
Differential  Coll is ions in SHA-0 

Florent Chabaud and Antoine Joux 

Centre d'l~lectronique de l'Armement 
CASSI/SCY/EC 

F-35998 Rennes Armies, France 
{chabaud, j oux}@celar, fr 

Abst rac t .  In this paper we present a method for finding collisions in 
SHA-O which is related to differential cryptanalysis of block ciphers. Using 
this method, we obtain a theoretical attack on the compression function 
SHA-0 with complexity 2 sl, which is thus better than the birthday para- 
dox attack. In the case of SHA-1, this method is unable to find collisions 
faster than the birthday paradox. This is a strong evidence that the 
transition to version 1 indeed raised the level of security of SHA. 

1 D e s c r i p t i o n  o f  SHA 

1.1 H i s t o r i c a l  O v e r v i e w  

The Secure Hash Standard (SHS) [7] was issued by the National Institute of 
Standards and Technology in 1993. It was largely inspired from Rivest's MD4 [5]. 
However, a certain number of basic blocks of this function were different from 
MD4 ones, but  no explanation was given for the choices. Two years later, an 
addendum was made to the standard, slightly altering the function [8]. This 
change was claimed to correct a technical weakness in SHA but no justification 
was given. Yet, it was reported that  a collision attack bet ter  than the birthday 
paradox had been found by the NSA. 

Independantly, several attacks on the original MD4 function, and its MD5 
improvement [6] have been published [2, 4]. However, these attacks couldn't  be 
applied to the Secure Hash Algorithm (neither in the first nor in the second 
version) because of the expansion used. 

1.2 Nota t ion  

The symbols we use in this paper are defined Table 1. Besides, we denote by 
capital letters 32-bits words, and X (i) stand for the value of X used at i- th round 
of SHA. 

1.3 Descript ion o f  SHA 

D e s c r i p t i o n  o f  t h e  H a s h  F u n c t i o n .  The hash functions in the SHA family 
deal with 512 bits message blocks and output  a 160 hash value. This hash value 
is formed by concatenating 5 registers of 32 bits each. In order to hash a message, 
several steps are performed: 
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Table 1. Notations 

Notation 
F q  

(x, Y,..., z) 

Definition 
Finite field with q elements. 
Concatenation of 32-bits words. 
Addition on 32-bits words modulo 2 ~'. + 

(9 Exclusive or on bits or 32-bits words. 
V Inclusive or on bits or 32-bits words. 
A Logical and on bits or 32-bits words. 

ROLt (X)  Rotation by ! bits of a 32-bits word. 
Xi The ith bit of 32-bits word X, from the least signif- 

icant 0 to the most significant 31. 

1. Pad the message to be hashed by adding a 1, aa appropriate number of 0 and 
the 64 bits integer representing the length of the message. After this padding 
operation, the message is formed of a integral number of 512 blocks. 

2. Initialize 5 registers of 32 bits A, B, C, D and E with fixed constants: 
- A = 0x67452301 
- B = 0xEFCDhB89 
- C = 0x98BADCFE 
- D = 0xi0325476 
- E = 0xC3D2EIF0 

3. For each message block, copy A, B, C, D and E respectively in AA, BB, 
CC, DD and EE. Apply the compression function to AA, BB, CC, DD, 
EE and the message block. This yields AA', BB', CO', DD' and EE'. These 
5 values are then added respectively to A, B, C, D and E. 

4. Output the concatenation of A, B, C, D and E. 

In the remaining of this paper, we try to find collisions on the compression 
function, from which collision on the hash function are trivial. 

D e s c r i p t i o n  o f  t h e  C o m p r e s s i o n  F u n c t i o n .  Following [7], we denote by 
<W(~ W (15)> the 512 bits input of SHA, constituted by 16 words of 32 bits. 
The first step of SHA-0 is to perform an expansion on these 512 bits. The result 
of this expansion is given by the following relation: 

W (i) :w( i -3 )~W( i -8 )~W( i -14)~W( i -16) ,  Vi, 1 6 < i < 8 0  . (1) 

These 80 words of 32 bits are used to alter the five 32-bits words state denoted 
by A (i), B (~), C (i), D (~), E (1). The initial state is the input of the compression 
function. We now denote it <A (~ B(~ , C (~ D(~ , E(~ >. 

The modification of (A (i), B (i), C (~) , D (i) , E (i) > state is performed by the fol- 
lowing transformation, where the function f(~) and the constant K (i) are set 
according to Table 2, and ADD(U,  V, W, X ,  Y )  = U + V + W + X + Y  (mod 2n):  
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for i = 0 to  79 
A (i+l) = ADD (W(O,ROL5 (A(O),.f(O (B(O,C(O,D(O) ,E (0 ,K(0)  
B(i+l) = A (i) 
C (i+l) = ROLzo (B(0) 
D(i+ 1) = C(i) 
E ( i + 1 )  = D (i) 

Table 2. SHA definition of function .f(0(X,Y, Z), and constant K (0. 

Round i Function f(O Constant K C0 
Name Definition 

0-19 IF (X A Y) V (X A Z) 0x5A827999 
20-39 XOl:t (X ~ Y $ Z) 0x6ED9EBA1 
40-59 MAJ (XAY) V ( X A Z ) V ( Y A Z )  Ox8F1BBCDC 
60-79 XOK (X ~ Y ~ Z) 0xCAS2etD6 

The output of the compression function is the 160 bits word obtained in the fi- 
nal state (A (s~ , B (s~ C (s~ , D (s~ E (s~ By collision, we understand the stan- 
dard meaning of finding two input words (W(~ W (15)) and (W'(~ W '(is)) 
that gives the same 160-bits output (A (s~ , B (s~ , C (s~ , D (s~ , E (s~ using the 
same initial value (A (~ B (~ , C (~ , D (~ , E (~ 

The basic architecture of SHA can be illustrated by Fig. 1. The expansion box 
512 2560 can be considered as a linear application from (IF2) to (F2) , that maps 

(W(~ .. .  W (15)) to {W(~ W (rg)). This linear mapping is the only difference 
between first and second version of SHA. More precisely, the extension of SHA-1 
is obtained by replacing (1) by the following equation, which differs from (1) by 
the one bit rotation to the left: 

W (0 = ROLx (W (i-3) * W (i-s) $ W (I-14) ~ W(i-15)) , Vi, 16 < i < 8 0 .  (2) 

We will denote Eo the initial expansion described by (1), and Ei  the modified 
expansion described by (2). This generic architecture defines a family of hash 
functions that could be derived by changing the expansion box. 

2 P r o p a g a t i o n  o f  L o c a l  P e r t u r b a t i o n s  in  SHA-Like H a s h  
F u n c t i o n s  

2.1 W e a k e n e d  SHA Varia t ions  

The  Bare  Arch i t ec tu re  of  SHA. We first want to study the propagation of local 
perturbations in a fully linear variation of SHA, in order to discriminate between 
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input (512 bits) 

expansion E 

2560 bits 

~- - - -  K 

Fig. 1. SHA architecture 



60 

the roles of the bare architecture of the hash functions on one side and of the 
elementary building blocks on the other side. Within the compression function 
of a hash function in the SHA family, there are two sources of non-linearity, the 
f(i) functions and the addition function ADD. 

Thus, the first hash function we consider is SHI11 the compression function 
in the SHA family built by starting from SHA-0 (thus using expansion E0) and by 
replacing the ADD function by an exclusive-or on 5 variables, and all the f(0 
by X O R  functions. 

We denote as usual by W (1) the ith word of the expansion (0 < i < 80), and 
the 32 bits of this word are numbered W(i),. ~1(4) 

�9 " ,  " 3 1  �9 

We now relax the constraints on the W vector and temporary forget that it 
results from an expansion process�9 Thus, we can apply any local perturbation 
on any bit of W. For example, we can negate the value of W10). This change 
will modify bit 1 of A (i+a), bit 1 of B (i+2), bit 31 of C '(i+3), bit 31 of D (i+4) 
and finally bit 31 of E (i+5). If we want to prevent further changes, we need to 

�9 (i+l) (4+2) (i+S) (4+4) - ---(i+5) These new negate the values of bits W~ , W~ , W~t , W~ and w~1 . 
modifications prevent the change on bit 1 of A (4+I) to change bit 6 of A (i+2), 
the change on bit 1 of B (4+2) to change bit 1 of A (i+s), the change on bit 31 of 
C (i+3) to change bit 31 of A (i+4), the change on bit 31 of D (i+4) to change bit 
31 of A (i+5) and the change on bit 31 of E (i+5) to change bit 31 of A (i+6). Thus 

..... (i) rrr(i+l) rrr(i+2) rrr(i+3) rr,(i+4) ..... (i+5) 
negating vv i , vv d , vv I , vv31 , vvst aria vv31 gives two different 
paths from A (1), B (1), C (i), D(0 and E(0 to A (4+6), B (i+6), C(i+6), D (i+6) and 
E (i+o), and yields a local collision. This is summarized in Fig. 2. 

Note I. It is clear that what we say for bit 1, can be generalized for any other 
bit from 0 to 31. However, it will become clear in the following (see Sect. 2.1), 
that this choice is the best one for our purpose. Hence, we focus on this value 
through the rest of this paper. 

Since everything is linear, we can apply simultaneously as many local colli- 
sions as we want and get two different paths from A (~ B (~ C (~ D (~ and E (~ 
to A (s~ B (s~ C (8~ D (s~ and E (s~ the first path using the original W and 
the second one using the modified one which we denote by W ~. The question 
that now arises is "How to choose the local collisions to come back under the 
condition that both W and W ~ result from an expansion process ?" 

Choosing the local collisions simply means to build an error vector mo of 80 

bits (numbered from 0 to 79) with a 1 in position i if we want to negate W (i). 

However, we can't choose to negate W (1) for i > 75, since a perturbation in 
round i is never corrected before round i + 6, and since all perturbations must 
be corrected by round 80. 

Let (m(0~ zg)) be one of these error vectors. We deduce from it the 
/ 

w, -- perturbative 

Vi, - 5 < i < - 1 ,  Mo (~)=0 

1 sltI 1 is a French pun involving cats and dogs. 
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Perturbation 

Initial state 

A(O 

B(O 

G 0 ) 

D (i) 

E 0 ) 

Corrections on bits 
on lilt 1 

WI(') W('+O W2('+2) uz(,+a, u,-(,+4) wt,+5, 
"'31 "'31 "'31 

~ t t t 

A~t)~ �9 A(t+t) A(t+3) A(i+2) A(i+4) A(I+6) 

"& Dli+3) 31 / E D 1~+5) 

Subscripts denote the perturbed bit of the state. 

Fig. 2. SHII propagation of perturbation 

Vi, 0 < i < 7 9 ,  a z ( i ) = 0 i f k # l ;  ""0,k 

Vi, 0 < i < 79, a,r(0 = m(o ~) ""0,1 

This mask is completed by 5 zero-blocks, because the corrective masks are now 
deduced from this perturbative mask by translation and rotation. 

The first corrective mask M1 is deduced from M0 by a translation by one 
round, and a rotation of 5 bits to left. This rotation comes from the description 
of the SHA transformation (see Sect. 1.3 and Fig. 2). Hence, it applies on bits 
numbered k = 6. We have: 

< (3) 

The second corrective mask M2 is deduced from Mo by a translation by two 
rounds and no rotation (see Fig. 2). 

Vi, - 3  < i < 79, M~ ') = M(o i-2) (4) 

Similarly, M3 (resp. M4, Ms) are deduced from Mo by translation by three (resp. 
four, five) rounds, and apply on bits numbered k = 31. 

Vi, - 2  < i  < 79, M~i)= ROL3o (M(o i-3)) 

Vi, - 1  < i <  79, M(i)= ROL3o (M0 (i-4)) 

Vi, 0 < i  < 79, M(si)= ROL3o (Mo (i-5)) 

; (5) 

; (6) 

; (7) 
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Now, what we need is that the global differential mask M defined by 

Vi, 0 < i < 79, M (i) = M(o i) (9 M~ i) (9 M (i) (9 M~ i) (9 M(4 i) (9 M(5 i) , (8) 

must be an output of Eo. 
This condition holds if all masks Mk satisfy (1), which is ensured if the initial 

perturbative mask satisfies the following equation: 

M(o i) = M(o i-3) (9 M(o i-s) (9 M0 (i-14) (9 Mo (i-16), Vi, 11 <_ i < 80 .  (9) 

Moreover, since Eo does not interleave bits (see (1)), we can split the expan- 
sion in 32 identical boxes e0 expanding 16 bits to 80 bits, and defined by (1) 
considered upon bits. The box eo is small enough to be exhaustively enumerated. 
The number of possible masks is in fact relatively small, as there are only 128 of 
the 216 = 65536 possible inputs, that satisfy (9), and the constraint of 5 zeroes 
on rounds 75 to 79, and thus give a mask m0. 

Given such a mask, one can obtain M, and, by reversing the linear application 
Eo, one can compute the corresponding 512 bits input mask # such that M = 
Eo (#). As the expansion boxes of the SHA functions are coded in a systematic 
way, it is clear that # = (M(~ M(tS)). For all input W = (W(~ W(lS)), 
W' = W (9 # has same output by the linear compression function SHI1. 

Introducing Non Linear Functions. 

From a Determinist ic to a Probabilistic Method. We now want to study the 
impact of non-linear functions f(i) in the security of hash function from the SHA 
family. We consider a second function SHI2, the compression function in the SHA 
family built by starting from SHA-0 (thus using expansion Eo) and by replacing 
the A D D  function by an exclusive-or on 5 variables. This can also be seen as 
SHI1 with added non-linear functions f(1). It can easily be seen that in some 
cases the f(i) behaves like a X O R .  Thus, the previous attack may work. The 
questions that arise are "When does it work?" and "What is the probability of 
success?" 

In order to compute the probability we need to make a detailed analysis of 
the I F  and M A J  functions. Since these functions work in parallel on 32 bits, 
we need only study what happens on a single bit. Assuming that we study the 
behavior of the transition from f(i) (B(i), C(i), D(i)) to f(i) (Bl(i), Cl(i), D,(i)), by 
looking carefully at the rotations and at our perturbation model one can see 
that different cases can occur: 

1. There is no change at all in the inputs, i.e. B (i) = B '(i), C (i) = C '(i) and 
D (i) = D t(i) . In that case the output f ( B  '(i) , C '(1) , D '(i)) = f ( B  (i) , C (i) , D (i)) 
does not change and f(i) behaves as X O R .  

2. There is a single difference in the entries on bit 1 of B (i), i.e. B '(i) = B(i)(921. 
In that case, f(1) behaves as a X O R ,  if and only if f ( i )(B,( i) ,  C,(0, D,(i)) = 
f( i )(B(i) ,  C(i), D(1)) (9 21. 
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3. There is a single difference in the entries on bit 31 of C (~) or D(0 (exclusive 
or). In that  case, f(i) behaves as & XOR,  if and only if f(i) (B', C '(i), D '(i)) = 
](i) (B(i), C(i), D(i)) (9 23t. 

4. There are two differences in the entries on bits 31 of C (i) and D (i), that  is 
to say C '(i) = C (i) $231 and D '(1) = D (i) (9231. In that  case, f(i) behaves as a 
XOR,  if and only if the output  of f(i) does not change f(i) (B,(i), C,(i), D,(i)) = 
f(i) (B(i), C(i), D(i)). 

We can now look at the three last cases for the M A J  and I F  function. For 
the M A J  function, Cases 2 and 3 behave identically, the change in the output  
occurs if and only if the two bits of input that  do not change are opposite. This 
occur with probability 1/2. In Case 4, the output  does not change if and only 
if the two bits C ~  ) and D ~  change in opposite directions. This occurs with 
probability 1/2. 

For the IF  function, in Case 2 the output  changes if and only if bits C ~  ~ and 
D ~  ) are opposite. This occurs with probability 1/2. In Case 3, the output  changes 
if and only if bit S ~  ) points on the changing bit (i.e. B ~  ) = 1 if C '(0 = C (i) (9231 

changes and B ~  ) = 0 if D '(i) = D (i) (9 2 ~1 changes), this occurs with probability 
1/2. In Case 4, the output  will always change, so the probability of good behavior 
is 0. This implies, that  we need to choose a perturbation pat tern with no two 
adjacent perturbations in the IF  rounds. More precisely, as the I F  rounds occur 
from round 0 to 19 (see Table 2), and Case 4 involves states C (i) and D (i), no 
two adjacent perturbations can appear before round 16, but  there may be two 
adjacent perturbations on rounds 16 and 17, because the propagation of the 
error will occur for C (i) and D (i) on round 20 (see Fig. 2). 

Under all our constraints, we were able to find & pattern with a global prob- 
ability of success of about  1/224 . We represent hereafter the corresponding 80 
bits output  of the eo box. The 5 preceding zeroes are just  there to recall that  
this pattern satisfies the constraints developed in Sect. 2.1: 

00000 00100010000000101111 
01100011100000010100 
01000100100100111011 
00110000111110000000 

This pattern mo is ended and preceded by 5 zeroes, and has no two adjacent 
bits in the 16 first rounds. 

By the same construction as described in Sect. 2.1, we obtain a differential 
mask that  can be applied on input word, and gives a collision with non negligible 
probability. We reference this mask by J~.  

Evaluating the probability of success is quite tricky, because the 16 first 
rounds must not be included in this evaluation. The reason for this appears 
when implementing the collision search. 

Implementing the Collision Search. We now have the differential mask 2~4 that  
we can try to apply on any input word (W (~ . . .W(tS)>. In order to check 
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whether we have a collision or not, one has to verify for every perturbation, 
if the correction is done well, that  is to say, if the function f(~) behaves like a 
X O R .  Since each perturbation appears in 3 different (successive) f(~), we need to 
consider many elementary probabilities. In our example, there are perturbations 
in positions 2, 6, 14, 16, 17, 18, 19, 21, 22, 26, 27, 28, 35, 37, 41, 45, 48, 51, 
54, 55, 56, 58, 59, 62, 63, 68, 69, 70, 71 and 72. Table 3 shows which case each 
perturbation is related to, for the three f(i) involved. 

N o t e  2. In Table 3, Case 4 in M A J  case is counted for a probability 1/x/~ for 
each of the two perturbations involved. In this way, the global overall probability 
of 1/2 seen above is obtained. 

Table 3. Probability of success of mask .A4 in SHI2 model 

Perturbation f(~+2) case f(~+3) case f(~+4) case 
in round i 

2 
6 
14 
16 
17 

18, 19, 21 
22, 26, 27 

28, 35 
37 
41 
45 
48 
51 
54 
55 
56 

58, 59, 62 
63, 68, 69 
70, 71, 72 

overall probability 
probability logarithm 

I F  2 I F  3 I F  3 1/8 
I F  2 I F  3 I F  3 1/8 
I F  2 I F  3 I F  3 1/8 
I F  2 I F  3 X O R  - 1/4 
I F  2 X O R  - X O R  - 1/2 

X O R  - X O R  - X O ~  - 1 

X O R  - M A J  3 M A J  3 1/4 
M A J  2 M A J  3 M A J  3 1/8 
M A J  2 M A J  3 M A J  3 1/8 
M A J  2 M A J  3 M A J  3 1/8 
M A J  2 M A J  3 M A J  3 1/8 
M A J  2 M A J  3 M A J  4 1/4V~ 
M A J  2 M A J  4 M A J  4 1/4 
M A J  2 M A J  4 X O ~  - 1/2V~ 

X O R  - X O R  - X O R  - 1 

3 
3 

3 = 2 + 1 (see Note 3) 
2 
1 

2 
3 
3 
3 
3 

2.5 
2 

1.5 

As the input word is transmitted with no modification through the expansion, 
it is possible to split the search in two. First, we search W (~ . . .  W (14) such that  
the function f(i) behaves like a X O R  when the mask is applied. This occurs 
with probability 1/28, as the two perturbations involved are in positions 2 and 
6. 

Then, W (~ . . .  W (14) being fixed, we try many values of W (15) (of course we 
must t ry less than 232, in practice any large number such as 10000 is satisfactory). 
Such a W (15) can lead to a collision after 80 rounds if all the other rounds behave 
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nicely. As can be seen on Table 3, this happen with probability 1/226. Since the 
first part of the construction is done once for many W (15), the second probability 
gives the real cost of the enumeration. 

Note 3. This first evaluation gives an overall probability of 1/226 in place of 
the claimed probability. But we can further refine this approach and get rid of 
some of the probability coming from perturbation of round 14. The first function 
related to this perturbation is the IF  function seen in round 16. This function 
behaves nicely if bits C~ 16) and D~ 16) differs. These bits are known in round 14, 
since they are copies of A~ 14) and A~ 13) . This allows us to transfer a probability 
of 1/2 from the second part of the enumeration to the first one. This reduces the 
probability to 1/225 . 

The second function related to perturbation of round 14 is the I F  function 
seen in round 17. This function behaves nicely if bit B~117) is a 1. Since this bit 

is a copy of A~ 6) , one can check its correctness just after choosing W (15), and, 
if necessary, change bit 31 of W (~5) before starting the testing process. This 
reduces the probability to the announced 1/224 . 

Note 4. In the case of SHI2, the collision search is very fast and can be performed 
in less than a half minute. Here is a sample collision: 

la6191b0 3c4a331c 1f228ea2 403b7609 
062ec496 48611ca8 583401bc 399879d0 
2270fdbd 2a8090f0 4b12fd98 473cc7al 
002831a9 50fe1535 61ac0d3d f26700ec 

and 

la6191b0 3c4a331c lf228ea0 403b7649 
062ec494 c8611ca8 d83401be b9987990 
2270fdbf aa8090f0 cb12fd98 c73cc7al 
002831a9 50fe1535 61ac0d3f f26700ac 

both give 

1334f224 21a3efc9 b667d2b2 2890013b 56013ca9 

after the 80 rounds of the SHI2 function. 

I n t roduc ing  Addi t ion .  Eventually, before dealing with SHA-0 and SHA-1 we 
want to study the influence of the addition ADD on our scheme of attack. We 
consider a third function SHI3, the compression function in the SHA family built 
by starting from SHA-0 (thus using expansion E0) and by replacing the non- 
linear functions I F  and M A J  by the function XOR.  This can also be seen as 
SHI1 with the addition ADD put back. 

The new point here is that a perturbation may lead to carries. If we can 
prevent this from happening, everything will behave nicely as before. At first, it 
seems that each perturbation bit and each correction bit may lead to carry. This 



66 

would imply an elementary probability of 1/26 per perturbation, and therefore 
give no usable attack. However, remember that we choose to apply perturbation 
on bit 1 of W(0 thus getting three corrections on bits in position 31 (Ws(~ +s), 

W(~ +4), W(~+s)). Since there is no possible carry from bit 31, this halves the 
logarithm of the elementary probability, and this explains our above choice. 

We can reduce this even further, suppose that W (i) is a 0 and that it changes 
to a 1 in W~ (i), if no carry occurs (probability 1/2) then Ai i+I) is a 0 (and A~ (i+1) 

is a 1). Following this change in the computation of A (i+2), we see that W (i+D 

should be a 1 (and W~ (~+1) should be a 0), otherwise the correction would lead 
to a carry. If this condition holds then the correction always occur without carry. 
The most difficult point is to correct the change in the computation of A (~+a). 
As before, we choose to fix W1 (i+2) to 1 (and W~ (i+2) to 0). Then the correction 

behaves nicely if the first bit of the result of the X O R  function is equal to B~ i+2) 

(i.e A~i+l)). This is true whenever C~ i+2) = D~ i+2) (with probability 1/2). 

The very same arguments show that the probabilities are the same when W (i) 

is a i (and changes to a 2 in W~(i)). In fact, the important issue is that a change 
from 0 to 1 (an incrementation) must be corrected by a change from 1 to 0 (a 
decrementation) and that a change from 1 to 0 must be corrected by a change 
from 0 to 1. The elementary probability to consider is formed from a factor 1/2 
to ensure that the initial perturbation engenders no carry, and another 1/2 to 
ensure that the X O R  keeps the change in the same direction. 

Two technical complications arise in this case, the first one is that we need 
to build W in such a way that W (i), W (i+1) and W (i+2) will satisfy the above 
(non-linear) constraints. Since Eo does not interleave bits, we build W1 and We 
at the very beginning and keep them fixed for the rest of the attack. The second 
complication comes from the fact that nothing prevents us from getting a change 
in W (i), and another in W1 (I+2), in that case we get different conditions on W1 
and W6 but the elementary probability of 1/4 still holds. 

In practice, we were able to find a pattern with probability of 1/244 (com- 
puted as in the SHI2 case) 2. This pattern is: 

00000 01000010100100011110 
01011000001110000000 
00001100000011011000 
00011000101101100000 

and we will denote A4' its associated differential mask. 

Note 5. In this second pattern, we have no condition on adjacent perturbations, 
since we consider f(i) to always be the X O R  function. Thus, one can note that 
this pattern has two adjacent perturbative bits on rounds 15 and 16. 

2 One can refine the enumeration process to force the perturbations of round 16 and 
17 and their associated corrections to be successful. The details are too tricky to be 
explained here, but will appear in the journal version of this paper. This leads to a 
240 running time, which was confirmed by our implementation. 
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Associated to this pattern,  the cond~ions on b~s 1 and 6 o f  W a n d  the 
expansion E 0 m a d e  us choosethefol lowing values for these bits: 

Bitl: 01110010000000011000 
10101101011110000110 
11010101111101101010 
00001001111101010111 

Bit6:00010000000110100000 
10110001101001110011 
01101101011111000010 
00001011101101110111 

Note 6. After a ~ w  daysofcomputa t ion ,  w e w e r e a b l e t o f i n d a n e x p l i c ~  colfision 
for SHI3: 

53c29e14 44fe051b 4a8ce882 576e1943 
0c0abc30 3806260d 76cbeb2f  lb8379a8 
0da433ac 6337b011 1041e2a9 20b44364 
l a3 f8b70  0e7a4620 25e81245 289acb2b 

and 

53c29e14 44fe0519 4a8ce8c2 576e1941 
8cOabc30 bSO6260d f6cbeb2d lb8379e8 
Oda433ac e337b051 9041e2ab 20b44366 
9a3fSb30 8eTa4622 a5e81245 a89acb29 

both  give 

9 8 3 d l f 8 e  e619f190 2e94fa09 0b0d479c 4c536e3e 

after the 80 rounds o f t h e  SHI3function.  

2.2 T r u e  SHA-0 Case  

Having studied SHI1, SHI2, and SHI3, we now come back to the SHA-0 case. In 
this case, all perturbations have to be inserted without any carry, as in SHI3 
case. Moreover, we need to probe deeper into the analysis of the I F  and M A J  
functions, tha t  we carried out to deal with SHI2. 

Let us start  with the IF  function. As in SHI2, we must consider Cases 2, 3 
and 4. Case 4 is always unacceptable in a pat tern of attack. In case 3, everything 
remains the same: the change must go through the I F  function, and it happens 
with probability 1/2. In case 2, the change must go through the function. More- 
over, as in SHI3 case, its direction must be preserved. These two conditions are 
satisfied with probability 1/4. 

For the M A J  function, we can remark that  M A J  never reverses the direction 
of a change, so that  cases 2 and 3 are left unchanged, and each one leads to an 
elementary probability of 1/2. However, case 4 undergoes an interesting change. 
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The new fact, as compared to SHI2, is that as in SHI3, we have the following 
additional properties: 

c5 § Ai  '§ = w(.'). 
= a i . + . )  = w(.+l) 

This means that in case 4, M A J  behaves as a X O R  as soon as the following 
equation holds, 

W (0 ~ W ('+1) , (10) 

because the result of M A J  does not change if and only ff C~ +a) and D(~ +a) 
change in opposite directions. Thus, when there are perturbations in round i 
and i + 1 with 36 < i < 55, if we add the additional constraints (10) on W1, 
then the elementary probability of case 4 for the M A J  function is 1. These 
conditions are added to the previous ones described for SHI3, when building W1 
and W6. 

Taking in account all these constraints, we were able to find two good pat- 
terns, with probability of success 1/268 (resp. 1/269). These patterns are: 

00000 00010000000100100000 
00100001101101111110 
11010010000101010010 
10100010111001100000 c=68 

00000 00100010000000101111 
01100011100000010100 
01000100100100111011 
00110000111110000000 c=69 

We can now build the differential masks deduced from each pattern by the 
construction of Sect. 2.1. The second pattern was denoted A4 in Sect. 2.1. We 
denote the first one by 2%4". 

Note Z The computation of the probabilities can be done from Tables 5 and 4. 
As explained in Note 3, the perturbation in round 14 is on the boundary between 
the two enumerations. It contributes to the overall probability of success by a 
single 1/2. 

Note 8. Given a pattern .A4" (resp..s once W1 and Ws are chosen according 
to the constraints, the collision search by itself remains unchanged (see Sect. 2.1). 
The expected running complexity is thus 268 (resp. 269). However, being more 
careful when implementing the collision search, we can get rid of the remaining 
probability implied by the perturbation in round 14. We hence obtain a running 
complexity of 28~ (resp. 268). Moreover, in case of A4, one can also suppress 
the probabilities implied by the perturbations in round 16 and 17. This further 
decreases the probability of success of A4 to the claimed value of 261. 

This ultimate trick can also be used in SHI2 model. Thus, instead of the 
probability 1/224 obtained in Note 3, we can obtain a probability of 1/22~ 
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Table 4. Probability of success of mask .~t for Sl~-0 

Perturbation f(i+2)case fC~+s) case f(i+4) case 
in round i 

2 I F  2 ' I F  3 I F  3 
6 I F  2 I F  3 I F  3 

14 I F  2 I F  3 I F  3 
16 I F  2 I F  3 X O R  - 

17 I F  2 X O R  - X O R  - 
18, 19, 21 
22, 26, 27 X O R  - X O R  - X O R  - 

28, 35 
37 X O R  - M A J  3 M A J  3 
41 M A J  2 M A J  3 M A J  3 
45 M A J  2 M A J  3 M A J  3 

48 M A J  2 M A J  3 M A J  3 
51 M A J  2 M A J  3 M A J  3 

54 M A J  2 M A J  3 M A J  4 
55 M A J  2 M A J  4 M A J  4 

56 M A J  2 M A J  4 X O R  - 

58, 59, 62 
63, 68, 69 X O R  - X O R  - X O R  - 

70, 71, 72 

overall iprobabifity 
probabi~ty logarithm 

1/32 5 
1/32 5 
1/32 4 + 1 
1/16 4 
1IS 3 

1/4 2 

1/16 4 
1/16 4 
II16 4 
1/16 4 
1/16 4 
1/8 3 
1/4 2 
1/4 2 

1/4 2 

N o t e  9. In the middle of the second 20-rounds block of pattern ~ with proba- 
bility 1/269 (basic search) or 1/261 (improved search), we were lucky to find a 
group of 5 zeroes (in fact 6 but 5 is sufficient for our purpose). This allows us 
to stop the attack after this group, with a partial collision on 35 rounds of SItA. 
Here is such a partial collision: 

78fb1285 77a2dc84 4035a90b b61f0b39 
4a4dlc83 186e8429 74326988 7f220f79 
a08e7920 16a3e469 2ed4213d 4a75b904 
38bef788 2274a40c 4c14e934 cee l2cec  

and 

78fb1285 77a2dc84 4035a909 b61f0b79 
4a4dlc81 986e8429 f432698a f f220f39  
a08e7922 96a3e469 aed4213d ca75bg04 
38bef788 2274a40c 4c14e936 cee l2cac  

both yield after 35 rounds of SHA-0: 

7b907fb9 d050108b 88d6e6d6 5c70d4a3 7e06a692 

The probability to find such a collision is 1/222, using the basic collision 
search, or 1/2 la, using the improved collision search. 
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Table 5. Probability of success of mask f14" for SItA-0 

Perturbation f(i+2) c a s e  .f(i+3) c a s e  f(~+4) case 
in round i 

3 I F  2 I F  3 I F  3 
11 I F  2 I F  3 I F  3 
14 I F  2 I F  3 I F  3 

22, 27, 28 
30, 31, 33 X O R  - X O R  - X O R  - 

34, 35 
36 X O R  - X O R  - M A J  4 
37 X O R  - M A J  4 M A J  4 
38 X O R  - M A J  4 ! M A J  3 
40 M A J  2 M A J  3 M A J  4 
41 M A J  2 M A J  4 ~ M A J  3 
43 M A J  2 M A J  3 M A J  3 
46 M A J  2 M A J  3 M A J  3 
51 M A J  2 M A J  3 M A J  3 
53 M A J  2 M A J  3 M A J  3 
55 M A J  2 M A J  3 M A J  3 

58, 60, 62 
66, 68, 69 X O R  - X O R  - X O R  - 
70, 73, 74 

overall probability 
probability logarithm 

1/32 5 
1/32 5 
1/32 4+1 

1/4 2 

1/4 2 
1/4 2 
1/8 3 
1/8 3 
1/s 3 
1/16 4 
1116 4 
1/16 4 
1/ls 4 
1/16 4 

1/4 2 

3 SHA-I C a s e  

In the SHA-1 case, the bits are interleaved and therefore it is no more possible to 
split the expansion in 32 little expansions. However, the invariance by translation 
is still true. Hence, it is still feasible to deduce the 5 corrective masks from a 
perturbative one, using the construction of Sect. 2.1. 

More precisely, given a perturbative mask M0 that  is an output  of E1, Equ. 
(3) to (7) still hold, and the constructed mask M defined by (8) is again an 
output  of El .  

Finding the perturbative mask M0 can be done using coding theory tools [3], 
because the mask can be considered as a low-weight codeword of the extension. 
Performing such a search on E1 leads to some very short codewords as compared 
to the dimensions of the code. However, with very high probability, no codeword 
of weight less than 100 exists in El ,  tha t  satisfies the constraints (see Sect. 2.1), 
whereas there exists 27 weighted codewords in E0. 

As every bit of the perturbative mask Mo implies at least a factor 1/4 in the 
overall probability of success, our attack will therefore be totally inefficient on 
SHA- 1. 

However, it remains an open problem to see if differential masks exist in the 
SHA-1 case, because our attack builds very specific masks. 
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4 Conclus ion 

We have developed a new kind of at tack on SHA functions that  yields bet ter  re- 
sults than the classical bir thday-paradox attack on SHA-0. This a t tack is related 
to  the well known differential cryptanalysis [1] in tha t  it looks for some kind of 
characteristic masks that  can be added to input word with non trivial proba- 
bility of unchanging the output  of the compression function. The  expansion of 
SHA-1 seems to be designed to counter this kind of attack, which should increase 
the level of confidence in this standard. 
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