = 241. Hence, the total complexity is 241+243 ≈ 243

In order to attack Speck48 with key size 96 bit, we should recover the last four round keys.
The attack can be performed in the similar way as described above. However, we need to proceed
one more round from the bottom during the key guessing phase. The complexity for this phase is:
218 × 224 × 1

12 +218 × 224 × 2
12 +218 × 224 × 3

12 +218 × 224 × 4
12 ≈ 242. Hence, the overall complexity

remains the same as before.

B Attack on Speck64

To attack Speck64 with key size 96, we use the 14 round differential trail obtained by threshold
search method. To attack 16 rounds of the cipher we add one round at the top and one round at the
bottom. 262 pairs of plaintexts are chosen so that they satisfy the input difference (9, 1000000) to
Round-2. Since probability of 14 round differential is 2−60, it is expected to have approximately 4
good pairs at the end of Round-15. Note that the difference at the end of Round-15 is (∆L, ∆R) =
(40024, 4200d01). So, the difference after modular addition at Round-16 should have the least
significant bit active. Using this together with ∆15

R (input difference on the right to round-16) we
filter out some pairs of cipher texts (obtained from the 262 chosen plaintext pairs) by using the
partial difference at the end of Round-15. 262−33 = 229 pairs are left after filtering. We guess the
round key K15 by keeping an array of counter for each guess and, a counter is incremented when it
is verified with the fixed difference after partial decryption of pair of cipher texts. Total number of
increments is given as (232×229)/231 = 230. Since probability of a counter being incremented once is
22, we expect 1

(22)4
× 230 = 222 counters having 4 increments. Each of these 222 counter corresponds

to a candidate for round key K15. In order to recover the key we need to know the round keys K14

and K13. So, we proceed by guessing K14. But, in this phase we maintain an array of 254 counters,
each for 222+32 = 254 possible key candidates for K15, K14. Expected number of increments of the
counters is: (222 × 229 × 232)/232 = 251. The number of correct pair after decrypting the cipher-text
pairs for last two rounds is expected to be 22 · 28 = 210. Hence, after this phase we will get one key
candidate for K15,K14 (total 64 bits). Recall that for recovering the key we need to know the last
3 round-keys. For K13 we use exhaustive search which requires 232 key guessings.

Attack Complexity The complexity of the attack is dominated by the key guessing phase. The
complexity during this process is given as

232 × 230 ×
1

16
+ 222 × 230 × 232 ×

1.5

16
≈ 280



Hence the attack complexity is dominated by 280.

The attack on Speck64 with 128 bit key can be performed in a similar way as described above.
However, in this case we need to know the last four round keys. Hence, we perform the partial
decryption of ciphertext pairs by guessing a round-key for one more round. The complexity for the
key guessing and verifying with fixed difference after partial decryption is

(232 × 230 ×
1

16
+ 222 × 230 × 232 ×

1.5

16
+ 232 × 222 ×

3

16
) ≈ 280

Hence in this case also the complexity of the attack is ≈ 280.

Note that for both 128 bit and 96 bit key sizes the complexity can be reduced to ≈ 273 if we use
the full code book i.e. 264 data.

C Attack on Simon48

C.1 Attacking 19 Rounds

We use the 15 round differential in Table 5 to attack 19 rounds of Simon48, with key size 72.
We add one round on top of this differential and 3 rounds at the end. Since, the probability of
the differential is 2−42.11, using 245 pairs of chosen plaintexts we expect to get approximately 8
good pairs at end of Round-16. Propagating the difference (80888, 200) through Round-17 and
Round-18 we get a truncated difference ∆17

L = (001* *000 *01* *00* 001* *000) and ∆′ =
(**** *00* 0*** *0*0 1*** *000), where ∆′ is the output difference before XORing of round-
key and ∆17

L ≪ 2. Using this truncated difference and unrolling the differences from Round-19 we
can filter the plaintext/ciphertext pairs. This leaves 245−25 = 220 pairs of plaintexts.
By guessing 29 round-key bits K18[1−6, 8−23],K17[0, 4, 10, 12, 14, 18, 20] and, a linear combination
K17[2] ⊕ K18[0] we can partially decrypt a pair of ciphertexts to verify ∆16 = (80888, 200) This
is done by maintaining an array of 230 counters. A counter is incremented when it is suggested
by a plaintext pair. Hence, the total number of increment is (230 × 220)/223 = 227, implying that
the number of counters incremented by 8 is expected to be ( 1

23
)8 × 227 = 23. For the remaining

(72− 30) = 42 bits of the last three round-keys we use exhaustive search. Hence the total number
of key guesses is 242 · 23 = 245.

Attack Complexity The complexity for encrypting plaintexts is 246. During the guessing process
of 30 bits of key(and linear combination) complexity is given as

(221 × 222 + 221 × 27 × 27)×
1

19
≈ 239

Hence the complexity is ≈ 246.

For attacking Simon48 with key size 96 bits, we use the same technique described above. How-
ever in this case we need to know last 4 round-keys. So, after the first stage of the key guessing, we
will be left with 96− 30 = 66 bits to guess. For this we use exhaustive search and, the total number
of key guesses is 266+3 = 269.



C.2 Attacking 20 Rounds

To attack 20 rounds of the cipher we use the same technique used for Simon32. The idea is to
add 2 rounds on top of the 15 round differential instead of 1 round. If the difference to Round-3
∆3 = (200020, 80088), is propagated through Round-2 and Round-1, the we get

∆0
L = 000* 0000 *000 *01* 000* *000

∆0
R = ***0 *0** 00** ***0 1*** 1000

We construct a set of plaintexts P of size 220 by varying the bit positions in P = (PL, PR) cor-
responding to * in all possible ways and keeping other bit positions fixed to an arbitrary value.
Using this set P and guessing 6 bits of the round key K0 we can identify 220 pairs which satisfy
the input difference to Round-3. Now by varying the fixed bit positions( 225 times ) we can identify
245 pairs of plaintexts satisfying the input difference to Round-3. Next we perform the attack as
described before (on 19 rounds) for each key guess of K0. The complexity of the attack will be
roughly 26 × 246 = 252 and 26 × 269 = 275 for key size 72 and 96 respectively.

D Attack on Simon64

D.1 Attack on 26 rounds

To attack Simon64, with key size 96, we use the 21 round differential with probability 2−60.53

(see Table 2). We add one round on the top and 4 rounds at the bottom of the differential.
Since the probability of the differential is 2−60.53, using 262 pairs of chosen plaintexts we expect
to get approximately 2− 3 good pairs at end of Round-22. Propagating the difference (∆22

L , ∆22
R ) =

(11000000, 4000000) through Round-23, Round-24 and Round-25 we get a truncated difference with
35 known bits, input to Round-26:

∆25
R = (**01 **01 0000 0000 000* 000* 0**0 0**1)

∆25
L = (*0** *1*0 000* 000* 0**0 0*** **0* ****)

Using this truncated difference and unrolling the differences from Round-26 we can filter the
plaintext/ciphertext pairs. This leaves 262−35 = 227 pairs of plaintexts. By guessing 49 round-key
bits

Round− 26 : K25[0− 15, 17− 31]

Round− 25 : K24[0, 2− 5, 7, 9, 11, 13, 16, 20, 22, 23, 25, 27, 29, 30]

Round− 24 : K23[31]

and linear combinations of round-key bits K23[3] ⊕ K24[1], K23[17] ⊕ K24[15], K23[21] ⊕ K24[19]
we can partially decrypt a pair of ciphertexts to verify (∆22

L , ∆22
R ) = (11000000, 4000000). This is

done by maintaining an array of 252 counters. A counter is incremented when it is suggested by a
plaintext pair. Hence, the total number of increments is (252 × 227)/229 = 250, implying that the
number of counters incremented by 2 is expected to be (250/252)2 = ( 1

22
)2 × 249 = 245. For the

remaining 44 bits of the last three round-keys we use exhaustive search. Hence the total number of
key guesses is 245 · 244 = 289.



Attack Complexity For partial decryption part of the attack the complexity is

(228 × 231 + 228 × 216 × 217 + 228 × 216 × 27 × 24)×
1

26
≈ 259.

Hence the complexity is dominated by the total number of key guessing part, which is ≈ 289.
For attacking Simon64 with key size 128 bits, we use the same technique described above.

However in this case we need to know the last 4 round-keys. So, after the first stage of the key
guessing, we will be left with 128 − 52 = 76 bits to guess. For this we use exhaustive search and,
the total number of key guesses is 245+76 = 2121.
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