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Rapid progress in the precision and accuracy of optical atomic clocks
over the last decade has advanced the frontiers of timekeeping, metrology,
and quantum science [1–3]. However, the stabilities of most optical clocks
remain limited by the local oscillator rather than the atoms themselves,
leaving room for further progress [4, 5]. Here we implement a “multi-
plexed” one-dimensional optical lattice clock, in which spatially-resolved,
movable ensembles of ultra-cold strontium atoms are trapped in the same
optical lattice, interrogated simultaneously by a shared clock laser, and
read-out in parallel. By performing synchronized Ramsey interrogations
of ensemble pairs we observe atom-atom coherence times up to 26 sec-
onds, a 270-fold improvement over the atom-laser coherence time, demon-
strate a relative stability of 9.7(4)×10−18/

√
τ (where τ is the averaging time

in seconds), and reach a fractional uncertainty of 8.9(3) × 10−20 after 3.3
hours of averaging. These results demonstrate that applications requiring
ultra-high-precision comparisons between optical atomic clocks need not
be limited by the stability of the local oscillator. With multiple ensemble
pairs, we realize a miniaturized clock network consisting of 6 atom en-
sembles, resulting in 15 unique pairwise clock comparisons with relative
stabilities below 3 × 10−17/

√
τ . Finally, we demonstrate the capability to

simultaneously load spatially-resolved, heterogeneous ensemble pairs of
all four stable isotopes of strontium in a lattice. The unique capabili-
ties offered by this platform pave the way for future studies of precision
isotope shift measurements, spatially resolved characterization of limit-
ing clock systematics, development of clock-based gravitational wave and
dark matter detectors [6–9], and novel tests of relativity including mea-
surements of the gravitational redshift at sub-centimeter scales [10–13]

Neutral atom optical lattice clocks (OLCs) have recently reached stability and accuracy at
the 10−18 level [1–5, 14–16] largely due to the ultra-narrow linewidths (∼ 1 mHz) of optical
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frequency (∼ 400 THz) forbidden clock transitions in alkaline-earth(-like) atoms. This perfor-
mance enables novel clock applications such as relativistic geodesy, searches for dark matter,
gravitational wave detection, and tests of fundamental physics [6–13, 17–22].

Many emerging clock applications rely on differential comparisons between two or more op-
tical clocks, rather than on the determination of absolute frequencies. For atoms in unentangled
states, the stability of such clock comparisons is fundamentally limited by the quantum projec-
tion noise (QPN) [23]. For Ramsey spectroscopy, the QPN limit for the statistical fractional
frequency uncertainty in clock comparison is given by

σQPN(τ) =

√
2

2πνCT

√
T + Td
Nτ

, (1)

where ν is the transition frequency, T is the interrogation time, Td is the dead time between
experiment cycle, τ is the averaging time, N is the atom number per clock per measurement, C is
the contrast of Ramsey fringes, and the factor of

√
2 assumes equal contribution from each clock.

Eq. 1 implies that the stability can be improved with greater atom numbers and longer coherence
times. However, frequency noise in the clock lasers used to interrogate the atoms results in
reduced atom-laser coherence times, and also prevents the clock stability from reaching the
QPN limit for larger atom numbers due to the Dick effect [24–26], an aliasing of frequency noise
from the non-continuous laser interrogation. This motivates the use of simultaneous differential
comparisons [4, 27], also known as correlated noise spectroscopy [28], for applications involving
clock comparisons [6, 11]. Common-mode rejection of Dick noise and 10-second-scale atom-
atom coherence times well beyond that of the clock laser have recently been demonstrated
between two independent ion-clocks [29], between sub-ensembles in a three-dimensional Fermi-
degenerate OLC [2], and between sub-ensembles in a tweezer-array clock [30]. In each of these
cases the atoms are individually and tightly confined, suggesting that strong confinement and
a lack of atom-atom interactions may be necessary ingredients to achieve such long coherent
interrogation times. Furthermore, the best differential stabilities observed thus far, in the range
of 3 × 10−17/

√
τ [2, 5, 15] have made use of an 8 mHz linewidth clock laser with a stability of

4 × 10−17 at 1 s [31], suggesting that even in simultaneous differential comparisons clock laser
coherence could still play a role in limiting the achievable stability.

Here we introduce and implement an alternative platform for differential clock comparisons
with a “multiplexed” one-dimensional (1D) OLC, in which a movable 1D optical lattice is used
to deterministically load up to 6 spatially-resolved ensembles of ultra-cold strontium atoms.
Fluctuating environmental perturbations such as black-body radiation (BBR), magnetic and
electric fields, Doppler shifts from atomic motion or clock laser path length fluctuations, and
ac Stark shifts from the lattice and probe beams are common mode to first order between the
ensembles, significantly reducing atom-atom dephasing and uncertainty in the differential clock
frequencies. As a result, we observe atom-atom coherence times of 26 s with 2400 atoms per
ensemble in a 1D lattice geometry, a factor of roughly 270 times longer than the measured
atom-laser coherence time. This demonstrates that decoherence due to atomic collisions [2,
32, 33], coupling of motion between the transverse and radial modes [34], and tunneling [35]
need not limit 1D optical lattice clocks from achieving coherence well into the 10-second-scale.
Furthermore, when combined with the high atom numbers, fast loading times, and low Raman
scattering rates afforded by a weak vertical 1D lattice, these long atomic coherence times offer
clock stabilities beyond those demonstrated in other platforms and geometries.

Through synchronous Ramsey interrogations with a single clock laser beam, we measure
a QPN-limited differential stability of 9.7(4) × 10−18/

√
τ between a pair of ensembles 0.6 cm

apart, and a fractional uncertainty of 8.9(3)× 10−20 after 3.3 hours of averaging. These results
illustrate that simultaneous differential clock comparisons enable record-setting stability and
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Figure 1. Multiplexed optical lattice clock configuration and procedure for loading
two ensembles. a, schematic illustrating the multiplexed optical lattice clock concept. Two
ensembles of strontium atoms separated by ∆h in height are prepared for simultaneous clock
interrogation. A bias magnetic field (Bx, about 2 G) along x̂ defines the quantization axis. b,
Top: images taken during loading stages (I-V). (I): loading ensemble 1 into the lattice; (II)
separating ensemble 1 from the original atomic cloud by accelerating the lattice along +ẑ; (III)
loading ensemble 2 into the lattice; (IV) simultaneously moving both ensembles along -ẑ; (V)
two stationary ensembles with a height difference of 1 cm are prepared for spin-polarization,
in-lattice cooling, and clock interrogation. Bottom: timing sequence diagram including the
689-nm MOT and lattice retro detuning which governs the lattice loading and moving.

precision without requiring state-of-the-art mHz linewidth clock lasers, with important impli-
cations for applications that require portable or space-based clocks, such as relativistic geodesy
and gravitational wave detection [6, 11]. The same approach scales to the multiplexing of larger
numbers of clock ensembles, which we demonstrate by performing 15 unique pairwise clock com-
parisons between 6 atomic ensembles in parallel, with relative stabilities below 3 × 10−17/

√
τ .

Finally, we demonstrate the applicability of our approach to isotope shift comparisons by load-
ing heterogeneous spatially resolved pairs of all four stable isotopes of strontium in the same
lattice.

The basic concept of the “multiplexed” OLC is illustrated in Fig.1a. A one-dimensional
“magic wavelength” lattice (λL = 813.4 nm) is formed using an incoming beam (1.5 W power)
focused to a 100 µm beam waist and a retro-reflected beam with a matching waist. The lattice
is orientated in ẑ to suppress tunneling with the help of gravity, which lifts the degeneracy
between adjacent lattice sites [35, 36]. After passing through the science chamber, the beam
is sent through 2 acousto-optic modulators (AOMs) that operate at opposite diffraction orders
(± 110 MHz), and double-passed back with a “cat’s eye” retro-reflector. In this configuration,
the lattice retro frequency (νL + δνL) can be detuned from the incoming frequency (νL) by
varying the radio-frequency drive of the second AOM. At zero detuning (δνL = 0), the lattice is
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a standing wave and the clock can be operated in the traditional fashion. A constant detuning
δνL results in a moving lattice with a velocity vL

vL =
1

2
λL · δνL. (2)

If δνL is changed in time, the lattice will accelerate at

aL =
1

2
λL · (∂δνL/∂δt), (3)

which in our apparatus can exceed 100 g, mainly limited by the atomic temperature and lattice
trap depth, where g ≈ 9.80 m/s2 is the acceleration due to gravity. The experimental procedure
for loading two ensembles separated by 1 cm along ẑ is shown in Fig.1b, where 5 images are
shown for loading and moving the lattice such that two ensembles with a tunable separation
centered about the lattice beam waist can be prepared. A resonant 461-nm imaging beam
co-propagating along the lattice is used for fluorescence imaging with an electron multiplied
charged-coupled device (EMCCD). In our apparatus a few thousand atom can be loaded in
each ensemble with spatial separations ranging from < 1 mm to > 1 cm in under 100 ms.

Before interrogating the clock transition, we spin-polarize the samples into 1S0 (F = 9/2,
mF = 9/2) states, where mF is the projection of the total angular momentum F along the
quantization axis defined by the applied bias magnetic field Bx (∼ 2 G), and perform in-lattice-
cooling to remove heating after lattice acceleration. We then interrogate the 1S0 ↔ 3P0 clock
transition with a 698 nm clock laser that is referenced to a 12 cm ultra-low-expansion (ULE)
cavity. Limited by the ULE cavity, we expect a local oscillator linewidth of ∼ 1 Hz and a linear
drift rate ∼ 1 Hz/s before drift cancellation. This is orders of magnitude worse than state-of-the-
art cavities such as cryogenic ultra-stable silicon cavities [31, 37, 38], with measured linewidths
of 8 mHz and linear drift rates < 1 mHz/s [39], and has been used to demonstrate differential
stabilities at low 10−19 level [2, 15, 30].

To characterize the limitations placed on the coherent interrogation time by the clock laser
linewidth, we first study each ensemble independently. A representative Rabi spectrum with a 10
Hz linewidth is shown in Fig.2a, where a π-pulse of 90 ms duration is used to drive the 1S0(mF =
9/2)↔ 3P0(mF = 9/2) (denoted as |g, 9/2〉 ↔ |e, 9/2〉 below) transition. Further increasing the
pulse duration results in a reduction of excitation fraction but does not reduce the linewidth due
to laser frequency noise. The atom-laser coherence is also measured via Ramsey spectroscopy
(Fig.2b) by varying the relative phase between the two π/2-pulses. While the fringe contrast
decays with a Gaussian time constant of 96(24) ms, the variance of the Ramsey signal remains
high at 100 ms (Fig.2b, inset2), implying that the atom-atom coherence time can be longer. The
loss of atom-laser coherence is due to the finite coherence time of the clock laser, and manifests
itself as a randomized phase of the second π/2-pulse. However, when the two atom ensembles
are probed simultaneously, the relative atomic phase is preserved and reflected in a high degree
of correlation between the excitation fractions of the two ensembles (Fig.2c, inset). This can be
further clarified in a parametric plot of excitation fractions for ensembles 1 and 2, which fall on
an ellipse with an opening angle determined by the differential Ramsey phase acquired between
the two ensembles (Fig.2c). This differential phase is a measure of the detuning between the
two atomic ensembles, and contains information about all of the differential frequency shifts
experienced by the spatially separated ensembles, including differential linear and quadratic
Zeeman shifts due to magnetic field gradients, differential dc Stark shifts due to electric field
gradients, differential ac Stark shifts from the lattice and probe light due to differing field
intensities at the two ensembles, differential BBR shifts due to temperature gradients across the
apparatus, and the gravitational redshift due to general relativity. In our apparatus we find that
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Figure 2. Characterization of atom-atom coherence time by synchronous clock
comparisons. a, Rabi spectroscopy of a single ensemble with 90 ms π-pulse duration (pink
circles), resulting in a fitted linewidth of 10.2(4) Hz (solid pink line). Each datum is taken
with one experiment run without averaging. b, decay of Ramsey contrast taken with one
ensemble. This is fitted to a Gaussian envelope which gives a 1/e coherence time of 96(24) ms.
Inset: Ramsey fringes at 10 and 100 ms dark times. c, parametric plot of excitation fractions in
ensemble 1 (P1) and ensemble 2 (P2). Ellipse fitting is used to extract the differential phase (solid
line). Inset: correlations in excitation fraction P1 (red) and P2 (blue) for the two regions. d,
measurement of atom-atom coherence times in differential comparisons between two ensembles.
Synchronous Ramsey interrogation on |1S0,mF = 9/2〉 ↔ |3P0,mF = 9/2〉 transition gives a
1/e coherence time of 6(1) s by fitting to a Gaussian envelope (red line), while spin-echo on
the same transition results in a coherence time of 24(5) s with an exponential decay (green
line). Synchronized Ramsey interrogation of the magnetically insensitive |1S0,mF = 5/2〉 ↔
|3P0,mF = 3/2〉 clock transition results in a 26(2) s atom-atom coherence time (dark blue line).
Insets: representative parametric plots illustrating relative contrast. e, a new operational lattice
magic wavelength for the |1S0(mF = 5/2)〉 ↔ |3P0(mF = 3/2)〉 transition is found by measuring
the contrast of synchronous Ramsey interrogations at 20 Erec trap depth and 10 s dark time as
a function of lattice frequency.

the dominant shifts are the linear and quadratic Zeeman shifts due to residual magnetic field
gradient of Bx along ẑ with amplitude ∼ 15 mG/cm. At 1 cm this corresponds to a detuning
between the |g, 9/2〉 ↔ |e, 9/2〉 clock transitions of the two ensembles of 7.5 Hz due to the
differential linear Zeeman shift, and a differential quadratic Zeeman shift of 14 mHz at a bias
field of Bx = 2 G.

To investigate the atom-atom coherence times, we perform synchronized Ramsey interroga-
tion between two ensembles. As pointed out in prior work [2, 30, 35, 40], a shallower lattice
trap depth is desired for second-scale coherent interrogation to minimize Raman scattering out
of the |3P0〉 state [41]. We operate at a lattice depth of 20 Erec with a measured excited state
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lifetime of 13(2) s. However, when probing the |g, 9/2〉 ↔ |e, 9/2〉 transition we find that the
contrast decays with a Gaussian time constant of 6(1)s, which is below the excited state lifetime
and suggests inhomogeneous broadening during Ramsey free evolution. This is consistent with
the expected broadening due to the magnetic field gradient across ẑ of 200 µm finite spatial
extent of each region, corresponding to a detuning of 150(10) mHz from the top to the bottom
of each ensemble.

To confirm that the magnetic field gradient is limiting the atom-atom coherence time, we
perform a “spin-echo” measurement, where a π pulse is applied after half the dark time τd to
cancel out the differential phase accumulation between the two ensembles for constant detunings.
With “spin-echo”, we observe an exponential time constant 24(5) s. To take full advantage of
this longer available coherence time, we therefore switch to interrogating the |g, 5/2〉 ↔ |e, 3/2〉
transition, with a magnetic field sensitivity of about 22.4 Hz/G, 22 times smaller than |g, 9/2〉 ↔
|e, 9/2〉 transition [5, 42]. This is done by coherently transferring spin-polarized atoms from
|g, 9/2〉 to |e, 3/2〉 state via three sequential π-pulses on resonance with |g, 9/2〉 ↔ |e, 7/2〉,
|e, 7/2〉 ↔ |g, 5/2〉 and |g, 5/2〉 ↔ |e, 3/2〉 transitions, respectively (see Extended Data Fig.2).
About 70% of atoms are transferred to the |e, 3/2〉 state, which is mainly limited by the π-pulse
fidelity. For this transition the magnetic field gradient across each ensemble can be expected
to contribute a detuning of only 7(1) mHz, and therefore no longer contributes dephasing on
timescales limited by the Raman scattering.

Due to the tensor ac Stark shift, the |g, 5/2〉 ↔ |e, 3/2〉 transition will have a different lattice
operational magic wavelength (where the scalar and tensor ac Stark shifts sum to zero) than
the |g, 9/2〉 ↔ |e, 9/2〉 transition. By scanning the lattice laser frequency over a range of ±800
MHz, we find a lattice frequency that maximizes the contrast for |g, 5/2〉 ↔ |e, 3/2〉 transition
at 368,554,810(30) MHz (see Fig.2e), where the uncertainty comes from both the error in the
fitting and accuracy of the wave-meter (10 MHz). We observe an 1/e atom-atom coherence time
of 26(2) s on |g, 5/2〉 ↔ |e, 3/2〉 transition, which is consistent with the “spin-echo” measurement
on |g, 9/2〉 ↔ |e, 9/2〉 transition, and is about twice the measured excited state lifetime (see
Supplementary Information), implying that we are primarily limited by Raman scattering. We
note that here the atom-atom coherence time refers only to the lifetime of the synchronized
Ramsey contrast for atoms remaining in the lattice at the end of the sequence, and therefore
does not include atom loss due to heating and background gas collisions.

To characterize the stability of the multiplexed OLC, we perform a synchronous clock com-
parison between 2 ensembles separated by 0.6 cm on |g, 5/2〉 ↔ |e, 3/2〉 transition. Due to
competition between a 1/e decay of contrast and 1/

√
τd scaling of QPN, the optimal Ramsey

dark time can be found by comparing fractional frequency uncertainties at different dark times
(Fig.3a, blue points), which are chosen such that the differential phase φd is close to an odd
multiple of π/2 to minimize biased error from ellipse fitting [15, 30]. The measurement agrees
with the QPN limit at a fixed offset phase of π/2 (Fig.3a, blue dashed line), which suggests an
optimal τd at 7.5 s. However, due to phase evolution of φd = 2πδf21τd at a comparable time scale
to the dark times, where δf21 is the frequency difference between two ensembles, an additional
differential-phase dependent scale factor must be included in the expected QPN limit when
contrast is below 1 (see Supplementary Information). As a result, QPN is maximized when the
offset phase is at π/2, and minimized at 0 or π. This implies one can benefit in sensitivity by
trading off for biased ellipse fitting (Fig.3a, red line). Therefore, we choose τd = 8.205 s such
that the offset phase is ∼ 0.44 rad, at which the biased error is bound to below 3% and can
be easily compensated for (see Supplementary Information). Fig.3b shows the measurement
taken with 1193 experiment runs recorded in 3.3 hours, and the corresponding fitted ellipse.
The fit yields a net phase shift of about 12.130(2) rad, or a frequency difference of 235.29(4)
mHz between the 2 ensembles. The overlapping Allan deviation is computed and plotted in
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a b c

Figure 3. High differential stability with multiplexed Ramsey interrogation. a,
measured fractional frequency uncertainties after 10 minutes averaging time (blue points) by
choosing dark times such that the differential phase φd is close to an odd multiple of π/2.
Blue dashed line is the expected QPN limit at a fixed offset phase π/2. Red solid line is QPN
accounting for φd = 2πδf21τd, where δf21 is the frequency detuning between 2 ensembles and τd
is the Ramsey dark time. The oscillation feature comes from the fact that QPN is maximized
at π/2 and minimized at 0 or π rad when contrast is below 1. b, parametric plots of P2 versus
P1 (black points) taken at τd = 8.205 s (red point in a) with 1193 experimental runs for a
total measurement time of 11800 s. A least-squares method (see Supplementary Information)
is used to fit an ellipse to the data (red solid line). c, the corresponding Allan deviation (blue
points) from the data shown in b extracted via jackknifing [15, 30]. The differential clock
comparison averages down with a stability of 9.7(4)×10−18/

√
τ (blue solid line), which matches

the QPN limit (red dash line) for the independently measured number of atoms in each ensemble
(Na ≈ 2400), and reaches a differential fractional frequency uncertainty of 8.9(3)× 10−20 after
3.3 hours of averaging (red diamond).

Fig.3c, with a relative stability of 9.7(4) × 10−18/
√
τ in agreement with the QPN limit (red

dashed line), and a fractional frequency uncertainty of 8.9(3) × 10−20 at the full 3.3 hours of
averaging time. This demonstration of precision below the 10−19 level with a rack-mounted,
commercially-available local oscillator with a stability of 1 × 10−15 at 1 s is encouraging for
future applications that require portable or spaced-based clocks such as relativistic geodesy,
and gravitational wave detection [6, 11–13, 22].

We demonstrate the scability of the multiplexed OLC technique by moving from pairs to
larger numbers of ensembles. This is achieved by modifying the loading sequence shown in
Fig.1b and repeating the lattice acceleration - loading cycle several times. A representative
CCD image is shown in Fig.4a, where 6 ensembles are equally distributed with 0.2 cm spacing.
Each ensemble has about 500 atoms and the total lattice loading time is less than 100 ms. Simul-
taneous clock interrogation and read-out results in 15 unique pairwise clock comparisons from
a miniature network consisting of 6 “clocks” (Fig.4b). Each comparison averages down with a
slope below 3× 10−17/

√
τ , and reaches a fractional frequency uncertainty of roughly 5× 10−19

after 1 hour of averaging. To verify that the 15 pairwise comparisons are self-consistent, we
perform a “closed-loop” analysis where each loop contains 3 or more “clocks”. This results
in a total number of 197 possible unique combinations after removal of cyclic degeneracy (see
Supplementary Information for details). While the result of an individual pairwise comparison
contains both differential frequency and measurement noises, the sum of the frequency differ-
ences between pairs around a “closed-loop” should always be zero, leaving only measurement
noise regardless of any spatial gradients or systematic shifts. The “closed-loop” analysis shows
good agreement with zero within the expected uncertainty of 5× 10−19 scaled by

√
6,
√

5,
√

4,
and
√

3 for “closed-loop” combinations composed of 6, 5, 4, and 3 ensembles, respectively (see
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Figure 4. Prospects for multiplexed OLC comparisons. a, CCD image of 6 equally-
spaced ensembles loaded and interrogated simultaneously, which corresponds to 15 unique pair-
wise differential clock comparisons (grey double arrows with solid lines). The red arrows with
dashed lines form a representative “closed-loop” (1, 2, 3, 4, 5, 6) for clock comparisons with 6
ensembles. The sum frequency within this loop is given by δf21 +δf32 +δf43 +δf54 +δf65−δf61,
where δfij = fj − fi is the differential frequency between ensemble i and j, and should sum to
zero within the uncertainty of the measurement. Similarly, the blue arrows with dashed lines
form a “closed-loop” (2, 4, 6) for clock comparisons with 3 ensembles. b, all 15 parametric
plots for simultaneous pairwise comparisons with 6 ensembles, each comparison averages down
to a fractional frequency uncertainty of about 5 × 10−19 in an hour. c, “Closed-loop” analysis
of 15 pairwise comparisons as a self-consistency check. Each datum corresponds to the summed
fractional frequency of the pairwise comparisons within the loop. This includes a total of 197
unique loops with 6 ensembles (red, 60 combinations), 5 ensembles (orange, 72 combinations), 4
ensembles (green, 45 combinations), and 3 ensembles (blue, 20 combinations). The shaded grey
areas represent uncertainty windows of 5× 10−19 scaled by

√
6,
√

5,
√

4, and
√

3, respectively.
d, demonstration of simultaneous loading of spatially-resolved heterogeneous pairs of isotopes
in a single experiment run (three separate representative experiments are shown covering all
four stable isotopes of Sr). Each isotope in a pair is imaged individually by shifting the 461-nm
probe beam onto resonance sequentially. The color-map is kept on the same scale for all three
images, with the atom numbers for the bosonic isotopes consistent with their relative isotopic
abundance (88Sr - 82.6%, 87Sr - 6.9% 86Sr - 9.9%, 84Sr - 0.6%).

Fig.4c).
The self-consistency within the 15 pairwise comparisons confirms the validity and accuracy of

extracting differential clock detunings by ellipse fitting to synchronized Ramsey measurements,
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and represents a critical step towards mapping out spatial gradients across the lattice. The
measured detunings between ensemble pairs contain information about the spatial profiles of
the magnetic field gradient, the lattice beam, thermal gradients, and electric field gradients, as
well as residual differential shifts due to differences in atom density and temperature between the
ensembles. As an example, we evaluate the differential density shifts between ensemble pairs
by varying the relative atom numbers, and thus the differential density (see Extended Data
Fig.4). At a typical lattice trap depth U of 20 Erec and a conservative 100(25) atom number
difference, the differential density shift is −8(2)× 10−19. By varying the lattice trap depths, we
further observe the expected density shift scaling with depth of U5/4 as reported in [16, 43]. By
working at shallower lattices and actively controlling atom loading, differential density shifts
with uncertainties at the 10−20 level should be feasible. This example highlights the utility of the
multiplexed technique for mapping out and evaluating systematic effects [15, 44]. A thorough
evaluation of all of the contributing differential systematic shifts in our apparatus is currently
underway.

Finally, precision isotope shift measurements have recently been proposed as a novel method
to search for new physics beyond the Standard Model [45–50]. Neutral strontium, with four
stable isotopes (88Sr, 87Sr, 86Sr and 84Sr) and narrow-line clock transitions, is a good candidate
when combined with measurements of the clock transitions in the Sr+ ion [48]. We demonstrate
the capability to sequentially load different spatially-resolved strontium isotopes into the lattice
with pairs comprising all four stable isotopes of strontium (see Fig.4d). We avoid scattering
and heating during loading of the second isotope by shelving the first trapped isotope, 87Sr, in
the 3P0 state. Due to the lack of hyperfine states for bosonic isotopes, a greater magnetic field
(∼ 20 G) is required to mix 3P1 into 3P0 state [30, 40, 51, 52], and allow the doubly forbidden
1S0 ↔ 3P0 clock transition, and is left for future work.

In conclusion, in this work we implement an alternative platform for differential clock com-
parisons using spatially resolved atom ensembles trapped in a single 1D optical lattice. We
demonstrate long atomic coherence times (26 s) with large atom numbers (2400 atoms per en-
semble) in a shallow (20 Erec) vertical optical lattice using a 1 Hz linewidth clock laser. In a com-
parison between two regions we achieve a QPN-limited differential stability of 9.7(4)×10−18/

√
τ ,

and a fractional frequency precision of 8.9(3)× 10−20 after 3.3 hours of averaging. We take ad-
vantage of the multiplexed nature of our apparatus to demonstrate a miniaturized clock network
consisting of 6 atom ensembles, resulting in 15 unique pairwise clock comparisons with relative
stabilities below 3 × 10−17/

√
τ . Finally, we demonstrate the capability to simultaneously load

heterogeneous pairs of all four stable isotopes of strontium into spatially-resolved ensembles in
the lattice. Common-mode rejection of dephasing from environmental fluctuations and local
oscillator noise make the multiplexed optical lattice clock platform well-suited for exploring the
use of spin-squeezing [53–57] to push the differential stability below the QPN limit. Full charac-
terization of systematic effects such as differential BBR, Stark, and Zeeman shifts will open up
possibilities for studying relativistic geodesy at the sub-cm scale and other novel tests of general
relativity. Similarly, we anticipate that extensions of this technique to other existing 1D-OLCs
will be straightforward, enabling high-stability characterization of limiting clock systematics
such as magnetic, electric, and thermal gradients.

Authors’ note: While performing the work described here, we became aware of comple-
mentary work in which record stability and precision clock comparisons were performed be-
tween sub-regions within a single atomic ensemble in a vertical 1D lattice using an ultra-narrow
linewidth local oscillator stabilized to a cryogenic single crystal silicon cavity [58].
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Methods

Initial loading and trapping

The experiment starts by capturing atoms from a thermal atomic beam in a 3D-MOT operating
on the 1S0 ↔ 1P1 transition at 461-nm, which has a linewidth of 32 MHz. The atom number
in the 461-nm MOT is typically 2× 106 for 87Sr, with a temperature of ∼1 mK. The sample is
further cooled by transferring from the 461-nm MOT into a 689-nm MOT via the 7.5 kHz wide
1S0 ↔ 3P1 transition. After broad-band (BB) and single-frequency (SF) 689-nm MOT stages,
about 2×105 atoms are left with a temperature of ∼ 2 µK. The optical lattice is kept on during
the entire experiment, and about 1 × 105 spin-mixed atoms are transferred into the optical
lattice by switching off the 689-nm MOT. The optical lattice light is generated by a Ti:Sapphire
laser (MSquared Soltis), diffracted by an AOM operating at 80 MHz, and the negative first
diffraction order is delivered to the experiment table through a polarization-maintaining (PM)
fiber. The lattice laser intensity is servoed on the AOM by picking off the lattice beam after the
science chamber. The lattice laser frequency is digitally locked to a wave-meter (High-Finesse,
WS-70) that is calibrated using the 1S0 ↔ 3P0 clock transition of 87Sr, which is known to an
accuracy better than 1 Hz [59].

Accelerating lattice

In order to generate an accelerating lattice, a tunable frequency difference between the incoming
and retro-reflected lattice beams while maintaining their spatial overlap is required. To realize
this, the incoming lattice beam is re-shaped with a pair of telescope lenses after the science
chamber, and is subsequently sent through two AOMs (lattice AOM 1 and lattice AOM 2)
operating at ∓110 MHz (see Extended Data Fig.1). A “cat’s eye” retro-reflector consisting of
an 100 mm lens and a high-reflection mirror is used to retro-reflect the lattice beam and double-
pass the AOMs. The power of the retro-reflection beam is about 50% compared to the incoming
beam, mainly limited by the AOM diffraction efficiencies (∼ 90% per single pass), and optical
losses in the path. Two direct-digital-synthesizers (DDS’s, Moglabs XRF421) synchronized
in phase are used to drive the lattice AOMs. The DDS-2 that drives the lattice AOM 2 is
programmed to perform acceleration after receiving an external trigger signal, which is typically
5 ms after the SF 689-nm MOT stage has started. The DDS-2 frequency is then stepped over
4000 values for a 2 ms ramp with an update rate of 500 ns. About 80% of the total atoms survive
after lattice acceleration and deceleration. The “cat’s eye” configuration is critical for ramping
the lattice frequency while preserving the lattice overlapping, which is monitored through the
rejection port of an optical isolator before the fiber. We observe negilible power loss when
detuning the retro-lattice frequency by as much as ±10 MHz, which is more than sufficient to
prepare ensembles separated by 1 cm in the experiment.

State preparation, cooling and read-out

For 87Sr, a 689 nm laser beam propagating perpendicular to the lattice is applied to spin-polarize
atoms into |mF = ±9/2〉 hyperfine state manifold via the 1S0(F = 9/2) ↔ 3P1(F = 9/2)
transition. We then perform sideband cooling on the 689 nm 1S0 ↔ 3P1 transition to remove
phonons after lattice acceleration, and adiabatically ramp down the lattice trap depth from 60
Erec down to below 20 Erec, where Erec ≈ 3.5 h·kHz is the lattice photon recoil energy. To
prepare ensembles into mF = ±3/2 states, we coherently transfer the populations via three
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π-pulses on resonant with the |1S0,mF = ±9/2〉 ↔ |3P0,mF = ±7/2〉, |3P0,mF = ±7/2〉 ↔
|1S0,mF = ±5/2〉, and |1S0,mF = ±5/2〉 ↔ |3P0,mF = ±3/2〉 transitions.

To detect the excitation fraction of each ensemble in parallel, we first read out 1S0 ground
state (|g〉) populations with a 1-ms imaging pulse with a co-propagating 461-nm laser beam along
the lattice, and the fluorescence is collected on the EMCCD. The probe beam also clears out
the population in |g〉. The remaining populations in 3P0 excited state (|e〉) are simultaneously
transferred back to |g〉 via repump pulses on the 3P0 ↔ 3S1 and 3P2 ↔ 3S1 transitions, and
imaged with a second imaging pulse. A reference image is taken with a final imaging pulse
without any atoms for background subtraction. Excitation fractions of each ensemble can be
extracted by post-selecting regions-of-interest within the images, and normalized excitation
fraction is given by Pe,n = (Ne,n −Nbg,n)/(Ne,n +Ng,n − 2Nbg,n), where n is the n-th ensemble,
Ng/e is the atom number for |g/e〉 after calibration, and Nbg,n is the background.

Clock laser beam path

The rack-mount clock laser (Menlo Systems, Optical Reference System) is referenced via Pound-
Drever-Hall locking to a 12 cm ULE cavity, which is temperature controlled at the zero-crossing
setpoint 15.77 ◦C. An double-passed AOM before fiber coupling into the ULE cavity is used
for linear drift cancellation. A typical linear drift rate from 0.2 to 1 Hz/s is observed, and a
residual drift of less than 0.01 Hz/s can be achieved upon calibration based the clock transition
resonance. The clock laser beam is delivered to the experiment table through a 5 m PM fiber,
with an output power of ∼ 2 mW, and is subsequently sent to the clock AOM operating at +110
MHz to steer the laser frequency to be on resonant with the 1S0 ↔ 3P0 clock transition. The
clock beam is focused down to a beam waist of about 500 µm centered at the lattice, which is
about 5 times the lattice beam waist to both ensure homogeneity for atoms populated radially
and multiple ensembles distributed axially along the lattice.

To cancel fiber phase noise and residual Doppler noise induced by vibrations of the fiber
and the optical lattice, the zeroth diffraction order of the clock AOM is referenced on the
lattice retro-reflection mirror for Doppler cancellation. Depending on the clock transition
(|1S0, 9/2〉 ↔ |3P0, 9/2〉 , π-transition or |1S0, 5/2〉 ↔ |3P0, 3/2〉 , σ-transition), the first diffrac-
tion order is overlapped with the lattice beam by either using a long-pass dichroic beamsplitter
(for π transition), or using the reflection port of a polarized beamsplitter (for σ transition,
see Extended Data Fig.1). While this configuration leaves an uncompensated lattice path of
about 75 cm, we observe no significant impacts to the stability as inferred from the synchronous
Ramsey interrogations.

Clock interrogations

After loading atomic ensembles in the lattice and optical pumping into mF = ±9/2 stretched
states, the clock transition is interrogated under a bias magnetic field of approximately 2 G. The
first diffraction order of the clock AOM is used to address the clock resonance. To circumvent
thermal effects in the AOM crystal, the clock pulses are generated via jumping the AOM
frequency from 10 MHz off-resonant to on-resonant, instead of switching on and off the AOM.
The differential Bragg diffraction angle at 10 MHz frequency difference introduces a deflection of
more than 0.5 cm at the ensembles, in addition with an optical shutter that blocks any residual
clock light, which ensures the clock beam is kept off of the atoms during Ramsey free evolution.

The Rabi spectroscopy shown in Fig.2a is taken on the |1S0,mF = 9/2〉 ↔ |3P0,mF = 9/2〉
transition at a lattice trap depth of 20 Erec, and with a π-pulse duration of about 90 ms, which
corresponds to ≈ 2π × 5.6 Hz Rabi frequency. A neutral-density filter (3.5 optical density) is
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used to attenuate the clock laser power and ensure the resulting Rabi linewidth remains Fourier
limited. The data in Fig.2a is taken within a total measurement time of less than a minute
without averaging.

For Ramsey spectroscopy and “spin-echo” on the |1S0, 9/2〉 ↔ |3P0, 9/2〉 transition, the π/2-
pulse duration is about 0.75 ms (2π × 333 Hz in Rabi frequency). For Ramsey spectroscopy
on |1S0, 5/2〉 ↔ |3P0, 3/2〉 transition, the atoms must be transferred from the initial optically-
pumped mF = ±9/2 state to the mF = ±3/2 state. This is achieved by using three consecutive
π-pulse of about 4.5, 3.5, and 3.0 ms (2π × 111 Hz, 2π × 142 Hz and 2π × 167 Hz in Rabi
frequencies) to address the |1S0, 9/2〉 ↔ |3P0, 7/2〉, |3P0, 7/2〉 ↔ |1S0, 5/2〉, and |1S0, 5/2〉 ↔
|3P0, 3/2〉 transitions, respectively (see Extended Data Fig.2). The difference in pulse durations
is a result of the different matrix elements for the 3 transitions. Each π-pulse is followed by
a “clean-up” pulse on resonant with 461-nm 1S0 ↔ 1P1 transtition (679-nm 3P0 ↔ 3S1 and
707-nm 3P2 ↔ 3S1 repump transitions) to clean remaining populations on the ground (excited)
state due to imperfect spin-polarization and π-pulses. The nearby clock resonances from the
final mF = 3/2 state, for example, the |3P0,mF = 3/2〉 ↔ |1S0,mF = 3/2〉, π-transition and the
|3P0,mF = 3/2〉 ↔ |1S0,mF = 1/2〉, σ-transition, can be eliminated by both applying a large
bias magnetic field of 2 G to induce larger separation between σ+ and σ− transitions, and fine-
alignment of the bias field orientation to suppress the unwanted π-transition. After preparing
atoms on mF = 3/2 state, Ramsey spectroscopy is taken with π/2-pulses of 1.5 ms duration
and dark times of up to 20 s.

Experimental procedure

The procedure and timing diagram for loading, lattice acceleration, cooling, clock interrogation,
and imaging is shown in Extended Data Fig.3. It takes 400 ms to load thermal atoms into the
461-nm MOT, 450 ms to cooling in the BB 689-nm MOT, and 50 ms to further cool down to
∼ 2 µK by holding in the SF 689-nm MOT. In the SF MOT stage, the lattice is accelerated by
linearly ramping the lattice AOM 2 frequency to load multiple ensembles within less than 100
ms. This is then followed by spin-polarization, in-lattice cooling, and adiabatic ramping down
of the lattice trap depth within less than 200 ms. An extra 100 ms is spent on coherent transfer
from mF = 9/2 to mF = 3/2 hyperfine state when interrogating the |1S0, 5/2〉 ↔ |3P0, 3/2〉
transition. The imaging sub-sequence usually takes 150 ms and consists of 3 steps. A first
imaging pulse on resonant with the |1S0〉 ↔ |1P1〉 transition at 461-nm is used to measure the
population of atoms in the ground state and heated out of the trap. This is then followed by a
repumping pulse on resonant with the |3P0〉 ↔ |3S1〉 and |3P2〉 ↔ |3S1〉 transitions at 679-nm
and 707-nm, respectively, to transfer the excited state populations into the ground state, which
is subsequently read-out via a second imaging pulse. A third imaging pulse is employed to
measure the background. The above sample trapping, cooling, state-preparation and read-out
times contribute to a typical dead time of 1.6 s per experimental cycle. This yields an 84%
duty-cycle for an 8.2 s Ramsey interrogation.

Ellipse fitting bias correction

To determine the differential phase φd between ensemble pairs accumulated during the clock
interrogation, a least square method is applied for ellipse fitting (see Supplementary Informa-
tion for details). While this approach is numerically stable, non-iterative, and guarantees an
ellipse-specific solution, it doesn’t work well at φd closes to 0 or π [30]. Moreover, the effective
probability distribution the data is sampled from is the convolution of an ellipse and a binomial
distribution associated with QPN. Therefore, the bias error needs to be accounted for in order
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to extract the correct differential frequencies between ensemble pairs. To do this, we perform
Monte-Carlo simulations which generate artificial data with contrast and atom number for each
ensemble that captures the QPN, and known differential phases as input parameters. The sim-
ulated data allows us to calculate a correction phase with a statistical standard deviation as the
error bar in the bias correction.

To illustrate the validity and importance of bias correction, Extended Data Fig.5 shows
the comparison between “closed-loop” analysis within 6 ensembles (Fig. 4c) with (filled red
points) and without (empty blue points) bias correction. The sum frequencies of each unique
“closed-loop” agree within an 1× 10−18 window with bias correction, while the deviations from
zero are as large as 1 × 10−17 without bias correction. We note that while this bias can be
avoided through a judicious choice of phase for 2 clocks, it is unavoidable in differential clock
comparisons with 3 or more clocks. For example, in the extreme case where two pairs of clocks
are operating at differential phases of multiples of π/2 where the bias error is minimized, i.e.
φ12 = (2m + 1)π/2 and φ23 = (2n + 1)π/2, where m,n are integers. The outcome of the third
pair would be φ13 = φ12 + φ23 = ((m + n) + 1)π, which is a multiple of π where the bias error
is maximized.

Units and errors

Unless otherwise stated, all errors and numerical uncertainties in this article and its Supple-
mentary Information denote a 1σ s.d. confidence interval. When we quote a coherence time,
we are typically referring to the 1/e decay time. When we explicitly refer to a Gaussian time
constant, we are referring to the timescale associated with 1 s.d. of the Gaussian envelope.

Data and code availability

The experimental data presented in this manuscript and the code used for analysis and simula-
tion in this work are available from the corresponding author upon reasonable request.
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Extended Data Figure 1. Lattice and clock path. Schematic diagram showing the
lattice and clock beam paths for the interrogation the |1S0,mF = ±5/2〉 ↔ |3P0,mF = ±3/2〉σ-
transition. To interrogate the |1S0,mF = ±9/2〉 ↔ |3P0,mF = ±9/2〉σ-transition, the first
order diffraction clock beam is overlapped with the lattice using a long-pass dichroic beam-
splitter, which is not shown in this figure. PBS: polarized beam-splitter; AOM: acousto-optic-
modulator; PD: photo-diode; Sr: strontium; HWP: half-waveplate; QWP: quarter-waveplate.
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Extended Data Figure 2. Energy levels for strontium and hyperfine states for clock
interrogation. (a) Energy level diagram for strontium. 1S0 ↔ 1P1 transition on 461 nm for
first-stage MOT and imaging. 1S0 ↔ 3P1 transition on 689 nm for second-stage MOT. 3P2 ↔ 3S1

transition on 679 nm and 3P0 ↔ 3S1 transition on 707 nm for repumping. 1S0 ↔ 3P0 transition
on 698 nm for clock spectroscopy. (b) 10 hyperfine states for clock interrogation. Red double
arrows represent clock interrogation on the |1S0,mF = ±9/2〉 ↔ |3P0,mF = ±9/2〉 transition.
Blue double arrows represent clock interrogation on the |1S0,mF = ±5/2〉 ↔ |3P0,mF = ±3/2〉
transition. Grey dashed lines stand for transitions for coherent transfer of atoms from mF =
±9/2 states to mF = ±3/2 states.
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corresponding lattice retro detuning, lattice velocity and lattice acceleration during loading two
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a b

Extended Data Figure 4. (a) Differential density shift as a function of relative atom number
difference between two symmetrically prepared ensembles at 1 cm separation. The data is taken
at 20 Erec lattice trap depth. Dashed line is the linear fitting, in which the slope is extracted as
−8.5(6) × 10−19 shift per 100 atom number difference. (b) Scaling of differential density shift
per 100 atom number difference between ensemble pairs with lattice trap depth U . The dashed
line is a fit to the expected αU5/4 + β scaling, where α and β are fit parameters.
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are shown, with each datum corresponds to the sum frequency within each loop. Shaded area
represents an 1× 10−18 window.

22



Approaches 1/e decay time Fitting
Ramsey with one ensemble 96(24) ms Gaussian
Ramsey with 2 ensembles, 9/2−9/2 6(1) s Gaussian
Spin-echo, 9/2− 9/2 24(5) s exponential
Ramsey with 2 ensembles, 5/2−3/2 26(2) s exponential

Extended Data Table 1. Table of measured coherence times using different approaches.
Uncertainties are quoted as 1σ standard deviations.
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aaaaaa
j

i 1 2 3 4 5 6

1 — — — — — —
2 61.17(16) — — — — —
3 125.74(19) 64.67(17) — — — —
4 196.67(15) 135.57(15) 70.65(18) — — —
5 274.83(15) 213.69(22) 148.88(23) 78.15(20) — —
6 360.19(15) 299.02(20) 233.96(23) 163.66(16) 85.43(25) —

Extended Data Table 2. Table of differential frequencies (δfji = −δfij = fj − fi, where i, j
are indices of ensembles) from 6 ensemble, 15 pairwise comparisons. All units are in mHz, with
error bars of 1σ standard deviation.
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A Balanced trap depths of symmetrically prepared ensembles

To verify that the ensemble pairs are symmetrically prepared relative to the lattice beam waist
and have consistent atomic temperatures, we perform motional sideband spectroscopy on the
|1S0〉 ↔ |3P0〉 transition with a pulse duration of 150 ms (see Fig S. 1). The red (blue) sideband
corresponds to transition from |g, ng〉 ↔ |e, ne = ng − 1〉 (|g, ng〉 ↔ |e, ne = ng + 1〉), where
ng,e is the vibrational quantum number in the ground (excited) state. The lattice trap depth is
determined by the cut-off frequency of the sidebands [34], and the ratio of the area under the blue
and red sidebands is used to extract the axial temperature. The lattice alignment is optimized
such that the trapping frequencies agree within 1-kHz resolution, which is equivalent to a trap
depth difference of below 1 Erec for typical depths of ∼ 20 Erec. The temperatures of the two
ensembles agree within 0.1 µK, inferred by the axial temperature (0.7 µK and mean quantum
occupation number of 0.15) extracted from the motional sidebands and the radial temperature
(∼ 0.6 µK) is determined by probing the Doppler broadened profile with a separate clock beam
path orthogonal to the optical lattice.
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Figure S 1. Motional sideband spectroscopy for two ensembles separated by 1 cm with trap
depth of 20 Erec taken with a 150 ms pulse on the 1S0 ↔ 3P0 transition. The fitted sidebands
give the mean vibrational quantum state occupation number and axial temperature, and are
consistent for both ensembles within the 1-kHz resolution. The excitation fractions of ensemble
2 is shifted up by +0.05 along the y-axis for clarity.

B Raman scattering, lifetime and lattice trap depth dependent con-
trast

To reduce the off-resonant lattice photon induced Raman scattering [41], one would prefer to
operate at shallower lattice trap depths. While gravity creates a potential energy difference be-
tween adjacent lattice sites and suppresses tunneling for vertical 1D-lattices, we observe reduced
lifetimes for both ground and excited state atoms at shallower trap depths, likely due to residual
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parametric heating from the lattice. At deeper trap depths (> 30 Erec), the lifetimes for atoms
in the excited clock state drops below 15 seconds, which is likely limited by Raman scattering
from the lattice light. However, we also observe a decrease in the ground state lifetimes at much
deeper lattice trap depths, suggesting lattice-intensity-dependent heating.

The measured Ramsey contrasts for ensembles prepared with approximately 2000 atoms start
to drop below 0.6 as the lattice trap depths increase from 20 Erec (See FigS. 2). This is likely
due to a combination of Raman scattering, which scales linearly to lattice trap depth U , and
atomic density which scales as U5/4. The competition between reduced lifetime, reduced atom
density and increased contrast when lowering the lattice trap depth leads to an optimal trap
depth between 15 to 20 Erec for Ramsey interrogation under our current operating conditions.
For the experiments shown in the main text, we choose to operate at a lattice trap depth of
20 Erec, at which we measure a 24(3) s lifetime for ground state atoms, a 13(2) s lifetime for
excited state atoms, and Ramsey contrast of 0.65 for 2400 atoms per ensemble.
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Figure S 2. Top: Measurement of ground (red) and excited (blue) state atom lifetimes as a
function of lattice trap depth. Bottom: Measurement of Ramsey contrast at 8 s dark time and
approximately 2000 atoms per ensemble at different lattice trap depths.
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C Operational magic wavelength

The ac Stark shift at a particular trap depth U0 for π (∆mF = 0) transition starting from
ground state mF can be expressed as [60, 61]

∆νac =

(
∆κS + ∆κVmF ξε̂k · ε̂B + ∆κT (3cos2θ − 1)

[
3m2

F − F (F + 1)
])
U0, (4)

where ∆κS,V,T are the differential scalar, vector, and tensor shift coefficients between excited
and ground states, respectively; ξ is the lattice light ellipticity; ε̂k,B are units vectors along
the lattice beam wave vector and magnetic field quantization axis, respectively; θ is the angle
between the (nearly) linear lattice polarization and ε̂B.

Similarly, the ac Stark shift for σ± (∆mF = ±1) transition starting from ground state mF

has the form

∆νac =

(
∆κS +

(
κVe (mF ± 1)− κVg mF

)
ξε̂k · ε̂B

+ ∆κT (3cos2θ − 1)
[
− F (F + 1)

]
+ (3cos2θ − 1)

[
κTe (3mF ± 1)2 − κTg 3m2

F

])
U0,

(5)

where κV,Tg (κV,Te ) are vector, tensor coefficients for ground (excited) states, respectively.
An operational magic wavelength corresponds to the lattice frequency where the scalar and

tensor Stark shifts cancel, and the remaining vector Stark shift can be eliminated by both using a
linearly polarized lattice beam (ξ ≈ 0) and averaging between the ±mF manifolds. We note that
the above equation doesn’t account for higher order effects such as hyperpolarizability [62, 63],
which scales quadratic to the lattice trap depth, and is negligible in differential clock comparison
between two ensembles at shallow lattice trap depths. For example, at 20 Erec trap depths,
assuming a 1 Erec trap depth difference, the hyperpolarizability induces a differential ac Stark
shift of less than 8× 10−20 [64].

In this work, the operational magic wavelength is chosen to be 368554.4849(1) GHz for
|1S0,mF = ±9/2〉 ↔ |3P0,mF = ±9/2〉 (π transition), which is given by the previous exper-
iment [65]. However, the above wavelength no longer works for the |1S0,mF = ±5/2〉 ↔
|3P0,mF = ±3/2〉 (σ transition) because of mF dependence in tensor Stark shift. In the
limit where the lattice frequency is near the magic wavelength, we have ∆κT = κTe − κTg '
κTe = −0.0058(23) mHz/Erec [61]. We would expect a differential shift of −117 ∆κTU0 for
|g,±5/2〉 ↔ |e,±3/2〉 transition using the above operational magic wavelength and assuming
θ ≈ 0. At a typical trap depth of U0 = 20 Erec, this corresponds to a shift of ≈ +13.5 mHz.

To find the operational magic wavelength for |g,±5/2〉 ↔ |e,±3/2〉 transition, the lattice
frequency is scanned across a range of ±800 MHz and the contrasts of synchronized Ramsey
interrogations are measured at each frequency (main text Fig.2e). The optimal contrast is found
at a lattice frequency of 368554.810(30) GHz, which is blue shifted by +325(30) MHz compared
to the operational magic wavelength for |g,±9/2〉 ↔ |e,±9/2〉 transition.

D Differential Zeeman shifts and magnetic field sensitivities

For the |1S0 ↔ 3P0〉 clock transition, the linear Zeeman shift at a magnetic field B for π tran-
sition starting from a ground hyperfine state mF can be written as [42]

∆νL,π = −δgmFµ0B, (6)
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where δg is the differential landé g-factor between ground and excited states. µ0 = µB/h, in
which µB is the Bohr magneton and h is the Planck constant.

Similarly, we can express the linear Zeeman shift for σ± transition from a ground state mF

as
∆νL,σ± = −(±gI + δg(mF ± 1))µ0B, (7)

where gI is the nuclear landé g-factor.
With δgµ0 = −108.4 Hz/G and gIµ0 = −185 Hz/G as input [42], we would expect linear

Zeeman shifts for |g,±9/2〉 ↔ |e,±9/2〉 (π transition)

∆
±9/2↔±9/2,π
ZS = ±487.8 Hz/G, (8)

and similarly for for |g,∓5/2〉 ↔ |e,∓3/2〉 (σ± transition)

∆
∓5/2↔∓3/2,σ±

ZS = ±22.4 Hz/G, (9)

which is a factor of 22 smaller than that of |g, 9/2〉 ↔ |e, 9/2〉 (π transition).
The quadratic Zeeman shift has negligible mF dependence and can be written as

∆νQ = δ
(2)
B µ0B

2, (10)

where δ
(2)
B µ0 = −0.233(5) Hz/G2 is the quadratic Zeeman shift coefficient.

Under a typical bias magnetic field of 2 G and a magnetic field gradient of 15 mG/cm,
the differential linear Zeeman shift (for σ− transition, |g,+5/2〉 ↔ |e,+3/2〉) between two
ensembles separated by 1 cm is approximately 350 mHz, and the differential quadratic Zeeman
shift is approximately 14 mHz.

E Ellipse fitting

In order to extract the differential frequency detuning between the two ensembles we interrogate,
we follow the procedure demonstrated by [15, 30]. After a Ramsey dark time τd, the excitation
fraction of each ensemble can be expressed as

P1 =
1

2

(
1 + C

[
cos(ω1 − ωl)τd

])
, (11)

P2 =
1

2

(
1 + Ccos

[
(ω1 + ωd − ωl)τd

])
, (12)

where C is the contrast, ω1 is the frequency of the ensemble 1, ωl is the frequency of the laser,
and ωd is the frequency difference between ensemble 2 and 1. We can then re-express these
excitation fractions as functions of angles θ and φ, where θ is the atom-laser phase, (ω0−ω1)τd,
and φ is the differential phase between regions, ωdt.

P1 =
1

2

(
1 + Ccos(θ)

)
, (13)

P2 =
1

2

(
1 + Ccos(θ + φ)

)
. (14)

Since we are operating at Ramsey interrogation times well beyond the laser coherence time, θ
is random for each experiment and is uniformly distributed from 0 to 2π, while φ stays constant
across experiments.
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In order to extract φ from our data, we plot the excitation fraction in each ensemble for
a given shot as a single point on a parametric plot, with ensemble 2 on the vertical axis and
ensemble 1 on the horizontal axis. As shots build up, an ellipse is traced out, with points
randomly sampling the perimeter of the ellipse due to the random distribution of θ. We then fit
to this ellipse using least-squares approach [66] and extract φ through φ = 2arctan(b/a), where
a and b are the extracted semi-major and semi-minor axis, respectively.

E.1 Phase extraction variance and biased error

In order to accurately determine our uncertainty in extracting φ, we calculate the variance of φ
through the variance in P1 and P2 due to QPN. For convenience, we can define

x =
C

2
cos(θ), (15)

y =
C

2
cos(θ + φ), (16)

such that we can express the variance of φ as

σ2(φ) =

∣∣∣∣∂φ∂x
∣∣∣∣2σ2(x) +

∣∣∣∣∂φ∂y
∣∣∣∣2σ2(y), (17)

The partial derivatives can be evaluated through Jacobian matrix inversion, and the variance
in x and y due to quantum projection noise (QPN) can be expressed as

σ2(x) =
1

N1

P1(1− P1), (18)

σ2(y) =
1

N2

P2(1− P2), (19)

which gives a expression for the variance of φ

σ2(φ) =
4

C2

(
csc2(θ)σ2(x) + csc2(θ + φ)σ2(y)

)
(20)

Finally, since we take repeated measurements of φ for a random θ, we average over a uniform θ
distribution to get an average variance in φ as the following.

〈σ2(φ)〉 =
4

C2

(∫ 2π

0

dθ

2π

1

csc2(θ)σ2(x) + csc2(θ + φ)σ2(y)

)−1
(21)

In the case where C = 1, QPN results in a variance of 〈σ2(φ)〉 = 2/(NC2), which is the
familiar result for a QPN-limited Ramsey spectroscopy. For C < 1, Var(φ) is scaled by a factor
(see Fig S 3), which depends on the phase and contrast. Counter-intuitively, the QPN limit
is minimized at φ ≈ 0 or π (a line) where the fits are biased, and maximized at π/2 where
it’s a circle with least biased errors. This would suggest operating at a differential phase φ
closer to 0 or π to get lower QPN, while removal of biased errors should be considered. This
can be quantified by running Monte-Carlo simulations with known phases and experimental
parameters as input, that we can bound the biased error in ellipse fitting below 3% at φ ≈ 0.44
rad (see Fig S 4).
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Figure S 3. Additional scale factor for variance of differential phase φ. The red star corresponds
to the measurement of relative stability taken in the main text (Fig.3) with φ ≈ 0.44 rad and
C ≈ 0.65.
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Figure S 4. Monte-Carlo simulations of fractional biased error in ellipse fitting for 2400 atoms
in each ensemble. The grey box corresponds to φ ≈ 0.44 rad, at which the biased error can be
bound below 3%.

E.2 Determination of Ramsey contrast

We determine the Ramsey contrast independently for each ensemble, rather than extracting
it from the fitted ellipse. To do so, we plot the histogram of the excitation fractions of each
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ensemble which follows a bimodal distribution, and the contrast is subtracted by mapping
the two local maximums. This is then corrected for a small offset based on the Monte-Carlo
simulations with known contrasts and QPN as input. Fig S 5a shows a simulated ellipse and its
fitting at φ = 0 rad with 500 atoms, 100 measurement runs and 0.65 contrast for each ensemble.
The corresponding histograms for excitation fractions are shown on the top and right axes.
Fig S 5b) is the Monte-Carlo simulation at different contrasts with the above QPN parameters
as input. The subtracted contrast is slightly below the true contrast, and is accounted for the
offset which is typically less than 0.02. With this approach, we can determine the contrasts for
each ensemble independent of the offset phase, ellipse fitting and bias error.

(a) (b)

Figure S 5. (a) Parametric and histogram plots showing contrast subtraction for simulated
data at 0 rad offset phase with a known contrast of 0.65. (b) Monte-Carlo simulation with an
offset phase at 0 rad, known contrasts and QPN (500 atoms, 100 runs) as input parameters.
The dashed line represents the case when the subtracted contrast equals to the true contrast,
indicating that the subtracted contrast is slightly underestimated. The offset will then be taken
account into the subtracted contrast.

F Loading dual isotopes into the lattice

The experimental sequence for loading dual isotopes into the lattice is shown in Fig S 6. We
first load 87Sr into the lattice, and move the ensemble 1 cm away from the lattice center. Unlike
loading multiple ensembles of the same isotope, here we must perform a second round of cooling
in the 461-nm and 689-nm MOTs to address the second Bosonic isotope (88Sr, 86Sr or 84Sr)
due to the isotope shifts. This requires shifting the frequencies of the 461-nm lasers, including
2D-MOT, Zeeman slower, 3D-MOT and probe lasers, by as much as 270 MHz. The frequency
gap is bridged by double-passing the master 461-nm laser through two AOMs [67] operating
at 350 MHz with a bandwidth of about 150 MHz, and the master laser is subsequently used
to injection lock three laser diodes which are sent to the experiment table. A simultaneous
frequency tuning of up to 270 MHz within 100 ms can be achieved while maintaining the
injection locking. To efficiently cycle the 461-nm MOT for all 4 isotopes, the two repumping
lasers, 679 nm (|3P0〉 ↔ |3S1〉) and 707 nm (|3P2〉 ↔ |3S1〉), are frequency modulated at 1 kHz
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with 1 GHz and 3 GHz amplitudes, respectively. For the 689-nm lasers, the frequencies need
to be shifted by about 1.5 GHz. This is done by jumping the radio-frequency that is used to
reference the optical offset phase lock. (We thank Vescent Photonics for offering us a discount
on the Offset Phase Lock Servo D2-135 used to accomplish this.) To avoid heating the 87Sr
samples out of the lattice during the loading of the second isotope, 87Sr is coherently transferred
and shelved in the |3P0〉 state via a π-pulse, and the 679-nm repump laser is disabled during
the 461-nm MOT loading for the second isotope. A final lattice move brings the two isotopes
back to the lattice center, and two sets of imaging pulses are used to image both isotopes.
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Figure S 6. (a) Isotope shifts on the 1S0 ↔ 1P1 transition at 461-nm for producing the first
stage MOT. The isotope shifts are relative to resonance of 88Sr. Note for 87Sr, the F = 11/2
transition is chosen to optimize the MOT. (b) Isotope shifts on the 1S0 ↔ 3P1 transition at
461-nm for making the second stage MOT. For 87Sr, the F = 9/2 and F = 11/ transitions are
in use. (c) Timing diagram for loading dual isotopes into the lattice.

G Six ensembles differential clock comparisons

G.1 Experimental sequence

To load 6 ensembles, we modify the loading sequence for one ensemble such that the maximal
detuning is 2 MHz with 1 ms ramp time and 1.5 ms hold time, which corresponds to a maximal
velocity of 0.8 m/s and acceleration of 81 g. The loading sequence is repeated for 4 times, such
that 5 subsets of the atomic ensembles can be separated from the original cloud with equal
separations of 0.2 cm. In order to reduce cross-talk due to smaller separation between each
ensemble, the imaging pulse duration is kept below 250 µs.
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G.2 Determination of differential frequencies

To determine the differential frequencies between each clock comparison, we run at different
Ramsey times ranging from 2.5 to 8.5 s, and the differential frequency can be mapped out
through the accumulated phase evolution, which follows

φacc,ij(TR) = 2πδfijTR, (22)

where TR is the Ramsey interrogation time, and δfij = fj − fi is the differential frequency
between ensemble i and ensemble j. Note that δfij = −δfji. While this is not entirely correct
due to the bias error from ellipse fitting, we perform Monte-Carlo simulations for each resulting
pairwise ellipse using contrasts and atom numbers subtracted from each ensemble, and correct
for the bias error before mapping out the differential frequency.

G.3 Numbers of unique combinations in “Closed-loop” self-consistency check

We check the self-consistency of the 15 pairwise comparisons in the clock network (see Fig.4a
in main text) by plotting the sum of differential frequencies within a “closed-loop” which has
3 or more “clocks”. Since the sum frequencies after clockwise and anti-clockwise rotations are
equivalent, the number of ways to arrange n “clocks” in a loop is (n − 1)!/2. For a loop that
has 6 “clocks”, for example, (1, 2, 3, 4, 5, 6), the sum frequency can be calculated as

f = δf21 + δf32 + δf43 + δf54 + δf65 − δf61. (23)

Note that this is equivalent to the sum frequencies of (2, 3, 4, 5, 6, 1), of (3, 4, 5, 6, 1, 2), of
(4, 5, 6, 1, 2, 3), of (5, 6, 1, 2, 3, 4) and of (6, 1, 2, 3, 4, 5, 6). Therefore, we have 5!/2 = 60 unique
combinations for loops of 6 “clocks”. For loops of 5 “clocks”, first there are 6C5, which is 6
choose 5, combinations to choose 5 ensembles, and 4!/2 = 12 ways to arrange the “clocks”,
therefore a total number of 72 combinations. Similarly, there are 6C4× 3!/2 = 45 combinations
for loops of 4 “clocks”, and 6C3 × 2!/2 = 20 combinations for loops of 3 “clocks”. Finally, this
gives 60 + 72 + 45 + 20 = 197 unique combinations for simultaneous clock comparisons of 6
ensembles.

H Differential density shift evaluations

H.1 Sample preparation and calibration of camera gradient

The differential density shift can be evaluated by varying the atom number difference between
symmetrically ensemble pairs. This is accomplished by first balancing the lattice trap depths and
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radial profile at each ensemble by walking the focal lenses of the incoming and retro-reflecting
lattice laser beams, and verified by motional sideband spectroscopy as discussed in Section A
above. The loading times into each ensemble are then varied from 0.5 ms to 20 ms to introduce
imbalanced atom numbers in each ensemble, which typically ranges from -2000 to +2000 atom
number differences, yielding a sufficiently large lever arm for differential density shifts at high
10−18 level that can be easily resolved. The motional sideband spectrum is re-taken to ensure
the temperatures of the two ensembles remain balanced after in-lattice cooling for each loading
sequence.

To calibrate the camera gradient along the lattice during clock read-out, which mainly
arises from the spatial inhomogeneity of fluorescence and the imaging beam intensity gradient,
an ensemble of atoms is moved at a constant velocity of 1.5 m/s and imaged along the lattice
over 500 camera pixels, which corresponds to a distance of approximately 1.5 cm, within less
than 100 ms. As this time scale is much smaller than the atom lifetime (> 20 s), the atom loss is
negligible, and a Gaussian fit to the trace of the image gives the amplitude and center (or pixel
index number) of the cloud. The average of 10 measurements, each consisting of 100 images with
randomized cloud centers spread over 500 pixels, are taken to map out the imaging gradient.
A Savizky-Golay filter is then applied to smooth out the normalized imaging efficiency curve,
which is used for post-calibration of the camera images taken in the experiment. A typical
calibration curve with 10 averages is shown in Fig S8.

Figure S 8. Calibration of fluorescence imaging gradient along the lattice. The black line is the
averaged normalized imaging efficiency, the red area indicates the corresponding 1σ standard
error. The blue dashed lines represent the pixel indices (along the gravity, ẑ) at which two
ensembles are separated by 1 cm.
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H.2 Differential density shift and its trap depth scaling

Since the atomic density within an ensemble scales linearly with the atom number, with the
lattice trap depths and atomic temperatures balanced, a change in relative atom number, or
the atom number difference between ensemble pairs, results in a differential density shift. To
characterize this shift, we perform a “lock-in” type measurement, in which we interleave between
“low” and “high” atom number differences, i.e., δNlow and δNhigh, which creates two ellipses with
differential phase φlow and φhigh. Each measurement yields a relative phase shift ∆φ = φhigh−φlow

and relative change in atom number difference ∆N = δNhigh − δNlow. This is iterated over
several differential densities ∆N and averaged below 1× 10−18 for each measurement, as shown
in Extended Data Fig.4 (a). A linear function f = a ∆N + b is applied to fit the data, and the
slope a is subtracted as the density shift coefficient at 100 atom number difference.

To quantify the scaling of the differential density shift with trap depth, the above measure-
ment is repeated over different lattice trap depths, and the fitted slopes are plotted as a function
of trap depth, see Extended Data Fig.4 (b). The data is then fitted to the model

αU5/4 + β, (24)

where U is the lattice trap depth, and α and β are fit parameters. The good agreement between
the data and U5/4 scaling implies the radial and axial trap frequencies in the lattice scale with
trap depth as expected for a thermal gas.
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