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Abstract

Bandwidth and noise are fundamental considerations in all commu-
nication and signal processing systems. The group-velocity dispersion
of optical fibers creates nulls in their frequency response, limiting the
bandwidth and hence the temporal response of communication and
signal processing systems. Intensity noise is often the dominant opti-
cal noise source for semiconductor lasers in data communication. In
this paper, we propose and demonstrate a new class of electroop-
tic modulators that is capable of mitigating both of these problems.
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Fabricated in thin-film lithium niobate, the modulator simultaneously
achieves phase diversity and differential operations. The former compen-
sates for the dispersion penalty of the fiber, and the latter overcomes
the intensity noise and other common mode fluctuations. Applica-
tions of the so-called four-phase electrooptic modulator in time-stretch
data acquisition and in optical communication are demonstrated.

Introduction

Carrying torrents of data between internet hubs as well as connecting servers,
storage elements and switches inside data centers, optical fiber communication
is the backbone on which the digital world is built. The basic constituents of
such links are the optical fiber, semiconductor laser, optical modulator, and
photoreceiver, all of which place limits on the bandwidth and the accuracy of
data transmission.

The three most fundamental limitations in optical communication are those
placed by the dispersion of the fiber, the laser noise and fiber nonlineari-
ties [1]. In transmission of analog signals, the linearity of the electrooptic (EO)
modulation is also paramount. In this paper, we propose and demonstrate a
new EO modulator that addresses two of these problems, namely fiber disper-
sion and laser noise. Specifically, the new modulator eliminates the dispersion
penalty and the common mode noises, such as the relative intensity noise
(RIN), by providing multiple diverse outputs that are processed via simple
digital processing.

Chromatic dispersion of optical fibers leads to group-velocity dispersion,
causing optical pulses to broaden in the time domain, leading to intersymbol
interference. This places a limit on the maximum data rate that can be trans-
mitted for a given fiber length [1]. Dispersion can be mitigated using optical
dispersion compensation, electronic equalization, or a combination of both.
The main noise mechanism in semiconductor lasers is spontaneous emission
with random phase contribution, leading to RIN and degraded signal-to-noise
ratio (SNR) at the receiver side.

The main figures of merit of any optical communication or sensing system
are bandwidth and the sensitivity. Notwithstanding the speed limitations of
the transmitter and the receiver, the bandwidth is primarily constrained by the
frequency fading effect due to the dispersion penalty. In a typical optical link
or time-stretch instrument, the sensitivity is limited by the laser RIN or the
thermal noise of the receiver. With respect to dispersion penalty, there are two
main techniques to mitigate it, namely single-sideband modulation (SSB) and
phase-diversity [2, 3]. The SSB technique is difficult to implement in practice,
as it is highly sensitive to mismatches in the signal paths in the optical hybrid.
Meanwhile, to mitigate the RIN, the differential push-pull modulation can be
employed [4].
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The main objective of the present work is to create a modulator that is
capable of providing both phase diversity as well as differential modulation,
concurrently. Existing EO modulator structures are incapable of simultane-
ously achieving phase diversity and differential functionalities. Both require
a dual output design, but phase diversity is traditionally based on a single
electrode, whereas differential operation requires a dual electrode design.

Existing coherent communication links rely on advanced modulation for-
mats such as quadrature phase shift keying (QPSK). As shown in Fig. la, a
QPSK optical modulator consists of two nested interferometers, followed by
a phase modulator. This achieves the desired 7/2 phase difference between
the in-phase and quadrature components of the optical signal. The dual-
polarization (DP) variation of a QPSK modulator is capable of taking
advantage of two orthogonal guided modes in optical fibers, albeit with a more
complex optical architecture (Fig. 1b).

Neither of these modulators offer phase diversity to cancel out the fiber
dispersion penalty. They also do not provide differential modulation for
cancellation of common mode noise. Herein, we propose a unique modula-
tor architecture, dubbed four-phase electrooptic modulator (FEOM), that
performs both functionalities at the same time. We demonstrated such a
modulator fabricated in thin-film lithium niobate (TFLN) offering a small
footprint.

A conceptual FEOM is depicted in Fig. 1c and consists of two single-drive,
dual-output Mach-Zehnder modulators (MZMs) nested in another MZM. The
four outputs of in-phase (I), out of phase (I), quadrature (Q), and inverse
quadrature (@) components are also shown. The modulator imparts a 7 phase
difference between I and I (similarly @ and Q) components, enabling the
attainment of differential operation. Subsequently, the FEOM initiates a 7/2
phase difference between the {I,1} and {Q,Q} component sets, which facil-
itates the realization of phase diversity operation, as shown later in Fig. 2.
Furthermore, the two modulators work at the same quadrature point.

It should be noted that the terms in-phase and quadrature have different
definitions in FEOM and QPSK modulators. In FEOMs, they are associated
with two of the four output components, whereas in QPSK modulators, they
refer to two independent inputs to the sub-modulators. The FEOM has only
one input for encoding data, which appears to reduce its transmitted bit rate
by half compared to a QPSK modulator for identical baud rates. Nonetheless,
the ability of FEOMs to remove dispersion-induced nulls in frequency response
results in a significantly higher effective bandwidth and hence higher bit rate
(e.g., compare Fig. la and d). In addition, an FEOM is able to cancel the
common laser noise and improve SNR, thus much lower bit error rate compared
to QPSK modulators.

Given the use of multiple nested interferometers in the same device, FEOM
is best implemented in an integrated-optic platform and ideally one that pro-
vides a pure EO effect (as opposed to electroabsorption or a combination
of both). As argued in the next section, TFLN [5] is an ideal platform to
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Fig. 1 Several common advanced modulation formats and FEOM variations: an
illustrative example. a QPSK modulator. PM: phase modulator, G: ground, S: signal.
b Dual-polarization QPSK modulator. PR: polarization rotator, PBC: polarization beam
combiner. ¢ Proposed and demonstrated FEOM. d Dual-polarization version of FEOM.

realize such a circuit. Lithium niobate (LiNbO3, LN) is a widely known mate-
rial for its strong electro- and nonlinear-optic properties. The invention of
TFLN on silicon substrates [6] has been a significant breakthrough in photonic
integrated circuits (PICs) with several achieved milestones [5]. The optical
waveguides on this maturing thin-film technology offer unrivaled properties,
compared with the traditional titanium-diffused or proton-exchanged waveg-
uides. They include high refractive-index contrast waveguides that lead to
submicron cross-sections and small bending radii, as well as low-voltage and
high-speed electrooptic modulators (EOMs) [7-19]. The FEOM presented in
Fig. 1c is designed and fabricated on TFLN in this work.

We demonstrate the utility of the new modulator in two application
domains. First, the fabricated FEOM is utilized in an experimental time-
stretch system. Second, the utility of this modulator in canceling the dispersion
penalty in a dual-polarization (DP) optical communication link is demon-
strated via simulations.

Photonic time stretch is a real-time data acquisition technology [20, 21]
that has spawned a vast number of scientific and technological advance-
ments [22, 23]. This class of real-time measurement systems have been
exceptionally successful in capturing single shot phenomena such as optical
rogue waves [24], relativistic electron dynamics [25-27], chemical transients in
combustion [28], shock waves [29], internal dynamics of soliton molecules [30],
birth of laser mode-locking [31], and single-shot spectroscopy of chemical
bonds [32, 33]. They have also evolved into high throughput microscopy [34]
of biological cells [35], label-free classification of cells [36-38], gyroscope [39],
mid-infrared spectroscopy [40] and many other applications [41-46]. This paper
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shows the efficacy of the new modulator in canceling the dispersion penalty in
optical fibers with emphasize on time-stretch systems.

In a photonic time-stretch system, an electrical signal is fed to an electroop-
tic modulator (EOM) in order to modulate a chirped optical pulse. Then, the
signal is stretched in the time domain by passing the modulated optical wave
through a dispersive element. Eventually, the stretched signal, with a consid-
erably lower analog bandwidth, is converted back to the electrical domain for
digitization by using a photodetector.

Similar to the mentioned generic optical communication links, bandwidth
and dynamic range are critical figures of merits for photonic time stretch
analog-to-digital converters (TSADCs) [47]. In this application, the non-
uniform envelope of chirped pulses exacerbates the noise issue. Therefore,
simultaneous phase-diversity and differential operations can play a critical
impact in improving the performance of time-stretch systems.

This work introduces such a TSADC configuration by utilizing the dis-
cussed FEOM architecture. As discussed before, an FEOM has two nested
single-electrode dual output EOMs (Fig. lc) for concurrent operation of
differential and phase diversity operations, which cannot be achieved by
conventional architectures or off-the-shelf optical components.

Results

Theoretical description of four-phase electooptic
modulators

To gain a more in-depth understanding of the operational dynamics of the
FEOM, analyzing it within the framework of a time stretch system can be ben-
eficial. We have developed a comprehensive analytical model for the operation
of the FEOM in the Method section.

As depicted in Fig. 2, a broadband optical pulse is first subjected to pre-
stretching via utilization of a fiber-based dispersion element, prior to being
introduced into the FEOM. A radio-frequency (RF) signal is added to a pre-
stretched optical pulse in an FEOM, resulting in the generation of components
I,1,Q, and Q. The {I,I} set is sent through a pair of optical circulators to a
second dispersive fiber, where they are then converted into an electrical signal
by a balanced photodetector (BPD). Similarly, the {Q, @} set is sent through

a pair of circulators to a third dispersive fiber and detected by a second BPD.
The photocurrents prior to the differential operation is given by

PY () = P (D1 + Al 5(k) + B, ke{l,Q.Q,T} (1)
where for each component k is the induced phase and equals
6 = |[m/4,3w/4,—7/4,—37/4], respectively. The time-dependent func-
tions A(t; §) = (m/v2)cos(wrpt/S)cos(épp —6) and B(t) =

(m?/8) cos?(wrrt/S). Here, Ioyy is the photocurrent in the absence of an elec-
trical field, wrp is the angular frequency of the original electric signal, S is the
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Fig. 2 FEOM in a time-stretch system. Schematic of an FEOM employed in a pho-
tonic time-stretch system for demonstrating its phase diversity capability. MLL: mode-locked
laser, DCF': dispersion compensation fiber, BPD: balanced photodetector, ADC: analog-to-
digital converter.

time stretch factor, and m is the modulation index. Equation (1) illustrates
the differential functionality of the FEOM, where a 7 phase difference between
the I and I, and similarly between the @ and @, components effectively
eliminates intensity noise and enhances the system’s dynamic range.

In the BPD, after performing the differential operation, the photocurrents
are PXV(t) = PV(t) — P (1) and P (1) = PL9(t) — P{9(t), which are
equivalent to

Péi)(t) = V2 m Py (t) cos (wrpt/S) sin (¢prp & 7/4). (2)
For simplicity, we use P& instead of Péi) throughout the remainder of the
paper. Due to the differential modulation, the supercontinuum pulse’s enve-
lope and the second-order modulation component can be effectively canceled.
According to equation (2), the output signals possess a frequency of wgry/S,
which shows that the signals have stretched in time. The inclusion of the phase
term, sin (¢prp), leads to frequency fading, also known as dispersion penalty.
This is caused by the destructive interference of RF components generated by
the beating of the carrier and the modulation sidebands inside the BPD. The
FEOM architecture, as represented in equation (2), manifests a unique and
powerful feature in the form of complementary fading characteristics between
the P(Y) and P(—) channels. These phase-diverse outputs enable the effective
counteraction of the detrimental effects of dispersion penalty on the full recov-
ery of the original analog signal through the utilization of the maximal ratio
combining (MRC) algorithm [2]. The algorithm increases the SNR as opposed
to simply combining the two outputs [3].
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Fig. 3 Integrated TFLN FEOM. a Schematic of the FEOM. b Electric field distribution
of overlapping microwave and optical modes of an Mach-Zehnder arm. The TFLN thickness
(tzn) is 400 nm. The rib waveguide’s width and height are 1.3 pm and 110 nm, respectively.
The thickness of CPW electrodes (t4,,) are 1.0 um with a signal-to-ground gap (g) of 5.5 um.
The thickness of silicon oxide passivation layer (toz) is 500 nm. ¢, d False-color SEM images
of the fabricated 3-dB Y-junction and 3-dB directional coupler. Scale bars indicates 4 pm
and 1 pm, respectively. e Microscope image of a section of a CPW and a phase modulator.
Scale bar denotes 100 pm.

Device Design

The devices are optimized for high electrooptic (EO) bandwidth and modula-
tion efficiency, and designed for transverse-electric (TE) single-mode operation
utilizing the RF module of the COMSOL™ simulation tool. Additionally,
the Ansys Lumerical finite-difference time-domain (FDTD) simulation soft-
ware package is employed for the design of passive components operating at
the 1560 nm optical wavelength. A 3-D schematic of the FEOM, RF electric
field and optical mode profiles, as well as images of a fabricated device, are
presented in Fig. 3. The actual implemented device (Fig. 3a) incorporates two
phase modulators, as opposed to the original FEOM concept (Fig. 1c). The
phase modulators allow fine-tuning of the phase, and can neutralize fabrication
imperfections and associated deviations in the expected phase of each channel.

The RF coplanar waveguides (CPWs) are oriented along the crystal’s y
axis of X-cut TFLN, in order to capitalize on the highest EO coefficient, r33 of
LN for TE modes. The layer structure of one of the inner arms of the nested
MZMs is illustrated in Fig. 3b with dimensions specified in the caption. A
false-color scanning-electron microscope (SEM) and optical microscope images
from different sections of the fabricated devices are shown in Figs. 3c—e.

A comprehensive series of simulations were carried out utilizing a TSADC
system as the platform for examination to evaluate the functionalities devised
in the design of the FEOM. The parameters of the simulation were chosen to
be consistent with the experimental setup described in the study, including
the dispersion parameters of the first and second fiber elements, represented
by Dy and Do, which were set to -120 and -984 ps/(nm.km) respectively. This
resulted in a system stretch factor of S = 9.2. The analog-to-digital converter
utilized in the simulation had a sampling rate of 50 GSa/s, and an effective
number of bits (ENOB) of 7.

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322



323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

Springer Nature 2021 B TEX template

8 Article Title
—_ 1 — input pulse d
a .
El ; o
3 recieved pulse - o
9 05 @ -0
° [
2 :
= 20
g o 7
|
< M“ 1! g -30
| | =
2 os | g 40
© ‘ 5 — input pulse
< G -50 put p
o a z —— recieved pulse
o 100 200 300 400 500 600 o 10 20 30 40 50
Time (ps) Frequency (GHz)
0.08
T b — P channel T e
£ PY) channel s O
§ 004 g 10
=1
o S 20
S a
3 ° ? 30
s &
[ ® -40
5004 E — P channel
% ) 50| pb) channel
& 008
(0] 100 200 300 400 500 600 (0] 10 20 30 40 50
Time (ps) Frequency (GHz)
3 1l € — input pulse — f — input pulse
© . o .
~q—; retrieved pulse o retrieved pulse
- ©O
) =
S 0.8 5
: :
g- 0.6 g -04
< k4
o 0.4 I
Q = -08
N o
= o2 £
3 S a2
5 (0] z
z
[0} 10 20 30 40 50 (0] 10 20 30 40 50
Time (ps) Frequency (GHz)

Fig. 4 Concurrent employment of differential and phase diversity in a FEOM.
The time-domain representation of an input and a retrieved pulse in a time-stretch system
a Without incorporating FEOM. b After utilizing FEOM. ¢ After performing the MRC
algorithm. d—f Exhibits the frequency domain response of the same pulses shown in a,b,
and c.

The time- and frequecny-domain simulation results are displayed in Fig. 4a—
¢ and Fig. 4d-f, respectively. Fig. 4a, d illustrates the input pulse and the
distorted output pulse of a time-stretch system. The nulls in the frequency
spectrum of the received pulsed signal are caused by the dispersion penalty.
Fig. 4b, e shows the differential outputs of the TSADC system after incor-
porating the FEOM. The complementary fading characteristics between the
P and P outputs are evident. Fig. 4c, f depicts the response of the sys-
tem after applying the MRC algorithm. As can be seen, the original signal is
fully recovered. The small amount of distortion in the recovered signal is due
to undersampling in the simulations.

Characterization for time-stretch applications

The modulator was designed to possess an EO bandwidth high enough to
effectively capture the first few nulls of the P(f) and P(=) outputs in the
frequency response, as illustrated in Fig. 4f. This was to allow for a clear
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observation of the complementary fading characteristics of the two outputs.
The 3-dB bandwidth of the fabricated FEOM was determined and resulted in
an estimated value of approximately 44 GHz.

Further, the low-frequency half-wave voltage, V., of the devices was mea-
sured to be 7.66 V for a modulation length of 0.7 cm, resulting in a V;..L of
5.36 V.cm. It is worth highlighting that if the current devices were config-
ured in a standard push-pull configuration, as commonly pursued in the TFLN
modulator literature [5], the measured V;.L would be halved to 2.68 V.cm.

The functionality of TFLN FEOMs is rigorously confirmed through exper-
imental verification. The setup is based on a time-stretch enhanced recording
(TiSER) oscilloscope, which is the single channel version of a TSADC, as illus-
trated in Fig. 5a and elaborated in the Method section. The oscilloscope’s
sampling rate is set at 50 GSa/s and the stretch factor of the system is
9.2, resulting in an effective sampling rate (fs) of about 460 GSa/s for the
TSADC. The total effective jitter is another important performance parameter
of TSADC systems, which is calculated as [2]

Tjclock ) 2
Tjeff = \/TjQ,laser + ( JCSOC ) ) (3)

where 7; jqser is the inter-pulse jitter of the laser and 7j ciocr is the clock jitter
of the digitizer. The digitizer implemented in the present study featured an
rms sampling jitter of 270 fs. The use of a single-shot system, such as TiSER,
effectively negated any timing jitter that may have been present in the mode-
locked laser. As a result, the effective jitter of the TSADC is ~29.4 fs.

After preliminary characterization of the FEOM and TSADC system, the
modulator’s differential and phase diversity capabilities were examined using
the measurement setup (Fig. 5a). During the measurement, the FEOM is
biased at its quadrature point to eliminate the second-order intermodula-
tion distortion [48], and fed by a signal generator. To minimize the effect of
third-order distortions, it is ensured that the modulator is not overdriven.

The normalized RF transfer functions of the P(*) and P(~) channels, after
performing differential and phase diversity operations, are shown in Fig. 5b.
The MRC algorithm was used to exclude the effect of dispersion penalty and
retrieve the original signal, which was performed digitally on the P(*) and P(-)
branches. The first nulls in the frequency response appeared at ~13.3 GHz
and ~27.5 GHz, which were in general agreement with the simulation results
presented in Fig. 4e.

Frequency roll-offs are evident in the shown responses. In general, time
stretch systems do not inherently introduce any roll-off effect in the measured
transfer function. However, both the RF sweep generator and the EOM can
cause roll-offs. Furthermore, the FEOM response rolls off due to an increase
in the V, as the frequency increases, while the device is always biased at the
measured low-frequency bias in the experiment.
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Fig. 5 Phase diversity measurement. a Schematic of the TiSER system used to exam-
ine the differential and phase diversity capabilities of the FEOM. The temporal domain
measurement is represented by black dashed lines, the frequency domain measurement is
indicated by black dotted lines, and black solid lines are utilized for both temporal and fre-
quency domain measurements. PD: photodetector, PC: polarization controller, DL: optical
delay line, Amp: amplifier. b The measured transfer functions of the two FEOM outputs in
a TiSER system and application of the MRC algorithm on them.

Simulation for long-haul communication

Combining the four outputs of the structure in Fig. 1c is not suitable for tak-
ing advantage of the differential operation for telecommunication applications.
However, if the {I,Q} and {I, Q} sets are transmitted through the orthogonal
polarization modes of a fiber link, all the information required for differen-
tial operation during balanced detection can be retrieved. The DP FEOM in
Fig. 1d can achieve this goal. In this proposed device, the I and @ compo-
nents are multiplexed into one guided-mode polarization and the I and @Q
components are multiplexed into another. This polarization-based separation
of the four components allows eliminating the common mode noise using the
differential operation after a long-fiber dispersive element.

Simulation of such a DP FEOM was carried out using a commercial soft-
ware package, Virtual Photonics Inc. The output of the DP FEOM was sent
through a 100-km long optical fiber with a dispersion of 16 ps/(nm.km) and
demultiplexed before being sent to a pair of optical coherent detectors. The
P™) and P signals were generated by a pair of differential detectors.

The P and P(-) signals are depicted in the time and frequency domains
in Fig. 6a, b, respectively. The phase-diversity characteristics of the DP FEOM
between the two channels are evident in Fig. 6b. The comparison of the origi-
nal input signal and the recovered signal, after performing the MRC algorithm,
is shown in Fig. 6¢, d in the time and frequency domains, respectively. The
simulation results demonstrate that the DP variation of FEOM has the capa-
bility to counteract the dispersion penalty in long-haul communication—a key
feature missing from current coherent optical transmission systems.

Discussion

A novel class of integrated photonic devices, namely FEOMs, has been pro-
posed, fabricated and characterized. The architecture effectively surmounts
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Fig. 6 Mitigation of the dispersion effect in optical communication systems.
a, b Outputs of the DP FEOM communication link after performing differential and phase
diversity operations in time and frequency domains, before performing MRC algorithm. c,
d Display the same results as a and b, but only after performing the MRC algorithm. For
clarity, the input data is also included.

the bandwidth and dynamic-range limitations of photonic systems due to dis-
persion penalty and semiconductor laser noise, respectively. The architecture
enables the concurrent execution of phase diversity and differential operations
on a single PIC and is implemented on the TFLN platform. The circuit com-
prises of two nested MZMs. It is verified that the proposed FEOM is capable of
canceling the dispersion penalty and noise in a dual-polarization (DP) optical
communication link. Furthermore, the FEOM is augmented by two dispersive
opitcal-fiber elements and fiber-optic delay lines for time-stretching and syn-
chronization, respectively. It is experimentally demonstrated that the inherent
nulls in the frequency response of a time-stretch enhanced recording (TiSER)
oscilloscope can be eliminated. This demonstration is a significant achievement
and a noteworthy advancement in the practical implementation of photonic
time-stretch systems, as well as coherent optical communication.

Method

Mathematical framework

A detailed analytical analysis of FEOM is provided here. Here, we use the
notation F4(t) and Es(w) to denote the electric field in time and frequency
domains, respectively. The subscript s corresponds to the steps 1-5 in our
experimental setup (Fig. 2).

In the first step, we apply a frequency-dependent phase shift to the out-
put pulses of a supercontinuum source, E(t), using group-velocity dispersion
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(GVD) in an optical fiber with length L; and second-order dispersion param-
eter fs. This transformation results in the generation of chirped carrier pulses
such that _ B

Ba(w) = By (w) e 3« P2L1/2, (4)
Here, we neglect the non-quadratic phase shifts induced by the third-order dis-
persion parameter. Then, the chirped electric field enters the FEOM, which
is composed of four waveguides. The electric fields propagating along the first
and the fourth waveguides just acquire the spatial phase due to propagation.
However, the electric fields in the second and third waveguides accumulate
additional phases of ¢(t)/2 and —¢(t)/2, respectively, due to the applied
electric field to the coplanar waveguide. Here, ¢(t) = m cos (wrrt) is the mod-
ulation phase by the single tone electrical signal of frequency wgrp and the
modulation index m = 7Vump/Vx, where Viyp and Vi represent the signal
amplitude and the half-wave voltage of the modulator, respectively. Hereafter,
we use ¢ instead of ¢(t) to simplify the notation. The output electric field of
the modulator in each component k£ can be expressed as

BP0 = LEwse B, ke 10O )
where f(t; k) = [L — jexp(j6/2),exp (j6/2) — jexp(—jé/2) — j,1
jexp (—j¢/2)], respectively. All components k are labeled in Fig. 2. In the
next step, we expand the phase terms exp (£¢/2) in a Taylor series and make
the linear approximation, ignoring the second and higher order terms of ¢.
Under this approximation, the Fourier-domain representation of the field in
equation (5) can be written as

Eék) (W) = a1 Ba(w) + agm €700 [Eg (w—wrr) + B2 (w+ wRF)] ,  (6)
where 0(k) = [r/4,37/4,—n/4,—3n/4], respectively, and terms a; =
(1/2) exp (—jm/4) and as = (1/8v/2) exp (—jm/4) are constant complex coef-

ficients. Propagating through the second GVD component of length Lo, the
electric field will be

B (w) = By (w) e77 02, (7)

Using equations (4-7), we can write Eik)(w) as a function of F)(w), where
the terms w 4+ wrp appear. For wideband supercontinuum pulses with slow
frequency-dependent variations (Awoptical > Awrr), we can use the approxi-
mation E; (wEwrr) = E, (wtwrr/S), where S = 14 Ly/L; denotes the time
stretch factor. Using this approximation, the Fourier-domain electric field can
be summarized as

B @) = By () (52 Jm e 700200 [ B (= 565 ) + Bon (04 567 |

(8)
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where Eeny(w) = a1 Fy (w) exp (—jw? B2 L/2) shows the envelope function of the
electric field, ¢pp = w%{Fﬂng/QS is the dispersion phase, and L = L + Lo
is the total length of the GVD elements. By applying the inverse Fourier

transform to equation (8), the time-domain electrical field will be
B (t) = B (t) {1 + (aﬁ)m o—i(¢p—6(k)) (eijFt/s I e—ijFt/S):| )
aj

The output photocurrents of the components are calculated from P(t) =
(ceonnAest/2)E(t)E*(t) where parameters n, 7, and A.g denote the refrac-
tive index of the fiber, photodetector responsivity, and effective optical field
mode area in the fiber, respectively. The photocurrent at each channel can be
calculated as

1 t 2 "

Pél(k)(t) = Penv(t) {1 + ﬁmcos (wP‘SF> cos (¢pprp — (k) + % cos? (UJP;F )]
(10)

where Py (t) = (ceonnAest/2)FEeny(t)EZL,,(t) represents the current in the

absence of the modulating electric signal. After performing differential at the
BPDs, one obtains equation (2).

Device fabrication

Low-loss waveguides on 400-nm-thick X-cut TFLN dies were formed using
electron-beam lithography (EBL), ZEP520A electron-beam resist, and induc-
tively coupled plasma etching system. The waveguide, with a 110-nm-thick rib,
were then passivated with a 500-nm-thick silicon oxide layer created through
plasma-enhanced chemical vapor deposition. After passivation, trenches were
created inside the oxide by using EBL and reactive ion etching, to make space
for the formation of RF CPWs. An additional step of EBL was carried out,
followed by the deposition of a 500-nm-thick gold layer via electron-beam phys-
ical vapor deposition. The CPWs were then patterned using the liftoff process.
In the final step of the fabrication process, the previous step was repeated to
achieve CPWs with a total thickness of 1.0 pm.

Measurement setup

The optical source is a custom-made supercontinuum mode-locked laser at the
center wavelength of 1560 nm, with a pulse width of 500 fs and a repetition
rate of 37 MHz. The laser pulse is chirped with a dispersion compensation fiber
(DCF 1) with Dy =-120 ps/(nm.km). The chirped pulse then passes through a
variable delay line (General Photonics, VDL-001-15-60-SS) and a polarization
controller (PC). To compensate for the power loss during the coupling of the
modulator, the pulse is amplified by an Erbium-doped fiber amplifier (EDFA,
Pritel FA-15-L). The RF signal is introduced to the amplified laser pulse at the
fabricated modulator via an RF probe, which is configured in a ground-signal-
ground (GSG) configuration with a bandwidth of 50 GHz. To eliminate the
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potential for back-reflected signals, a second RF probe in a GSG configuration
is utilized to terminate the transmission line with a load impedance of 50 ).
A bias tee (INMET 64671) is used to supply both DC bias (GW GPC-1850D
power supply) and phase modulation using a signal generator (HP 83650B) to
the FEOM. The modulated pulse is time-stretched by the second dispersion
element (DCF 2), with Dy = - 984 ps/(nm.km). Since the dispersion attenuates
the laser peak power, another EDFA (IPG Photonics EAD-200-CL) is used to
amplify the pulse. Then, a wavelength division multiplexer (WDM) is used to
filter out the redundant wavelength. The filter is centered at 1570 nm with an
optical bandwidth of 20 nm. Finally, the pulse is detected using a photodetector
(New focus 1554-B) and sent to an oscilloscope or an RF spectrum analyzer.

For differential detection, a 95/5 coupler sends 5% of the optical power into
a photodetector (Discovery DSC-30S, 20 GHz) for generating a synchronized
RF pulse. The RF signal is amplified with an electronic amplifier (Amp, Mul-
tilink MTC5515, 10 GHz) before modulating the chirped laser. The optical
delay line (DL) is tuned such that the RF pulse is synchronized with the optical
pulse. The final output photodetected signal is digitized using an oscilloscope
(Tektronix DPO6317B, 16 GHz, 50 GSa/s) for time-domain measurements.
We measure all four ports of the modulator one by one and perform differen-
tial detection digitally (mathematical subtraction). The oscilloscope was set
under average mode (average every 16 samples) to reduce the detection noise.

For measuring the dispersion penalty, the coupler after laser source is
replaced by a single-mode fiber. Also, the RF signal is a sinusoidal wave from
the signal generator. In this experiment, the delay line is not tuned since the
relative delay between the RF signal and the optical pulse is no longer rele-
vant. The final output of the photodetector is sent to an RF spectrum analyzer
(HP 8592B) to measure the frequency response of the system.
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