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We describe a novel method for the differential analysis of RNA-Seq data that utilizes 

bootstrapping in conjunction with response error linear modeling to decouple biological 

variance from inferential variance. The method is implemented in an interactive shiny app 

called sleuth that utilizes kallisto quantifications and bootstraps for fast and accurate 

analysis of RNA-Seq experiments. 
 
RNA-Seq technology has largely replaced microarray measurement as a tool for identifying gene 

expression differences in comparative and clinical analyses of RNA samples
1
. In analogy with 

microarrays, differential analysis of RNA-Seq experiments requires careful assessment of 

variability of gene expression from few replicate samples, so as to be able to identify biologically 

relevant expression differences between conditions
2,3

. However there are also key differences 

between the technologies. While microarrays measure cDNA hybridization intensities at pre-

defined probes, RNA-Seq provides a de novo sampling of the transcriptome, a feature that makes 

it much more powerful for detecting transcription of individual isoforms of genes, but that also 

complicates differential analysis. 
 
Many methods have been developed for differential analysis of RNA-Seq data

4
. Some of these 

seek to translate ideas developed for microarray analysis to the RNA-Seq setting
5
 whereas others 

are based on models tailored to RNA-Seq
6–10

. One of the key differences between RNA-Seq and 

microarray technology is that the data of the former consists of counts of reads rather than 

intensities measured at probes, and there has therefore been considerable effort devoted to 

exploring appropriate distributions for the modeling of count-based data in the RNA-Seq 

context
2,3,5,11–14

However the question of how to best utilize RNA-Seq data for differential analysis 

continues to be debated, with disagreements persisting on some of the most basic questions 

such as how to measure the abundance of genes
4
, whether there is sufficient power to test for 

differences in abundance of individual isoforms
15,16

 and how to best utilize biological replicates
17

.  
 
Part of the reason for the continuing uncertainty regarding how best to analyze RNA-Seq data is 

the lack of agreed upon standards for testing and benchmarking methods. In most cases 

accuracy claims are based on simulations of counts of reads from distributions assumed in the 

models, rather than simulations of raw reads
3,5,10,12,14,18,19

. Such count-based simulations typically 

discount the effects of ambiguously mapping reads and fail to capture both the possibilities for, 

and challenges of, isoform-specific differential analysis. Even when simulation studies are based 

on reads, they are sometimes restricted to a small portion of the transcriptome
20,21

 thereby 

biasing results due to the dependence of some methods on transcriptome-wide data for obtaining 

variance estimates from replicates. Studies utilizing biological data frequently make use of 

questionable choices for “ground truth”, e.g. utilizing results from microarrays, or from a 

differential analysis with a method that is imperfect
20

. The resulting benchmarks are therefore 
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difficult to interpret. 
 
In this work we describe a novel approach to differential analysis of RNA-Seq data, a 

comprehensive framework for benchmarking our method and others that is unprecedented in its 

scale and scope, and interactive visualization software for exploring the results of our method and 

the data they are based on. The latter is crucial for providing transparency in assessing our 

results, and has the benefit of offering users a convenient tool for exploratory data analysis. 

Throughout the paper we use the name sleuth to refer both to our statistical method, as well as 

the app that allows for working with and exploring results. 
 
The motivation for the conceptual approach underlying sleuth is illustrated in Figure 1. A key 

element of sleuth is borrowed from previous work
3,5

, namely shrinkage to stabilize variance 

estimates from few samples. But sleuth is able to leverage recent advances in quantification
22 

to 

obtain error estimates for quantifications that can in turn be used to decouple biological variance 

from inferential variance before shrinkage. A few other methods have attempted to compute and 

utilize error estimates on quantifications, but some major computational and statistical hurdles 

have been difficult to overcome. For example, the BitSeq method
10

 obtains quantification error 

estimates via Markov Chain Monte Carlo sampling, a process that requires significant, and in 

some cases prohibitive, computational resources. An update to the initial paper introduces 

quantification using variational Bayes, however it is not recommended for use in differential 

analysis
23

. The Cuffdiff 2 method
24

 also performs sampling to assess variance arising from 

quantification but has some model limitations: Cuffdiff 2 fails to accurately assess the increase in 

variance due to reads mapping ambiguously across the genome. EBSeq
15

 also models inferential 

variance, but does so in discrete classes that only act as a proxy for high inferential variance.  
 
Thus, sleuth is able to improve on traditional “count-based” methods by utilizing improved 

estimates of transcript and gene abundances in a flexible and powerful statistical framework. The 

sleuth concept is illustrated by example in Figure 1 via the tracing of genes whose abundances 

are difficult to estimate. In the example shown, which is based on a gene-level analysis of data 

from Bottomly et al.
 25

, genes with high inferential variance (red dots in Figure 1a) are lumped 

together with genes with high biological variance by DESeq2 (Figure 1b). This makes it difficult to 

correctly assign a high total variance to those genes prior to differential analysis (Figure 1c). 

Unlike DESeq2, by decoupling biological and inferential variance (Figure 1c, d), sleuth assigns a 

high total variance to most of the genes with high inferential variance (Figure 1e).  
 
The key innovation in sleuth, namely the explicit modeling of biological and inferential variance, is 

performed with a response error model (see Methods and Supplementary Materials). The model 

is simple, transparent and its parameters are easily interpretable. Inference of parameters is 

straightforward (see Supplementary Materials). Thus, when coupled with kallisto
22

, which is fast in 

both the quantification and variance estimation, sleuth provides a statistically rigorous, flexible 

and efficient solution for RNA-Seq analysis. 
 

Results 

 
Modeling inferential variability  

 
The fundamental issue in differential analysis of RNA-Seq experiments is quantifying the variance 

in experiments so that true differences in expression can be identified as such. There are multiple 

sources of variance that contribute to the total variance observed between samples in an RNA-

Seq experiment which we group into two classes: (1) “biological variance” which is a term used to 

describe variance in transcript abundance of biological and experimental origin and (2) “inferential 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/058164doi: bioRxiv preprint first posted online Jun. 10, 2016; 

http://dx.doi.org/10.1101/058164
http://creativecommons.org/licenses/by/4.0/


variance” which is a term we use to describe both variance in the number of reads sequenced 

from a transcript due to the random nature of sequencing as well as the variance that emerges as 

a result of the statistical nature of transcript abundance estimation with ambiguously mapping 

reads. In the absence of ambiguously mapping reads there is no increase in inferential variance 

as the origin of each read can be inferred exactly. However when reads map to many transcripts 

the read counts must be deconvoluted to obtain the abundance estimates
8
 leading to uncertainty 

in abundance estimates which translates into variance in quantification across samples. 
 
Response error modeling

26
 allows for the separate modeling of biological variance and inferential 

variance. The use of the bootstrap during quantification allows us to estimate the inferential 

variance directly for each sample
22

, whereas biological replicates allow us to estimate the total 

variance, albeit via shrinkage due to the limited number of replicates in most experiments (see 

Methods). The biological variance can then be estimated (see Supplementary Materials). In 

Figure 1 we illustrate this procedure by first showing the inferential variance versus the mean at 

the gene level (Figure 1a). Notice that for many genes the inferential variance is much higher than 

the expected Poisson variance (which is assumed by most methods). We track the outliers in red 

throughout all of Figure 1. Figure 1b shows the total variance when estimated using DESeq2 (raw 

estimate on left, final shrinkage estimate on right). The inferential variance outliers are randomly 

distributed throughout the mean variance relationship since there is no additional information 

about the inferential variance. Figure 1c shows the raw estimate of the total variance in sleuth 

without any knowledge of the inferential variance. Here, the red points are randomly distributed, 

while Figure 1d shows the biological variance after the inferential variance has been removed. 

Many of the red points are distributed near biological variance zero. These points have more 

inferential variance than biological variance. The points with nonzero biological variance are a mix 

of points where the total variance is very high or inferential variance is very low. Sleuth performs 

shrinkage on these estimates (blue line). Figure 1d displays the final estimates of the total 

variance, which are the smoothed biological estimates plus the inferential variability estimates 

(Figure 1a). Due to the shrinkage procedure, the red points have the highest total variance and 

are penalized heavily as a result unlike the final variance in Figure 1b and 1c.  
 

Improved accuracy in differential gene analysis 

 
In order to test the performance of sleuth in differential gene analysis we examined both 

simulated and real data and compared it to numerous other widely used methods. Our simulation 

was derived from an experiment with two conditions and three replicates in each condition (see 

Methods). We simulated biological variance (dispersion) according to the negative binomial model 

for counts used by DESeq2
19

 (see Methods). To be able to accurately assess performance, each 

simulation was performed with 20 replicates. 
 
Figure 2 shows the result of our method in identifying differentially expressed genes, alongside 

results from Cuffdiff 2
24

, DESeq
3
, DESeq2

19
, EBSeq

15
, edgeR

11,18
, voom

5
, and log fold change

20
. 

The sensitivity of sleuth is higher than all other methods in the false discovery rate (FDR) range of 

usual interest and beyond, up to FDR 0.3. The figure also shows that as expected, DESeq2 has 

more power than DESeq at all the relevant FDRs, and that the naïve approach of ranking genes 

by log-fold change produces poor results. Even when benchmarked in simulation conditions 

favorable to traditional “count-based” methods, sleuth outperforms other programs 

(Supplementary Figures 3-8). We also examined the effect of different filtering strategies on 

performance by comparing sleuth with other programs on a common filtered set of genes, 

showing that sleuth maintains its advantage independent of filtering (Supplementary Figures 9-

14). 
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Estimation of false discovery rate 

 
Since the control of the false discovery rate is fundamental for identifying differentially expressed 

genes in experiments with few replicates, we examined carefully the accuracy of methods in self-

reporting their false discovery rates
27

. This was easy to do with our simulated data where the truth 

was known. In Figures 2 and 4 the circles, squares, and diamonds represent the average 

estimated FDR output by each program across the 20 replicates performed for each simulation 

scenario. Other than sleuth and voom, other methods significantly underestimated the FDR with 

several methods reporting an estimated FDR of 0.01 when the true FDR was greater than 0.1. 

While sleuth overestimates the FDR, this error is conservative, i.e. fewer genes are reported, yet 

they are highly enriched for being differentially expressed.  
 
To test whether our results translated to FDR estimation accuracy on real data, we repeated an 

experiment from the DESeq2 paper
19

. Using the Bottomly data set
25

, which contains multiple 

replicates from two mice strains (10 and 11 respectively), we created a training set by randomly 

selecting 3 versus 3 samples and using differential expression results from the remaining 7 

versus 8 as the “truth”. Each method was compared to itself to see how well it could recapitulate 

its results with a smaller set of data and how it controlled the FDR as assessed by comparing to 

the results of the high replicate analysis. We iterated this procedure 20 times. Figure 3a shows 

that as in the simulation, sleuth and voom are the only methods able to estimate their FDR to 

within a reasonable approximation. 
 
To see whether the consistency experiment provided results concordant with those of our 

simulations, we performed the consistency experiment with simulated data. The results are 

shown in Figure 3b, which illustrates both that our simulated data recapitulates the results on real 

data, and that the self-referential FDRs are good proxies for true FDRs, thus validating the 

reliability of the DESeq2 consistency experiment. 
 

sleuth allows for isoform-level differential analysis 

 
While RNA-Seq has become the standard technology for gene-level differential analysis, there 

has been some debate about its suitability and power for isoform-level differential analysis. In 

previous work, we and others have provided examples of how isoform-level differential analysis 

can highlight interesting splicing and differential promoter usage between conditions
24,28

 but there 

has been debate about the significance and reliability of such results
16,20

.  
 
In order to examine this question, we repeated the gene-level analysis at the transcript level (see 

Figure 4). We confirm previous findings that because increased testing is required for isoform-

level analysis, there is a decrease in sensitivity in comparison to gene level analysis. However we 

also find that sleuth can still control the false discovery rate at the isoform level while calling many 

isoforms differentially expressed. Interestingly, while there is less power to discover differentially 

expressed isoforms, our simulations show that at a given FDR the number of differentially 

expressed features is fairly similar to that of genes (isolines in Figures 2, 4, and Supplementary 

Section 9). Moreover, when simulating from a scenario in which isoform abundances change 

independently between conditions (Supplementary Figures 1-4), we find highly significant 

improvements in sleuth with respect to other methods. The same is also true for the correlated 

effect simulation. In addition, we tested BitSeq
10

 (Supplementary Figures 15 and 16) on a single 

sample as its run-time was prohibitive on the entire simulation set. We found BitSeq performed 

well overall although sleuth outperformed it when the true FDR was less than 0.12. 
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Interactive exploratory data analysis using sleuth 

 
The interpretation and analysis of RNA-Seq data is complicated by a number of factors: the large 

quantity of reads sequenced in typical experiments (many millions) and the large number of 

transcripts / genes (typically tens of thousands) make it difficult to interactively examine the data. 

However exploratory data analysis is important both for understanding how to analyze the data 

and in the formation of hypotheses about the results. To address this issue, and to make it 

possible to evaluate and assess the results of sleuth, we have developed a Shiny
29

-based 

interactive app for examining sleuth results.  
 
Figure 5 shows some screenshots from a sleuth analysis of the Bottomly data

25
. Figure 5a shows 

the principal component analysis of the data set colored by the different conditions. One can see 

that the first two principal components do not segregate the data by experimental condition 

(mouse strain). Figure 5b shows how one can use the drop-down menu to change the coloring, 

revealing that the first two principal components seem to explain some of the variation due to the 

batch. In addition, there are many other features assisting in exploring the data, such as the 

ability to view, sort and search the table of differential expression results. For example, sorting by 

the inferential variability and then by largest p-values, we find transcript ENSMUST00000113388, 

which is not reported as differentially expressed by sleuth, but is reported as differentially 

expressed by both voom and DESeq2. This is likely due to the high inferential variability which is 

not being properly assessed and adjusted for by those programs. The transcript name can be 

pasted into the "transcript view" window and the distribution of inferential variability can be 

explored with boxplots describing the variability within each sample (Figure 5c). 
 

Discussion 

 
RNA-Seq experiments produce data that is complex in structure and rich in information. This data 

presents an unprecedented opportunity for studying transcriptional mechanisms and, but its 

analysis is fraught with challenges. In the case of differential expression, the large volumes of 

data and the large sizes of transcriptomes have made it difficult to explore results “by hand” in 

order to gain intuition and insight into the experiments. “Count-based” methods for differential 

analysis have been popular partly because they are simple in their approach and present 

researchers with numbers to examine that are easy to relate to. However the simplicity of count-

based methods comes at a cost: by ignoring the complexity of ambiguously mapped reads they 

introduce biases that can have detrimental effects on results
24

. 
 
The sleuth model provides a solution to a perplexing difficulty in RNA-Seq analysis: it offers a 

simple yet powerful framework for “counting” even when reads cannot be assigned 

unambiguously to transcripts, and therefore allows for robust and accurate RNA-Seq analyses. 

Our results show that by virtue of appropriately accounting for uncertainty in quantifications, 

sleuth is more accurate than previous approaches at both the gene and isoform levels. Crucially, 

the estimated FDRs reported by sleuth reflect the true FDRs, and therefore make the predictions 

of sleuth reliable and useful in practice. 
 
The sleuth workflow has been deliberately designed to be simple so that it is interpretable and 

fast. The model was chosen in part because of its tractability and the Shiny framework for 

visualization was chosen for its portability. The modularity of the algorithm also makes it easy to 

explore improvements and extensions, such as analysis of more general transcript groups (e.g. 

as defined by shared exons, or 5’/3’ UTRs) and different shrinkage and normalization schemes to 

improve performance. As a result, when coupled with kallisto, which has dramatically reduced 

running times for quantification based on the idea of pseudoalignment, sleuth is a quick, accurate, 

and versatile tool for the analysis of RNA-Seq data. 
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Online methods 

 

Model 
 

We consider an additive response error model
26

 in which the total between-sample variability has 

two additive components: “biological variance” that arises from differences in expression between 

samples as well as variability due to library preparation, and “inferential variance” which includes 

differences arising from computational inference procedures in addition to measurement “shot 

noise” arising from random sequencing of fragments. The model is an extension of the general 

linear model where the total error has two additive components. Given a design matrix x  we 

assume a general linear model for the (unknown) abundanceY
ti
 of transcript t in sample i in 

terms of fixed effects parameters beta and “noise” epsilon  

 
Y
ti
| x

i
= x

i

Tβ
t
+ε

ti. 

 
While theY

ti
 are not directly observed, (normal) perturbations ζ

ti
 of them constitute the observed 

random variables D
ti
: 

 
D
ti
| y ti = y ti +ζti . 

 
With some further assumptions one can derive that the D

ti
 are normally distributed (see 

Supplementary Materials) and the variance, which is the key to differential analysis, can be 

interpreted as the sum of biological (ε
ti
) and inferential (ζ

ti
) variance. 

 

Testing for differential expression 
  

In comparing samples to identify differential expressed genes or transcripts, sleuth applies the 

likelihood ratio test where the full model contains labels for the samples and the reduced model 

ignores labels. Underlying the test is an estimate of the variances V (D
ti
) where t ranges over the 

transcripts and i over the samples. The estimate for V (D
ti
) used in sleuth is 

 

V̂ (D
ti
) =max( !σ

t

2
,σ̂

t

2
)+ τ̂

t

2  

 

where τ̂
t

2
is the estimate of the inferential variance, σ̂

t

2
the raw biological variance and !σ

t

2
 a 

shrinkage-based estimator of the biological variance. For details of how the individual variance 

estimates were obtained see the Supplementary Methods. 
 

Simulations 

 
A null distribution for transcript abundances was learned from the largest homogeneous 

population in the GEUVADIS data set: 59 samples of Finnish females
30

. We estimated transcript-

level abundances with kallisto, then estimated parameters for negative binomial distributions 

(using the Cox-Reid dispersion estimator) to model count distributions using DESeq2.  
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After the null distribution was constructed, expression features (isoforms or genes depending on 

the type of simulation) were chosen to be differentially expressed. Transcripts with less than 5 

estimated counts on average across the GEUVADIS samples were marked as too rare to be 

simulated as differentially expressed. A gene was assumed to pass the filter if at least one of its 

constituent transcripts passed the filter. In each simulation, 20% of the features that passed the 

filter were chosen to be differentially expressed at random. If the simulation had unequal size 

factors, random size factors were chosen from the set {1/3, 1, 3} such that the geometric mean 

equaled 1 similar to the simulation procedure in DESeq2. However, unlike the DESeq2 simulation 

procedure our size factors were chosen at random. Counts were generated from the negative 

binomial distribution after which reads were simulated using the RSEM simulator
7
. This resulted 

in about 30 million 75 base-pair paired-end reads per sample for a total of 13.8 billion reads 

overall (Supplementary Tables 2-5). Three types of simulations were performed: 
 

Independent effect simulation  

 
Isoforms were chosen to be differentially expressed at random. This simulation was similar to the 

default in polyester
31

, however our simulation was performed across the entire transcriptome 

rather than just a few chromosomes. The simulations were generated with equal size factors. 

Effect sizes were chosen from a truncated normal distribution such that the minimum absolute 

fold change for differential transcripts or genes was 1.5. 
 

Correlated effect simulation 

 
Genes (instead of isoforms) were randomly chosen to be differentially expressed. A direction 

(sign) for each effect size was chosen at random, then all the effects were simulated from a 

truncated normal with minimum absolute fold change 1.5. The simulation used random unequal 

size factors generated as described above. 
 

Effect from experiment 

 
To mimic the types of changes seen in real experiments, fold changes were learned from Trapnell 

et al.
24

 from the set of transcripts that either DESeq2 or sleuth found to be differentially expressed 

at FDR 0.05. Genes were chosen at random to be differentially expressed. The null mean counts 

were used to determine the rank of each transcript relative to its parent gene. These ranks were 

matched between the Trapnell data set and the null distribution learned from the GEUVADIS data 

set. 
 

Self-consistency experiment 

 
In order to validate whether methods would produce similar results with less data, we performed 

an experiment similar to Love et al.
19

. For each iteration we randomly selected 3 samples from 

condition C57BL/6J and 3 samples from condition DBA/2J and ran each tool. The remaining 

samples were used as the “truth” by calling differentially expressed genes or transcripts using 

them. For each FDR level (0.01, 0.05, 0.10), we compared the results from the smaller data set to 

the larger data set for each tool. The FDR was then computed and plotted in Figure 4. 
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Software notes 

 
The following R programs were used to compile the results:  sleuth 0.28.1, BitSeq 1.16.0, DESeq 

0.24.0, DESeq2 1.12.0, EBSeq 1.12.0, edgeR 3.14.0, limma-voom 3.28.2. When testing 

programs at the isoform-level, kallisto 0.42.4 was used to obtain quantifications. Cuffdiff 2.21 was 

used with alignments from HISAT2 2.0.1
32

. Subread (featureCounts) 1.5.0
33

 was used with 

alignments from HISAT2 to get raw gene counts. BitSeq was provided alignments from Bowtie 

1.1.2
34

. All analyses in the paper are fully reproducible through the Snakemake system
35

. 
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Figure 1: The effect of modeling inferential variance in sleuth at the gene level. Outliers are colored red and 

traced across all plots. A point is an outlier if the variance is greater than 100 times the interquartile range 

plus the upper quartile. (a) Inferential variance on sample XXX. The x-axis is the gene abundance, and the 

y-axis is the bootstrap estimate of the inferential variance. The blue lines represent the 5% confidence 

bound, mean, and 95% confidence bound expected under the Poisson model. (b) Mean expression versus 

total variance as estimated by DESeq2. The left panel contains the raw estimates of the variance. The right 

panel contains the smoothed estimate of the variance. Note that the outliers are fairly randomly distributed 

across variance and expression patterns. (c) Raw total variance as estimated by sleuth. Again, the outliers 

are fairly randomly distributed since they do not consider the inferential variance. (d) Biological variance as 

estimated by sleuth once the inferential variance has been removed. The blue line represents the mean-

biological variance relationship modeled in sleuth. Note that in many cases the inferential variance is greater 

than the biological variance resulting in an estimate of biological variance equal to zero. (e) Final total 

variance as modeled by sleuth. Note that almost all of the outliers have higher abundance than the non-
outliers due to high inferential variance. 
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Figure 2: Sensitivity versus FDR in the "effect from experiment" simulation at the gene level. The x- and y-
axes show the true false discovery rate and sensitivity, respectively, and for each program one has a curve 
showing how those values change as one moves down its ranking of all genes passing its filter. The circle, 
triangle, and square on each curve show where in its ranking that program estimates an FDR of 0.01, 0.05, 
and 0.10 respectively. Ideally, each symbol would lie directly above the corresponding symbol on the x-axis 
indicating a true FDR of 0.01, 0.05, or 0.10. Also displayed are isolines for a constant number of genes 
being called differentially expressed. Where an isoline intersects with the curve for a given program shows 

its performance when looking at that many genes from the top of its ranking. The FDR lines were averaged 
over 20 replications of the simulation. Panel (a) shows the entire plot while panel (b) is zoomed into the 
region where true FDR is less than 0.25. 
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Figure 3: Self-referential FDR for the Bottomly data set and our simulation at the (a) isoform level, and the 

(b) gene level. The suffix “experiment” refers to the Bottomly data set whereas “simulation” refers to our 

simulated experiments to mimic the Bottomly resampling experiment. The panels from top to bottom display 

the true FDR for each program when it estimates the FDR as 0.01, 0.05, and 0.10, respectively. The dashed 

horizontal line represents the target FDR. Only sleuth and voom seem to control the self-referential 

FDR reasonably well at both the isoform and gene level. 
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Figure 4: Sensitivity versus FDR in the "effect from experiment" simulation as in Figure 2 at the transcript 

rather level. 
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Figure 5: Interactive sleuth live Shiny interface on complete Bottomly data set. (a) PCA plot colored by strain 

shows that the strain does not explain much of the variance in the first two principal components. The 

coloring can be changed immediately by drop-down as shown in (b) which indicates that there are possible 

lane effects. (c) Sample specific bootstraps for a particular transcript ENSMUST00000113388, which does 

not show differential expression by sleuth, but shows differential expression by limma and DESeq2. A 
possible explanation for this is that the inferential variance is quite high. 
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