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Differential and Geometric Structure for the Tangent
Bundle of a Projective Limit Manifold.

GEORGE N. GALANIS (¥)

ABSTRACT - The tangent bundle of a wide class of Fréchet manifolds is studied he-
re. A vector bundle structure is obtained with structural group a topological
subgroup of the general linear group of the fiber type. Moreover, basic geo-
metric results, known form the classical case of finite dimensional manifolds,
are recovered here: Connections can be defined and are characterized by a
generalized type of Christoffel symbols while, at the same time, parallel di-
splacements of curves are possible despite the problems concerning differen-
tial equations in Fréchet spaces.

Introduction.

The study of infinite dimensional manifolds and bundles has been se-
riously developed the last decades with a number of applications which
surpass the borders of Differential Geometry. However, several que-
stions remain open, especially for the case of infinite dimensional mani-
folds whose model are not of Banach type.

To be more precise, two problems seem to be of fundamental impor-
tance: The lack of a general solvability theory of differential equations in
non-Banach topological vector spaces and the pathological structure of
general linear groups in this framework. Both, have serious impacts
even at the first steps of the study of the corresponding manifolds.

Concerning, for example, the tangent bundle TM of a smooth mani-
fold M modeled on a topological vector space IF of the aforementioned
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type, we cannot even be sure for the existence of a vector bundle structu-
re on it. Indeed, the classical folklore cannot be patterned here since the
general linear group GL(IF), that serves as the structural group in the fi-
nite dimensional case, does not admit a reasonable Lie-group structure.
On the other hand, even if this obstacle is overcame in some way, the study
of many basic geometric entities of M (e.g. connections, parallel trans-
lations, holonomy groups, ete.) seems also to be under question due to pro-
blems with the solvability of the involved differential equations.

Despite the abovementioned difficulties, the study of certain types of
infinite dimensional manifolds modeled on non-Banach topological vec-
tor spaces is in several cases inevitable because of the extended use of
such type of manifolds in modern Differential Geometry and Mathema-
tical Physics. This need led a number of authors (e.g. [8], [10], [11]) to
study certain types of infinite dimensional manifolds using, in most of
the cases, rather algebraic approaches.

In this paper we study a certain sub-category of infinite dimensional
non-Banach manifolds: Those that are modeled on Fréchet (i.e. locally
convex, metrizable, Hausdorff and complete) spaces. Taking advantage
of the fact that any Fréchet space can be realized as a projective limit of
an appropriate sequence of Banach spaces, we focus further our atten-
tion on those Fréchet-modeled manifolds M that are, correspondingly,
projective limits of Banach manifolds. In a previous work M.C. Abbati
and A. Mania ([6]) worked on projective limits of manifolds by using a
pure algebraic approach. No real differential structure is determined on
them and several fundamental notions are treated only through the pro-
perties of projective limits. So, the tangent bundle of such a manifold
M =lim M i was determined to be the projective limit of its counterparts

on the factors: TM := lim M ! without any other assumptions referring

or providing any differential or vector bundle structure. As a result, the
obtained space is only a topological one since even the local triviality of it
cannot be ensured. Analogous difficulties one faces also in several other
subjects (differentiability of mappings, additional structures) thus the
corresponding geometric properties are set also under question.
Throughout our note, based on a new approach, we overcome the abo-
vementioned problems proving not only that any projective limit mani-
fold M = lim M " can be endowed with a differential structure in the clas-

sical way but also that a vector bundle structure can be defined on its
tangent space TM having a new structural group that replaces the pa-
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thological GL(F). On the other hand, the geometric study of this bundle
goes surprisingly far: Connections can be defined and are characterized
by a generalized type of Christoffel symbols, parallel translation along
curves of M is succeeded and a study of the corresponding holonomy
groups can be attempted.

1. Preliminaries.

In this first Section we introduce the basic notions and all the preli-
minary material needed for a complete and self-contained presentation
of the paper.

As already discussed in the Introduction, we are going to approach
and study infinite dimensional manifolds modeled on Fréchet spaces
based on the algebraic, but also compatible in several cases with diffe-
rential tools, notion of projective limits. Our motivation was, at least par-
tly, the fact that every Fréchet space IF can be always realized as a pro-
jective limit of a sequence of Banach spaces {E'; o7'}; jon: F=lim E’
(see [9]). Using this interpretation we have already studied some funda-
mental problems on F, e.g. solution of linear differential equations ([1]),
Floquet-type theorems in corresponding manifolds ([2]), ete.

On the other hand, this approach gives us the opportunity to partially
overcome one of the main drawbacks in the study of Fréchet spaces with
several reflections in Differential Geometry. Namely, it is well known
that the general linear group GL(F) of F, which keeps a fundamental
role in a number of issues of Analysis and Differential Geometry, is very
difficult to be handled within the framework of Fréchet spaces and ma-
nifolds since it cannot be endowed not only with a smooth Lie group
structure but even with a reasonable topological group structure. Here
we are going to replace GL(F) with a topological and, in a generalized
sense smooth Lie, group defined as follows:

(1.1) Hy(F) = {( Fi)ine EIIGL(Ei) lim £ exists} .

This is a topological group, since it coincides with the projective limit of
the Banach Lie groups

H{(F) := {(ﬁ, e f)e kliIIGL(E’“‘): oafi=frogh (iz)2 k)}
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via the identification

(fi)ieNE ((fl)a(f17f2)a(flaf2af3)7 )

H,(F) may also considered as a «generalized» Lie group if we thought of
it as embedded in the Fréchet space

H(F) := {(fi)iENe [T L(E: lim f° exists}.
i=1 h
Similarly, the natural continuous mapping
1.2) &1 H(F) = L) (f )i lim f7,

can be also thought of as a generalized smooth mapping if we restrict it
onto H,(F).

2. A certain type of Fréchet manifolds and the corresponding tan-
gent bundles.

Based on the thoughts presented in the previous Section, we study
here a certain type of Fréchet manifolds: Those which can be obtained as
projective limits of Banach corresponding manifolds.

DEFINITION 2.1. Let {M'; ¢}, ;o be a projective system of smooth
manifolds modeled on the Banach spaces {E'}; o respectively. We as-
sume that:

(1) The models {E'};c~ form a projective system with connecting
morphisms {07 E/—E'; j=i} and limit the Fréchet space F =
= lim B,

(2) For any element © = (x');cye M =lim M there exists a family
of charts {(U", ¥") }ien of M 7s such that the limits lim U, lim 4° can be
defined and the sets im U’, lim y'(lim U’) are open in M, I respec-
tively.

Then the limit M = lim M’ is called a PLB-manifold.

Under the assumptions of the previous Definition, we easily check
that a PLB-manifold M turns to be a Fréchet manifold modeled on F.
The corresponding local structure is fully determined by the charts
(lim U', lim ). The differentiability of mappings involved can be either
this of J. A. Leslie ([5]) or that of A.Kriegl-P.Michor ([7]).
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Characteristic examples of such type of manifolds are the PLBL-
groups presented in [3] as well as the space of infinite jets of a Banach
modeled manifold.

Using now the notion of projective limits and a new technique, we are
going to study the tangent bundle of a smooth Fréchet manifold of the
above type. This study in the general case seems to encounter serious
obstacles from the very beginning. Indeed, although the definition of a
smooth manifold structure on the tangent bundle can be finally achieved,
any try to endow it with a vector bundle structure following the classical
procedure is doomed to failure due to the pathological structure of gene-
ral linear groups of Fréchet spaces. However, focusing on a PLB-mani-
fold M =l(iLn M we obtain the next, necessary for the sequel, result.

PROPOSITION 2.2. The tangent bundles {TM}; form a projective
system with limit set-theoretically isomorphic to TM: TM =
=lim TM ‘

Proor. For any indexes (i,j), with j =1, we define the mapp-
ing:
¢ TMI—STM' :[a, V¢’ ca, ¢p/((x)],
where the brackets [-, -V, [-, -] stands for the equivalence classes of
TM’, TM' with respect to the classical equivalence relations
@) a~,f < a(0)=p(0)=x and a’(0) =A"(0).
Here by a' we denote the first derivative of a:

a': R—>TM: t—[da(®)](1).

We may check that each ¢/ is well-defined since two equivalent curves a,
B on M7 will give

(@7 o a)(0) = (¢7 o p)(0),
(9770 @) (0) = dp7(a(0))(a'(0)) = dep (BB’ (0)) = (7o ) (0),

where by dg’i: TM’— TM* we denote the first differential of ¢/
Moreover, ¢ o g/'= ¢q/* (j =i = k) holds, as a consequence of the cor-
responding relations for {¢'}; ;_. Therefore, {TM'; ¢’'}; ;. is a pro-
jective system and lim 7'M ’ can be defined.
Let now ¢': M—M' be the canonical projections of the limit M =
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=lim M i, Then, we set

(3.12) Qi: T™ —TM":[a, x]%[gbioa, ¢i(x)]i (1eN)
and we readily verify that ¢/c @/=Q" holds for any j=i. As a result
Q=1im Q": TM—1lim TM':[a, w1 — ([p o ct, ' ()] );
can be defined. This is a one to one mapping because Q([a, x]) =
=Q([B, x]) gives
dp'(a(0))(a'(0)) = (¢ ca) (0) = (¢ o B) (0) =de ' (B(0))(B'(0)),
and, therefore, a'(0)=4'(0) since a= l(igl(gbi ca) and f=
= lim (¢ - B).
Moreover, Q is surjective since if a = ([a’, #']");c~ is an arbitrarily
chosen element of l<iLn TM' we obtain:
3) [p7oal, pii(x)] = [a’, '], for j=1i.
As a result, x= (') eM = lim M and if {(U’, »")};cn is a system of
charts on M through x, as in Definition 2.1 and ((z%)"*(U?), lim Ty?) the
corresponding charts of {TM '}, (w': TM'— M denoting the classical
projections of TM® ), we obtain:
(' ogioal)0), Ty (7o al) (0)) = (¥’ oa’)0), Ty'((a’) (0)) =
(07 (7o a?)(0)), Ty (T ((a?)' (0))) = (' a)(0), Ty ((a’)'(0))) =
(07 ((p70a’)(0)), 0 (7o) (0)) = (' oa’)0),(y" ca’) (0)).
As a result, u = (1 0 a™)(0));cr, v = (' oa’)'(0));.r are elements of
F= liin . If we consider the curve & of ' with &(t) = u + t-v, as well as

the corresponding one a of M with respect to the chart (U =lim U |
y = lim y*), we may check that
(¢'oa)(0) =¢'(x) =a'=a'(0),
(@' o) (0)=((¥) oo’ o) (0) = (Ty") (o' o k) (0)) =

= (TyH) ') = (Ty") ' ((p'oa’) (0)) =

= (a')'(0),
for any ¢, j with j = i. Therefore, the curves ¢'oa, a' are equivalent on
M' (ieN) and Q([a, x]) = ([a", '])jen = a.

We have proved in this way that TM, lgn TM' are isomorphic sets
with respect to the mapping . =
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Based now on the previous result, we may proceed with the definition
of a vector bundle structure on the tangent bundle TM of M.

THEOREM 2.3. TM admits a Fréchet type vector bundle structure
over M with structural group H,(F).

ProoF Let {(U, = lim U,/ y,, = lim y})},.; be an atlas of M consi-
sting of charts that can be obtained as projective limits in the form
explained in Definition 2.1. Then, the atlas {(UJ, , 1/)52)}”E ; of M7 can be
used to define a vector bundle structure of fiber type E' on TM ' over M’
in the classical way with trivializations:

tl (@) N UH) > Ul X Bl [a, - (x, (@l o) (0)); nel.
Taking into account that the families {q’"}; jory {@7}i jero {07} jen
are connecting morphisms of the projective systems TM = lim TM",
M=1im M’, ¥F=1imE' respectively, we check that the projections
{7’} satisfy

pllomi=qaioq’ (j=1)
and the trivializations {7, };cx
(/' x oMol =1,0¢" (j=1).
Therefore, 77 = lim 7a': TM — M exists and is a surjective mapping,
7, = lim th:a W (U,)—U,xF (nel)

are smooth, as projective limits of smooth mappings (see also [3] for a de-
tailed proof), and pr, o7, =, if pr; denotes the projection to the first
factor.

Moreover, the restrictions of 7, to the fibers 7 ~(x) are linear iso-
morphisms since Ty,x "= PreoTy |n’1(x) = 1(11_1’1 (1”"2 ° T?z |(7ri)’1(x))°

Concerning, finally, the transition functions {7, =7, .°
0Tt s bu. mer, We see that they can be considered as taking values in the
group H,(F), since 7,, =¢eoT,%, where {75}, .cr are the smooth
mappings

Tn’};n : Uw N UWL_)HO(F) N e (107”2 © Tﬁz |(Jr"')’1(x) © (Tim)71 |(ni)’1(x))ieN
and e the natural inclusion & : H*(IF) = L(F) : (f");cn— l(ir_nfi.

As a result, TM admits, indeed, a vector bundle structure over M
with fibers of type F and structural group Hy(F). =
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3. Projective limits of connections.

Here we are going to study some basic geometric properties of the in-
finite dimensional manifolds presented in Section 2. To be more precise,
we will focus on the characterization of connections via Christoffel sym-
bols as well as on the possibility of having parallel translation of curves
with respect to a connection. Both issues are under question in the gene-
ral case of Fréchet manifolds due to intrinsic difficulties of their models:
The lack of a general solvability theory for ordinary differential equa-
tions dooms to failure any try to apply the classical theory in order to ob-
tain parallel translations. On the other hand, the fact that the space of li-
near mappings between Fréchet spaces does not remain in the same ca-
tegory, sets serious obstacles in the relationship between connections
and Christoffel symbols.

However, if we restrict our study to those Fréchet manifolds that can
be obtained as projective limits of Banach manifolds, in the sense describ-
ed in the previous Sections, we may recover a great number of funda-
mental results of the theory of finite dimensional manifolds and
connections.

To this end we consider M = lim M  a PLB-manifold and a corre-

sponding atlas {(U, = lim Uy, v, = lim v/}, c; as in Definition 2.1. We
denote by {(z *(U,), ®,)}.; the corresponding local structure of the
tangent bundle 7'M with:

&, N(U) =y, (U)XE :[a, ] =@, (@), ,a) (0); nel,

and by { (7 737(x “*(U,))), ¥,.) }.<; the obtained atlas on the tangent bun-
dle T(TM) of TM. Clearly, all these charts can be realized as projective
limits of their counterparts on the factors TM', T(TM"): ®,, = lim &,
¥, =lim ¥,

If now

D T(TM")—TM'

is a connection on the manifold M, in the sense of J. Vilms ([12]), for any
1e N, and we assume that they form a projective system:
3.3) Te/'oD/=D'cT(Te), j=1,

then the corresponding limit D = l(iLn D' T(TM)— TM, which can be
naturally defined as a smooth mapping according to the results of the
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previous Section, seems to be far from being called a connection of M
due to the difficulties emerged in the study of the corresponding local
forms:

Wi Yo (Uy) X F— LF, F)

defined by relations D, (y, u, v, w) = (y, w+ w,(y, u)()), where D,
stands for the restriction of D onto the local charts of T(TM) and TM:
D,=®,.Do¥,! (nel). Indeed, since the space of linear continuous
mappings of any Fréchet space does not remain into the same category
of topological vector spaces, it is not possible to realize the forms {w, }
as projective limits of their counterparts obtained by the connections D*
and, therefore, as smooth maps. However, making again use of the space

H(F) :== {(fDicne [T LE): limf? exists}, defined in Section 1, we
i=1 ‘—

may overcome thesei difficulties obtained the following main result.

THEOREM 3.1. The projective limit D = lim D' of a system of con-
nections on the PLB-manifold M is a connection characterized by a ge-
neralized type of Christoffel symbols with values into the Fréchet space
H(F).

ProorF We observe first that relations (3.3) and the fact that the
charts {(z Y (U,), D) }ner, {1 (U,)), ¥,)}uer have been cho-
sen to be projective limits of corresponding charts on TM ¢ and T(TM?)
respectively, ensure that the mappings {D, },.; can be also realized as
projective limits. Indeed, if {D, },.; are the corresponding restrictions
of the connections D on the charts of M’ (ieN) and o/ E/—E! (j = 1)
the connecting morphisms of the model I = lim Y, we check that:

(07 07 o D= (07'% 07 o (@4 o Do (W])™) =
=@, T oD/ o (W) 1=} o D' T(TPH') o (W)) ! =
= 457;’2 oD’ o(lI/ﬁ'l)_1 o(Qﬁ’X Qﬁx Qﬁ’x szi) =D,i’ o(jSX jSx Qﬁx Qﬁ).

Similarly, we prove that (0’ x 0%)oD,=D)c(0' X 0" X 0" X 0"), for
any ie N, where o': F—E are the canonical projections of V. As a re-
sult, D, = lim D, for each nel.

Concerning now the local forms w,: v, (U,) X F— L, F) of D as
well as the corresponding ones w’,: v’ (U}) x Ei— L£(E!, E) of D”s (ie
e IN), we cannot demand of them to be related by a similar manner, since
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the projective limit of the spaces {L(E', E")};.n can not be defined.
However, we may check that for any y = (y") ey ,(U,) and u = (u?) e F,
the family (w? (2%, ¥%));cn belongs to the Fréchet space H(F). Indeed,
relations (07" x 07) o D,;j= D, o (07 x 07" x 07" x 07, j =1, obtained abo-
ve, give rise to

(07 x oDy, i, vi, w’) = Do (y), 07(u’), 07'(v7), 0 (w)) =
(0% o) (y’, wi+ wi(y’, u)(w’)) = (y', w'+ wi(y', uH(")) <

ol owi(yl, ul) =wi(y’, u')ool.
As a result, we can define the mapping

w;’ZI wn(Un) X FHH(F) 1((yi), (ul)) H(wl;z(yiy ui))ieN

which is smooth, as the projective limit of the smooth (Banach) local
forms

a)fl: wzi(Uw) X Ez_)Hl(F) 5(?/, /M/) H(wl%(Qlk(y), Qik(u)))k:I,Z,m,i'

These generalized local forms of D are connected to the classical ones
via the relation

— *
Wy =E0Wy,

where ¢ stands for the natural inclusion ¢ : H(F)+— £(F):
(fDienr> lim f', defined in Section 1. This exactly is the fact that allows
us to conclude that the local forms {w, },.r are smooth and that D is a
connection of M under J.Vilms’ point of view ([12]).

Concerning finally the Christoffel symbols {I',:v,(U,)—
— L(F, £(F, )}, .; that characterize the above connection we check
that

F@lul = 0,(y, w) = (co0i)y, w) = lim (@}, u) =
= Tim (7"}, (y '),

for any y = (y") ey, (U,) and u = (u?) € F. Therefore, these Christoffel
symbols may be considered as taking values into the Fréchet space H(F)
with respect to the inclusion ¢. =

REMARK 3.2. It is worth noticing here that in the case where the
initial connections {D'} are linear the same holds for the correspond-
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ing limit connection D = lim D'. Indeed, the linearity of D"s is equiva-
lent to the linearity of the second wvariable of the local forms
{wh: wi(UH x E'— LE, EN} which, in turns, gives rise to the corre-
sponding property for the generalized local forms {@': vi,(U,) x E'—
— H () }. Taking into account that the notion of projective limits is com-
patible with linear structures, we conclude that the same holds for
{w¥:9,(U,) x F—=H)} and, thus, connection D is also linear.

Taking now one step further, we are going to study the possibility of
having parallel translations of curves of the PLB manifold M = lim M :

with respect to a linear connection D = lim D' of the above type. In the

general case of arbitrarily chosen Fréchet manifolds and connections,
this basic geometric property fails to be recovered. Indeed, such a proce-
dure demands the existence of horizontal lifts with respect to the chosen
connection, thus the solution of linear differential equations on the fiber
type. However, this is not possible on Fréchet spaces where even trivial
linear differential equations may not be solved or may have more than
one solution through the same initial condition (see for more details and
corresponding counterexamples [4]).

By restricting our attention to the case of Fréchet manifolds and con-
nections obtained as projective limits, we may overcome the previous diffi-
culties avoiding to interfere at all with differential equations. Namely:

ProrosITION 3.3. Let M = lim M " be a PLB manifold, as defined in
Section 2, and D a linear connection on M that can be realized as a pro-
jective limit of conmections: D = 1i£1 D'. Then, for any smooth curve
a :[0,1]1—=M and for any element uwe TM, there exists a unique hori-
zontal Lft &, , of a on TM satisfying the initial condition &, ,(0)=u.

Proor. We observe first that a can be thought of as the projective li-
mit of the curves a’ :=¢'oa :[0,1]—>M' (ieN), where ¢p': M— M’
are the canonical projections of the limit M = l(iLn M. On the other hand,
the element u of M = lim TM' will have the form: u = (u?), with u’e
eM'and T¢/(u’) = u’,j = i. Taking into account that each manifold M is
of Banach type, where the aforementioned problems concerning the sol-
vability of linear differential equations are not longer present, we obtain,
using the classical folklore, a horizontal lift & fﬁ, 4i:[0, 11— TM through
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(0, u?), for any ieN. Moreover, and for any indexes j =i, we check
that:
at o (TP &l i) =@  oqlo&lii= ¢l oal=d’,
D' oT(Tp7 o&li )08 =Tp" oD cTEL; yiod=Tp"o0=0,

where 9 stands for the basic vector field of R. As a result, the vector field
TgioEl; ,iof M'is also a horizontal lift of the smooth curve a' satis-
fying the initial condition (T¢ 7 0 &7, ,)(0) = Tp’(u’) = u'. Thus, having
in mind the uniqueness of horizontal lifts on Banach manifolds, we con-
clude that
T‘Pﬁogéﬂ ufzgfxi,uli .721
As aresult, &, , = lgn 521:7“7-: [0, 1]—=TM can be defined. This the de-
sired horizontal lift of the smooth curve a on TM since
JTo ga,u = l(an(ﬂl © gix",ui) = l(an ai =a,

DOT&a,uoa:l(iLn(DiDTEZ",MOa):l(iElO:O)

ga,u(o) = (Eixi,ui(o)) = (%7) =Uu.

The uniqueness of &, , can be proved following analogous thoughts
and observing that if £* is a second horizontal lift of a on TM satisfying
the same initial condition (0, (%)), then the factors T¢p' o &, ,, Tp'o&*
would coincide as horizontal lifts of ¢’ ca on TM' through the same ini-
tial condition (0, ). m

A direct consequence of the previous Proposition is the following
main result.

THEOREM 34. If M =Ym M'is a PLB manifold and D =lim D' a

linear connection on it, then, for any smooth curve a :[0, 11—=M a pa-
rallel translation

Tgy: ﬂil(a(O))_)nil(a(l)) : uﬁga,u(l)
can be defined. m

REMARK 3.5. It is also remarkable here that the corresponding ho-
lonomy group @,={t,, acC*(0,1], M) and a(0) =a(l) =x} is
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now a subgroup of the topological group Hy(F) and not of the (patholo-
gical in our framework) general linear group GL(F) as tn the classical
case. Indeed, as we readily verify using the thoughts presented in the
proof of Proposition 3.3, T, = lim 7' holds for any smooth curve a of M

if by 7!, we denote the parallel translation of a’=¢’ca on the factor
manifolds M.
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