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ABSTRACT

Biclustering algorithms have been successfully used to find
subsets of co-expressed genes under subsets of conditions. In
some cases, microarray experiments are performed to com-
pare the biological activities of the genes between two classes
of cells, such as normal and cancer cells. In this paper, we
propose DiBiCLUS, a novel Differential Biclustering al-
gorithm, to identify differential biclusters from the gene ex-
pression data where the samples belong to one of the two
classes. The genes in these differential biclusters can be
positively or negatively co-expressed. We introduce two cri-
teria for any pair of genes to be considered as a differential
pair across the two classes. To illustrate the performance of
the proposed algorithm, we present the experimental results
of applying DiBiCLUS algorithm on synthetic and real-
life datasets. These experiments show that the identified
differential biclusters are both statistically and biologically
significant.

1. INTRODUCTION
Measuring the expression level of thousands of genes si-

multaneously enables several applications such as marker
discovery [3], functional annotations and gene networks re-
constructions. The availability of such massive data has rev-
olutionized gene expression analysis [17].
The gene expression measurements are organized into two

dimensional matrices where rows represent genes and columns
represent different conditions. These conditions can be dif-
ferent time points for the same cell, or different types of cells
such as tumor and normal cells. The values in any given gene
expression data depend on the cell type, the active pathways
in the cell and several other factors [7]. Extracting these
pathways from the gene expression data is a challenge as
different genes are involved in different pathways.
Some of the important goals of gene expression data analy-

sis include clustering the genes, predicting the functions of a
gene based on its expression profile, clustering the conditions
and classifying a new condition [14]. Differential expression
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of some genes can cause phenotypic diversity among different
conditions [9]. Moreover, the activities of genes are not in-
dependent of each other. Therefore, there is a need to study
groups of genes rather than performing a single gene analy-
sis. Traditional clustering algorithms, such as k-means and
hierarchical clustering, have succeeded in clustering gene ex-
pression data in many contexts. However, these algorithms
fail in some cases when the biological processes are active in
subsets of the dimensions of the gene expression data matrix
[2]. Missing values and noise add more limitations in apply-
ing the traditional clustering techniques on gene expression
data [4].

Traditional clustering algorithms assume that related genes
should have similar expression profiles in all the conditions
[12]. This assumption does not hold in all of the experi-
ments. From the biological perspective, not all the genes
are involved in each biological pathway. Furthermore, some
of these pathways may be active under a subset of the con-
ditions [14]. Therefore, traditional clustering techniques do
not capture such pathways.

2. DIFFERENTIAL BICLUSTERING
First proposed by Cheng and Church [4], the goal of bi-

clustering algorithms is to overcome the limitations of tra-
ditional clustering algorithms [17]. Biclustering can be used
to find a subset of genes that have similar expression pro-
files under a subset of the conditions [12, 13] as defined in
Definition 1. Identifying a subset of genes that are related
under a subset of conditions is an important challenge. It
was proved that the problem of finding significant biclusters
is an NP-hard problem [4].

Definition 1. Given a gene expression dataset, D = (G,C),
where G is the set of genes, and C is the set of condi-

tions, a bicluster B is defined as a subset of genes that are

highly related to each other under a subset of conditions i.e.,

B = (I, J) where I ⊆ G and J ⊆ C.

Biclustering was applied in the classification of cancer sub-
types [11]. Since some of the pathways are active only across
patients of a certain cancer subtype, the genes in such path-
ways can be used as markers to classify cancer subtypes.
Moreover, biclustering was proposed to identify transcrip-
tional modules from the gene expression data [8].

Differential Biclustering aims to find gene sets that are
correlated under a subset of conditions in one class of condi-
tions but not in the other class. One of the main applications
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of DNA microarray data is to compare the biological activ-
ities of the genes in two types of cells, such as normal and
disease cells [12]. There are many cases where the conditions
belong to two classes, and there is a need to find the set of
significant genes for each class. For instance, African Amer-
ican males (AAM) have a higher risk of developing prostate
cancer compared to Caucasian American males (CAM) [15].
There are several hypotheses to explain this racial differ-
ence. One of them is based on the assumption that genetic
factors may play a key role in this difference between the two
groups. In this case, differential biclustering can be used to
identify the genes that are responsible for the difference be-
tween AAM and CAM in developing prostate cancer.
In this paper, we propose DiBiCLUS algorithm to ex-

tract differential biclusters from the gene expression data
where the samples belong to one of the two classes. The goal
of this algorithm is different from the goal of the traditional
biclustering algorithms. The genes in the differential biclus-
ters have strong correlation in one class but not in the other,
or they may have different types of co-expression among the
two classes. Comparing the biological roles of genes in two
classes of cells is an important problem to identify the genes
are responsible for the phenotypic change. The goal of the
proposed algorithm is to discover such genes in the gene
expression data. The DiBiCLUS framework has the fol-
lowing novel contributions that distinguish it from existing
biclustering algorithms:

1. Incorporating the class labels in the process of identi-
fying the biclusters.

2. Efficient detection and discovery of differential biclus-
ters, which are relevant in comparing two different
types of cells.

3. Using clustering algorithms to quantize the expression
values of each gene.

4. The ability to find possibly overlapping biclusters. The
overlapping can be within the same class or across two
classes.

To the best of our knowledge, there is no existing bicluster-
ing algorithm that has all of the above properties. However,
these properties are necessary for identifying useful patterns
in several applications.

3. DIBICLUS FRAMEWORK

3.1 Preliminaries
Usually, a gene expression data (D) is organized as a

M×N matrix, where rows correspond to genes and columns
correspond to conditions. When there are two classes of
experimental conditions, gene expression data can be orga-
nized in the form of two matrices. Both of the matrices have
the same set of genes G = {g1, g2, ..., gM}. The first matrix,
A, contains the expression values of the genes under the
first class of conditions CA = {c1, c2, ..., cNA

}, and the sec-
ond matrix, B, contains the expression values of the genes
under the second class of conditions CB = {c1, c2, ..., cNB

}.
NA and NB are the number of conditions belonging to class
A and B respectively (N = NA + NB). Table 1 shows the
structure of such a dataset.

Table 1: Gene expression data for two classes

Genes Conditions in class A Conditions in class B
c1A

... cNA
c1B

... cNB
g1 d1,1 ... d1,NA

d1,1 ... d1,NB

g2 d2,1 ... d2,NA
d2,1 ... d2,NB. . . . . . .. . . . . . .. . . . . . .

gM dM,1 ... dM,NA
dM,1 ... dM,NB

Similar patterns of gene expression profiles indicate relation-
ships between the genes. Mainly, there are two types of rela-
tionships, positive co-expression and negative co-expression.
In our algorithm, we implement these relationships using
positive and negative numbers as follows: for each gene,
over-expression conditions are represented by positive num-
bers, and under-expression conditions are represented by
negative numbers. Two genes are considered positively co-
expressed if they have the same signs in a subset of con-
ditions, and they considered negatively co-expressed if they
have different signs in a subset of conditions. Figure 1 shows
an example of the two types of relationships between differ-
ent genes.

Figure 1: An example of different types of gene co-
expressions. (a) two gene profiles with positive co-
expression in 80% of the conditions (b) two gene pro-
files with negative co-expression in 80% of the con-
ditions. + (-) sign indicates over-expression (under-
expression) in each condition.

3.2 Overview of the DiBiCLUS Algorithm
In this paper, we propose a new approach to identify dif-

ferential biclusters from gene expression data. The main
steps of this approach are shown in Figure 2. These steps
are briefly described here:

• Step 1 Quantization: the goal of this step is to create
a new representation of the gene expression data. We
use a clustering algorithm to create the new represen-
tation of the expression values. In this paper, k-means
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Figure 2: The main steps in the proposed DiBiCLUS algorithm.

clustering algorithm is used to cluster the expression
values of each gene. Each cluster will be represented
by a single value. After clustering, the matrix is split
based on the class label of the experimental conditions.
The results of this step are two matrices with the same
number of genes, but the number of conditions in each
matrix can be different.

• Step 2 Identifying the differential pairs of genes in

each class: First, the similarity between each pair of
genes in each class is computed in a square matrix
M × M . The similarity score depends on the num-
ber of conditions under which the pair of genes have
the same value in the new representation. Second, the
type of co-expression between each pair of genes is de-
termined. The co-expression type can be either posi-
tive or negative. Finally, for each pair, the ratio of the
number of conditions, under which the pair of genes
have the same value, to the total number of conditions
in class A is compared to the same ratio in class B.
Based on this comparison and the co-expression type,
each pair of genes can be assigned to class A or class
B.

• Step 3 Identifying the differential biclusters: for a
given gene, and from the differential pairs identified in
the previous step, the algorithm finds groups of genes
that have similar expression values under some condi-
tions. The groups of genes and conditions form the
differential biclusters.

3.3 Quantization of Gene Expression Data
There are several ways that have been proposed to cre-

ate a new representation of the gene expression data; such
as ranking the expression values of each gene [1] and repre-
senting the gene expression data with two values, 1 and 2.
All the values that are larger than or equal to the mean of
the expression data will be represented by 2, while the other
values will be represented by 1 [18]. In this paper, we use a
clustering algorithm to create the new representation.
The goal of applying a clustering algorithm is to guaran-

tee that similar expression values will be represented by the
same value. Several clustering algorithms can be applied
to achieve the above goal. We use k-means algorithm to
cluster the expression values of each gene. Each cluster is
represented by a single integer value. As an illustration of
the performance of the new representation, we compare it
with the other methods mentioned earlier.

In Table 2, the 10 values of a gene are represented using
different methods. R1 is the traditional ranking method, in
which the values of each gene are represented by the num-
bers from 1 to N , where N is the number of experimental

Table 2: Comparison of some gene representation
methods (R1, and R2) with the clustering method
(R3, R4 and R5) of DiBiCLUS algorithm. The first
column has 10 expression values of a gene, and each
other column indicates a new representation of the
corresponding expression value.

Gene values R1 R2 R3 R4 R5
0.35 1 1 1 1 -1
0.36 2 1 1 1 -1
0.37 3 1 1 1 -1
0.93 4 1 2 2 0
0.99 5 2 2 2 0
1.2 6 2 2 3 1
1.29 7 2 2 3 1
1.3 8 2 2 3 1
1.36 9 2 2 3 1
1.37 10 2 2 3 1

conditions. The second method, R2, represents the gene ex-
pression data with two values: 1 and 2. All the values that
are more than or equal to the mean of the expression data
will be represented by 2, the other values will be represented
by 1 [18]. R3 is the result of k-means algorithm with k = 2,
and R4 is the k-means algorithm with k = 3. R5 is the same
as R4, but the values are shifted so that the middle cluster
is represented with zeros.

Using the ranking method, R1, the relative differences
between consecutive ranked values are not captured. For
instance, 0.37 is represented with 3, and 0.93 is represented
with 4. The difference between the two values is 0.93−0.37 =
0.56. This difference is treated in the same way as the dif-
ference between 0.37 and 0.36 which is 0.01. R2 represents
the first four values by 1 because the mean of the gene val-
ues is 0.95. However, this method assigns 0.37 and 0.93 the
same value, 1. Using the proposed quantization method,
with proper k value, the above problems are resolved by
representing similar gene values with the same value. Us-
ing k = 2, as shown in R3 column in the table, 0.35, 0.36
and 0.37 are represented with the same value, 1, and the
remaining values are represented by 2. Finally, using k = 3,
an improved representation is obtained by putting 0.93 and
0.99 in a separate cluster as shown under R4 column.

The values of k can be 1 < k ≤ N , where N is the total
number of conditions in the data (including both classes).
When k = N , the result of the clustering will be the same
as ranking the gene expression data. In our algorithm we
use odd values of k, so that the middle cluster will be rep-
resented with 0’s, and half of the remaining clusters will be
represented by positive numbers: 1, 2, ..., k/2, and the sec-
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ond half of the remaining clusters will be represented by
negative numbers: −k/2,−k/2 + 1...,−1. The mapping be-
tween a certain cluster and the new representation is based
on the rank of the cluster; hence, the middle cluster is rep-
resented by 0. This is shown in the column R5 of Table
2.
In k-means clustering, the initial centers of the clusters

are randomly chosen. Therefore, running the same algo-
rithm several times may produce different representation of
the gene values, and different outputs of the algorithm. To
minimize the effects of this randomness issue, k-means will
be run s times for each gene, and then Sum of Squared Er-
ror (SSE) will be used as a measure to select the best result
for the clustering algorithm. We used s = 10 in all the
experiments.

3.4 Identifying the Differential Pairs of Genes
In order to find the differential pairs of genes in each class,

the similarity between each two genes is computed first as
in Definition 2. It is worth mentioning that using the new
representation of the gene expression values, the zeros are
ignored and are not included in computing the similarity
between any two genes.

Definition 2. Given two genes gi and gj , common(gi, gj)
is the set of identical non-zero conditions in a given class

for the two genes gi and gj . The similarity between any two

genes, sim(gi, gj), is defined as:

sim(gi, gj) = |common(gi, gj)|/Nx

where Nx is the number of conditions in class x.

To compute the negative co-expression, Definition 2 is slightly
modified by taking into account the signs in the quantized
gene expression data. In other words, and for negative co-
expression, the common set is defined as the set of identical
non-zero conditions with opposite signs.
Since it is possible for any two genes to be positively

co-expressed in a subset of conditions and negatively co-
expressed in another subset of conditions of the same class,
special handling is needed. The similarity between each two
genes is computed using Definition 2 twice: one for the pos-
itive co-expression and one for the negative co-expression.
The maximum of the two values is considered as the final
value for the similarity measurement.
The goal of differential biclustering is to emphasize the

differences between two classes of conditions. In our algo-
rithm, we introduce a differential biclustering algorithm to
identify differential co-expressed gene sets. Only a subset
of conditions is considered in identifying gene relationships.
Two genes are considered as a differential pair if one of the
following two criteria is met. The first criterion is based on
the relationship type between the two genes in each class. If
the two genes are positively co-expressed in one class, and
negatively co-expressed in the other class, this pair of genes
is considered as a differential pair.
The second criterion is based on the number of conditions

under which the two genes are related. A pair of genes is
considered as a differential pair if it is significantly related in
one of the classes more than in the other class. The level of
significance is defined using a user-defined parameter, δ (a
similar criterion was presented in [5]). Definition 3 is used to
determine the set of differential pairs of genes in each class.

Definition 3. Given a gene expression dataset D, that

has M genes and N conditions, NA and NB, the number of

conditions belong to class A and B respectively; then, two

genes gi and gj are considered a differential pair if one of

the following criteria is met:

• The co-expression type of gi and gj in class A is not

the same as the co-expression type of gi and gj in class

B.

• if simA(i, j) indicates the similarity between gi and gj
in class A, and simB(i, j) indicates the similarity be-

tween gi and gj in class B, then either
simA(i,j)

NA
>

simB(i,j)
NB

+ δ or
simB(i,j)

NB
> simA(i,j)

NA
+ δ.

Algorithm 1 chkBiclus

Input: gSet: a group of genes.
Output: DiffBiclus: differential bicluster(s) in gSet
Algorithm:
if |gSet| < minG then

return {}
end if
Using Definition 2, get cSet the common conditions for
the genes in gSet
if |cSet| ≥ minC then

DiffBiclus = {gSet, cSet}
else

Determine the two genes with the lowest similarity
[gk, gl] = min{sim(gi, gj), i, j ∈ gSet}
Create two partitions of the gene set
p1 = {gk}
p2 = {gl}
Divide the genes into one of the partitions
for i = 1 : |gSet|, i ̸= k and i ̸= l do

if sim(gk, gi) > sim(gl, gi) then
p1 = p1 ∪ {gi}

else
p2 = p2 ∪ {gi}

end if
end for
if |p1| ≥ minG then

DiffBiclus = DiffBiclus ∪ chkBiclus(p1)
end if
if |p2| ≥ minG then

DiffBiclus = DiffBiclus ∪ chkBiclus(p2)
end if

end if

In this paper, the δ parameter, 0 < δ < 1, was set to 25%
in all of the experiments. Low values of this parameter relax
the second criterion in Definition 3, and more pairs of genes
will be considered as differential pairs. On the other hand,
high values of the δ parameter has the opposite effect. How-
ever, a good approach to set this parameter is by selecting
a high value at the beginning; then, keep reducing its value
until a certain number of differential biclusters are obtained.

3.5 Identifying the Differential Biclusters
The differential pairs of genes are the main building blocks

of the differential biclusters as defined in Definition 4. Al-
gorithm 1 is used to discover differential bicluster(s) from a
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Figure 3: Illustration of the divisive approach in the chkBiclus algorithm. In this example, g1 is considered
as the seed, the goal is to find any possible differential biclusters that contains g1. (a) 2D matrix shows 9
differential pairs and the set of common conditions for each pair of genes. (b) and (c) show the results of the
first and the second iterations of the algorithm.

group of genes that are related to a seed gene. If there are
no known seed genes, the algorithm iterates over all of the
genes, each time considering one of the genes as the seed
gene. The size of the conditions and the size of the genes
are checked against the user-defined thresholds, minC and
minG, which are the minimum number of genes and the
minimum number of conditions, respectively. If the num-
ber of common conditions for a given set of genes is greater
than minC, then the set of genes and the common condi-
tions are considered as a bicluster. Otherwise, the set of
genes are divided into two partitions in which each partition
is checked recursively. The partitioning is performed based
on the similarity between the genes.

Definition 4. Given a gene expression dataset with two

classes, a differential bicluster is a subset of differential gene

pairs that are highly related to each other under a subset of

conditions in one class but not in the other class.

To illustrate the divisive approach followed in the chkBiclus,
we introduce an example in Figure 3. In this example, g1 is
considered as the seed, the goal is to find any possible differ-
ential biclusters that contain g1. In Figure 3(a), a 2d matrix
shows 9 differential pairs and the set of common conditions
for each pair of genes. For instance, g1 and g2 have simi-
lar non-zero conditions: c1, c3, c6, c7, c9 and c10. Assuming
that both minG and minC are set to 4. The number of
common conditions for all of the 9 pairs is one, which is c6.
Since this is less than minC, and the number of genes is
more than minG, a split of the genes should be performed.
To do the split, the most dissimilar pairs of genes are iden-
tified, which are (g1, g7) and (g1, g8). Then, two partitions
are created. Initially, the first partition will contain (g1, g7),
and the second partition will contain (g1, g8). Each of the
remaining 7 pairs will be added to the first partition if it is
more similar to (g1, g7) than to (g1, g8), otherwise it will be
added to the second partition. The result is shown in Figure
3(b).
The bicluster in the bottom part of Figure 3(b) is com-

posed of {g1, g4, g6, g8, g10} and {c2, c5, c6, c8, c9}. This
partition satisfies minG and minC thresholds and thus this

partition is not processed further. The top partition is com-
posed of {g1, g2, g3, g5, g7, g9} and {c3, c6, c7}. Since the
number of conditions is less thanminC, this partition will be
divided into two new partitions as shown in Figure 3(c). The
top partition is composed of {g1, g2, g7} and {c1, c3, c6, , c7, c10}.
This partition does not satisfy the minG threshold, and thus
will be ignored. The bottom partition satisfies the minG
and minC thresholds. Therefore, the final biclusters are
({g1, g4, g6, g8, g10}, {c2, c5, c6, c8, c9}) and ({g1, g3, g5, g10},
{c3, c6, c7, c8}). DiBiCLUS is summarized in Algorithm 2.
The complexity analysis of this algorithm is O(M4Nmax) in
the worst case scenario, where Nmax = max(NA, NB).

Algorithm 2 DiBiCLUS

Input: D = M ×N : an expression dataset,
L = 1×N : a binary vector containing the class labels for
the conditions in D,
δ: significance threshold, k: parameter for k-means
Output: DiBiCLUSA and DiBiCLUSB the set of dif-
ferential biclusters in classes A and B respectively.
Algorithm:
Quantize each gene in D using the k-means algorithm
DQ(i) = Clus gene(D(i), k), 1 ≤ i ≤ M
Split DQ into dataA and dataB using L
dataA = DQ(L = 0)
dataB = DQ(L = 1)
Determine the set of differential pairs in each class diffA
and diffB using Definition 3
Using each gene as a seed, check for differential biclusters
for i = 1 : M do

genesA = diffA(i)
genesB = diffB(i)
DiBiCLUSA = chkBiclus(genesA)
DiBiCLUSB = chkBiclus(genesB)

end for
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4. EXPERIMENTAL RESULTS

4.1 Synthetic Dataset
To illustrate the performance of the proposed algorithm,

we applied it on a synthetic dataset. This dataset is com-
posed of 50 genes, 20 conditions in class A and 20 conditions
in class B. The datasets and the results are shown in Fig-
ure 4. The heat maps were generated using the Heatmap
Builder tool [10]. We implanted different types of biclusters
based on the following scenarios. The parameters of the al-
gorithm were as follows: δ = 25%,minG = 10,minC = 10
and k = 5.

• Scenario (1): a 10× 10 positively co-expressed biclus-
ter was implanted in class A, and no biclusters were
implanted in class B as shown in Figure 4(a). In this
scenario, the genes are related under a subset of con-
ditions in class A but are not related in any subset of
conditions in class B. Therefore, the second criterion
in Definition 3 is satisfied, and this bicluster is con-
sidered to be a differential bicluster. The algorithm
outputs this bicluster as shown in Figure 4(e).

• Scenario (2): a 10×10 positively co-expressed bicluster
was implanted in class A, and another 10 × 10 posi-
tively co-expressed bicluster was implanted in class B
as shown in Figure 4(b). Both biclusters have the same
subset of genes, but different subset of conditions. In
this case none of these biclusters is considered a dif-
ferential bicluster because the same subset of genes
are related in both classes with the same type of co-
expression and under the same ratio of conditions (50%
of the conditions in each class). Therefore, none of the
criteria in Definition 3 is satisfied, and the DiBiCLUS
algorithm does not output any bicluster.

• Scenario (3): a 10×10 positively co-expressed bicluster
was implanted in class A, and another 10 × 10 nega-
tively co-expressed bicluster was implanted in class B
as shown in Figure 4(c). In this case both of these bi-
clusters are considered differential biclusters because
the same subset of genes are related in a different type
of co-expression in each class. The first criterion in
Definition 3 is satisfied, and the two biclusters are
shown in Figure 4(f) and Figure 4(g). The expres-
sion profile of the same seed gene is highlighted in both
classes. The relationship between this gene and each of
the remaining genes is different; thus, this gene formed
a differential pair with each of the remaining genes in
both classes.

• Scenario (4): a 10× 15 positively co-expressed biclus-
ter was implanted in class A, and another 10× 5 posi-
tively co-expressed bicluster was implanted in class B
as shown in Figure 4(d). This scenario is similar to the
scenario 2, with the exception that the subset of condi-
tions, under which the subset of genes is related, is 75%
of the conditions in class A and 25% of the conditions
in class B. The difference between the two ratios, 50%,
is larger than the δ parameter; as a result, the second
criterion in Definition 3 is satisfied, and the bicluster
in class A is considered to be a differential bicluster as
shown in Figure 4(h).

4.2 The Prostate Cancer Dataset
In the second experiment, we used a real-life dataset, the

prostate cancer dataset. This dataset has two classes of
conditions. The first class is an early stage of prostate can-
cer (class A), and the second class is a developed stage of
prostate cancer (class B). The total number of experimental
conditions is 641. 433 of the conditions belong to class A,
and the remaining 208 conditions belong to class B. The set
of genes were filtered, and the number of genes was reduced
to 529. This set of 529 genes was nominated as a focused set
of candidate prostate cancer related genes, based on domain
knowledge from the literature and previous laboratory-based
studies. Furthermore, all of the genes were known to be ex-
pressed in prostate tumors.

Table 3 shows the results of applying DiBiCLUS on the
prostate cancer dataset. The parameters were set as follows:
δ = 25%,minG = 5 and minC = 10. Several values of k
were used. GSEA, Gene Set Enrichment Analysis, is a com-
putational application that evaluates the significance concor-
dant differences between two biological states of a given set
of genes [16]. This tool was used to identify the enriched gene
sets. Low p-values indicates biologically relevant genes. Fig-
ure 5 shows four differential biclusters obtained by applying
DiBiCLUS on the prostate cancer dataset. The parame-
ters were set as follows:δ = 25%,minG = 10,minC = 10
and k = 7.

Table 3: The number of statistically significant bi-
clusters obtained by applying DiBiCLUS on the
prostate cancer dataset. δ = 25%,minG = 5,minC =
10.

Class A Class B Time
k p < 5% p < 1% p < 5% p < 1% in minutes
3 69 14 34 7 1.58
5 23 4 3 0 1.72
7 2 0 0 0 1.95

The prostate cancer dataset, used in this experiment, has
a special characteristic: the number of conditions is more
than the number of genes. Therefore, more time is needed
to quantize the gene expression data than to find the dif-
ferential biclusters in the next steps. The running time is
shown in the last column of Table 3. A 2.83 GHz PC with
8 GB RAM was used to perform our experiments. Figure 7
shows the shape of different differential biclusters obtained
with different values of k. As the value of k increases, the
expression profiles of genes get closer to each other and the
number of differential biclusters decreases.

As an example of the type of gene relationships captured
by DiBiCLUS algorithm, Figure 6 shows the expression
profile of three genes ACTA2, MTA1 and DVL3. The ex-
pression of the first gene is positively covariant with the
other two genes in class A, while it is negatively covariant
with the two genes in class B. To evaluate the relationships
between the three genes, we used the IPA Knowledge Base
[6].

In Figure 8, the three covariant genes are shown to be
mapped to a closely related local sub-network in the IPA
biological interaction Knowledge Base. This mapping result
suggests that these three genes function in closely related
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Figure 4: The synthetic datasets and the results of the DiBiCLUS algorithm. The first row shows the four
scenarios of the synthetic datasets using heat maps. The second row shows the results of DiBiCLUS. The
result of the algorithm on the dataset in (a) is shown in (e). The algorithm does not produce any result for
the dataset in (b). The results of the algorithm on the dataset in (c) are shown in (f) and (g). The result of
the algorithm on the dataset in (d) is shown in (h).

Figure 5: Some of the differential biclusters obtained by applying DiBiCLUS on the prostate cancer dataset.
(a) class = A, number of genes= 13 and number of conditions= 10. (b) class = A, number of genes= 11 and
number of conditions= 15. (c) class = B, number of genes= 7 and number of conditions= 15. (d) class = B,
number of genes= 7 and number of conditions= 27.
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Figure 7: The effect of changing the parameter k on the shape of the biclusters obtained by applying DiBiCLUS
on prostate cancer dataset.

Figure 6: The expression profile of three genes
ACTA2, MTA1 and DVL3. (a) ACTA2 expression
is positively covariant with MTA1 and DVL3 genes
in class A. (b) ACTA2 expression is negatively co-
variant with MTA1 and DVL3 genes in class B.

biological processes, associated with the aggressive state of
prostate cancer. This computational prediction needs to be
confirmed experimentally, but it is significant that the co-
variant gene cluster maps to a biological pathway that has
been independently implicated as a determinant of aggres-
sive prostate cancer.

Biological analysis of the bicluster in Figure 5(c) showed
that the bicluster is biologically relevant. This bicluster is
associated with aggressive tumors, which are driven by an-
drogen (hormone) signals. The associated biological network
shows enrichment for gene functions required for steroid hor-
mone metabolism and endocrine system development, which
is highly relevant since prostate cancer is a hormonally drive
tumor type. This is shown in Figure 9.

4.3 The Lung Cancer Dataset
In the third experiment, we applied DiBiCLUS on lung

cancer dataset obtained from [5]. This dataset is composed
of 1975 genes and 169 samples: 102 are cancer samples (class
A), and 67 normal samples (class B). Table 4 shows the
result of applying DiBiCLUS on the lung cancer dataset.
The parameters were set as follows: δ = 25%,minG = 10
and minC = 10. Figure 10 shows samples of the differ-
ential biclusters obtained by applying DiBiCLUS on the
lung cancer dataset. In the first bicluster, one of the genes,
displayed in blue in Figure 10 (a), is negatively co-expressed
with the other genes in the same bicluster. For a given gene,
DiBiCLUS finds the genes that are positively or negatively
co-expressed with that gene.

The running time for applying DiBiCLUS on the lung
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Figure 8: Pathway obtained from IPA Knowledge
Base for the genes ACTA2, MTA1 and DVL.

Figure 9: Pathway obtained from IPA Knowl-
edge Base for the bicluster shown in Figure 5(c).
Shaded genes are focus genes from the bicluster, and
un-shaded genes are predicted network connected
genes.

cancer dataset with different values of k is shown on the
last column of Table 4. Here the case is completely different
than the prostate cancer dataset. In the lung cancer dataset,
and in most of the other cases, the number of genes is much
larger than the number of conditions. As the value of k
increases, the number of differential pairs decreases, and the
running time decreases.

Table 4: The number of statistically significant bi-
clusters obtained by applying DiBiCLUS on the lung
cancer dataset. δ = 25%,minG = 10 and minC = 10.

Class A Class B Time
k p < 5% p < 1% p < 5% p < 1% in hours
3 278 107 112 46 6.83
5 14 4 39 18 2.04
7 0 0 3 1 0.49

4.4 Discussion
In the proposed algorithm, we identify the differential

biclusters. The genes in these differential biclusters have
strong correlation in one class but not in the other, or they
may have different types of co-expression among the two
classes. Furthermore, the genes can be negatively or posi-
tively co-expressed. A key feature of the DiBiCLUS algo-
rithm is that it incorporates the class labels in finding the
differential biclusters. Therefore, trivial biclusters, that are
similarly co-expressed in both classes, are ignored by the
algorithm. As a result, biologists can focus on these differ-
ential biclusters to understand the differences between two
classes of cells.

One of the advantages of the proposed algorithm is that it
allows overlapping. The same gene can be a member of more
than one bicluster. Biologically, a gene may be involved in
more than one biological pathway. In addition, a gene can
be a member of biclusters in both classes, A and B, which
helps in understanding the different roles played by this gene
in two different kinds of cells.

Another advantage of DiBiCLUS is that it can work with
seeds or without seeds. If there is a need to study a gene or
a specific set of genes, DiBiCLUS can find the differential
biclusters for those genes. On the other hand, if there are no
seeds, the algorithm iterates over all the genes, considering
one gene as a seed at a time.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel approach to identify

differential biclusters from gene expression data. This new
algorithm emphasizes the differences in the biological ac-
tivities between samples belonging to two different classes.
We applied the proposed algorithm on synthetic and real life
datasets, and the results showed that DiBiCLUS algorithm
is able to identify significant differential biclusters from the
gene expression data.

There are some possible extensions for the current model.
First, the DiBiCLUS algorithm can be extended so that it
works on multi-class gene expression data (more than two
classes of conditions). Second, the similarity between any
two genes is computed based on the number of identical
non-zero conditions. One extension of this model is to con-
sider similar but not exact values in computing the similarity
between the genes.
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Figure 10: Samples of the differential biclusters obtained by applying DiBiCLUS on the lung cancer dataset.(a)
class = A, number of genes= 10 and number of conditions= 11. (b) class = B, number of genes= 15 and
number of conditions= 11.
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