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Abstract. Zorro is an AES-like lightweight block cipher proposed in
CHES 2013, which only uses 4 S-boxes per round. The designers showed
the resistance of the cipher against various attacks and concluded the
cipher has a large security margin. Recently, Guo et. al [1] have given a
key recovery attack on full-round Zorro by using the internal differential
characteristics. However, the attack only works for 264 out of 2128 keys.
In this paper, the secret key selected randomly from the whole key space
can be recovered much faster than the brute-force attack. We first observe
that the fourth power of the MDS matrix used in Zorro(or AES) equals
to the identity matrix. Moveover, several iterated differential character-
istics and iterated linear trails are found due to the interesting property.
We select three characteristics with the largest probability to give the
key recovery attack on Zorro and a linear trail with the largest correla-
tion to show a linear distinguishing attack with 2105.3 known plaintexts.
The results show that the security of Zorro against linear and differen-
tial cryptanalysis evaluated by designers is insufficient and the security
margin of Zorro is not enough.

Keywords: Zorro, block cipher, differential cryptanalysis, linear distin-
guisher.

1 Introduction

Block ciphers are used as building blocks for many symmetric cryptographic
primitives for encryption, authentication, pseudo-random number generation,
and hash functions. Security of these primitives is evaluated in regard to known
attacks against block ciphers. Among the different types of attacks, the statistical
ones exploit non-uniform behavior of the data extracted from the cipher to distin-
guish the block cipher from random permutations. Differential cryptanalysis[2]
and linear cryptanalysis[3] are the most prominent statistical attacks against
block ciphers.

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir
in order to break the DES block cipher. This statistical cryptanalysis exploits
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the existence of a differential, i.e., a pair (�in,�out) of differences such that
for a given input difference �in, the output difference after encryption equals
�out with a high probability. For a b-bit random permutation, the probability
is about 2−b. The gap of the probability results in a distinguisher between the
cipher and the random permutation, which is often extended to distinguish the
correct key and the wrong keys. In 1993, the iterated differentials are proposed to
analyze DES and s2-DES[4]. Since then, the differential cryptanalysis is always a
hot topic of cryptanalysis[5,6,7]. The problem of estimating the data complexity,
time complexity and success probability of a differential cryptanalysis is far from
being simple. In 2011, [8] presented a general method (Algorithm 1) for finding
an accurate number of samples to reach given error probabilities which can be
applied to the differential cryptanalysis.

Linear cryptanalysis[9,10] is a known-plaintext attack proposed in 1993 by
Matsui to break DES. It exploits the correlation between linear combinations
of input bits and linear combinations of output bits of the block cipher. If the
correlation between input and output equals C, the required amount of known
plaintexts is about C−2 if we want to distinguish the block cipher from the
random permutation with a high success probability.

The large development of low resource devices such as RFID tags and sensor
nodes increases the need to provide security among such devices. The imple-
mentation costs should be taken into account when choosing security algorithms
for resource-limited devices. Symmetric-key algorithms, especially block ciphers,
still play an important role in the security of embedded systems. Recently, a lot
of block ciphers and authenticated encryption ciphers suitable for these environ-
ments have been designed, such as PRESENT[11], KATAN & KTANTAN[12],
PRINT[13], LBlock[14], FIDES[15], Piccolo[16], LED[17] etc.

Zorro[18] is a new lightweight block cipher proposed at CHES 2013. It is an
AES-like block cipher and is designed to improve the side-channel resistance of
AES[19]. The secret key is added to the state only after each 4 rounds as in the
block cipher LED-64. The S-box layer of Zorro only applies four same S-boxes
to the first row per round and the S-box is different from that of AES. Besides,
the MC operation is the same as AES. The designers have evaluated the secu-
rity of the cipher against various methods. For differential/linear cryptanalysis,
authors found a balance between the number of inactive S-boxes and degrees of
freedom for the differential (or linear) paths. Considering the average number
of conditions imposed at each round, designers concluded that 14(or 16) rounds
are the upper bound for building a classical differential(or linear) path. Finally,
a 12-round meet-in-the-middle attack was shown as the best powerful attack on
Zorro in the single key model. Recently, Guo et. al[1] have given a key recovery
attack on full-round Zorro by using the internal differential characteristics, while
it only works for 264 keys of the whole key space.

In this paper, we revaluated the security of Zorro against differential crypt-
analysis and linear cryptanalysis. As mentioned in [1], the main weakness of
Zorro includes defining a new S-box and applying only four S-boxes to the first
row per round. Besides, we observed that the fourth power of the MDS matrix of
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Zorro(or AES) is equal to the identity matrix. Coincidentally, one step of Zorro
consists of four rounds with four MDS matrix transformations. Interestingly,
there exist several iterated differential characteristics with a high probability
and iterated linear trails with a high correlation for one step of Zorro. Further-
more, we can recover the secret key of the full-round Zorro based on a 23-round
differential characteristic with a time complexity of 2106 full-round Zorro encryp-
tions. Interestingly, no matter how many plaintext-ciphertext pairs are given, the
time complexity of filtering the right key is at least 296 full-round encryptions
based on the 23-round distinguisher. In order to clarify the special property of
the structure used in Zorro, another TMTO attack based on a 22-round differ-
ential characteristic is also shown and it only costs about 264 full-round Zorro
encryptions to filter out the right key. Meanwhile, 1/C2 of some linear trails of
full-round Zorro is also lower than the size of the plaintext space 2128. Thus, we
can obtain a full-round linear distinguisher for Zorro with 1/C2 known plain-
texts. All in all, the above results have threatened the theoretical security of the
full-round Zorro.

The remainder of this paper is organized as follows. Section 2 gives a brief
description of Zorro block cipher. Section 3 proposes some iterated differential
characteristics for one step of Zorro and shows two key recovery attacks on full-
round Zorro. Section 4 presents a linear distinguisher of full-round Zorro based
on the theory of correlation matrix. Finally, Section 5 concludes this paper.

2 A Brief Description of Zorro

The block cipher Zorro has 128-bit key and 128-bit state. It iterates 24 rounds
and the 24 rounds are divided into 6 steps of 4 rounds each.

Encryption Algorithm. As in AES-128, the state in Zorro is regarded as 4×4
matrix of bytes, and one round consists of four distinct transformations: SB∗,
AC, SR and MC. SB∗ is the S-box layer where only 4 same S-boxes are applied
to the 4 bytes of the first row in the state matrix. The S-box used in Zorro
is different from the one of AES and the definition of S-box is referred to Ap-
pendix A. Next, AC is the addition of round constants in round i. Specifically,
the four constants (i, i, i, i<<3) are added to the four bytes of the first row. Fi-
nally, the last two transformations, SR and MC, are the AES’s ShiftRows and
MixColumns.

Key Schedule Algorithm. The key schedule algorithm of Zorro is similar to
that of LED. Before the first and after each step, the master key is bitwisely
added to the state and the same addition is done after the last step.

Let us focus on MC(MixColumn) used in Zorro which is a permutation oper-
ation on the state column by column. The matrix multiplication can be shown
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as:

M =

⎛
⎜⎜⎜⎝

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎞
⎟⎟⎟⎠ , M−1 =

⎛
⎜⎜⎜⎝

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

⎞
⎟⎟⎟⎠ .

Interestingly, the following equation is true:

M4 =

⎛
⎜⎜⎜⎝

01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01

⎞
⎟⎟⎟⎠ .

Combined with the fact that only 4 S-boxes are applied to the first row for every
round, iterated differential characteristics and linear trails are found for four
rounds(one step) of Zorro.

3 Differential Cryptanalysis of Full-Round Zorro

Differential cryptanalysis defines characteristics that describe possible evolve-
ments of the differences through the cipher. For non-linear operations (such as
S-boxes), it is possible to predict statistical information on the output differ-
ence given the input difference by generating the differential distribution table
(DDT). If the expected difference for the intermediate data before the last few
rounds is given, it may be possible to deduce the unknown key by a statistical
analysis. The attack is a chosen plaintext attack that is performed in two phases:
In the data collection phase the attacker requests encryption of a large number
of pairs of plaintexts, where the differences of all the plaintext pairs are selected
to have the input difference of the characteristic. In the data analysis phase the
attacker then recovers the key from the collected ciphertexts.

Generally, the total probability of a differential characteristic is the product
of the probabilities of each round assuming that the round functions are inde-
pendent. For Zorro, the secret key is added to the data every four rounds. If we
add one value to the input and one at the output of the step, 4 rounds of Zorro
can be seen as a step that has no constants in the rounds[1]. As a result, the as-
sumption that the step functions are independent is more rational than the one
that round functions are independent for Zorro. In this section, we will present
two key recovery attacks on full-round Zorro. The basic one uses a 23-round
distinguisher to give an attack with a time complexity of 2106 and a memory
complexity of 232. In order to clarify the special structure used in Zorro, another
attack with a key searching time complexity of 264 and a memory complexity of
264 is also described.

3.1 Iterated Differential Characteristic

As mentioned by designers, the most damaging differential patterns are those
that would exclude active bytes affected by non-linear operations. This kind of
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differential characteristic with probability 1 exists for at most two rounds. We
extend one type of the differential pattern to 4 rounds by adding 4 active bytes.
In order to keep the high differential probability for one step, we aim to build
iterated differential trails taking advantage of the fact that M4 = I. In order
to reduce the searching cases and remove the influence of ShiftRow, we set the
original four-byte differences in each row all equal and the first row all zero. The
obtained active model is shown in Figure 1. The big squares represent states,
small squares represent bytes, white bytes are the ones with zero difference, gray
bytes are the ones with a non-zero difference and the letters in gray bytes present
the values of difference. As shown in Figure 1, the probability of the path from
#1 to #7 is always 1 as the S-boxes are all inactive. If the output differences of
all the 4 active S-boxes in the fourth round are equal to the input differences,
then the differences of #1 are equal to those of #9 because M4 = I.
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Fig. 1. Iterated differential characteristic of four rounds Zorro

Firstly, we find that 255 different values of (a, b) make the path from #1 to
#7 with probability 1. After searching the differential distribution table (DDT)
of the S-box used in Zorro, 101 original differences make the path from #7
to #9 possible. The probability of the differential characteristic from #1 to
#9(four rounds) is determined by the value of (h, h) in DDT. Specifically, if
the value of (h, h) in DDT of S-box is m, then there are m different solutions
with the equation S(x)

⊕
S(x

⊕
h) = h. Thus, the probability of the differential

characteristic p shown in Figure 1 is (m/256)4. Obviously, the largest m means
the highest probability of the characteristic. We find that the maximum m is
equal to 6 and 3 options of hmake the probability of the differential characteristic
be (6/256)4 ≈ 2−21.66. The corresponding values of differences expressed in
decimal are shown in Table 1. Furthermore, if the state of #1 is replaced by
#3,#5 or #7, we can obtain another three iterated differential characteristics
with the same probability.

3.2 Basic Key Recovery Attack on Full-Round Zorro

In order to recover the secret key of Zorro, three iterated differential characteris-
tics of 23-round Zorro are used to distinguish the right key and the wrong keys.
With the assumption that the step functions of Zorro are independent, we can
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Table 1. Three kinds of iterated differential characteristics on one step

NO a b c d e f g h i j k

1 22 58 22 88 98 166 138 123 221 35 169

2 107 189 107 183 10 30 200 234 244 93 149

3 88 232 88 123 147 174 30 247 89 140 146

extend the iterated characteristics to 5 steps of Zorro. The probability becomes
2−21.66×5=2−108.3 which is much lower than 2−128 for the random permutation.
Meanwhile, the 23-round differential characteristics shown in Figure 2 have the
same probability 2−108.3 as the path from #1 to #7 with probability 1, where
the values of a and b are referred to Table 1. With another assumption that
the secret key is randomly chosen from the whole key space, we can give a key
recovery attack on the full-round Zorro.
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Fig. 2. Key recovery attack on full-round Zorro

Outline. In order to recover the secret key of Zorro efficiently, we combine 3
iterated differential trails to give a structure attack. If we denote the secret key
by K, we can change the order of MC and AK in the last round by adding the
equivalent key K

′
= MC−1(K) before MC. Meanwhile, recovering the equiv-

alent key means that the secret key is found. Note that it is impossible to dis-
tinguish equivalent keys that share the same values in the last three rows based
on the above distinguisher. Therefore, we focus on the 4 bytes of the first row
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of K ′. We first reduce the size of guessing key space from 232 to 1 and then
exhaustively search the remaining key candidates for the whole 128-bit key.

1. Choice of Plaintext Pairs
The chosen plaintexts structure is shown as Figure 3. It is easy to see that
in such a structure each difference appears three times. Thus, a total of 9
pairs are contained in a structure of 7 plaintexts. Choose n structures and
ask all the 7n plaintexts for the corresponding ciphertexts, we can obtain 9n
plaintext-ciphertext pairs.
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0
585858
000

1 :

58

0 000
107107107107

0
189189189
000

2 :

189

P

1P

2P3P

1 2P

2 3P

1 3P

0 000
88888888

0
232232232
000

3 :

232

Fig. 3. Chosen plaintexts structure

2. Filtration of Plaintext-Ciphertext Pairs
Choose ciphertext pairs so that the differences of the input of 24-round sat-
isfy the condition in #7. About 232 among 2128 pairs can satisfy the differ-
ential condition. Therefore, it remains about 9n× 2−96 plaintext-ciphertext
pairs to distinguish the right key from wrong keys.

3. Reduction of Key Candidates in the First Row
Guess the four bytes of the first row of K

′
(232), and decrypt the remaining

pairs to get the differences of the bytes which fall in the first row of the
output of 23-round. If the differences satisfy the condition in the first row of
the output of distinguisher, increase the corresponding counter of the guessed
key.

4. Extraction from Key Candidates
Up to now, 9n × 2−96 plaintext-ciphertext pairs are left to distinguish the
right key from wrong keys. The correct key is suggested with a probability
of 2−108.3/2−96 = 2−12.3 while it is about 2−128/2−96 = 2−32 for the incor-
rect keys. Utilizing the probability differences between the correct key and
incorrect keys, we can extract the correct key. We use the ranking paradigm
to filter out the key in the first position as the right key candidate.

5. Recovery the Right Key
Exhaustively test the remaining key candidates(296 keys) to find the correct
128-bit key.



Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 315

Complexities

1. Data Complexity

As mentioned in the first step of attack, 7n chosen plaintexts are needed to
process the attack.

2. Time Complexity

One computational complexity is checking whether the differences of cipher-
text pairs satisfy the differences of last three rows of #7 or not. It can be
processed column by column. As is known to us, having known arbitrary
4 bytes in the input and output of MC in AES, the other 4 bytes can be
determined. Thus, we can pre-compute all the 28 possible outputs of MC
with knowing last three input bytes (i, j, k) and store them in a table with
the last output byte as the index. Given the difference in the last byte of
arbitrary column, the only possible differences in the other three bytes can
be obtained from the table. Thus, a pair can be verified after looking up the
table at most 4 times, which is much less than 1/4 one-round encryption.
Checking all pairs spend about 9n× 2−6.6 full-round Zorro encryptions.

Another computational complexity is incrementing counters for correct key
candidates from the tuples of guessed 32-bit keys and plaintext-ciphertext
pairs. It is smaller than 9n×2−96×232 one round encryption. Finally, we need
about 296 full-round Zorro encryptions to exhaustively test the remaining key
candidates.

3. Memory Complexity

Since attackers must choose the correct key among the 32-bit keys, it is
necessary for the attacker to have enough memory for each 232 keys, which
is independent of n.

Given the probabilities (p0, p), the authors provided a general method for
finding an accurate number of samples to reach given error probabilities in
[8](Algorithm 1 shown in Appendix B), where p(resp. p0) is the probability sug-
gested for a wrong key(resp. for the right key). We first denote the type-I error
probability (the probability to wrongfully discard the right key) with α and the
type-II error probability (the probability to wrongfully accept a random key as
the right key) with β. In our attack, we want to determine the number of sample
9n×2−96 with p0 = 2−12.3 and p = 2−32. If α = 10% and β = 2−32, about 216.85

samples(9n× 2−96 pairs) can reduce 232 keys to 1 candidate. That is to say, the
data complexity of our attack is about 2112.5 chosen plaintexts. Therefore, the
number of remaining key candidates for 128-bit key is about 296 and we exhaus-
tively check the key candidates to filter out the right key. All in all, the time
complexity is about 2112.85 × 2−6.6 + 216.85 × 232 × 1/24+ 296 ≈ 2106 full-round
Zorro encryptions.

As mentioned before, it is impossible to distinguish the wrong keys that share
the same values in the last three rows with the right key based on the above
23-round distinguisher. Thus, the number of key candidates after the distin-
guishing process is no less than 296. In other words, the time complexity for
searching the right key is 296 full-round encryptions at least no matter how many
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plaintext-ciphertext pairs are given. In order to reduce the time complexity of
key filtering process, we will show a TMTO attack in the next section.

3.3 TMTO Key Recovery Attack on Full-Round Zorro

In this section, three iterated differential characteristics of 22-round Zorro are
used to filter out the right key from the whole key space. The 22-round differential
characteristics shown in Figure 4 also have the probability of 2−108.3, where the
values of c, d and e are referred to Table 1. With the assumption that the secret
key is randomly chosen from the whole key space, we can also give a full-round
key recovery attack on Zorro with a less time complexity for key filtering process.
We first consider 64-bit equivalent key and then use the ranking paradigm to
filter out the correct one as the right 64-bit key candidate. Finally, exhaustively
test the remaining 264 key candidates to find the correct 128-bit key.
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Fig. 4. TMTO key recovery attack on full-round Zorro

Outline. As before, we combine 3 iterated differential trails to give a structure
attack and recover the equivalent keyK

′
= MC−1(K) beforeMC. We divide the

128-bit K ′ to 16 bytes and denote them as shown in Figure 4. As we know, the
key addition can be removed through the linear function with the corresponding
operation. Because the S-box layer of Zorro only consists of four S-boxes, we
divide the 128-bit K ′ into two parts, the first row after and the last three rows
before the 24-round S-box layer. The following three rows of K ′ can be removed
before the 23-round MC operation and a new 128-bit key K

′′
generated from 12

bytes of K ′ appears. Meanwhile,
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K
′′
=

⎛
⎜⎜⎜⎜⎜⎝

K
′′
0 K

′′
4 K

′′
8 K

′′
12

K
′′
1 K
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′′
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′′
2 K

′′
6 K

′′
10 K

′′
14

K
′′
3 K

′′
7 K

′′
11 K

′′
15

⎞
⎟⎟⎟⎟⎟⎠

= MC−1 ×

⎛
⎜⎜⎜⎜⎝

0 0 0 0

K
′
13 K

′
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′
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′
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⎞
⎟⎟⎟⎟⎠

.

The 128-bit K
′′
is independent with K

′
{0,4,8,12} and they together determine

the equivalent 128-bit key K ′. We can replace the operation AK
′
by respec-

tively addingK
′′
after the 23-round SR and addingK

′
{0,4,8,12} after the 24-round

SR. Similarly, it is impossible to distinguish the keys located in the last three
rows of K

′′
based on the distinguisher(Figure 4). As a result, we first use the

plaintext-ciphertext pairs and distinguisher to filter out the correct 64-bit equiv-
alent key(K

′
{0,4,8,12} and K

′′
{0,4,8,12}). Finally, exhaustively test the remaining 264

key candidates to find the right 128-bit key.

1. Choice of Plaintext Pairs

The chosen plaintexts structure is similar to that of the basic attack. Three
kinds of differences are used to construct each structure and their values
are given in Figure 5. Thus, we can obtain 9n differential pairs with 7n
plaintext-ciphertext pairs.
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Fig. 5. Three differences in the chosen plaintexts structure

2. Filtration of Plaintext-Ciphertext Pairs

Considering one column MC transformation used in AES, if we have known
arbitrary four bytes among the 8 bytes in the input and output, then the
other four bytes can be determined with probability 1. Given a ciphertext
pair, we can obtain the differences in the last three rows after the MC oper-
ation of 23-round with probability 1. Meanwhile, if a pair may suggest some
keys, then the differences in the last three rows before the MC are equal to
that of the output of the distinguisher. As a result, 6 bytes are known for each
column and the matching between four columns occurs with a probability of
2−16×4 = 2−64. Choose ciphertext pairs that the differences of the last three
rows successfully match between the MC operation of the 23-round. About 1
among 264 pairs can satisfy the above condition. Therefore, it remains about
9n× 2−64 plaintext-ciphertext pairs to distinguish the right 64-bit key from
wrong keys.
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3. Reduction of Key Candidates

To reduce the time complexity, we compute the values of suggested keys
from the remaining ciphertext pairs instead of exhaustively guessing the
corresponding keys. The procedure can be described as follows:

(a) Given a remaining pair, we can easily get the differences before and after
the MC of 23-round as explained above. Thus, the input and the output
differences of the S-box layers in the 23-round and 24-round are known.

(b) After looking up the difference table of S-box, we can obtain the corre-
sponding input and output values of the 8 S-boxes(4 in 23-round and 4
in 24-round).

(c) Up to now, we have known the output values of the 4 S-boxes in the 24-
round. Furthermore, we can easily get the suggested values K

′
{0,4,8,12}.

On the average, only one key is suggested because given the input and
output difference of the S-box in Zorro, one solution is averagely ob-
tained.

(d) Meanwhile, we have known all the values before the 23-round MC and
the values in the first row after the 23-round SR. Easily, the possible
values of K

′′
{0,4,8,12} are also obtained.

(e) Increase the corresponding counters of the computed 64-bit keys.

The above steps are repeated at most 9n × 2−64 times. If there exists im-
possible input-output difference pair of S-box in Step (b), skip the following
three steps and go to the next remaining pair.

4. Extraction from Key Candidates

There are 9n×2−64 plaintext-ciphertext pairs to distinguish the right 64-bit
key from wrong keys. The incorrect key is suggested with a probability of
2−128/2−64 = 2−64 while it is about 2−108.3/2−64 = 2−44.3 for the right key.
We also use the ranking paradigm to filter out the correct key.

5. Recovery the Right Key

Exhaustively test the remaining 264 key candidates to find the correct 128-bit
key.

Similarly, we want to determine the number of samples 9n× 2−64 with p0 =
2−44.3 and p = 2−64. If α = 10% and β = 2−64, about 249.81 samples(9n× 2−64

pairs) can reduce 264 keys to 1 candidates. That is to say, the data complexity
of our attack is about 2113.5 chosen plaintexts. To clarify the special structure
of Zorro, we only focus on the time complexity for searching the right key after
filtering out wrong pairs. For a remaining pair, the suggested 64-bit keys can
be computed by looking up table 8 times. All in all, it costs much smaller than
9n× 2−64 one round encryption to reduce the key space to 264. Finally, we need
about 264 full-round Zorro encryptions to exhaustively test the remaining key
candidates. Thus, the time complexity of searching keys is about 249.81× 1/24+
264 ≈ 264 full-round Zorro encryptions with 264 memory.
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4 Linear Distinguishing Attack on Full-Round Zorro

Consider an n-bit block cipher F and let the input of the function be x ∈ Fn
2 .

A linear approximation (u, v) with an input mask u and an output mask v has
probability

p(u, v) = Prx∈Fn
2
(u · x⊕ v · F (x) = 0).

The value CF (u, v) = 2p(u, v)−1 is called the correlation of linear approximation
(u, v).

Consider a mapping F : Fn
2 → F

n
2 given as a key-alternating iterative block

cipher, i.e. F = Fr ◦Fr−1 ◦ ... ◦F1. A linear trail consists of an input mask u and
output mask v and a vector U = (u1, ..., ur−1) with ui ∈ F

n
2 . The correlation of

the trail is defined as

CF (u, v, U) = CF1(u, u1)CF2(u1, u2)...CFr−1 (ur−2, ur−1)CFr (ur−1, v).

In contrary to the piling-up lemma[3], no assumption of any kind has to be
made for this equation to hold. The characteristics of the correlation matrices
of some special boolean functions are summarized as follows[19]:

Lemma 1 (XOR with a Constant): Consider the function that consists of the
bitwise XOR with a constant vector k: F (x) = x⊕ k, the correlation matrix is a
diagonal matrix with

CF (u, u) = (−1)u
T k.

Lemma 2 (Linear functions): Consider a linear function F (x) = Mx, with M
an m × n binary matrix. The elements of the corresponding correlation matrix
are given by

CF (u, v) = δ(MT v ⊕ u),

where

δ(w) =

{
1, when w = 0

0, when w �= 0
.

Lemma 3 (Bricklayer Functions): Consider a bricklayer function y = F (x)
that is defined by the following component functions: y(i) = F(i)(x(i)) for 1 ≤ i ≤
l. For every component function F(i) there is a corresponding correlation matrix
denoted by CF(i)

. The elements of the correlation matrix of F are given by

CF (u, v) =
∏
i

CF(i)
(u(i), v(i)),

where u = (u(1), u(2), ..., u(l)) and v = (v(1), v(2), ..., v(l)).

In this section, we will give a linear distinguishing attack for full-round Zorro
according to the above three rules. F represents the 24-round Zorro, and Fi

represents the corresponding i-th step function. Note that the fact M4 = I
implies that (MT )4 = I, where MT means the transpose of matrix M .
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4.1 Iterated Linear Trail

There exists some iterated linear trails for 4 rounds of Zorro and the pattern
can also be shown as Figure 1, where the gray bytes are the ones with a non-
zero mask. We compute the correlation of the linear trail using the theory of
the correlation matrix with u = v = ui(i ≤ 6). There are 255 different (a, b)

*SB
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MC

*SB182182182182
34

133133133133
343434

AC
SR
MC

*SB

AC
SR
MC

*SB122122122122
170

73737373
170170170

AC
SR
MC

136136136136

AK

#3 # 4 #5

#6 #7 #8 #1

182182182182
34

133133133133
343434

208208208208

193193193193

#5

208208208208

193193193193

122122122122
170

73737373
170170170

136136136136
c

148148148148

133133133133

#1

148148148148

133133133133

# 2

148148148148

133133133133

208208208208

193193193193

Fig. 6. Iterated linear trail of one-step Zorro

which result in the path from #1 to #7 with the absolute of correlation to
be 1. After searching the linear approximation table(LAT) of the S-box used
in Zorro, only 210 original linear masks make the path from #7 to #8 with
a non-zero correlation. The largest linear correlation occurs when a = 208 and
b = 193 and the absolute value of the corresponding correlation |c| = (28/128)4 ≈
2−8.77. If we change the relative location of #1 with #3,#5 or #7, |c| re-
mains equal. Meanwhile, if the input mask and the output mask of one step are
both (0, 0, 0, 0, 208, 208, 208, 208, 0, 0, 0, 0, 193, 193, 193, 193), the linear trail is
determined as Figure 6.

1 step208208208208

193193193193
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AK
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1 step208208208208
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193193193193

#1

1 step208208208208
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#1

AK208208208208

193193193193
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1 step208208208208

193193193193

#1

208208208208

193193193193
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1 step208208208208
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#1

AK208208208208

193193193193

#1

1 step208208208208

193193193193

#1

208208208208

193193193193
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Fig. 7. Linear distinguisher on full-round of Zorro
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4.2 Linear Distinguisher of the Full-Round Zorro

If we fix the input linear mask of every step to be the pattern of #1 with
a = 208 and b = 193, we can get a linear trail of full-round Zorro. The absolute
value of the correlation of the linear trail can be computed as |C| = 2−8.77×6 =
2−52.62 without any assumption. Thus we can distinguish the full-round Zorro
from random permutation by using 1/C2 ≈ 2105.3 known plaintexts and the
distinguisher is shown as Figure 7.

5 Conclusion

In this paper, we evaluated the security of Zorro against differential cryptanalysis
and linear cryptanalysis. Two different key recovery attacks were described in
Section 3. The basic one recovered the secret key with a data complexity of 2112.4

chosen plaintexts, a time complexity of 2106 full-round Zorro encryptions and a
memory complexity of 232. The TMTO attack required 2113.9 chosen plaintexts,
a key filtering complexity of 264 full-round Zorro encryptions and 264 memory.
Meanwhile, we gave a linear distinguishing attack on the full-round Zorro with
2105.3 known plaintexts.

For convenience, we fix that the differences of four bytes in each row are all the
same. If we exhaustively search the characteristics covering three rounds with
probability 1, we may obtain some trails for one step of Zorro with a probability
higher than 2−21.66. Thus the complexity of our key recovery attacks can be
improved. The similar cases may occur for the linear distinguishing attack. In
summary, the results show that only four S-boxes located in the first row and
an iterated structure as AES produce a theoretical weak block cipher. Designers
should carefully reduce the non-linear operations when designing a lightweight
block cipher based on AES block cipher.
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Appendix A: S-box of Zorro

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 B2 E5 5E FD 5F C5 50 BC DC 4A FA 88 28 D8 E0 D1

10 B5 D0 3C B0 99 C1 E8 E2 13 59 A7 FB 71 34 31 F1

20 9F 3A CE 6E A8 A4 B4 7E 1F B7 51 1D 38 9D 46 69

30 53 E 42 1B F 11 68 CA AA 6 F0 BD 26 6F 0 D9

40 62 F3 15 60 F2 3D 7F 35 63 2D 67 93 1C 91 F9 9C

50 66 2A 81 20 95 F8 E3 4D 5A 6D 24 7B B9 EF DF DA

60 58 A9 92 76 2E B3 39 C 29 CD 43 FE AB F5 94 23

70 16 80 C0 12 4C E9 48 19 8 AE 41 70 84 14 A2 D5

80 B8 33 65 BA ED 17 CF 96 1E 3B B C2 C8 B6 BB 8B

90 A1 54 75 C4 10 5D D6 25 97 E6 FC 49 F7 52 18 86

A0 8D CB E1 BF D7 8E 37 BE 82 CC 64 90 7C 32 8F 4B

B0 AC 1A EA D3 F4 6B 2C FF 55 A 45 9 89 1 30 2B

C0 D2 77 87 72 EB 36 DE 9E 8C DB 6C 9B 5 2 4E AF

D0 4 AD 74 C3 EE A6 F6 C7 7D 40 D4 D 3E 5B EC 78

E0 A0 B1 44 73 47 5C 98 21 22 61 3F C6 7A 56 DD E7

F0 85 C9 8A 57 27 7 9A 3 A3 83 E4 6A A5 2F 79 4F

Appendix B: Computation of the exact number of samples
required for a statistical attack

Input: Given error probabilities (α, β) and probabilities (p0, p).
Output: N and τ : the minimum number of samples and the corresponding

relative threshold to reach error probabilities less than (α, β).

Set τmin to p and τmax to p0.
repeat

Set τ to (τmin + τmax)/2.
Compute Nnd such that ∀N > Nnd, Gnd(N, τ) ≤ α.
Compute Nfa such that ∀N > Nfa, Gfa(N, τ) ≤ β.
if Nnd > Nfa then

τmax = τ .
else

τmin = τ .
end if

until Nnd = Nfa.
Return N = Nnd = Nfa and τ .
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