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DIFFERENTIAL-BOUNDARY OPERATORS
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ALLAN M. KRALLOX2)

Abstract. Differential-boundary systems occur naturally as adjoints for ordinary
differential systems involving integral boundary conditions. In this paper such systems
are generalized so that the adjoint system has the same form as the original. Interior
boundary points are introduced and removed, and the integrals, used in the boundary
conditions, are also removed. Selfadjoint systems are classified, and an eigenfunction
expansion is derived. Finally, nonselfadjoint systems are discussed and again, an
eigenfunction expansion is derived.

I. Introduction. Perhaps the simplest example of a differential-boundary
operator was given by Phillips [21] in a discussion of maximal dissipative operators.
If A eL2(0, 1), and ||A|| ̂2, Phillips defined the operator L by letting Ly=y'—y
+y(0)h on a domain D = {y ; y is absolutely continuous, y and y' eL2(0, 1), y(l)=0}.
The operator and its domain represent a system which involves some procedure for
returning energy with an interior density of y(0)h.

The earliest paper related to differential-boundary operators appears to be due
to Hilb [11] in 1911. He discussed the operator

Ly = Tx{pM%)+q^
where y is defined on [0, 1] and satisfies boundary conditions

j1 K(x)y(x) dx+ßy(0) - «/(O) = 0,       hiy'(l)- h2y(l) = 0.

Hilb defined an adjoint operator by(3)

L + z = ± (p(x) ^)+q(x)z-K(x)z(0)/a,

where z satisfies boundary conditions

ßz(0)-äz'(0) = 0,       /7lZ'(l)-Ä2z(l) = 0.
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He succeeded in expanding functions in the domain of L in a series of eigenfunctions
of L and in expanding functions in the domain of L+ in a series of eigenfunctions
of L+. The importance of this work is that the presence of the integral in the first
boundary condition induces the boundary term in the adjoint operator.

Hub's work was subsequently extended to the interval [0, co) by his student
Betschler [1], was further improved by the author [14], [15], and again extended by
Kim [13].

An important application of differential-boundary operators may be found in
the work of Feller [9], published in 1952. Feller was interested in a generalization
of the Fokker-Planck equation, which occurs in diffusion processes. Let 0^r<co,
ryèx^r2, where rx is a natural boundary and r2 an exit boundary. Let Vx(t) and
V2(t) result from masses at the boundaries rx and r2. If v(t, x) represents mass
density at x at time r, then v(t, x) satisfies

vt = [(a(x)v)x-b(x)v]x+(T/a)V2(t)p(x),

Vy(t) = (py/o)V2(t),

V2(t) = -^ V2(t)- lim [(a(x)v)x-b(x)],
a x-r2

or when <r=0,

vt = [(a(x)v)x-b(x)v]x-p21Tp(x) lim [(a(x)v)x-b(x)v].
x-*r2

If ry is also an exit boundary, then there will also be a term involving a limit at
rx, or more generally there will be terms involving limits in both directions.

In the case ct=0, if v = w(t)y(x), the equation in y is

[(a(x)y)'-b(x)y}'-p2-'rp(x)[(a(x)y)'-b(x)y]x=r2 = Xy,

where A is the separation of variable parameter. This equation is similar to Hub's
adjoint equation.

More recently in 1964, Cole [7] discussed the vector system

LY = Y'+P(x)Y= \Y,

J At Y(Oi)+ f K(x) Y(x) dx = 0,

where — co < a ^ ax < ■ ■ ■ < an ̂  b < co. He discussed the Green's function, found
eigenvalues and associated eigenfunctions, and then derived an eigenfunction
expansion. But most important for our purposes, he defined an adjoint operator by

L+Z = -Z'+P*(x)Z+K*(x)<l> = ÄZ,
Z(fl, +) -Z(ax -) = A\*(/>,       i = \,...,n,

Z(a0-) = Z(an+) = 0,
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1971] DIFFERENTIAL-BOUNDARY OPERATORS 431

where <j> is a matrix parameter. Although Cole did not show it, <f> can be expressed
as a linear combination of the boundary values of Z(Z(a),Z(a{±), i=\,.. .,n,Z(b)).

In 1965 the author [17] attempted to generalize the type of system so that the
adjoint system would have the same form. He considered the system

LY= Y'+P(x)Y+K2(x)U2(Y) - 0,

C/1(T)+f K1(x)Y(x)dx = 0,

where U1(Y) = AY(a) + BY(b), U2(Y) = CY(a) + DY(b) are independent boundary
operators, and Kj(x), K2(x) are integrable matrices.

If VX(Z), V2(Z) are the complementary boundary operators for U^Y), U2(Y),
i.e.

6 [Z*(Y'+PY)-(-Z'+P*Z)*Y]dx = VÍ(Z)U1(Y)+V*(Z)U2(Y),r
then the adjoint system is

L+Z = -Z'+P*(x)Z-Ki*(x)V1(Z) = 0,

V2(Z)+ f 7s:2*(x)Z(x) dx = 0.
Ja

Compatibility conditions and the Green's function were discussed, but with
certain technical difficulties. The virtue of this extension is that it permits classical
selfadjointness to occur, which was previously impossible.

Even more recently Jones [12] has discussed this last system when ^T2(x) = 0,
exploring the conditions under which it is selfadjoint in the extended sense of Bliss
[2], [3] and Reid [22].

Finally the author [18] has recently derived the adjoint system for

L Y = Y'+P(x)Y+ K2(x) U2( Y) = 0,

C/1(T)+ f Kx(x)Y(x) dx = 0

in L\(a, b) even when í/i(T), U2(Y) are defined by matrices which are not neces-
sarily square. The adjoint system may be represented by

L*Z= -Z'+P*(x)Z-Ki*(x)<j>,

-Z(b) + B*<t>-D* Í K2*(x)Z(x)dx = 0,

Z(a)+A*<i>-C* [ K2(x)Z(x)dx = 0.

Here again the parameter <f> can be eliminated to yield the adjoint system previously
defined.
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In the remainder of this article we shall discuss the theory of differential-boundary
operators and systems. §2 deals with the definition of these objects and the removal
of interior points and integrals in the boundary conditions. §3 exhibits solutions to
homogeneous and nonhomogeneous problems and defines the Green's function
for such problems. §4 derives the adjoint problem in a Hilbert space, gives two
representations for it, and derives Green's formula. §5 discusses selfadjoint prob-
lems in the sense of Lagrange and in the sense of Bliss-Reid and derives the eigen-
function expansions associated with these problems. §6 discusses nonselfadjoint
problems. It shows these problems are not regular in the sense of Birkhoff, but
there exist other regularity conditions which in certain circumstances reduce to
Birkhoff's conditions. The Green's function is then expanded and an eigenfunction
expansion is derived. §7 is concerned with extensions and unsolved problems.

II. Differential-boundary operators, (a) Let us consider a finite interval [a, b]
which is divided into m subintervals Ilt.. .,Im by alt..., am_i. I.e., a = a0<a1- ■ ■
<am-!<am=b. Let Ati and Bu, i = 1,..., k, j = 1,..., m, denote constant matrices
and ^i(x), i=l,.. .,k, denote matrices which are functions of x. If T(x) is a
column vector, we define the boundary forms Mt Y, i= 1,..., k, by

(2.1) MtY = J [Al}Y(a).1+)+BtfY(ar)]+ f K{(x)Y(x) dx,
7=1 Ja

i= 1,..., k, where T(a;±) denotes the limit of T(x) as x approaches a¡ from above
or below.

If Cy and 7)w, i=l,..., I, j=\,..., m, denote additional constant matrices,
77j(x), i=\,..., I, denote additional matrix functions, and P(x) is a continuous
square matrix, we define the differential operator L„ by

(2.2) LbY = Y'+P(x)Y+ 2 #,(x)J2 CyT(ay_1+) + DuY{ar)\-

We define the differential-boundary system £f by

(2.2) y    LbY=0,
(2.1) "   MtY = 0,       i = \,...,k.

It was shown [18] that the proper adjoint system for Sf is

(2.3) Lb+Z = -Z'+P*(x)Z- J KftxM = 0,

^+ :    -Z(ar) + 2 Bffr- J D% f H?(x)Z(x) dx = 0,
(=1 ¡=i Ja

(2.4) Z(ay_1+)+2 Affr - 2 C* P #,*(x)Z(x) dx = 0,      j=\,...,m,
1=1 i=l Ja

where <J>¡ are appropriate parametric matrices. Hence we use it as the definition
for Sf\
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1971] DIFFERENTIAL-BOUNDARY OPERATORS 433

It is these systems and their nonhomogeneous counterparts we wish to study.
(b) It is possible to reduce if and y+ to more manageable forms which do not

involve interior points as boundary points. In each interval I¡ = \a¡-\, a,] we denote
the variable x by x, as./= 1,..., m. We denote the vector <& by

/ Y(Xly

& = l y(*2)

where the first components are evaluated in llf the second set in 72, etc. If & is
defined by

iP(Xy)        0 ••• 0
0      P(x2)    •••       0

0 0 P(xm)t

ifs/ = (Au), a = (Bu), V=(Cti), ® = (Di,), and if Jf=(*,(*,)), .T=(#X*i))> then
£r° is equivalent to

(2.5) £Ph& = %/'+&<&+jr\?<3f(A) + &Sf(B)] = 0,

(2.6) s/<3f(A)+@<&(B) + f X(Xy&(X) dX = 0,

where A consists of the m-tuple (a0+, ay + ,..., am-i+), B consists of (ay-, a2-,
..., am-) and Xis (x1; x2,..., xm).

If 2£ and <1> are defined by

'Z(Xy)\ /*!'
Z(x2) \        0 = / * 2

yZ(xm)] \<Pn

then Sf+ is equivalent to

&i% = -&'+0>*&-yr*<b = o,
(2.7) rB2£(A)+sé*<b-<€*      Jf?*(X)&(X) dX = 0,

(2.8) -&(B)+@*®-3!* f  #*(X)X{X) dX = 0.

In this form the systems do not involve interior boundary points. If this does not
suit the whim of the reader, we remark that each of the variables x,may be expressed
in terms of a single variable t which reduces the number of independent variables
to 1. This was done previously by Mansfield [19] while studying interior point
boundary conditions only. It introduces certain complications we prefer to avoid.
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We also remark that this notational stunt is so effective in handling a finite
number of interior boundary points that henceforth we may assume there are no
interior boundary points.

(c) It is now possible to evaluate the parameter occurring in the adjoint system.
We assume that there are no interior boundary points, and that the boundary
operators A Y(a) + B Y(b) and C Y(a) + D Y(b) form a row-wise complete independent
set. SP and ^+ thus have the form

(2.9) LbY= Y' +P(x) Y+ H(x)[C Y(a) + D Y(b)] = 0,
c/>.

(2.10) A Y(a)+B Y(b) + f K(x) Y(x) dx = 0.

(2.11) LZb+ = -Z'+P*(x)Z-K*(x)<l> = 0,

S?+ :   Z(a) + B*<f>-C* Ç H*(x)Z(x) dx = 0,

-Z(b) + A*</>-D* f H*(x)Z(x) dx = 0.
Ja

(2.12)

It is well known [2] that Green's formula for LY= 7'-l-F(x)7 and its adjoint
L+Z= -Z'+P*(x)Z can be written as

f [Z*(LY)-(L+Z)*Y]dx = [ÄZ(a)+BZ(b)]*[AY(a) + BY(b)]

+ [CZ(a) + DZ(b)]*[C Y(a) + D Y(b)],

where Ä, B, C, ß are appropriate matrices which satisfy

f*    -C*\I-A*    -C*\/A    B\      II   0\
\   B*       ß*)\C   DJ " \0    7/

and 7 is the identity matrix of appropriate dimensions. Since these matrices are
inverses, the order of multiplication may be reversed, yielding

-ÄA* + BB* = I,        -ÄC* + BD* = 0,
-^♦ + 755* = 0,        -CC* + DD* = I.

If the first adjoint boundary condition is multiplied by - Ä, the second by B, and
then they are added, we find that <f> = [AZ(a) + BZ(b)]. If the first adjoint boundary
condition is multiplied by C, the second by — D, we find, upon adding, that

CZ(a) + 75Z(A)-|- Í H*(x)Z(x)dx = 0.
Ja

Therefore S^+ can be written as

(2.13) Lb+Z = -Z'+F*(x)Z-7s:*(x)[iZ(a) + 7ÎZ(A)] = 0,

(2.14) CZ(a) + DZ(b) + Í H*(x)Z(x) dx = 0.
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(d) Even more remarkable, the differential-boundary systems Sf and £f+ may
be written as ordinary differential systems with end point (no integrals) boundary
conditions. Define Uby letting U' = K(x)Y, U(a) = AY(a). Then

U~ j*K(i)Y(¿)df+AY(fl),

and (7(A) = -BY(b). Further let S=CY(a) + DY(b). Then & is equivalent to

(2.15)

Y(a)\     /O    0      0
| U(a) ) + ( B   I      0

S(a)l     \D   0    -\I
The adjoint system S?+ in this setting, as demanded by the theory of ordinary

differential equations, is

(2.17)

(2.18)

This is, in fact, equivalent to the preceding definition (2.11), (2.12). There is also
an adjoint form similar to (2.15), (2.16) which comes from (2.13), (2.14). We will
not need it.

We should finally note that in (2.15), (2.16) Y is the dependent variable, U the
boundary condition variable, and S is the boundary operator variable, but in
(2.17), (2.18), while Z is the dependent variable, the boundary condition variable
is T, and the boundary operator variable is V. These last two are in reversed order.

We shall use these representations throughout the remainder of the paper.

III. Solutions, (a) It might be supposed that the existence of solutions to the
equation

(3.1) r +F(x) Y+ H(x)[C Y(a) + D Y(b)] = 0

is guaranteed by the first part of its representation (2.8), or directly by defining
S=[CY(a) + DY(b)] and considering

Y'+P(x)Y+ H(x)S = 0,       S ' = 0,
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which is a homogeneous system of ordinary differential equations. However neither
of these techniques completely determines S, which is related to the boundary
values of Y. This is seen in the need of both (2.15) and (2.16) in order to precisely
define S.

In addition, if Picard's method of iteration is used, the feedback-like nature of S
is sufficient to force the successive iterations to diverge. Thus we proceed in a
slightly different manner.

For the sake of preciseness, let us suppose that the sizes of the matrices Y, P,
77, C, D are « x 1, nxn, nxm, mxn, mxn. We shall prove

3.1. Theorem. Equation (3.1) possesses n linearly independent solutions.

Proof. Let
G0(x, i) = \Yn(x)Zn(t), t < x,

= -\Yn(x)Zn(t),       t > x,

where Yn is a fundamental matrix for F'+P(x)F=0, Z„ is a fundamental matrix
for —Z'+ZP(x)=0, and Zn(x) Fn(x) = 7, the identity matrix. Then

Y = Yn(x)Cy - f G0(x, t)H(t) dt[C Y(a) + D Y(b)]
Ja

for some Cy and some [CY(a) +DY(b)].
Evaluating [C Y(a) + D Y(b)], we find

[CYn(a)+DYn(b)]Cy = {/+£ [CG0(a, t) + DG0(b, t)]H(t) dtj[CY(a) + DY(b)].

This is a set of m linear equations, with Cy possessing n components. We wish
to choose [C Y(a) + D Y(b)] so that the equations will have a unique solution.

Let rank [CYn(a) + DYn(b)] = r, r^n.
Case 1. m>r. The equations must be chosen so they are consistent. Having

chosen r linearly independent equations with arbitrary right sides (components
of {-}[CY(a) + D Y(b)]), we find the remaining left sides are linear combinations of
those chosen. Therefore the remaining right sides must be the same linear com-
bination. This is possible, since, until now, the components of [CY(a)+ DY(b)]
have been arbitrary. We now have r equations in « unknowns (Cy) for which we
can find solutions.

Subcase 1. r=n. In this instance we have n equations in n unknowns, and Cy is
uniquely determined in terms of the components of [CY(a) + DY(b)].

Subcase 1. r<n. Here there exists a matrix Cy with rank n — r such that
[CYn(a) + DYn(b)]Cy = 0. If Y= Yn(x)Cy, then we find F consists of n-r indepen-
dent columns, each of which is a solution.

The procedure outlined in Subcase 1, n = r, in this instance yields r independent
solutions. Since the difference between any two of them is a solution of the kind
found in the first paragraph, we have found n independent solutions.
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Case 2. m = r. Here we have the same situation which occurred in Case 1 after
the initial reduction in the number of equations.

Case 3. m<r. This is impossible.
We can now state the following

3.2. Theorem. Consider the system if which consists of

(3.1) F' +F(x) Y+ H(x)[C Y(a) + D Y(b)] = 0,

(3.2) A Y(a) + B Y(b) + f K(x) Y(x) dx = 0,
Ja

where the matrices Y, P, C, D, 77, A, B, K are nx\,nxn,mxn,mxn,nxm,pxn,
pxn, pxn. Let Y0 be a fundamental set of solutions of (3.1), then Sf is compatible
(possesses solutions) if and only if

rank ¡AY0(a) + BY0(b)+ f K(x) Y0(x) dx\ = r < n.

If r<n, there exist n — r solutions to £f.

The standard proof is applicable here.
(b) While preceding theorems show the existence of solutions to (3.1) and under

what conditions Sf possesses solutions, the results are relatively useless for com-
putational purposes. It is much more useful to use the representation (2.15) and
Yn, Zn, the fundamental matrices for Y'+P(x) 7=0, -Z' +ZF(x) = 0. In particular
where £f is incompatible (possesses no solutions), the nonhomogeneous boundary
value problem

(3.3) F' +P(x) Y+ H(x)[C Y(a) + D Y(b)] = F(x),
NH: b

(3.4) A Y(a) + B Y(b) +     K(x) Y(x) dx = 0

is readily solved using the matrix representation.
We consider NH in matrix form

(3.5)

Y(a)\     /0    0
( U(a) ) + Iß    I

S(a)l     \D   0
It is readily seen that (3.3), (3.4) and (3.5), (3.6) are equivalent.
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To find the fundamental matrix for the homogeneous system (2.15), we solve
(2.15) with initial conditions at a of

These solutions, written consecutively in columns, form the fundamental matrix
%(x), which is

/ Yn(x)Zn(a) 0 -\xaYn(x)Zn(W(e)dè \

(3.7)   %(x) = [¡imYn(í;)deZn(a)   I    -¡xj:K(u)Yn(u)Zn(OH(Z)d{du   •

\ 0 0 / /
Applying the boundary condition (2.16), we have

3.3. Theorem The system if is compatible if and only if the rank of

(3.8)

¡                   A -I 0                                 VÍBYn(b)Zn(a) I -BJbaYn(b)Zn({)H({)dt                           \
I          + ¡\ K(0 Yn(ï) dèZn(a) -fr fr K(V) Yn(K)Zn(è)H(è) di A, I
\        C+DYn(b)Zn(a) 0 -JD^Tn(A)Zn(|)77(a^-7        /

= r < 3«.
In that case there exists a column matrix

©
such that when the boundary condition (2.16) is applied to

the resulting matrix is a column of zeros.

3.4. Corollary. Let H, C, D, A, B, K be nxn matrices. Then Sf is compatible
if and only if
(3.9)

A -I                                0
BYn(b)Zn(a) I   -B¡baYn(b)ZM)H(e)de

+ fr K(i)Yn(£) d&n(a) -fr fr K(r,)Yn(v)Zn(i)H(Ç) dÇ eh,    = °"
C+D Yn(b)Zn(a) 0 -Dfr Yn(b)Zn(OH({) de-I
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We note that the solution to (3.1) as given by the fundamental matrix is

F0 = Yn(x)Zn(A)Cy-j* Yn(x)Zn(t)H(Ç) d{C3.

From the third line of (3.9) we see that

[C+DYn(b)Zn(a)]Cy = [i+d[ FB(6)Zn(077(|) #] C3.

If [C+7)Fn(A)Zn(a)]-1 exists, Cy may be eliminated to yield

F0 = Yn(x)[C Yn(a) + D Yn(B)] -»[/- CYn(a) £ Z„(|)77(¿) d(

+ 7)Fn(A)£zn(077(a^]c3,

the solution previously derived in [17].
If the determinant (3.9) is nonzero, then standard variation of parameters solves

(3.5)-(3.6). The first component solves (3.3)-(3.4).
We note in passing that &n(x) possesses an inverse which is

/ Yn(a)Zn(x) 0 ¡xaYn(a)Zn(i)H(Ç)dÇ

%(x) -» = I  _ J* m) Yn(£) d&n(x)   I    - ¡I £ K(v) Yn(r,)Zn(OH(0 d{ d-r,
\ 0 0 7

This, of course, solves the adjoint equation (2.17).

IV. The adjoint problem in Hilbert space, (a) In §11 ((2.3)-(2.4), (2.11)-(2.12),
(2.13)—(2.14)) we gave various equivalent definitions for the adjoint system ¿7+.
These forms formally satisfy an extended form of Green's formula. Therefore in
the Hilbert space L\(a, b) if we define an operator Lb by the expression (2.9) on a
domain restricted by (2.10), then the operator L¿" defined by (2.13) with domain
restricted by (2.14) is a restriction of the adjoint operator L%. L¿ Ç7_*. Our purpose
now is to show that the inclusion relationship is in fact an equality, and to derive
the extended Green's formula.

We let 3tif be the Hilbert space of n x 1 matrices

defined on the finite interval [a, b], whose components are in L2(a, b) and whose
inner product is given by

(4.1) (X, F) = J   f Xi(x)yi(x) dx =  f Y*(x)X(x) dx.
4=1   Ja Jo
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We let P(x) be a continuous nxn matrix. We let A, B, K(x) be p xn matrices,
where K(x) is row-wise in 3t. We let C, Dbtmxn matrices, and 77(x) be an n x m
matrix which is column-wise in Jf. We finally assume that m +p = 2n and that the
2n x In matrix

G 3
has rank 2n. Thus the rows of (A :B) and (C: D) are all linearly independent.

The boundary form MY is defined by

(4.2) M Y = A Y(a) + B Y(b) + Ç K(x) Y(x) dx.

We now define the domain D0 by letting D0 be the set of all n x 1 matrices Y
satisfying

1. YisinJe.
2. Y is absolutely continuous in [a, A],
3. Y'+P(x)Yis in JT.
We define the domain D by letting D be the set of all n x 1 matrices Y satisfying
1. Y is in 7)0.
2. M 7=0.
We now define the operator Lb by

(4.3) LbY= 7'+F(x)7+77(x)[C7(a) + 7)7(A)]

for all 7 in D.

4.1. Theorem. D is dense in 3tf.

Proof. The case where K is identically 0 is well known. Thus we assume K is
not identically 0. Let 3f0 be those matrices 7 such that

1. 7 is in £>„.
2. Y(a) = 0, 7(A) = 0.
3. frK(x)Y(x)dx=0.

Then Jf0<=D<=D0<=Jf. Let Jf be the subspace of 3? spanned by the columns of
K*. Then Jf?0 is orthogonal to Jf. Clearly jf0 is dense in Jf1. Thus D is dense in XL.

Now suppose D is not dense in 2t. There then exists an element / in 3f, /^0,
such that fr i*(x) Y(x) dx=0 for all 7 in D. Hence ¿=2f-i a,*,* where TsTf denotes
the columns of K*, conjugate transposes of the rows of K. Thus if

/=#*«, and Â* = a*K. Thus for any Tin D, a* fr K(x)Y(x) <7x=0.
We see from (4.2) and the definition of D that this implies a*[A Y(a) + B7(A)]=0

for all 7 in D. Since the rows of (A : B) are independent and at,i=l,...,p, are not
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all 0, by relabelling we may assume that the terms a*[AY(a) + BY(b)] and
a* §ba K(x) Y(x) dx form the first row of the boundary condition (4.2). Thus Ay Y(a)
+ ByY(b) = 0 and J"* Ky(x)Y(x) dx = 0 for all F in D. Here again (Ay-.By) denotes
the first row of (A : B).

We now choose U in D0 such that

AyU(a) + ByU(b) ¥= 0,

At U(a) + Bi U(b) + f Ki(x) U(x) dx = 0,       i = 2,..., p.
Ja

We choose V in D0 such that V(a)=0, V(b)=0, £ \\Ky*-V\\ dx<8, where S is to
be chosen shortly, J"* KtVdx=0, i=2,.. .,p. Since

f Ky(x)V(x)dx= f  ll^prfx+f TsrjF-ATf]^,
Ja Ja Ja

if S is sufficiently small J ^(x^x) dxj^O.
Now let W= tZ+ßF, where

j8 = -í^1t/(a) + 7i1í7(A)+í ^(xíC/íx)^!/!" ^(x)^) ¿x.

Then fFis in 7), but AyW(a) + ByW(b)^0, and we have a contradiction.
Since D is dense in 3^, the operator L¡, has a uniquely defined adjoint L% (see

[23, p. 299]). We find it by employing a series of lemmas.

4.2. Lemma. IfZ is in the domain of L*, then Z is absolutely continuous in [a, b].
There exists a linear functional matrix (/> such that

(4.4) L*Z= -Z'+P*(x)Z-K*(x)<f>.
Proof. If F is in ^T0, then

f (LtZ)* Ydx=  f Z *(x)( F' + P(x) Y) dx.
Ja Ja

Thus

f Z*Y'dx=  [ (L*Z-P*(x)Z)*Ydx.
Ja Ja

Since Y vanishes at a and b, integration by parts on the right yields

(4.5) f \z+ i" (L*Z-P*(t)Z)* dt\ F' dx = 0.

We therefore have an expression of the form \baJ*Y' dx=0 for all Y in 770.
It is clear that j"a J* Y dx=0 if and only if j"a [f* J* dt] Y' dx=0. In particular this
implies that Y' is orthogonal to J's which are constant. If F' is orthogonal to an
element J which is not constant and not an integral of an element in ¿f, then,
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assuming that / has been made orthogonal to those elements as well, we find for
/in X

[K4*dt]jdx=-fA[jdt]dx>
= 0,

since J being orthogonal to constants implies that fr J dx vanishes at both a and A.
Thus frJdx is in 3fa and J is an acceptable 7'. But then J is orthogonal to itself
and is 0. Thus

Z+ P (L*Z-P*(t)Z) dt = - P K*(t) dt<f> + C.
Ja Ja

Since the last three terms are differentiable a.e., L*Z= — Z' +P*(x)Z—K*(x)<f>.

4.3. Lemma. 7/Z is in the domain ofL^, then Z satisfies

Z(d)+A*<f>-C* f H*(x)Z(x) dx = 0,
(4.6) Jac

-Z(b)+B*<f>-D* p H*(x)Z(x)dx = 0,

or in nonparametric form,

(4.7) CZ(a) + DZ(b)+( H*(x)Z(x) dx = 0.
Ja

Further

(4.8) <f> = [ÄZ(a) + BZ(b)].
Proof. We compute

0 = £[Z*(Lö7)-(L*Z)*7]i/x,

= Z *(b) 7(A) - Z *(a) 7(a) + f Ç K(x) 7(x) i/x
Ja

+ Í p 77*(x)Z(x) dx\*[CY(a)+D7(A)],

= \ÄZ(a) + SZ(b)]*[A Y(a) + B 7(A)]
+ [CZ(a) + DZ(b)]*[CY(a) + D 7(A)]
-t*[AY(a)+BY(b)\

+ \ f H*(x)A(x) dx\*[CY(a) + D7(A)],

= [ÄZ(a)+BZ(b) -<}>]*[A Y(a) + B 7(A)]

+ [CZ(a) + DZ(b) + p H*(x)Z(x) dx\*[CY(a)+D7(A)].
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Now for each nonzero row Kt, the ¡th component of the first F boundary condition
may be arbitrary. Thus the /th component of <f> is determined. If the /th row of K,
Ki, is 0, then the /th component of <j> is unneeded and may be defined as indicated.
Since the second Y boundary condition is arbitrary, Z satisfies (4.7).

If we use the relations concerning A, B, C, D, Ä, B, C, D in §2, the conditions
(4.6) follow from (4.7) and (4.8).

We now denote by 7)J those n x 1 matrices Z which satisfy
1. Zisin^f
2. Z is absolutely continuous in [a, b],
3. -Z'+P*(x)Zisin^
We denote by D* those nx\ matrices Z which satisfy

1. Z is in D*.
(4.9) r"

2. CZ(a) + DZ(b)+\   H*(x)Z(x) dx = 0.
Ja

The preceding lemmas have shown that the operator -Z'+P*(x)Z—K*(x)
x [ÄZ(a)+SZ(b)], whose domain is D*, contains L*. The converse of this statement
is a trivial computation. We are therefore led to

4.4. Theorem. The domain ofL$ is D*. For all Z in D*,

(4.10) L*Z = -Z'+P*(x)Z-K*(x)[ÄZ(a) + BZ(b)].

The reason for generalizing the operator (adding the boundary term) should
now be clear : the adjoint operator has the same form as the original. The domains
are also determined by the same kind of boundary conditions.

(b) We can now write Green's formula for these differential-boundary operators.

4.5. Theorem. Let Y be in D0 and Z be in D%. Then

f {Z*( Y'+P(x) Y+ H(x)[C Y(a) + D Y(b)])
Ja

-(-Z'+P*(x)Z-K*(x)[ÄZ(d)+BZ(b)]* Y)} dx
(4.11) = [ÄZ(a) + BZ(b)]*\a Y(a) + BY(b) + f 7¡:(x) Y(x)dx\

CZ(a) + DZ(b) + f 77*(x)Z(x) <7x| *[CY(a) + D Y(b)].

The proof easily follows from the comments preceding (2.13)—(2.14). This
formula was derived earlier in [17] under more restrictive conditions.

4.6. Corollary. Let Y be in D and Z be in D*. Then

(4.12) £ [Z*(Lb Y)-(L*Z)* Y] = 0.
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We comment finally that since the system ¿7+ generates Lb by Lb (see 2.13) and
generates D* by the boundary condition (see 2.14), we will no longer observe any
distinction between the concepts of defined adjoint system and adjoint operator.

V. Selfadjoint problems, (a) Systems are selfadjoint in the sense of Lagrange if
Lb=L$. Because of the change in the sign of the derivative term, however, this is
impossible without some modification. It is therefore convenient to replace Lb and
Ltby

(5.1) Tb Y = (I//) 7' +P(x) Y+ H(x)[C Y(a) + D 7(A)],

(5.2) Tb*Z = (l/i)Z'+P*(x)Z-K*(x)[ÄZ(a) + BZ(b)\

Y in D and Z in D* are determined by boundary conditions (4.2) and (4.9) as
before, but the coefficients Ä, B, C, D must be modified so that

tc^    C{Z + [(lli)Y'+P(x)Y]-[(lli)Z'+P*(x)Z]*Y}dx
(5.3) Ja

= [ÄZ(ä) + BZ(b)]*[A Y(a) + B 7(A)] + [CZ(a) + 75Z(A)]*[C Y(a) + D 7(A)].

Selfadjointness now occurs when Tb = Tb*.

5.1. Theorem. Tb is selfadjoint if and only if

(5.4) 1.   P(x) = P*(x).
2.   m = p = n. Thus all matrices are nxn matrices.

(5.5) 3.   K(x) = -;[,4C*-Tf7J>*]77*(x).

(5.6) 4.   AA* = BB*.
(5.7) 5.    H(x)[CC*-DD*] = 0.

We note that if 77(x) (or Aïx)) = 0, conditions 1-5 reduce to the well-known
results for ordinary differential systems.

Proof. Let Tb be selfadjoint. Then 1 is trivial. 2 results from comparing the
number of boundary conditions defining D and D*. To prove 3 we note that for 7
in D, both

AY(a)+B7(A) = - f K(x)Y(x)dx,

CY(a) + DY(b) = - f H*(x)Y(x)dx
Ja

are satisfied. Since the rows on the left side form n linearly independent boundary
conditions each, there must exist a nonsingular constant matrix E such that A = EC
and B=ED. This implies that fr [EH*(x)-K(x)]Y(x) dx=0. However, since D is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] DIFFERENTIAL-BOUNDARY OPERATORS 445

dense in ^ F77*(x) - K(x) = 0. Now (5.3) implies that

(5.8) -ÄA* + BB* = -il,

(5.9) -AC* + ÊD* = 0,
(5.10) -£A* + DB* = 0,

(5.11) -CC* + DD* = -il.

Using the last equation, we find E= —i[AC* — BD*]. Thus we have established 3
and also derived

(5.12) A = -i[AC*-BD*]€,

(5.13) B = -i[AC*-BD*]D.

From these, 4 immediately follows.
To prove 5, we note that

[77(x)C+ K*(x)Ä] Y(a) + [H(x)D + K*(x)B] Y(b) = 0.

Since this is an extra constraint on all Y in D, the coefficients must vanish, and

H(x)C+K*(x)Ä = 0,       H(x)D + K*(x)B = 0.

We multiply the first by C*, the second by D* and subtract.
Conversely, we first note that (5.8), (5.9), and (5.6) imply (5.12), and (5.10), (5.11)

and (5.6) imply (5.13). Further we note that since (é f>) is nonsingular, so is
(-b- -£•)• Therefore so is their product, which is

/AA*-BB*     AC*-BD*\
\CA*-DB*    CC*-DD*)'

Since the upper left is 0, this is nonsingular only when AC* — BD* is nonsingular.
Now

-K*(x)[ÄY(a) + BY(b)] = -iH(x)[CA*-DB*][AY(a) + BY(b)],
= H(x){C+i[CC*-DD*]C}Y(d)

+ H(x){D + i[CC* - DD*]D} Y(b),
= H(x)[CY(a)+DY(b)].

Thus the operators agree in form. Further

A Y(a) + B Y(b) + Í 7s:(x) Y(x) dx

= -i[AC*-BD*]\CY(a) + DY(b) + f 77*(x)Fix) dx\■

So D and D* are the same, and Tb = Tb*.
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At this point the situation becomes so remarkably similar to the case of self-
adjoint ordinary differential systems that we only need to point to those results for
proofs. Specifically, Coddington and Levinson [6, pp. 188-201] is an excellent
reference. Therefore we only state the results.

5.2. Theorem. Let Tb be selfadjoint. Then
1. The spectrum ofTb consists of a denumerable set of real eigenvalues with co as

their only limit point.
2. Each eigenvalue corresponds to at most n eigenfunctions. Eigenfunctions corre-

sponding to different eigenvalues are orthogonal.
3. For each complex number X, not an eigenvalue, (71, —AT)-1 exists and can be

represented by a unique linear integral operator

(5.14) (Tb - XI) - V(x) = £ G(\, x, 0f(0 dt

4. The Green's function G(X, x, f) satisfies

(5.15) a. G(X, x, f) is continuous in (A, x, £) when a = x, $^b, x^$ and A is not
an eigenvalue. For fixed (x, |), G(X, x, |) is meromorphic in A.

(5.16) b. G(X, x, x-0)-G(A, x, x+0) = i7.
c. As a function of x, for fixed Ç,

(5.17) (F6-A7)G(A,x,|) = 0.

d. As a function of x, for fixed £,

(5.18) MG(A,x, f) = 0.
5. The eigenfunctions of Tb are complete in X. If they have been arranged so that

they are orthonormal (denote them by {7,}f), then, when F is in D,
CO

(5.19) F=2(/% W
i

in the sense of uniform convergence, and in the sense of convergence in the mean for
all F in X.

(b) Bliss [2], [3] and Reid [22] have extended the concept of selfadjointness to
systems which exhibit many of the properties of selfadjoint systems through a
transformation 7Yx). Specifically, the system

(5.20) 7' + ß(x)7= A7?(x)7,

(5.21) A Y(a) + B 7(A) = 0

with adjoint systems

(5.22) -Z' + Q*(x)Z = AF*(x)Z,

(5.23) CZ(a) + DZ(b) = 0
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is symmetric if there exists a nonsingular matrix T(x) such that (5.20)-(5.21) is
equivalent to (5.22)-(5.23) for all values of A under the transformation Z=T(x)Y.
It is easy to see that this occurs if and only if

(5.24) T'-TQ(x)-Q*(x)T=0,

(5.25) TR(x) + R*(x)T = 0,

(5.26) AT(a)~1A* = BT(b)~xB*.

Further, (5.26) is equivalent to

(5.27) C*T(a)C - D*T(b)D.

The system (5.20>-(5.21) is definite if
1. It is symmetric.
2. T*R is hermitian and nonnegative.
3. The only solution of Y' + Q(x)Y=0, 7?(x)F=0, AY(a) + BY(b)=0 is F=0.
We wish to apply the results concerning definite, symmetric systems to differen-

tial-boundary systems represented in differential form by (2.15)—(2.16), where
P(x)=Q(x)-\R(x).

We note in passing that Reid [22] has shown that if T exists then there exists a
transformation Tx, which is skew-hermitian, under which (5.20)-(5.21) is definite
and symmetric. We therefore consider skew-hermitian F's only.

5.3. Theorem. The system

Q   0   77
-K   0     0

0   0

0   \/Y(a)
0    ) I 17(a) |
■iI/\S(ä)

is symmetric under the skew-hermitian transformation

Tyy        T12    T13\
— T* T T■I 12 -«22      -<23

> — •'13    ~T23    T33i
if and only if

1.        (a)    T'y 1 - Tyy Q - Q*Tyy + Ty2K~ K*Ty*2 = 0.
(b) T'y2+K*T22-Q*T12 = 0.
(C)    Ty3-TyyH-Q*Ty3 + K*T23 = 0.
(d) 7/22=0.
(e) T'23 + Ty*2H=0.
(f) T'33 + Ty*3H-H*T13=0.
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2. (a) T^R +R*T11 = 0.
(b) R*T12 = 0.
(c) F*F13 = 0.

3. (a) T11(a)-A*n2(a) + T12(a)A + A*T22(a)A = 4C*T33(b)C.
(b) Fn(A) + B*T?2(b) - T12(b)B+B*T22(b)B=4D*T33(a)D.
(c) T13(a) + A*T23(a)=-2C*T33(a).
(d) T13(b)-B*T23(b)=-2D*T33(b).
(e) T33(a) = T33(b).

The proof follows from applying (5.24), (5.25) and (5.27).

5.4. Theorem. The system (5.28)-(5.29) is definite if and only if
1. It is symmetric.
2. TfxR is hermitian and nonnegative.
3. The only solution of

Y' + Q(x) Y+ H(x)[C Y(a) + D 7(A)] = 0,
Fix) 7=0,

A Y(a) + B 7(A) + f K(x) Y(x) dx = 0
Ja

is 7=0.

Of particular interest is the situation in which R is nonsingular such as in §5(a)
where R = il.

5.5. Corollary. 7/(5.28)-(5.29) is symmetric and R is nonsingular, then (5.28)-
(5.29) is definite and

1. (a) 7^-7^2-0*7^ = 0.
(b) K*T22 = 0.
(c) -7^77+7^3 = 0.
(d) F22 = 0.
(e) F23=0.
(f) ^3 = 0.

2. (a) TuR + IPT^O.
(b) F12=0.
(c) r13=o.

3. (a) F11(a) + ^*r22^l=4C*F33C.
(b) r11(A)+5*r22zi=4ö*r337).
(c) ^*F23=-2C*F33.
(d) -B*T23=-2D*T33.

There exist expansion theorems for symmetric, definite systems (see Bliss [2],
[3]). We state the results as applied to differential-boundary systems.
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5.6. Theorem. Let (5.28)-(5.29) be symmetric and definite. Then
1. There exists at most a denumerable set of eigenvalues, all real, with oo as their

only limit point.
2. Each eigenvalue corresponds to at most n eigenfunctions. Eigenfunctions corre-

sponding to different eigenvalues ( F¡ and Yj) satisfy §ba Y*(x)Ty*y(x)R(x) F;(x) d*x = 0.
They are orthogonal in the Hilbert space generated by the hermitian form T*yR.

3. If the eigenfunctions have been arranged so that they are orthonormal (denote
them by { F4}), then, when F satisfies

(5.30) F' + Q(x)F+ H(x)[CF(a) + DF(b)} = R(x)FQ,

(5.31) AF(a) + BF(b)+ C K(x)F(x) dx = 0,

for some continuous vector F0, the series

(5.32) P(x) = 2 [[ Yi*($)ni(t)R(OF(0 d¿\ Y((x)

converges uniformly and 7?(x)[^"(x) — F(x)] = 0/or all x in [a, b].

VI. Nonselfadjoint problems, (a) The reader might expect us to turn to the
classical results concerning nonselfadjoint eigenfunction expansions in this section,
as was done in the previous one. This was, of course, attempted, but problems
immediately resulted. In the first place, when using the representations (2.15) with
P=Q-XR, the matrix

(Ü 0 0\
0 0 0)
0    0   0/

is singular. This has never been assumed in the past. Secondly boundary conditions
must be regular (see Naïmark [20]). But as represented by (2.16), differential-
boundary systems do not have regular boundary conditions. Therefore we must
begin anew.

In the interest of simplifying the calculations as well as preserving our Hilbert
space setting, Jf, we let P(x) = Q(x) — XI.

Further by replacing F by F, where F= UY, and U is a fundamental matrix for
V + Q(x)U=0, we arrive at an equivalent system where Q(x) is 0.

Finally by choosing a suitable translation of x, we may replace the interval [a, b]
by [0, 1]. We, therefore, consider the system

(6.1) LbY= Y' + H[C F(0) + D Y(\)} = A F,

(6.2) A F(0) + B Y(\) + f K(x) Y(x) dx = 0.
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(b) In order to find the eigenvalues of L, we note that (2.15)—(2.16) now has
the form

(7\'       /0    0    -H\IY\       II   0   0\ IY\
u ) = Ik o     o II c/ l + Aio  o  o\lu J,
s)     \o   o     o l\sl    \o o o)\s)

IA    -I      0   \/Y(P)\     10    0      0   \/m)\
(6.4) lO       0      0    )(<7(0)| + |ä    I      0    II 1/(1) j = 0.

\o     o  -yl\s{0)l   \d o  -±//\s(i)/
Since 7n = ehxI is a fundamental matrix for 7' — A 7= 0, the fundamental matrix for
(6.3) (see 3.7) is

(extI 0 -j*e«*-»77(£)<# \

fr e^K(0 de I - jo e*"tf («) /£ e " A{77(|) <# <fo )•
0 0 7 /

If we let

(6.6) Jf(x) = \Xe~KvH(v)dv,
Jo

(6.7) Jf (x) = P é?Aua:(w) du,

(6.7)' jS?(x) = P Ç e^K(u)e~AvH(v)dvdu,
Jo   Ju

(6.8) ^(x) =  P P e*uK(u)e-XvH(v)dvdu
Jo  Jo

then
(e**j    o    -eA*.?f(x)\
Jf(x)   7      -¿?(x)   J.

0       0 7       /
Applying the boundary condition (6.4) we see that A is an eigenvalue if and only if

/       A -, ON
(6.10) det   ZV-r-Jf(l)       7   -BeKX(\)-ä'(\)\=Q.

\   C+Deh 0       -I-DeAJf(l)   I

This quickly can be reduced to yield

6.1. Lemma. A is an eigenvalue ofLb if and only if

«m .JA + Be*+JT(l)    -Be^(\)-^(\)\
(6-U) detl     C+D* -I-DeW(l)   )=°-
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6.2. Lemma. Let F equal the left side o/(6.11). Then
1. 7/ Re (A) is bounded, then

(6.12) F = A+BeA + o(\).

2. In any right half plane

(6.13) F = eA(-det B+0(l/Re (A)))   as Re (A) -> +co.

3. In any left half plane

(6.14) F = - det A + 0(1/Re (A))   as Re (A) -* -co.

Proof. These results follow rather easily by some elementary estimates and an
application of the Riemann-Lebesgue Lemma.

We note that if A and B are nonsingular, the eigenvalues are restricted to a
vertical strip. Therefore we have

6.3. Theorem. Let A and B be nonsingular. Then
1. The eigenvalues of Lb are restricted to a vertical strip, bounded on both the right

and left.
2. The eigenvalues ofLh are denumerable in number and become asymptotic to the

zeros of det (A + Be"), which have the form

(6.15) Xjk = In £,+2fart,

'= 1,..., n, k=0, ±1, ±2,..., where s=£/, j= 1,..., n, satisfy det (A + Bs)=0.

Proof. The last result can be found in Naïmark's book [20].
The conditions that A and B be nonsingular are equivalent to the regularity con-

ditions for ordinary differential systems. Again we refer the reader to [20]. We also
note that when A and B are nonsingular, an argument similar to that given in
Theorem 5.1 shows that C and 73 are also nonsingular.

We assume throughout the remainder of this paper that A and B are nonsingular.
(c) It is evident that the spectrum of Lb consists only of eigenvalues, and these

are isolated. If we consider the nonhomogeneous system similar to (6.3)-(6.4) in a
somewhat more compact notation

(6.16) <ST = 0><®+3F,
(6.17) j*<3f(0)+&3f(l) = 0

and A is not an eigenvalue, then 'S! is uniquely defined by the formula

(6.18) <W(x) = Ç <$(X, x, &F(0 de,
where

ar(A,x, a = %(x)[^%{Q)+m/^)]-^si%{oysfn(^-\     e < x,
= ^x)M(0)+^n(l)]-Wn(l)TO-\        f > x.
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It is our immediate purpose to find ^(X, x, f) in a half plane sufficiently far to
the right. Our primary interest is its upper left component, which is the Green's
function for (6.1)-(6.2) and which has properties similar to those described in
Theorem 5.2. First, however, we need some lemmas.

6.4. Lemma. LimRe(A)_ + 00 J?(x)=Q uniformly for all x in [0, 1].

Proof.

\\eAx[H(l)-H(x)]\\ = \e*x f   e~*vH(v) dvi

[~2Re(A)(jc - 1) _ IT 1/2 r /*1 11/2£W1 [I imVd"\ ■
which approaches 0 as Re (A) -> oo.

6.6. Lemma. Limned)-,« e~hxJf(x)=0 uniformly for all x in [0, 1].

Proof.
II  Cx II ri — /.-2Re(A)-|l/2r fl 11/2IIe^HI = hW] [j>(M)H '

which approaches 0 as Re (A) -> co.

6.7. Lemma. Limned,..«, [JT(x)^f(l)-^(x)] = 0 uniformly for x in [0, 1].

Proof.

\\jf(x)je(l)-^(x)\\ = I P e^K(u) f e-^H(v)dvdui
WJo Ju
Cx r fi ll'2r rl 11/2

é       cRe(A)u||^(i/)||        e-2ReW"dv\ \\H(v)\\2dv\     du,

S  P eReW)uIK(u)(I[e-R«»"/(Re (A))1'2] <&i\ f   ||77(t>)||2 du\

6.8. Lemma. LimBe(ÄWe0 ^(x)=0 uniformly for all x in [0, 1].

The proof is similar to that of Lemma 6.7.
Now let A1=j*f%(O)+0%(l). Then

A -I 0
I BeÁ + yf(\)       I    -BeÁJf(l)-£C(l)

C+DeK 0       -DexJf(\)-I

1/2
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Unfortunately Af1 cannot be computed directly. In addition if Re (A) is large, it
does not have any limiting value. However, if we let

(6.21)

we find

(6.22)

Ae~Á

= \Ae-K + B+e-KJf(\)
Ce~x + D

Ai =

-7 AJf(l)
0 AJf(l)+J?(l) |,
0 -7+Of(l)

1 0   JT(1)\
0
7

and A2 as well as the other two matrices have limits which are invertible as Re (A)
becomes large. We can use these limits to calculate Af1 asymptotically as
Re (A) -> co.

6.9. Lemma.

(6.23)

(6.24) 0
0

As Re (A) becomes large, A2 becomes asymptotic to

which has as its inverse

Thus, if Re (A) is sufficiently large,

rA7   0   Jf(l)

(6.25) Ar1 0
0

7
0

B-1

0
0    DB-1   -I

We again note that since Ti-1 exists there are no eigenvalues in any half plane
sufficiently far to the right.
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6.10. Lemma. If Re (A) is sufficiently large and £<x, then

-eXxJC(x)\le-H 0 Jt(\)\

-£(x)   )[    0 7       0

7        / \  0 0       7
-7      0   \ // 0 0\

0
0

The Green's function for (6.1)—(6.2), G(A, x, f), is the upper left component of this
product.

(6 27) G(A'*'f) x ie*(*"1)fi"I+«A*[-r(1)--*'W]^-1}{e-wM+Jr(0]}
+ {-e^[^(l)-^(x)]}-{Ce-Ai}.

The proof is an extremely tedious computation.

6.11. Lemma. If Re (A) is sufficiently large and £>x, then

(e^I o -eKxJif(x)\/e-xI 0 ¿f(l)\ /    0 ß"1

Jf(x) 7 -^P(x)    M    0 7 0    )( -7 0
0 0 7       /\  0 0 7/\0 7J5-1

(6.28)
i7   0   0\ /0    0      0   We*/     0    -e\^(l)W     e"Ai/        0     Jf(i)
7   7   OIIf    7      0    )[jf(l)   7     -J2P(1)   )( -e~hW(0   I    -Jt(£)

\0   0   lJ\D   0    -17/\   00 7/\0 0 7

FAe Green's function for (6.1)—(6.2), G(A, x, £), is ?Ae upper left component of this
product.

G(X,x, i) « {e*<*-1)B-x + e**[je'(l)-Jf'(xy\DB-1}-{B(*a-a-e-KtJr(e)}
+ {eXx\JC(\) - M (x)]} • {Deha - «}.

6.12. Theorem. Let G(X, x, f) be the Green's function for (6.1)-(6.2) in a half
plane sufficiently far to the right. Then

(6.30) Lim   G(A, x, ¿) = 0
Re(A)-»oo

uniformly for all x, f in [0, 1].

Proof. This follows from Lemmas 6.5-6.11, noting that in (6.27) and (6.29), the
divergent components cancel each other.

(d) Let us now consider the behavior of G(A, x, |) in a half plane sufficiently far
to the left. In order to avoid a repetition of the terrible calculation of the preceding
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section we turn to a discussion of the Green's function, G*(X, x, £), for the adjoint
system

(6.31) L*Z = -Z'-K*(x)[ÄZ(a) + BZ(b)] = AZ,

(6.32) CZ(0) + DZ(l)+(  H*(x)Z(x) dx = 0.
Jo

Let A lie in a half plane sufficiently far to the left. Then G*(X, x, f) is the kernel
of the integral operator which generates solutions to

(6.33) -Z' - K*(x)[ÄZ(a) + BZ(b)] - AZ = F

which also satisfy (6.32). We have previously shown that if A lies sufficiently far to
the left, it is in the resolvent set of Lb and thus L*.

Now notice that if (6.33) is multiplied by — 1, we have

Z' + K*(x)[ÄZ(a) + BZ(b)]-(-X)Z= -F,

which is of the same form as the nonhomogeneous form of (6.1). Further (—A) is
in a right half plane. Thus we conclude that limü,^...«.,, G*(A, x, |)=0 uniformly
for all x, f in [0, 1]. Since G(A, x, |)= -C7(A, $, x)*, and Ä lies in a left half plane
when A does, we have

6.13. Theorem. Let G(X, x, £) be the Green's fund ion for (6.1)—(6.2) in a half plane
sufficiently far to the ¡eft. Then

(6.34) lim     G(A, x, 0 = 0
Re(A)-» - oo

uniformly for all (x, £) in [0, 1].

We make this final comment concerning the remaining components of @(X, x, £):
they, of course, do not approach 0 as Re (A) becomes large. The reason for this is
that the matrix coefficient of A in (6.3) is singular. Two thirds of its eigenvalues
are zeros. We are indeed fortunate that C7(A, x, £) is all that interests us.

(e) We now wish to expand GYA, x, ¿j) by means of the standard technique of
contour integration over a sequence of regions which ultimately enclose an
arbitrarily large portion of the complex plane. In order to simplify the calculations
a bit, we assume that each eigenvalue of Lb is simple and that the eigenfunctions,
{7t}f, of Lb, {ZJf, of Lb, form a biorthonormal set. Multiple eigenvalues yield
chains of eigenfunctions similar to those described by Naïmark [20],

6.14. Theorem. Let A0 be in the resolvent set of Lb. Let {A¡}", be the eigenvalues
of Lb with associated eigenfunctions {TJf, and associated adjoint eigenfunctions
{Zt}f. Assume fr Z¡*(x) Y,(x) dx= 1 for all i. Then

(6.35) G(Ao,x,0 = 2  Ff)Zf(a
i = :i       Ai — Ao

the series converges uniformly for all x, g in [0, 1].
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Proof. We evaluate JYn (G(X, x, f)/(^ — ̂ o)) dX, where Tn is the following contour:
First we choose n sufficiently large so ||G(A, x, f)|| <e/107r when |Re (A)| >n. This
is possible in view of Theorems 6.12 and 6.13.

Since the eigenvalues of Lb lie in a vertical strip and are ultimately uniformly
spaced apart, we can choose an sufficiently large so that circular arcs, centered
at the origin, from ( — n, an) to (n, an) and from ( — n, —an) to (a, —an) remain uni-
formly bounded away from the eigenvalues. On these arcs an application of the
Riemann-Lebesgue Lemma shows that ||G(A, x, £)|| is uniformly bounded if an is
sufficiently large. Thus if an is sufficiently large, on these arcs ||J" G(Ax£)/(A — A0) ||
^ M AÖ, where A0 is the net change in the argument of A. Clearly if an is sufficiently
large, A6<e/4M.

Finally we join the ends of these arcs by semicircles centered at (n, 0) and
( — n, 0) with radius an and which lie to the right of (n, 0) and left of (—n, 0). On
these semicircles

ÍG(A, x, Q
A-A0 dX   < Í\\G(X,x,Q\\

lA-Anl dX\ < e/2,

if n is sufficiently large.
The contour Tn consists of these circular arcs described in a counterclockwise

manner.

(-n, a )

(-n, -a ) |

It is evident that ||Jrn (G(X, x, 0/(^~^o)) dX\\<e when n is sufficiently large. Thus
as n-^-co, Jrn (G(A, x, £)/(A—A0)) dX-^-0. The result then follows by evaluating
the residues of the integrand.

(f) Our final task is to express certain elements of Jif in terms of a series of
eigenfunctions. We find
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6.15. Theorem. Let the eigenfunctions of Lb be {F4}f with associated adjoint
eigenfunctions {Z4}f. Further assume j¿ Z¡*(x) F4(x) dx=\. Then if F is in D,

(6.36) F(x) = £  F4(x) i' Zi*(Z)F(0 d{.
i = i Jo

The series converges uniformly for all x in [0, 1].

Proof. Let (L„—A0)F=F0. Then since (6.35) converges uniformly,

F(x) = £ G(A0, x, £)F0(|) #,

= 2 F4(x) fz4Wo(i) #/(*„-A0),
i-i Jo

= 2  ^(xXÍT^-AoíFZM^-Ao),i = i

= 2 F4(x)(F,(L*-A0)Z4)/(A4-A0),
i = l

= 2 F4(x)(F,(A4-A0)Z4)/(A4-A0),
(=i

= 2 YiwÇznmodt
i = i Jo

VII. Remarks. This essentially completes the theory of regular differential-
boundary systems. Extensions to higher order systems or to those where the
Hubert space ¿P is generated by another inner product are easily found by standard
techniques.

There are, however, several closely related problems which are still not com-
pletely solved. First there exists only one article (Kim [13]) concerning singular
differential-boundary operators as such, although there do exist some articles
which nibble at the edges of the problem (see [14], [16]). The question of self-
adjointness under singular conditions remains open.

Second, those problems involving boundary conditions applied at an infinite
number of points are all wide open. This subject is still in its infancy. For reference
we cite the articles by Whyburn [25], Bryan [4], [5], Halanay and Maro [10],
Conti [8] and Stallard [24].
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