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Abstract 

Wc introduce the idm of diffcrcntial crypianalysis mod 232 and apply il to the m5 
message digest algorithm. We dcrive a ihcory for dillcrcntial crypianalysis of the circular 
shift function. We demonswale a high-probability diffcrcntials which lave the message 
digest rcgistcr unchanged for each of MD5's four rounds, and explain how more such 
dirfcrcntillls may bc caiculalcd. 

1 Introduction 

Differential cryptanalysis is a method which analyses the effect of particular differences 
in plaintext pairs on the differences of the resulting ciphertext pairs. Since differential 
cryptanalysis was first explained by Biham and Shamir [BSl] [BS2] it has been applied 
with success, sometimes with devastating success, to cryptosystems including DES 
[BSl]. [BS2], Fed [BS3]. N-Hash [BS3], PES [LMM], Snefru [BS4] Khafre [BSdI. 
REDOC-I1 [BS4], LOKI [BS4] [Knud] [BKPS], and Lucifer [BS4]. A common element 
in these cryptosystems which makes them susceptible to differential cryptanalysis is their 
heavy use of the exclusive-or operation (denoted by El3 or XOR), which is equivalent to 
vector addition mod 2, to introduce confusion in combining partial results or in 
combining key with data. Differential cryptanalysis is able to reduce or negate the 
cryptographic effects of these XORs by considering the differences in ciphertexts which 
arise from operating the cryptosystem on pairs of plaintexts chosen so that they are at a 
fixed distance (mod 2) from one another. The appropriate fixed distance changes from 
cryptosystem to cryptosystem. and is derived by analysis of the structure of the 
cryptosystem. 

Designers of cryptosystems published since the rise of differential cryptanalysis have 
sought to avoid its sting by reducing or avoiding the use of XOR in its traditional roles. 
The message digest algorithm MD5 [Riv] [RD] is an example of such a post-differential 
cryptosystem. MD5 is designed to be fast on 32-bit machines, and employs addition mod 
P2 (denoted by +) to achieve confusion. 

Unfortunately for designers, there is nothing which binds differential cryptanalysis to 
any particular algebraic group. In this paper we apply differential cryptanalysis mod P2 
to MD5. 
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So far as possible, we will follow the notation of Biham and Shamir [BS2] and Rivest 

Y*, Y': At any point during the operation of the MD5 algorithm on pairs of 
messages, Y and Y* arc the values of the two executions of the algoritiirn, and Y' 
is defined to be Y' = Y - Y* mod P2, 0 5 Y' I 232 - 1. 

M : the input message, b bits in length. b is any non-negative integer. 
t i x :  A hexidecimal number is denoted by the subscript x. 

and Dusse [RD]. In particular: 

2 The MD5 Message Digest Algorithm 

The MD5 message digest algorithm takes as input a message of arbitrary length and 
produces as output a 128-bit message digest. MD5 is intended by its authors for use in 
digital signature applications. These applications require that it be computationally 
infeasible to produce two messagcs having tlie same digest, for i t  is the digest which is 
signed, not the original message. 

2.1 Overall Structure 

The computation of the message digest of iG by MD5 is carried out in five stages. 
Stage 1. The message A? is padded (cxtended) so that its length in bits is congruent 

to 448 modulo 512. The padding consists of a single " I "  bit followed by as many "0" bits 
as necessary to reach the desired length. 

Stage 2. A 64-bit representation of b, the length of h? before padding, is appended to 
the results of Stage 1. The resulting message M has a length which is an exact multiple of 
512 bits. Equivalently, this msssage has a length which is an exact multiple N of I6 32- 
bit words. 

Stage 3. A four-word register MD is used to compute the message digest. This is 
initialized to a constant. 

Stage 4. The message M is processed in consecutive block of 16 words, M,, M,. ... , 
I U ~ . ~ .  Mw The processing of each block consists of four rout&, each of which consists of 
16 steps. We will have much more to say about rounds and steps below. 

Stage 5. Register MD now contains the calculated message digest. This is output. 

In seeking two equivalent messages we will work within a single 16-word block. We 
would like the freedom to alter every word of that block independently of any other. The 
structure of M,, and possibly of M,, , is constrained by Stage 1 and Stage 2 processing, 
these are therefore not easy blocks to attack. We can focus our attack on any other block 
or blocks. For purposes of this paper we will attack a single block Ma.d2N,R-, and will 
hold all other blocks in M,, ... , M,, identical in  M and M*. 



2.2 Block Processing 

The message digest register. MD. begins in a specified constant state MD, and is updated 
during the processing of each block. Its final state MD, is the value assigned to MD5(m). 

The processing of the jth block involves four roittid futictions, FF,  GG, H H .  and 11, 
as follows: 

MDj = MD,-, +II(M,.HH(M,,GG(M,.FF(M,,MD,_,)))) 

The round functions are similar to one another in structure. The message digest 
register is treated as a four-element shift register, with each element being one word 
wide. The elements are referred to as A,  B ,  C, and D. Each round consists of 16 steps of 
this register. 

At each step, A = B + ( ( A + f ( B , C , D ) + x [ s ] + r )  <c< k), where f is an auxiliary 
futicliori which varies from round-to-round; x[sl is a word chosen from M,; s, t, and A: are 
parameters of the step; and <<< k signifies a k-bit left circular shift of a word. Note that 
each step involves four + operations, one <<< operation, and one auxiliary function. 

The auxiliary functions each take three 32-bit words as input and produce one 32-bit 
word as output. They are bit-wise parallel, which is to say that each bit of the output 
word depends only on the corresponding bits of the input words. The auxiliary functions 
fare defined in Table 1, where V denotes the bit-wise complement of v.  

Table 1. Auxiliary functions. 

I Round I f I f ( X , Y , Z )  1 

3 The Cryptanalytic Problem 

Message digest algorithms present two related cryptanalytic challenges. The simpler of 
these is to find two messages with the same digest. Rivest and Dusse conjecture that the 
difficulty of doing this for MD5 is on the order of 2M operations. The uther challenge is 
to find any message with a given digest. Rivest and Dusse conjecture that the difficulty 
of this feat for MD5 is on the order of 2128 operations. 

We will attack the simpler problem, that of finding two messages m # m* such that 
MDS(m) = MDS(m*). Note that under the simplistic assumption that the cryptanalytic 
difficulty of MD5 is uniformly distributed across its sixty-four steps, we will need to 
succeed at each step with probability > 0.5 in order to do better than Rivest's conjecture. 
This is a daunting prospect. Throughput is another measure of MDSs difficulty under 
differential cryptanalysis. MD5 produces only 2 output bits per step. DES produces 4. 
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The overwhelming number of + operations per step provides the motivation to 
attempt differential cryptanalysis mod 232 .  Analysis of the + operation is hard working 
mod 2; but it is easy working mod 232, and leads to output differences with probability = 
1. On the other hand, analysis of theffunctions is very hard mod Z3*, There is no theory 
to help, and a complete simulation is beyond the size of available computer memory. We 
must content ourselves with approximations. Table 2 summarizes the trade-offs facing 
the cryptanalyst. 

DCA mod 2 DCA mod P2 
Hard analysis. 

Easy analysis. Output differences 
with probability = 1. 

Easy analysis. See $3.1. Output 

Non-trivial analysis. See 83.2. For 
any input difference only four output 
differences are possible, at least one 
has probability greater than or equal 
to 0.25. 
Hard analysis. See 43.3. Requires 
approximations. High probability 

differences with probability = 1. 

Easy analysis. Low weight input 
differences lead to high probability 
output differences. output differences. I 

3.1 Differential Cryptanalysis of the Add Function 

Letx+c = z, andx * +c = z*. then z’ = z - i* = x -I* = x’, with probability = 1. 
Similarly, where x + y = z, and x * +y* = z*, then z’ = I - z* - - x --x * +y - y* = x’+ y’, 
with probability = 1. 

3.2 Differential Cryptanalysis of the Circular Shift 

Theorem 1. If i E 2 and x E R ,  then L i+  xJ = i cLxJ. 

Theorem 2. If a, b, rn E Z , then 

+ 1, a modm < b modm; 

, arnodm2bmodm. 
m 
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Let x be a 32-bit word and CLS,(x) denote the circular left shift of x by k places. Let 
t1=232 and m=232-k. We can then write CLS,(x) as the sum of two quantities 

The quantity 2 9  is simply a left shift of x by k places, with zeroes filled at the right. 

The quantity is just right shift of x by 3 2 4  places, with zeroes filled at the left. 

Recall that x’= x-x*modrr,  01 x ’ s t i - 1 .  What does the mod II difference, 

z’=CLS,(x)-CLS,(x*)modn, look like? Assume O I x , x ’ < ~ i .  Then z’= 

CLS, (x) - CLS, (x - x’ mod t i )  mod 11 = 

This can be divided, for further analysis, into two cases: 

1. x 2 x ‘ j  x -x’ 2 0 3 x -x’modn = x -1’. 

2. x < x‘ x -1’ < 0 a x -x’modn = x -x’+ 1 1 .  

How many times does each case occur? If x’ is held constant while x is varied over dl 
possible n values, Case 1 occurs when x takes the 11 - x’ values x = x’,x’+ 1,. . .,ti - 1. 
Case 2 occurs when x takes the x’ values x = O,l, ..., 1’- 1. We will consider the two 
cases separately. 

Case 1. x 2 x’ 
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1 Pr(z’> = -*  
t1 

The quantity [ Y ] = - I w h e n  r ,  < r2. How often does this occur? There are 

2’ -q2  -1 m-long sub-intervals in [x’, tt-11. In each of these, T ,  < r2 for the first r2 values 

of x. So the event in question occurs rz (2’ - qz -1) times. 

’ 1 1  -x’- r(2’ - I -q), if z’ = q + 1’2’ mod n; 

r(2’ - 1 -q),  

r(q + I), 
x‘ - r(4 + l), 
0, otherwise. 

if z‘ = q i- 1 + x’2’ mod li; 

if z’ = q -2’ + I  +x’2’ mod rr; 

if z‘ = q - 2’ + x’2’ mod tz; 

Case 2. x < X’ 

Let x and x’ be defined as in Case 1. We are now examining J - [ - + J mod 11 

for U 5 x < x < x’ < r r .  Note that tijm = 2‘, so 

We are again interested in  ow often r ,  < rl occurs. There are 42 m-long sub-intervals 
in  [O, x’-11. In each of these, r ,  c r2 for the first r2 values of x. The final sub-interval is 
only r2 long, and r, < r, throughout this final sub-interval. So the event in  question occurs 
r2 (q2 + 1) times. 

Theorem 3. Select x and x* at random from the integers in [O,n-l] so that 

x’ = x - X  * mod 11. Let I’ = CLSt(x)-CLSk(x*) modn, and 1’ = grn + r,O I r < m. Then 

We have proven the following 

Note that this generalizes to other word sizes. 
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3.3 Differential Cryptanalysis of the Step Feedback Functions 

The step feedback functionsf prcscnt a difficult problem. In general, where w =f(X,Yz) 
and w*=fCx*,Y*,Z*), we are interested in wf  = w - w* mod 232  = f ( X , Y z )  -flX*,Y*,Z*) 
mod 232. 

A question which arises is, given X‘,Y’, andZ’, what can be said about w“! At 
present, nothing much is known either about the values of w’ or their associated 
probabilities. We do not know how to do a mod 232 theoretical analysis of these 
functions, and the memory required for a complete simulation is not available. 

One hunch is that certain values of X’,Y‘ ,  andZ’, for example those with low 
weight. may be likely to lead to values of w’ with high probability. Another hunch is that 
it may be worthwhile to allow only one of X ’ ,  I“, and Z’ to take 011 a non-zero value. 
Monte Carlo evaluation within such restricted spaces begins to be feasible, and may lead 
to useful results. 

In the meanwhile, we observe that the differential cryptanalyses mod 2J2 and mod 2 
are identical when we restrict X’, Y’, and Z’ to differ in only the high-order bit. Analysis 
of thefs mod 2 is straightforward. 

4 Cryptanalysis of the Rounds 

We can now apply the analytic tools developed in $3 to the rounds of MD5. Recall that 
each round consists of 16 steps. Fig. 1 is a schematic representation of the calculations 
which make up a step. The constant additions are omitted as they make no difference 
from a differential point of view. The inputs have been rotated one element to the right 
for clarity. Table 3 contains data from m example analysis of the FF round. The notation 
used in Fig. 1 and Table 3 is: 

A ,  B ,  C, D: elements of the message digest shift register MD. 
w: the output of the step auxiliary functionf. 
x:  a word chosen from the current message block M,. Specified in [RD]. 
z: the output of the circular left shift function CLJ,. [RDJ specifies the values ofk. 
p ,  q: intermediate values included to clarify the illusuation. 
i: a step number. V, indicates the value of variable v during step i. In the case of A,, 

B,, C,, and D, this is to be interpreted as the value of these message register 
elements at the conclusion of step i. 

Our objective is to find two message blocks M a  and Ma* such that FF(Ma) = 
FF(M,*). We chose, arbitrarily, to work toward the end of the round. The situation at the 
end of step 1 1 is A,’,,B,’, , C;, , D,‘, = 0. Our objective will be met if we can inuoduce some 
difference, and then remove it, so that A,’6r B,’6,C,‘6,D(6 = 0. 



Figure 1. Schematic of an MD5 step,
showing only those operations which
impact Che differential analysis.
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Step 12. We can analyze the FF round
auxiliary function F only in the case that
A',B', and C" are restricted to the high order bit.
So our immediate goal is to choose x[2 which

leads to A'l2 - 23'. Examination of Fig. 1 and
Table 3 shows that this reduces to choosing an x'

such that 231 = CLS22(x'). An important insight is
that z = CLSt {x) is a permutation, whose inverse
is x = CLSl_k{z). So it is possible to use the
theory we developed in §3.2 to calculate the x'

we are looking for. There are two values with
high probability, we choose 29, whose probability
is 1/2.

Step 13. We would now like to know the

p o s s i b l e v a l u e s m i corresponding probabilities of

w' = F{X,Y,Z)~F(X*,Y,Z). Carries have no
effect when input differences are restricted to the high-order bit. The step auxiliary
functions can then be evaluated as Boolean functions on a single bit This
straightforward, either symbolically or by enumeration. For the function at hand, the h.o.
bit of w' = 0 or 1, each with probability of 1/2. We choose the 0. Now our goal is to

choose an x'n such that A'n =Q=> z'} = 231. Working with the inverse of CLSn we choose

x' = I24 => z'l3 - 231 with probability 1/2.

11
12
13
14
15
16

k,

22
7
12
17
22

v ;

0
0
0
0
0

TaMe.

P\

0
0
0
0

23>

J.Sicp-

2"
2M

0
0

2 3 .

>y-stcp analysis of round FF.

29

224

0
0
0

^/

2 3 l

231

0
0
0

prob

1

H
-H
f i
f i
i i

K
0

2 3 I

0
0
0
0

%
0
0

231

0
0
0

C'
0
0
0

231

0
0

D;
0
0
0
0

2"
0

Step 14. Now we need to know the values and probabilities of
w' = F(X,Y,Z)-F(X,Y*,Z). Working as in Step 12, we calculate the h.o. bit of w' = 0
or 1, each with probability of 1/2. Again we choose the 0. Our goal is now to choose an
x'l4 such that A[A = 0 => z,'4 = 0. Thus x'l4 is trivially 0, and leads to z,'4=0 with probability
I.
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Step 15. Now we need to know the values and probabilities of

w' = F(XJ,Z)-F{X,Y,Z*). Working as in Step 12, we calculate the h.o. bit of w' = 0

or 1, each with probability of 1/2. Again we choose the 0. Our goal is now to choose an

x(5 such that A^ = 0 => z'5 = 0. As in the previous step, x']5 is trivially 0, which leads to

z,'5 = 0 with a probability of 1.

Step 16. By inspection, w' = 0 with probability 1. Our goal is to choose an jr,'6 such

that A'Xi = 0. Notice that p'l6 = 231. If we select x'l6 = 231 then q'iS = 0, since all additions

are mod 2W. Since q'l6 = 0 then A[6 = 0 with probability 1. We have reached our goal:

A'6'Bi»«Ci6> A*6 = 0. This completes the analysis of round FF.
The procedure just described has also been applied to rounds GG, HH, and //. The

results for all four rounds are summarized in Table 4.
It should be clear that each time one of the equiprobable w' s was chosen, we could

have as easily chosen the other, which would have lead to a different differential. What
may be less clear is that the second most probable i often occurs with probability 1/2-e,
and also leads to useful differentials. A last comment is that the differentials exhibited
here can be slid as far forward in a round as the round's first step.

Table 4. Example message block differentials M'.
word

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

probability

FF

0
0
0
0
0
0
0
0
0
0
0
29

224

0
0

231

2-5

GG

0
0
0
0
0
0
0
0

211

0
0
0

231

2M

0
0

2-2

for which roundfunclion(M'a,M
HH

0
0

231

0
0
0

232 . 2 s

0
0

78 00 00 00,

0
0

231

0
0

231

2-2

D) = MD.
II

0
0
0
0

I25

0
0
0
0

231

0
23'
0

2io

0
0

2-»

The challenge remains to find a single M'a which makes all four rounds of MD5
ineffective simultaneously.
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