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Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world, and metastasis is a

significant cause to the high mortality in patients with HCC. However, the molecular mechanism behind HCC

metastasis is not fully understood. Study of regulatory networks may help investigate HCC metastasis in the way of

systems biology profiling.

Methods: By utilizing both sequence information and parallel microRNA(miRNA) and mRNA expression data on

the same cohort of HBV related HCC patients without or with venous metastasis, we constructed combinatorial

regulatory networks of non-metastatic and metastatic HCC which contain transcription factor(TF) regulation and

miRNA regulation. Differential regulation patterns, classifying marker modules, and key regulatory miRNAs were

analyzed by comparing non-metastatic and metastatic networks.

Results: Globally TFs accounted for the main part of regulation while miRNAs for the minor part of regulation.

However miRNAs displayed a more active role in the metastatic network than in the non-metastatic one.

Seventeen differential regulatory modules discriminative of the metastatic status were identified as cumulative-

module classifier, which could also distinguish survival time. MiR-16, miR-30a, Let-7e and miR-204 were identified as

key miRNA regulators contributed to HCC metastasis.

Conclusion: In this work we demonstrated an integrative approach to conduct differential combinatorial

regulatory network analysis in the specific context venous metastasis of HBV-HCC. Our results proposed possible

transcriptional regulatory patterns underlying the different metastatic subgroups of HCC. The workflow in this study

can be applied in similar context of cancer research and could also be extended to other clinical topics.

Introduction
Hepatocellular carcinoma (HCC) is one of the most hazar-

dous cancers in the world. Metastasis remains a significant

cause to the high mortality in patients with HCC. The

molecular mechanism underlying the metastasis of HCC

has not been completely unraveled due to the complexity

and heterogeneity of this disease.

With the technology advances in genomics and proteo-

mics, many attempts have been made to predict HCC

metastasis based on molecular profiling from mRNA or

miRNA microarrays and mass spectrometry assays,

sampled from tumor or adjacent non-tumor liver tissues

[1-3]. These studies were mostly conducted by selecting

from a list of genes whose expression level discriminated

well between different sample types. However, the signa-

tures or biomarkers from independent studies shared little

overlap. Moreover, the signatures or biomarkers brought
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us insufficient knowledge about mechanism of HCC

metastasis, despite the conventional gene set enrichment

analysis.

In recent years, systematic approaches have improved

the understanding of complex diseases from multiple per-

spectives. A priori knowledge such as protein interactions,

pathways, clinical factors, or other disease-related informa-

tion from databases, integrated with gene signature analy-

sis have helped marker gene prioritization [4-8]. In

addition, gene relationships among different disease

statuses were investigated through systematic network

analyses [9,10]. The signature/biomarker identification was

also aided by network analysis, which brought advantages

over the previous gene-list approaches in prediction accu-

racy. In 2007, Chuang et.al identified markers for breast

cancer metastasis not as individual genes but as subnet-

works extracted from protein interaction databases [11].

The subnetwork markers were proved to be more repro-

ducible than individual marker genes and achieved higher

accuracy in the classification. In 2010, Li et.al identified

breast cancer prognostic modules extracted from GO-

term-defined gene sets with both high predictability of

metastasis and rational biological senses [12].

In 2009 Martinez N et.al pointed out the importance

about the genome-scale combinatorial regulatory networks

involving microRNAs(miRNAs), transcription factors

(TFs), and genes [13]. They mapped the first genome-scale

TF-miRNA transcription regulatory network in C. elegans

and integrated this network with a computationally pre-

dicted miRNA-TF post-transcriptional network [14]. They

investigated the topology and properties of the network to

understand how TFs and miRNAs interact to regulate

gene expression. After that, significant progress has been

made in studies using gene regulatory network models that

capture physical and regulatory interactions between genes

and their regulators [15]. In 2009, we also published a pre-

liminary research on the microRNA-driven regulatory

mechanisms through the combinatorial regulatory network

analysis [16]. In that work we used miRNA perturbed gene

expression datasets and developed general miRNA-cen-

tered regulatory cascades in human cell lines. Biological

context was not of concern then. In recent years, regula-

tory network analyses were brought into different biologi-

cal contexts to further understand mechanism of complex

diseases such as prostate cancer [9] and schizophrenia [10].

However, so far neither combinatorial regulatory net-

work analysis nor subnetwork/module marker for risk pre-

diction has been applied under the context of HCC. In this

work, to study HCC metastasis, we aim to: 1) investigate

global gene regulation patterns involved in HCC progres-

sion through combinatorial network analysis, 2) identify

key regulatory modules which would not only possess pre-

dictive ability for HCC metastasis, but also provide insight

of metastasis mechanisms. We selected a set of parallel

mRNA and miRNA profiles of HCC patient cohort from a

region of endemic HBV infection, and patients were

labeled either without or with venous metastasis. The

workflow design is illustrated in Figure 1.

As a result, we constructed and compared the TF-

miRNA-gene regulatory network in HCC without or with

venous metastasis, and thus revealed some molecular

characteristics of HCC metastasis. The credibility of the

resultant network was estimated by databases and litera-

tures. We identified key regulatory modules that are physi-

cally connective and biologically cohesive. The prediction

performance for metastasis with our classifying modules

was evaluated, which was significantly better than the

counterpart gene-list classifiers using leave-one-out cross-

validation on the same patient cohort. Some novel key

miRNA regulators in HCC metastasis and their mechan-

isms were implied.

Results
Overview of network statistics and validation of the non-

metastatic and metastatic HCC networks

We obtained two HCC-related networks corresponding

to without- or with- metastasis status. The types of nodes

included TF, miRNA, and non-TF-gene; the types of

edges included TF-TF, TF-miRNA, TF-gene, miRNA-TF,

miRNA-gene. The statistics about nodes and edges are

shown in Table 1 in which the regulators included all the

nominal TFs or miRNAs in the network, with targets or

not. From a global view, the metastatic network was lar-

ger and more complex as there are more nodes and

edges. We could also see that overall the amount of TFs

as nodes and TF-involved edges are both larger than that

of miRNAs, no matter in the non-metastatic or meta-

static network, which substantiate the critical role of the

TF in gene regulation.

To verify whether our networks are correlated to HCC,

we performed one-sided Fisher’s exact test respectively

on the genes from the two networks and the collected

HCC-related genes and HCC-metastasis-related genes

resorted from a series of a priori databases and litera-

tures. It turned out that genes from the non-metastatic

network were significantly overlapped with HCC-related

genes (p = 8.35e-8) but not to HCC-metastasis-related

genes (p = 0.094), and that genes from the metastatic net-

work were not only significantly overlapped with HCC-

related genes (p = 3.81e-9) but also with HCC-metasta-

sis-related genes (p = 0.031). Such results gave us confi-

dence that our constructed networks reasonably lie in the

context of HCC and HCC metastasis.

Comparison of global regulatory patterns between non-

metastatic and metastatic HCC networks

In order to explain the difference of the two networks,

we categorized all the nodes and edges into three
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groups: a) NM-specific nodes or edges that appeared in

the non-metastatic network only, b) common nodes or

edges that existed in both non-metastatic and metastatic

networks, and c) M-specific nodes or edges in metastatic

network only. The percentage of each type of nodes and

edges in different groups are shown in Figure 2A, B.

MiRNAs as nodes appear most in the M-specific group

compared with TFs and non-TF genes which appear

nearly equally in different groups. MiRNA-involved

edges, including TF-miRNA, miRNA-TF, miRNA-gene,

also count for an overwhelming proportion in the M-

specific group. When considering the increased rate of

average number of targets of a regulator in the meta-

static network versus the non-metastatic(Figure 2C,

Figure 1 Schematic overview of constructing combinatorial networks and analyzing differential regulatory modules. (A). Construction of

combinatorial networks. (B). Analyses based on constructed networks.

Table 1 Overall statistics about the nodes and edges of

the HCC non-metastatic and metastatic networks

Non-metastatic Metastatic

#Nodes 1225 1755

#TF 135 176

#miRNA 20 63

#gene 1070 1516

#Edges 1510 2104

#TF-TF 111 124

#TF-miRNA 2 5

#TF-gene 1350 1761

#miRNA-TF 4 21

#miRNA-gene 43 193
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Additional File 3), on average a TF regulates more miR-

NAs but less TFs, and a miRNA regulates both more

TFs and genes. These discoveries suggest that miRNAs

might participate more actively in tumors with metasta-

sis, which supports the important role of miRNAs in

tumor progression [17].

Identification of key regulatory modules predictive of

HCC metastasis

The basic standards on the defining of our key regulatory

modules from the combinatorial networks are as follows:

i) the selected module should possess clear biological

structure to decipher its regulatory pattern. ii) the selected

module should contain nodes and edges discriminative of

the metastasis status. With such standards, we obtained 71

ranked differential regulatory modules from the two net-

works in total, each including one specific regulator and

all of its first-layer targets, of which 26 were from the non-

metastatic network(NM modules) and 45 from the meta-

static network(M modules). Based on these differential

regulatory modules a series of classification analyses were

performed to further identify predictive modules.

Firstly each single module was tested for classification

efficiency. Each of the top 20 modules (involving 5 NM-

and 15 M- modules) from the ranked differential list was

sequentially taken as the single-module classifier and

tested in the recursive partitioning classification model

[18]. The performance of these single-modules was evalu-

ated by leave-one out cross validation (LOOCV), the best

of which achieved accuracy (ACC) of about 82%, and

Figure 2 Comparison of global regulatory patterns between the HCC non-metastatic and metastatic networks. (A)(B). Comparison of

node- and edge- distributions between the HCC metastatic and non-metastatic networks. Nodes or edges were divided into three categories:

only in non-metastatic network(NM-specific), only in metastatic network(M-specific), and common in both networks. (C). Increased rate of

average number of targets of a regulator in the metastatic network versus the non-metastatic. For each TF- or miRNA- relations as a whole,

average number of targets was calculated in each network, and then the increased rate of the average number of targets in the metastatic

network versus the non-metastatic one was represented in barplot. The color of the bar represents the type of targets, TF in green, miRNA in

red, and gene in blue.
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Matthew Correlation coefficient (MCC)of 64%. And there

was no significant difference between the performance of

modules from the non-metastatic network and the meta-

static one(Additional File 3).

Then cumulative modules were examined for their pre-

dictive ability of metastasis status. The classification proce-

dure was repeated by adding one more candidate module

at a time from the top down the previously prepared

ranked list. Our results showed that when the top 17 mod-

ules were chosen as cumulative-module classifier, the

LOOCV accuracy overrode 90% and MCC overrode 80%

(Figure 3A, Additional File 3), which was an explicitly

great improvement than the single-module classifiers.

From then on when more modules were added to the clas-

sifier, more genes were brought into, while the perfor-

mance did not improve significantly. So these 17 modules

were considered as the key regulatory modules predictive

of HCC metastasis in our work, which altogether involved

139 unique genes and miRNAs in 5 NM and 12 M mod-

ules. The full list of these modules is displayed in Table 2.

Comparison of predictive ability of the cumulative

modules to gene-list signatures

Some previous reports demonstrated the advantage of

subnetwork classification over single gene-lists, probably

because of functional relevance in the classifier [11]. In

order to check whether our key regulatory modules pos-

sess such advantage, we performed gene-list-based classifi-

cation procedure in a counterpart way to our module-

based classification. Signature genes were the selected

differentially expressed genes in HCC metastatic vs. non-

metastatic samples, with the Student t-test Benjamini-

Hochberg adjusted p value < 0.001, and further ranked by

the method of minimum redundancy and maximum rele-

vance(MRMR) [19](Additional File 1), which resulted in a

list of 349 ranked candidate genes. Same number of genes

as in the cumulative-module classifier were picked with

priority from the ranked gene list to compose the single-

module classifier or perform metastasis classification and

the performance was evaluated by LOOCV. Our results

showed, there existed no significant difference of ACC or

MCC between the top 20 single-module-classifiers and

counterpart gene-list-classifiers (two sided t test p value >

0.5) (Additional File 3). However, when combining mod-

ules (even just two) the cumulative-module classifier

achieved consistently better performance than the classify-

ing models of corresponding number of signature genes

(Additional Figure 2, Additional File 3).

The functional regulatory landscape of the key

regulatory modules for HCC metastasis

According to the approach of identifying key regulatory

modules predictive of metastasis sub-statuses, these mod-

ules possess regulatory patterns which were disturbed in

tumors with metastasis(either disappeared or appeared).

To investigate the disturbed pathways of these NM and M

modules, we conducted enrichment analysis on genes

from each of the key regulatory modules with all non-

metabolic KEGG resource containing gene regulatory and

signaling pathways. It turned out that only 6 modules

(headed by 6 regulators) out of the 17 were significantly

enriched in 28 non-metabolic pathways (Table 3). NM key

modules(FOXO3_NM, TP53_NM) were enriched mostly

in various cancer pathways and several cancer related pro-

cesses such as cell cycle and apoptosis; M key modules

(hsa_miR_16_M, has_let_7e_M, has_miR_30a_M,

Figure 3 Performance of the 17-module classifier. (A). Classification performance of accumulated modules. The x axis represents the number

of “genes” involved in the modules, including TFs, miRNAs, or genes, and the y axis represents the value of prediction accuracy(ACC) and

Matthew correlation coefficient(MCC). Performance of classifiers whose number of “genes” within 300 are showed. One dot on a line represents

addition of one more module. When the number of modules accumulated to 17, ACC overrides 90% and MCC overrides 80%. (B). Survival

difference of the predicted non-metastatic and metastatic groups by the 17-module classifier. Kaplan-Meier estimation was calculated to plot the

survival curve. Log-rank test was used to compare two survival distributions and generate the p value.
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STAT1_M) were mostly enriched in signaling pathways

related to tumor progression. In order to illustrate a full

functional regulatory landscape in the context of HCC

metastasis, we merged the topology structure of the 17-

module classifier and the enriched 28 non-metabolic

KEGG pathways (Figure 4A). The graph structure of

KEGG pathways embodied by gene(protein)-gene(protein)

interactions was retrieved by the R/Bioconductor package

KEGGgraph. In this way, individual key regulators and its

module can be zoomed in to see in detail the regulatory

pattern transition between non-metastatic status to meta-

static status.

Key miRNA regulators from the functional landscape of

HCC metastasis

Out of 17 key classifying modules predictive of metastasis,

six were enriched in KEGG non-metabolic pathways:

FOXO3_NM, TP53_NM, STAT1_M, hsa_miR_16_M,

has_let_7e_M, has_miR_30a_M. Based on the hypothesis

that miRNAs might actively participate in the tumor pro-

gression and metastasis process and act as key roles, we

further focused on the regulatory patterns of the three

modules headed by miRNAs, which were zoomed in from

the regulatory landscape constructed above.

MiR-30a. The module led by miR-30a in the metastatic

network shows inextricable links to various cancer-related

pathways and some other important regulators (Figure 4B).

EP300 and CREBBP, regulated by way of miR-30a and

CREB1, are highly related transcriptional co-activators

possessing histone acetyltransferase activity and were

known to be involved in the survival and invasion pathways

of prostate cancer [19]. Functions of TP53 and STAT1

might be modulated through acetylation by CREBBP/

EP300. Meanwhile, NEDD4, another target of miR-30a, by

further targeting EGFR, might interfere with key cellular

signaling pathways. According to a previous report, miR-

30a was reported to inhibit epithelial-to-mesenchymal

transition in non-small cell lung cancer [20]. The exact

role miR-30a might play in HCC metastasis requires more

exploration.

MiR-16. MiR-16 targets human nuclear co-repressor 2

(NCOR2) in the metastatic network. NCOR2 is a tran-

scriptional co-repressor linked to Notch (Figure 4C).

According to previous reports, Notch signaling cascade

was regarded as anti-proliferative rather than oncogenic in

hepatocellular carcinoma [21,22], so if miR-16 repressed

Notch it might result in more aggressive HCC that would

lead to metastasis.

Let-7e and miR-204. In tumor with later metastasis, let-

7e targets nerve growth factor (NGF), whose deprivation

was supposed to induce apoptosis [23]. Upstream let-7e is

ATF2 and miR-204 (Figure 4D). Because we only per-

formed the first-step targets enrichment in KEGG path-

ways, miR-204 was not among the six key regulators

whose targets showed pathway enrichment, yet it was one

of the heading regulators of 17 key regulatory modules.

Besides, referring to the topology of our HCC metastatic

network, miR-204 is a bottleneck with the 7th highest

Table 2 Full list of 17 regulatory modules predictive of HCC metastasis.

Module name Regulator Targets

hsa_miR_326_M hsa-miR-326 ARHGDIA, CEP250, MYO6, TYR, PWP2, RCBTB2, POLR3F

hsa_miR_323_3p_M hsa-miR-323-3p BCLAF1, SUMO1, TMBIM6, FAM168B

hsa_miR_16_M hsa-miR-16 NFATC3, ETNK1, BMX, NCOR2, POLR3F

hsa_let_7e_M hsa-let-7e CLP1, NGF

FOXO3_M FOXO3 MICAL1, SAMD8, FUBP3, ATXN10, ADAM11, RAB5C, MRPS24, DPAGT1, GPS1, SNRPC, SUMO1, TWF1, SAR1A,
PICALM, TXNDC5, HEXIM2, TRIP12, ZDHHC15, SEMA4G, EFHD2

hsa_miR_22_M hsa-miR-22 SLC6A1, SLC35A4

hsa_miR_326_NM hsa-miR-326 MTERFD2, ARHGDIA, PCSK4, CEP250, PTRF, MYO6, ST6GALNAC6

hsa_miR_204_M hsa-miR-204 CHD5, ATF2, POU2F2, TOMM70A, WDR26, SPOP, FAM168B, PLAA, WASF2, SRXN1

POU2F2_M POU2F2 SPIB, C20ORF43, SUCNR1, PTRF

NFYB_M NFYB NTN4, CACNG5, C12ORF10, TUBA1B, CALB2, RGMA, APOC3, PGD, NDUFV1, CHDH, FBXO24, TCTN2

hsa_miR_30a_M hsa-miR-30a CREB1, PAWR, NEDD4, RRAS2, VPS26B, TBC1D2B, HTR4, ACAP2, ZFAND5, SPAG9, MICAL1, ATG5

hsa_miR_7_M hsa-miR-7 PDCD2, POLR2E, NF2, FAM168B, MEGF9

CUX1_NM CUX1 RUNX1, IFITM2, MARCH5, GPR21, RPL35, TNFRSF10B, CFP, SDHAF2, NUP62CL, YARS, NAGK, GRAMD1A,
PLXNB2, BCL2L13, METTL11A, MARK3, ITM2A, HIP1R, BSG

FOXO3_NM FOXO3 MAFF, LEPROT, MICAL1, PSME1, SAMD8, FUBP3, ATXN10

STAT1_NM STAT1 MYBL1, MAFF, POLA1, EXOG, PGM1, ZDHHC4, WDR24, AMFR, RAD52, TMEM208, MRPL34, GCHFR,
ANKRD30A, TRO, LDHAL6A, SERPING1, RNASE4, ARPC5L, SRSF3, CD248

TP53_NM TP53 ANKRD52, SLC25A20, PGM1, C1QTNF4, PKDCC

STAT1_M STAT1 WDR24, RAD52, GCHFR

NM indicates the existence of the module in non-metastatic HCC gene regulatory network, M indicates the existence of the module in metastatic HCC gene

regulatory network.
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betweenness, and two of miR-204-involved edges rank

into the top 10 list of edge betweenness(Additional File 3).

Therefore we may hypothesize that the important role of

let-7e regulation was driven by its upstream regulator

miR-204. MiR-204 represses the expression of its target

ATF2, blocking its activation to downstream target let-7e.

The lack of let-7e may release NGF deprivation and there-

fore inhibit apoptosis, leading to tumor aggression and

HCC metastasis. Indeed miR-204 was previously reported

to regulate mesenchymal progenitor cell differentiation

[24]and to be related to head and neck tumor metastasis

[25]. Therefore we list both let-7e and its upstream miR-

204 to be key regulatory miRNAs that might relate to

HCC metastasis.

Prognosis prediction by the HCC metastasis classifying

modules

With the 17 key regulatory modules, all the HCC patients

could be classified into two groups: without or with

venous metastasis. To investigate the survival outcomes of

these two groups, Kaplan-Meier analysis was performed,

and the survival difference between the two groups was

evaluated by log-rank test (p = 0.01) (Figure 3B). It turned

out that the predicted NM group correlated significantly

with a longer overall survival, whereas the M group corre-

lated significantly with a shorter one. The difference of

clinical characteristics between predicted groups of venous

metastasis were also investigated (Table 4). BCLC stage,

AFP level, TNM stage, each showed significant difference

between these two groups. As we know, AFP is a common

critical index in HCC progression, and BCLC and TNM

stages reflect the progression stage of hepatocellular carci-

noma. These results suggested that the predicted HCC

subgroups of venous metastasis might represent distinct

prognosis and clinical stages, which on the other hand

subordinate the rational performance of the identified 17

key regulatory modules.

Next we scanned the association of each module to clin-

ical features using GlobalAncova (Figure 5). Among the

clinical parameters, AFP related with most modules, fol-

lowed by another clinical parameter, ALT, and then BCLC

stage, TNM stage and Child-Pugh class. To be noted, the

three modules led by the key regulatory miRNAs identified

above (miR-16, miR-30a, miR-204/let-7e) were all closely

associated with AFP and ALT. Moreover, hsa_miR_16_M

was simultaneously related with the most number of clini-

cal characteristics (AFP, ALT, and 5 cancer staging

indexes), which further suggested that miR-16 and its tar-

gets might correlate with invasive tumor cell behavior.

Discussion
By utilizing both sequence information and parallel

miRNA and mRNA expression data on the same cohort of

HBV related HCC patients, we constructed gene regulatory

networks combining TF and miRNA regulation and speci-

fic for HCC without or with metastasis. Based on our com-

binatorial differential networks, global properties of the

gene regulatory patterns in different metastasis subgroups

were analyzed. TFs accounted for the main part of regula-

tion, miRNAs for the minor part of regulation; miRNAs

played a more active role in the metastatic network. Then

differential regulatory modules discriminative of the meta-

static status were extracted, and module-based classifier for

metastasis prediction was constructed. Module-based clas-

sifier achieved better classification performance than the

differential gene list-based classifiers. Furthermore, a few

Table 3 Enriched KEGG non-metabolic pathways of the

17 key regulatory modules.

Module name KEGG pathway P value

FOXO3_NM 03050~Proteasome 0.0342

05213~Endometrial cancer 0.0213

05223~Non-small cell lung cancer 0.0221

TP53_NM 04110~Cell cycle 0.039

04115~p53 signaling pathway 0.0212

04210~Apoptosis 0.027

04310~Wnt signaling pathway 0.0459

04722~Neurotrophin signaling pathway 0.0384

05014~Amyotrophic lateral sclerosis (ALS) 0.0163

05210~Colorectal cancer 0.0191

05212~Pancreatic cancer 0.0215

05213~Endometrial cancer 0.016

05214~Glioma 0.02

05215~Prostate cancer 0.0273

05216~Thyroid cancer 0.009

05217~Basal cell carcinoma 0.0169

05218~Melanoma 0.0218

05219~Bladder cancer 0.013

05220~Chronic myeloid leukemia 0.0224

05222~Small cell lung cancer 0.0258

05223~Non-small cell lung cancer 0.0166

hsa_miR_16_M 04330~Notch signaling pathway 0.024

04370~VEGF signaling pathway 0.0386

04662~B cell receptor signaling pathway 0.0381

hsa_let_7e_M 04210~Apoptosis 0.0181

04722~Neurotrophin signaling pathway 0.0258

hsa_miR_30a_M 04140~Regulation of autophagy 0.0425

04144~Endocytosis 0.0264

STAT1_M 03440~Homologous recombination 0.0086

04062~Chemokine signaling pathway 0.0385

04620~Toll-like receptor signaling pathway 0.0209

04630~Jak-STAT signaling pathway 0.0317

05212~Pancreatic cancer 0.0144

One-sided Fisher’s Exact Test was used to test whether the genes in a module

were significantly enriched in any KEGG non-metabolic pathways. Six modules

(FOXO3_NM, TP53_NM, hsa_miR_16_M, hsa_miR_30a_M, hsa_let_7e_M,

STAT1_M) of which the resultant p values less than 0.05 are included in this

table.
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novel potential metastasis-related key miRNA regulators

were proposed, such as miR-16, miR-30a, and let-7e/miR-

204. Biological implications and differential regulatory pat-

terns of key miRNAs were examined through functional

regulatory landscape. Survival analysis and clinical charac-

teristics association were conducted to support the impor-

tance of the classifying modules and the key regulators.

It is generally conceived that in transcriptional regula-

tion TFs play the controlling roles and miRNAs make aux-

iliary contributions [13]. In our work, we concordantly got

that TFs made up the main part of nodes and edges in

HCC networks without or with metastasis, and miRNAs

participated in fewer regulations than TFs. However, we

also found that miRNAs showed an increased amount of

regulations in the metastatic network. Judged by the basic

topological properties such as degree, betweenness, and

edge betweenness (Additional File 3), most hubs and bot-

tlenecks in both networks were TFs, but one miRNA, hsa-

miR-204, was listed as the 7th bottleneck in the metastasis

network according to its betweenness. All the top 10

Figure 4 Differential regulatory network and key miRNA regulators of HCC metastasis. (A). Differential regulatory network of the 17

classifying modules and their enriched pathways. The green edges represent edges whose CLR weights are larger in network of non-metastasis,

while the orange ones represent edges whose weights are larger in network of metastasis. The color and shape of the nodes represent the type

of “genes": TF in green rectangle, miRNA in red triangle, and gene in blue eclipse. Six regulators of which modules were enriched in KEGG non-

metabolic pathways are highlighted in nodes with larger size and yellow border (hsa-miR-16, hsa-miR-30a, hsa-let-7e, STAT1, TP53, FOXO3). The

graph structure of KEGG pathways embodied by gene(protein)-gene(protein) interactions was retrieved by the R package KEGGgraph. (B).

Differential regulatory network of miR-30a. (C). Differential regulatory network of miR-16. (D). Differential regulatory network of let-7e/miR-204.
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edges with the largest edge betweenness involved only TFs

in the non-metastasis network, but 4 out of 10 top edge-

betweenness edges in the metastasis network involved

miRNAs. Besides, TFs in the metastatic network tend to

regulate genes by way of miRNAs (Figure 2C). It might be

implied from our results that the process of tumor pro-

gression and metastasis is complicated and delicate there-

fore it takes up more auxiliary regulatory functions

performed by miRNAs, in order to facilitate broader regu-

lations by TFs.

The 17 key classifying modules identified in this work

were not merely sub-networks, but ‘regulatory’ modules,

each defined as a regulator and its first layer target genes.

All the classifying regulatory modules possessed distinct

regulatory patterns in either non-metastatic or metastatic

subgroup. Since Chuang et.al proposed a pivot method for

network-based classification in 2007 [11], various alterna-

tive methods based on network modules have been

reported [26,27]. The 17 key regulatory modules in this

work could nicely classify patients into different metastasis

sub-groups. Six modules’ regulatory targets could be

enriched in KEGG non-metabolic pathways, allowing an

even clearer elucidation of their functional regulation pat-

terns. It is conceivable that such differential regulatory

modules discriminative of metastasis sub-groups might

better imply the mechanisms of tumor progression and

invasion. The regulatory landscape we drew for these

modules could be zoomed in to check in detail the possi-

ble roles of each interested module or regulator played in

HCC metastasis. We exemplified such analyses by looking

at three microRNA modules whose target gene members

were enriched in KEGG pathways: miR-30a, miR-16 and

let-7e modules. Let-7e module is connected to miR-204,

which is another key regulator in metastatic network.

Metastasis is known to be a sign of higher grade of

malignance and undermine survival time. The fact that

the predicted metastatic group had a significantly worse

prognosis in survival analysis justified the classification

performance of the selected 17 modules. The predicted

metastatic group patients also showed worse BCLC sta-

ging, TNM staging, and higher alpha-fetoprotein(AFP)

values compared to non-metastatic group. Increased AFP

value is a long-established factor of HCC progression.

Furthermore, modules headed by the three key miRNAs

were associated with both AFP and alanine aminotrans-

ferase(ALT), implying that ALT value might also be clo-

sely related to venous metastasis in HCC. Module

hsa_miR_16_M was simultaneously significantly asso-

ciated with five cancer staging systems, which further

supported the key role of miR-16 in HCC metastasis.

Compared with our preliminary work in 2009 [16],

improvements were achieved not only in biological inter-

pretation but also in network inference algorithm. The lin-

ear regression modeling approach we used in 2009 had a

shortcoming in that it attempted to determine the regula-

tion structure for each target gene independently, while it

is well known that genes that share the same expression

pattern are likely to be involved in the same regulatory

process, and therefore share the same (or at least a similar)

set of regulators. In this work, we used mutual information

metric that detects statistical dependence between two

variables with no assumption of linearity of the depen-

dence. Among the various gene network inference algo-

rithms based on mutual information developed by

different groups such as RN [28], ARACNE [29], CLR

[30], MRNET [31], CLR resulted in the highest true posi-

tive rate compared with the others according to a previous

report [32]. Therefore CLR algorithm was selected for

Table 4 Comparison of clinical characteristics between predicted subgroups of venous metastasis

Predicted NM Predicted M P value

Patient cohort (n = 198) n = 137 n = 61

Gender(male/female) 121/16 53/8 0.9601

Age(yr, mean ± SD) 49.99 ± 11.22 50.15 ± 9.54 0.8235

Number of nodule(1/2/3/4) 117/18/2 55/4/1/1 0.2603

Tumor capsule(complete/none) 53/84 24/37 0.9441

Cirrhosis(no/yes) 8/129 5/56 0.7584

AFP(log2-transformed, mean ± SD) 6.79 ± 3.96 8.08 ± 4.56 0.0395

TB(μmol/L, median(25-75%)) 15.4(12.1-20.2) 17.4(11.4-22.1) 0.2954

ALT(μ/L, median(25-75%)) 43(31-61) 49(32-66) 0.3929

OKUDA stage(0/1) 119/18 49/12 0.3325

CLIP stage(0/1/2/3/4) 64/49/22/1/1 28/15/12/4/2 0.0509

BCLC stage(0/A/B/C) 15/103/14/5 7/35/7/12 0.0022

TNM stage(I/II/III) 65/57/15 23/23/15 0.0441

Child-Pugh class(A/B) 132/5 57/4 0.5910

P value: Comparison between clinic pathological indicators of non-metastatic and metastatic groups was conducted using chi-square test for discrete variables

and Wilcoxon test for continuous variables.
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network inference for our work, as we required all the

edges in our network to be also sequence-matched besides

expression-correlated, reducing the false positive rate of

expression-inferred edges.

The workflow in our study is not restricted in this

study alone. According to the schematic illustration

(Figure 1), researchers may conduct similar analysis

given the data (depicted as rectangle) available for the

context. In practical terms, if parallel miRNA and

mRNA expression profiles are available on the same

cohort of patients with known disease phenotypes, the

workflow in this study can be extended to other biome-

dical problem or cancer context by integrating data

from public databases or literatures. The major pro-

grams in the workflow were either self-written scripts

with little programming complexity or open-source R/

Bioconductor packages which were confirmed to be use-

ful and efficient in this study. As to compute runtime

and complexity, the most time-consuming step in our

workflow was in the network inference, because the

CLR algorithm has a complexity in O(n2p2) since all

pairwise interactions are considered [33]. It computes

Figure 5 Association network of key regulatory modules to clinical pathological characteristics. The association between each key regulatory

module and clinical pathologic characteristics was examined using an R/Bioconductor package GlobalAncova. Yellow diamonds represent clinical

characteristics and purple octagons represent regulatory modules. An edge connects a module and a clinical parameter if the p value resulted from the

GlobalAncova test is significant (p < 0.05). Module hsa_let_7e_M did not have association with any clinical features, so it is not shown in the figure.
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the mutual information(MI) matrix first, transforms the

MI matrix into scores that take into account the empiri-

cal distribution of the MI values, and then applies a

threshold. When the expression values of genes are trea-

ted as continuous random variables and the MI is esti-

mated by kernel methods, computing the pairwise MI

can be computationally expensive. In our study, dimen-

sion reduction was conducted(filtering of untrustworthy

pairs) before the CLR network inference so as to cut

down the computational complexity and complete the

computation within the limits of system memory.

In summary, in this work we demonstrated an integra-

tive approach to conduct differential combinatorial regu-

latory network analysis in the specific context of HCC

metastasis. Through this systematic analysis, we proposed

changes of global regulatory patterns in HCC progres-

sion, and identified some key miRNA regulators contrib-

uted to HCC metastasis whose regulatory patterns and

biological implication were also deduced. Before this,

although multi-perspective data have been integrated

into HCC-related analyses [6-8], no peer works providing

global landscape of combinatorial gene regulatory net-

work or identifying module classifiers for risk prediction

has ever been reported in the specific context of venous

metastasis of HBV-HCC. Our results proposed possible

transcriptional regulatory patterns underlying the differ-

ent metastatic subgroups of HCC. Meanwhile, miR-30a

and miR-16, let-7e/miR-204, which had not been taken

as granted to be related with metastasis, especially in

HCC, stood out from our results, which may merit

further experimental validation. Our results might facili-

tate the understanding of the molecular regulatory

mechanisms and role of miRNAs in HCC metastasis. The

workflow in this study can also be applied in similar con-

text of cancer research or extended to other topics.

Conclusions
In this work we demonstrated an integrative approach to

conduct differential combinatorial regulatory network

analysis in the specific context of HCC metastasis.

Through this systematic analysis, we proposed changes of

global regulatory patterns in HCC progression, and iden-

tified some key miRNA regulators contributed to HCC

metastasis whose regulatory patterns and biological

implication were also deduced. Our results might facili-

tate the understanding of the molecular regulatory

mechanisms and role of miRNAs in HCC metastasis. The

workflow in this study can also be applied in similar con-

text of cancer research or extended to other topics.

Methods
Datasets and patients

mRNA and miRNA expression microarray data on the

same cohort of HBV-infected HCC patients who

underwent radical resection in Zhongshan Hospital were

used for integration in this study. Both datasets (GSE5975

and GSE6857) were downloaded from the Gene Expres-

sion Omnibus (GEO) database http://www.ncbi.nlm.nih.

gov/geo/. The mRNA signal intensities were retrieved

from GSE5975, which was generated using the NCI/ATC

Hs-OperonV2 array. The miRNA expression levels were

obtained from GSE6857, which was generated using OSU-

CCC MicroRNA Microarray Version 2.0. Status of venous

metastasis of patients were collected from GSE6857.

Other clinical pathologic characteristics and survival time

of patients were provided by Zhongshan Hospital.

Data preprocessing for combined expression

Microarray data preprocessing was conducted on each

dataset separately, and then both mRNA profiles and

miRNA profiles were combined to prepare the combined

expression profiles among the 198 patients, 150 non-

metastatic and 48 metastatic. After quantile normaliza-

tion across arrays on the combined expression profiles,

irrelevant genes and mature-miRs within the 5% smallest

standard deviations of tumor/nontumor profiles between

metastasis and non-metastasis samples were filtered.

Finally, the combined mRNA and miRNA expression

profiles of 198 patients included 12434 genes and 132

mature-miRs altogether. More detailed information for

data processing is available in Additional File 1.

Candidate sequence-matched relationships between TFs,

miRNAs, and genes

In the following data selection, a gene list of 1318 pre-

viously defined TFs [34] from a previous report were

regarded as TFs, while others as non-TF genes.

MiRNA-gene. Candidate miRNA-target relationships

were downloaded from miRBase Target Version 5.0, Tar-

getScanHuman Version 5.1, and miRDB Version 3.0, each

was based on the predicting algorithm miRanda [35],

TargetScan [36], and miRTarget2 [37], respectively. The

predicted miRNA-gene relationships with accordance in at

least two algorithms were retained in our study.

TF-gene. A set of predicted TF-gene relationships were

compiled with methods mainly described in our previous

work [16], where TF-TFBS(TF binding sites) relationships

and TFBS-gene relationships were first calculated, based

on which TF-gene relationships were linked. The differ-

ence between the method in this work and our previous

work was that the promoter region of each gene in our

work was defined as 1k bp up- and down- stream (instead

of 1 kb upstream to 0.5 kb downstream of the transcription

start site (TSS) according to the ENCODE project [38].

TF-miRNA. TFBSs mapped to the regions upstream of

miRNA primary transcript TSSs were downloaded from

miRGen 2.0 [39]. Precursor-miRs were mapped to

mature-miRs according to miRBase database. Then the
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candidate TF-miRNA relationships were generated

based on the above TF-TFBS relationships and TFBS-

miRNA relationships.

The statistics of the final set of 327711 regulatory rela-

tionships based on sequence-matched in human between

TFs, miRNAs, and genes were displayed in Additional

File 3.

Fisher Exact test to compare constructed networks with

HCC-related and HCC-metastasis-related genes

HCC-related genes were collected from HCCdb [40],

EHCO-II [41], and HCCNet [42]. The union set of 5088

genes from these three databases was taken as the HCC-

related genes. HCC-metastasis-related genes were col-

lected using the text-mining tool, SciMiner [43]. (“carci-

noma, hepatocellular”[MeSH Terms] OR hepatocellular

carcinoma[Text Word]) AND (“liver neoplasms”[MeSH

Terms] OR liver cancer[Text Word]) AND ("neoplasm

metastasis"[MeSH Terms] OR metastasis[Text Word])

AND metastatic[Text Word]) was set as the query string

for full text mining. The resultant 322 genes each cited by

at least 2 papers were regarded as the HCC-metastasis-

related genes in this study. All the collected HCC-related

genes and HCC-metastasis-related genes are listed in the

Additional File 4.

One sided Fisher’s Exact Test was performed to examine

whether genes in our constructed HCC non-metastatic

and metastatic networks were significantly overlapped

with the collected HCC- or HCC-metastasis- related genes

from databases and literatures. All the 12434 genes in the

combined expression profiles were used as the set of uni-

verse genes in the test.

Network construction

The combined expression profile was divided into two

sub-profiles by sample labels, namely profile of non-

metastasis and profile of metastasis, so as to construct

gene regulatory network of HCC without and with

metastasis respectively.

We assumed that sequence-matched pairs were more

possible to be real interaction pairs than sequence-

unmatched pairs, and that real interaction pairs were

more possible to be correlated in expression than random

pairs. In order to construct the network as credible as pos-

sible, we filtered out untrustworthy pairs before expres-

sion-based network inference. The candidate 327711

sequence-matched relationships genome-wide were first

reduced to 78310 non-self-looping pairs whose both nodes

were genes and miRNAs with expression in the combined

profiles. Then the absolute spearman correlation of the

expression was calculated between each of these 78310

sequence-matched pairs, and the mean absolute spearman

correlations of the expression were also calculated

between randomly sampled 78310 pairs from the

combined expression profile for 100 random times. Pairs

with the absolute spearman correlation higher than 95% of

random pairs were retained as candidate pairs, which were

processed to infer the transcriptional interactions.

Based on the two sub-profiles respectively, based on all

nodes from the above remaining pairs, Context Likelihood

of Relatedness (CLR) [30] was then applied as the network

inference algorithm to identify transcriptional interactions

using an R/Bioconductor package minet with default para-

meters. The CLR algorithm returned a non-negative

matrix which was the weighted adjacency matrix of the

network whose values represented the edge weights of the

network. We set the cutoff for edge weights as 1, and

edges whose edge weight below 1 were thus removed,

since edges with little weight were considered as marginal

relationships and might be noise.

CLR uses mutual information as a metric of similarity

between the expression profiles of two genes. Formally,

the mutual information for two discrete random vari-

ables X and Y is defined as:

I(X; Y) =
∑

i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
(1)

where p(xi, yj) is the joint probability distribution func-

tion of X and Y, and p(xi) and p(yj) are the marginal prob-

ability distribution functions of X and Y respectively. In

the case of continuous random variables, the summations

over X and Y are replaced by integrals. For genes, X and Y

represent a transcription factor and its potential target

gene, and xi and yi represent particular expression levels

(Further description in Additional File 1).

Classification of metastasis based on gene regulatory

modules

The composition of our ‘modules’ was defined as one spe-

cific regulator and all of its first-layer targets (more than

one), and was named as Regulator_Status. Regulator was

the name of the regulator, i.e. a TF or a miRNA. Status

represented the source network of the module; it could be

from the non-metastatic or metastatic network. All the

modules in our work included targets only one step down

from the regulator such that the regulatory attributes of

each module was explicit to read.

Differential modules were first selected before identify-

ing predictive classifying modules of metastasis sub-sta-

tuses. As to edges, the non-discriminative edges were

excluded from the networks. For all the edges appearing

in any of the two networks, we calculated the absolute

value of the edge weight difference (The edge weights

were directly carried on from the CLR results. The edge

weight of a non-existing edge was regarded as zero.)

between the two sub-statuses. The edges whose absolute

edge weight difference were within the lowest 25%
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among all the edges were regarded as non-discriminative

ones and were filtered out. As to nodes, GlobalAncova

[44] test was performed on each module to measure the

discriminance of nodes in that module between the

metastasis statuses, which was implemented using R/Bio-

conductor package GlobalAncova (Additional File 1). Sig-

nificant differential modules with Benjamini-Hochberg

adjusted p < 0.001 were taken as candidate predictive

modules, which were sorted by their corresponding p

values from smallest to the largest. Finally, these ranked

differential modules were proceeded to classification.

A multivariate algorithm, recursive partitioning, was

chosen as the classification model [45]. It creates a deci-

sion tree that strives to correctly classify members of the

patients based on several dichotomous dependent vari-

ables, which is simple and intuitive (Further description in

Additional File 1). Recursive partitioning has been success-

fully applied in other cancer biology context to identify

multi-gene biomarkers or signatures [46-48]. In this study,

the classification procedure was performed using R/Bio-

conductor package rpart with default setting of para-

meters. The predicted group and the prediction possibility

for each individual were returned at each performance

using this program. For cumulative modules as one classi-

fier (a list of modules), the final predicted label for each

individual was determined as the label with the larger

overall predicted probability by modules in the classifier;

for single-module as one classifier (a list of genes), the

final predicted label for each individual was determined as

the label with the larger predicted probability. Leave-one-

out cross-validation (LOOCV) was used to evaluate the

classification performance.

Clinical association and survival analysis

The survival analysis was performed to compare patient

overall survival. Kaplan-Meier estimation was calculated

to plot the survival curve. Log-rank test was used to com-

pare two survival distributions and generate the p value.

Comparison between clinical pathological indicators was

conducted using chi-square test for discrete variable and

Wilcoxon test for continuous variables. The association

between clinical pathologic characteristics and classifying

modules was examined using GlobalAnova test by R/Bio-

conductor package GlobalAncova (Additional File 1).

Additional material

Additional file 3: Supplementary Tables. Additional Table 1 -

Performance of various classifiers. Additional Table 2 - Statistics about

average number of targets regulated by TFs and miRNAs. Additional

Table 3 - Basic topological properties of the HCC non-metastatic and

metastatic networks. Additional Table 4 - Statistics of the total set of

sequence-matched pairs.

Additional file 1: Supplementary Methods.

Additional file 4: Collection of HCC-related genes and HCC-

metastasis-related genes. Additional Table 5 - HCC-related genes.

Additional Table 6 - HCC-metastasis-related genes.

Additional file 2: Performance comparison between module-based

and gene-list-based classifiers.
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