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Abstract. Q is a block cipher based on Rijndael and Serpent, which was
submitted as a candidate to the NESSIE project by Leslie McBride. The
submission document of Q describes 12 one-round iterative characteris-
tics with probability 27*® each. On 7 rounds these characteristics have
probability 2725 and the author of Q claims that these are the best 7-
round characteristics. We find additional one-round characteristics that
can be extended to more rounds. We also combine the characteristics
into differentials. We present several differential attacks on the full ci-
pher. Our best attack on the full Q with 128-bit keys (8 rounds) uses
2105 chosen plaintexts and has a complexity of 277 encryptions. Our best
attack on the full Q with larger key sizes (9 rounds) uses 2'?® chosen
ciphertexts, and has a complexity of 2°¢ for 192-bit keys, and 2'?® for
256-bit keys.

1 Introduction

Q is a block cipher submitted as a candidate to the NESSIE project [6] by Leslie
McBride [5]. The best previous differential attack on Q is presented in its sub-
mission document (see [2] for more details about differential cryptanalysis). The
documentation of Q describes 12 one-round iterative differential characteristics
with probability 2718 each. The author of Q claims that the best 7-round charac-
teristics of Q are constructed by concatenating these one-round characteristics.
These 7-round characteristics have probability 27126,

In this paper we show additional one-round characteristics that can be ex-
tended to more rounds. We also join the characteristics into differentials [4].
Subsequently, we present several differential attacks on full Q. A straightfor-
ward attack on 8 rounds uses 2124 chosen plaintexts and has negligible complex-
ity. A more advanced attack on 8 rounds uses 2'%° chosen plaintexts and has
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a complexity of 277. Our advanced attack on 9 rounds uses about 2'2° chosen
ciphertexts and has a complexity of 2128, We discuss how to improve the com-
plexity of this attack to 2 in the case of 192-bit keys. In the 8- and 9-round
attacks, we can reduce the complexity by using more plaintexts/ciphertexts, or
reduce the number of chosen plaintexts/ciphertexts with a larger complexity of
analysis.

The paper is organized as follows: In Section ] we describe the structure
of Q. In Section Bl we show the characteristics and the differentials of Q, for
various numbers of rounds. In Section[ we present the straightforward attack. In
Section [0 we describe the more advanced attacks. We present a short conclusion
in Section[@l Finally, in Appendix [Al we show the key scheduling of Q.

2 The Structure of Q

The cipher has 128-bit blocks and the key size may be 128 bits, 192 bits or 256
bits. The block is divided into four 32-bit words (a word consists of four bytes):

word 0 word 1 word 2 word 3

where ‘00’ is the least significant byte, and ‘33’ is the most significant byte.
Groups of four bytes taken from different words, but from the same position in
the words, are called rows (for example, the group of bytes ‘03’,13’,23” and ‘33’
is a row).

Figure [ describes the round function of Q. The Keying layers XOR the
corresponding subkeys (KA, KB or K,) to the data, where KA and KB are
fixed in all rounds, and K, is a subkey used in round 7 only. The Byte Substi-
tution layer is taken from Rijndael [3]. It substitutes the value of each byte in
the data according to the S-Table. The Bit-Slice layer is taken from Serpent [I]:
for i = 0,...,31, we construct nibble 7 by taking bit ¢ from every word, then
we replace each nibble according to the S-box (either A or B) and return the
new bit values to their original places. The permutation changes the order of
the bytes in the words in the following way: word 0 is not changed, word 1 is
rotated by 1 byte (the bytes ‘107,11°,°12",13’ become ‘13’,°10°,11°,12’), word 2
is rotated by 2 bytes and word 3 is rotated by 3 bytes. To simplify the following
analysis we divide the round operations into two parts, called ‘part I’ and ‘part
II’, as shown in Figure [I]

The full cipher consists of 8 rounds in the case of 128-bit keys and 9 rounds
for longer key lengths. The full cipher is illustrated in Figure

3 Differentials of Q

Figure [3 describes the one-round characteristic with probability 278 presented
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by McBride in [5], where d; is the 8-bit value 2° (i € {0,...,7}). The character-
istic holds when 7 € {0,5,7}. The input differences d; can be in any row. The
row in which the output difference occurs will vary accordingly. Hence, in total
3 X 4 = 12 similar one-round characteristics were presented.

In the following we present additional one-round characteristics and expand
the characteristics to one-round differentials.

3.1 One-Round Differentials

For simplicity of analysis we initially ignore the permutation layer, and present
the analysis on a version of Q without this layer. Later, we will adapt the received
results to the original Q, and discuss the influence of the permutation layer on
the analysis. In our analysis, bits, bytes and words with non-zero difference will
be called active bits, bytes or words, respectively.

The additional one-round characteristics that we present are similar to the
characteristics presented by McBride. In Part I, McBride uses only characteris-
tics where the active bits of the input difference and the active bits of the output
difference are the same. We, in contrast, allow that the active bits of input and
of output differences are not the same. Figure F] describes the characteristic of

0000 0000
0000 0000
0000 P 10000

Fig. 4. The characteristic of Part I

Part I. In McBride’s characteristics ¢ always equals 7, while in our characteristics
this constraint is removed.

Table [[] shows the probabilities for all 1-bit input differences to cause 1-bit
output differences in the 8-bit S-box S that is used in the Byte Substitution layer.
All empty entries have probability 0. In the characteristics presented in [5], only
the entries laying on the diagonal are used. Our analysis uses all the non-zero
entries. The characteristic over Part I uses the same entry of Table [T twice, so
we convert this table to the Part I table by squaring the probability of every
non-zero entry. The resulting matrix is denoted by M.

In Part II, McBride uses only the characteristic where an input difference
that has two active bits in one nibble (bits 1 and 3) causes a difference with
one active bit (bit 1) after the Bit-Slice A layer, and an output difference with
two active bits in one nibble (again bits 1 and 3). In the following, we describe
additional characteristics over Part II, where an input difference with two active
bits in one nibble causes an output difference with two active bits in one nibble.
The active bits in the output difference are not necessarily the same bits as in
the input difference.
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Table 1. 8-bit S-box S: The probability that an input difference with exactly one active
bit (i) causes an output difference with exactly one active bit ().

{ J
0 1 2 3 4 5 6 7

0277 277977 277

1 277 277 277
2—7

3 2~ 7 2~ 7

4277 277 2~ 7

5 277977 277977 277

6277 277 277

7 2~ 7 27 2-7

Table 2. 4-bit S-box A: The probabilities that input differences with two active bits
cause output differences with exactly one active bit.

active active output bit
input bits 0 1 2 3

0,1 27° 272

0,2 272
Ma 1,2 273

0,3 272973

1,3 272273

2,3 273272973

Table 2] describes the probabilities that input differences with two active bits
cause output differences with exactly one active bit, for the 4-bit S-box A. The
empty entries denote zero probability. After the Bit-Slice A layer the difference
has one active bit, so the input difference of the Bit-Slice B layer also has one
active bit.

Table 3. 4-bit S-box B: The probabilities that input differences with one active bit
cause output differences with two active bits.

active active output bits
input bit 0,1 0,2 1,2 0,3 1,3 2,3
0 273972273 273
273 273272
272 273273
273 273973 273

Mg :

W N =

Table [ describes the probabilities that input differences with one active bit
cause output differences with two active bits, for the 4-bit S-box B. McBride
uses only the entries that are in bold in both tables (Table[2 and Table[3).
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Table 4. Part II: The probabilities that input differences with two active bits cause
output differences with two active bits.

M =Ma-Mp:

active active output bits
input bits 0,1 0,2 1,2 0,3 1,3 2.3
01 3-2792.2763.27¢2.27° 3.27°
0,2 2.276 2.2762.276 2.27¢
12 1.27¢2.27671.276 1.276
0,3 2.2762.9769.9765.2761.2°6
1,3 2.27692.2769.2765.97671.976

23 1.2794.2763.2769.9765.2769.2°6

Table [ is the product of the matrixes M4 and Mp, M;; = My - Mp. It
describes the probabilities that input differences with two active bits cause out-
put differences with two active bits in Part II. The empty entries denote zero
probability. The entry (1,3),(1,3), for example, has probability 5- 276, because
in addition to the McBride’s characteristic described earlier we have the charac-
teristic that goes (1,3) — (2) — (1, 3) and has probability 276.

Now we extend the one-round characteristics to one-round differentials. To
build a one-round differential, we compute the tensor product of M; and Mj;:
Mp = Mjy-Mj;. The matrix Mg contains the probabilities of corresponding one-
round differentials, where every such differential may start from any row (i.e., we
take any non-zero entry from Table [land any non-zero entry from Table []). We
obtain 24 - 29 - 4 = 2784 one-round differentials (24 non-zero entries in Table [IJ
29 non-zero entries in Table [ and 4 options for the starting row). The best
one-round differentials have probability 274 .5.276 = 5.2720, One of them is
shown on Figure [l where 7 does not necessarily equal j.

06; 09;

14 [00; 095 o6 [06;00;
0000 2_} 0000 5i 0000
0000 0000 0000
0000 T g000] P T 0000

Fig. 5. One-round differential with probability 5 - 272°

3.2 Differentials over Several Rounds of Q

In this subsection we extend the one-round differentials to more rounds. For this
analysis we assume that the rounds act independently, such that the probability
of a multiple-round characteristic can be approximated by the product of the
probabilities of one-round characteristics.

Part I changes only the index of active bits in the two bytes (of course, it
must change to the same bit in both bytes), but does not change which bytes
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are active. Part I changes only which bytes in the row are active, but does not
change the active row, nor the index of the active bit inside the bytes. Hence,
the differentials of Part I over several rounds and the differentials of Part II
over several rounds may be built independently, by making sure that both are
satisfied together.

Thus, in order to obtain the probability of differentials on 7 rounds, we com-
pute (Mg)! = (M;)* x (Mys). For example, Table [ shows (M;)? and (M)

Table 5. The matrixes M; and My for 2-round differentials

12121102
11011201
01100111
10110021
21112101
12211323
21220122
02111012

(My)? = (27142

19 28 29 20 25 24
10 20 18 12 20 14
9 811 8 510
7 22232040 15
7 2223 2040 15
16 30 34 28 45 25

(M17)* = (27%)%-

Consulting Table [, we see that the best probability of two-round differential is
3-(271)2.45-(276)2 =135. 2710 =2 2733,

In this way, we can calculate the probabilities of the differentials over several
rounds up to 9 rounds. We can also calculate the probabilities of the differentials
over several rounds with an additional Part I in the end, or with an additional
Part IT in the beginning. For every such case there are 64-36-4 = 9216 differentials
(the computation is similar to the computation for the one-round case described
earlier). Table [ presents the best probabilities of the differentials for 6 rounds

Table 6. The best differential probabilities of Q (without permutation layer) for various
numbers of rounds

Number of Normal With additional With additional

rounds case Part I Part 11
6 5—9Z9 5—105.35 5—955
7 9—107.9 9—120.35 9—110.5
] 9—122.9 9—135.35 9—125.5
9 Q1379 2715035 Irrelevant
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and more. The best differentials are obtained when we start with d5 in bytes of
the same row in words 2 and 3 (for example, in bytes ‘23’ and ‘33’), and end
with §7 in bytes of the same row in words 1 and 3. For the case that the matrix
M7 is used j times and the matrix M;y is used k times, the appropriate entries
are (5,7) in the (M)’ and ((2,3),(1,3)) in (M;7)*. The probabilities of the other
(not the best) differentials are close to the probability of the appropriate best
differential presented in Table [6.

Now we discuss how the permutation layer influences the results. In the
presented differentials, the permutation layer always works with one active byte
only, and this layer only changes the order of the bytes. So, the permutation
layer does not change the index of the active bit (i.e., has no influence on Part
I). It also has no influence on Part II, because the permutation layer does not
change the active word. Only the final row of the differential is influenced. In
the variant of Q without a permutation layer, every differential has the active
bits of the output difference in the same row as the active bits of the input
difference (the difference cannot be in another row). In the original Q, however,
different characteristics have the active bits of the output difference in different
rows. These characteristics can be joined to 4 differentials (one for every possible
active final row), where the sum of their probabilities equals the probability of
the single differential that we obtain on the variant of Q without permutation.

Note that all the differentials described in this section may be taken in the
backward direction. The probabilities of the differentials in the backward direc-
tion are equal to the presented probabilities for the forward direction.

4 A Basic Attack on Q

In this attack, we use a differential that spans the first 7 rounds, and part I and
Bit-Slice A of the 8th round. In the first round, we can increase the probability
by choosing input differences that produce the correct output difference with
a higher probability than in the differentials presented in Section [3. Indeed,
there exist differences € such that the probability that the input difference €
may cause the output difference d; is higher than the probability that J; may
cause 9;. The optimal input difference is ¢ = 0xd8. In the 8th round, we do not
specify the position of the active bits within the active bytes and consider all
these possibilities as a generalized kind of differential, which may have different
values for §; in the last round. The probability of the generalized differential is
27121 Tt has the following input difference:

0 0 0xd8 0xd8

00 0 0
00 O 0 ’
00 0 0

and after Bit-Slice A in the 8th round, it has one active bit, but we do not know
the position of that bit. In order to simplify the attack, we specify the active
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row in the output. This reduces the probability of the differential by a factor of
1/4 (approximately).

Pairs that follow this differential have one active bit at the output of Bit-
Slice A in the last round, hence one active row at the output of the 8th round,
and hence one active row in the ciphertext. A pair that does not follow the
characteristic has a similar output difference with probability 27%¢. Every pair
that is not filtered suggests about 8 values for one word of KW2 @& K B. The
signal-to-noise ratio of this attack is then:

932 9-123
S/N = R 4 .
The attack uses 232 counters to count on 32 key bits. Since the S/N ratio is larger
than 1, a counter with more than 4 hits is likely to belong to the correct key
word. In order to get 4 right pairs, 2!24 chosen plaintexts have to be encrypted.
The plaintext requirements can be reduced by using structures of pairs. However,
the attack discussed in the next section uses significantly fewer plaintexts.

5 Optimized Attacks on Q

Let G be the set of differences with exactly two active bytes, where both bytes are
in the same row, and both have the same differential ¢; for any < € {0,...,7}. In
total, there are (;1) -4-8 = 192 differences in G (i.e., (3) for choosing the affected
bytes in the row, 4 for choosing the row and 8 for choosing 7).

5.1 128-Bit Keys

In the case of 128-bit keys, the cipher consists of 8 rounds. We recover the key
using about 2'% chosen plaintexts and 277 complexity.

In this attack, we use the set of 7-round differentials described earlier, where
the input difference is in the set of

009;9;
0000
0000
0000

for all i € {0,...,7}, as described in Section [32] and the output difference is in
the set G. The sum of probabilities of the differentials in this set with any fixed
input difference is approximately 2719435, So given about 2'°7 pairs with such
an input difference we get an expected number of 6 pairs with output differences
that belong to G. We use this set of 7-round differentials starting with Part II of
the first round. The characteristic extends until the start of Part I in the last
round.

We choose a structure of plaintexts by taking all the possibilities of bytes
indexed ‘23’ and ‘33’, and all the other bytes are fixed to some randomly selected

216
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value. This structure includes 23! pairs. The plaintexts give all the possible values
of bytes 23’ and ‘33 after Part I, and thus, they give 8 - 21° = 218 pairs with
the required difference (for the 7-round differential) after Part I. Hence, we need
about 2107/218 — 289 guch structures in order to get an expected number of
6 pairs following the characteristic, i.e., we need about 289 - 216 = 2195 chosen
plaintexts. We call a pair with a difference that belongs to G after 7.5 rounds a
right pair. We request to encrypt these 2195 chosen plaintexts to their ciphertexts
under the unknown key.

How do we recognize the right pairs? Every right pair has difference 0; (for
some i € {0,...,7}) in two bytes of the same row after 7.5 rounds, and zero
differences in all other bytes. Different right pairs may have different i’s. After
an additional Part II, every right pair has either difference §; or 0 in every byte,
but at least one row includes at least two bytes with difference §;. The received
values become ciphertexts after an additional Part I. An input difference §; (for
any fixed 7) can result in approximately 128 possible output differences after
S-box S. The set of possible output differences resulting from input difference
d; is denoted by Z;. Due to the fact that all the byte differences in the received
values in the right pairs are either §; or 0, every byte of their ciphertext differences
must either belong to Z; or be 0 respectively. We compute Z; for all i € {0,...,7}
(this can be performed in a preprocessing stage). We check whether the output
differences of all the bytes belong to the same Z;. If they do, we continue the
analysis. Otherwise this pair cannot be a right pair, and we discard it.

Wrong pairs satisfy the above condition for some specific Z; with probability
(1/2)*¢ = 2716 (1/2 is the probability that one byte difference belongs to this
Z; and 16 is the number of bytes). We select the pairs that satisfy the above
condition for some Z;. Thus about 289 . 231 . 2716 .8 = 2107 pairs are selected.

Every selected pair suggests about 26 possible values for KW2 @& K B. The
6 right pairs must suggest the right value of KW2 @ KB. So we look for values

that are suggested 6 or more times. In total, about 26 . 2107 = 2123
2—128)5 o~ 289

values

are suggested. We expect that approximately (21623) - ( values are
suggested by 6 or more pairs.

The 6 right pairs must also suggest the right value of 16 bits of KWW1 @ KA
(bytes 23" and ‘33’). Every selected pair suggests about 82 = 64 possible such
16-bit values. So for every selected group of 6 pairs the probability to have
at least one value suggested by all 6 pairs is 64% - (2716)> = 274 Thus, only
289 . 2744 — 245 groups of 6 pairs remain.

We observe that the subkey KB has only 23 possible values (see Ap-
pendix [A]). For each guessed KB, we find KW2 by XOR-ing this KB with
each of the 2% combinations received from the 24° groups. According to the key
scheduling algorithm described in Appendix [A] we can recover all the subkeys
and the key given KW2 in an amount of time that is equivalent to the time
taken to perform a single encryption. The wrong keys can be discarded by com-
paring the guessed KB with KB received from KW2. If more than one key
remains after this check, then we discard all the remaining wrong keys by trial
encryption.
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2105 chosen plaintexts, and the complexity of analysis is

The attack requires
about 2% . 232 = 277,
There is also a similar chosen ciphertext attack which requires the same num-

ber of chosen ciphertexts and has the same complexity.

5.2 256-Bit and 192-Bit Keys

In this case, the cipher consists of 9 rounds. We recover the key using about 22
chosen ciphertexts and 2'28 complexity.

The attack is similar to the attack from Section Bl except that this attack
operates in the backward direction. According to Section B2 the best differentials
in the backward direction start with active bytes in words 1 and 3. Thus, in this
attack, we use the set of 8-round differentials in the backward direction, where
the input difference is in the set of

00;09;
0000
0000
0000

for all ¢ € {0,...,7}, and the output difference belongs to G. The sum of prob-
abilities of the differentials in this set with any fixed input difference is approx-
imately 2711935 So given about 2'?7 pairs with such an input difference we
expect to have about 200 pairs (200 = 27-6%) with output differences that belong
to G. We use this set of 8-round differentials starting with Part II of the 9th
round.

We build structures of 2'6 ciphertexts each, as in the previous attack, but
now we take all possibilities for bytes ‘13" and ‘33’. In this attack we need about
2127 /218 — 2109 gych structures to get an expected number of 200 right pairs
after 8.5 rounds in the backward direction (or after the first round in the forward
direction), i.e., we need about 2109.216 = 2125 chosen ciphertexts. Now we call a
pair with difference that belongs to G after 8.5 rounds a right pair. We request
to decrypt these 2'2% chosen ciphertexts to their plaintexts under the unknown
key.

The pair selection process is as described in the previous attack. Thus, about
2109 . 931 . 916 . 8 — 2127 pairs are selected.

The following calculations are similar to those described in the previous sub-
section. Every selected pair suggests about 2'¢ possible values for KW1® KA
and about 64 possible values of 16 bits (bytes ‘13’ and ‘33’) of KW2 @ KB.
In total, about 2'¢ . 64 - 227 = 2149 yalues are suggested. The 200 right pairs
must suggest the right values of KW1 & KA and of 16 bits of KW2 & KB .
So we look for values that are suggested 200 or more times. We expect that
approximately (221;5 ) - (27144)199 = 27101 wrong values are suggested by 200 or
more pairs. We observe that the subkey K A has only 232 possible values (see
Appendix [A]). For each guessed KA, we find KW1 by XOR-ing this KA with
the received combination. According to the key scheduling procedure described
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in Appendix [A] we can recover all the subkeys and the key given any two con-
secutive 128-bit subkeys in time of a single encryption. KW1 and K AB are two
consecutive subkeys. We receive KW1 and 32 bits from KAB (KA is word 0
of K AB taken four times), so it remains to guess additional 96 bits of K AB to
recover all the subkeys and the original key. The wrong keys can be discarded
by trial decryption.

The attack requires 225 chosen ciphertexts, and the complexity of analysis
is about 232 . 296 — 2128,

5.3 Improved Attack for 192-Bit Keys

We can improve the complexity of the previous attack for 192-bit keys. This im-
provement uses the same structures and pair selection process as in the previous
subsection, and changes only the key recovery process.

From the previous section, we expect to get about 1 value of KW1® KA
suggested by 200 or more pairs. We have 232 possible combinations of sub-
keys (KW1,KA) as described in the previous subsection. According to the key
scheduling algorithm, the knowledge of KW'1 and K H is sufficient to recover
all the other subkeys and the original key. Due to the fact that K H has only
64 non-zero bits for 192-bit keys, we can recover all the subkeys and the orig-
inal key in 232 . 264 = 296 steps. Wrong keys can be discarded by comparing
the guessed KA with K A received from KW1 and K H. If more than one key
remains after this comparison then we discard all the remaining wrong keys by
trial decryption.

The improved attack requires
analysis is about 276,

2125 chosen ciphertexts, and the complexity of

6 Conclusions

In this paper we demonstrated that both the 8-round version and the 9-round
version of Q are vulnerable to differential cryptanalysis. While these attacks
are academic in nature, they show that the security analysis of the designer
was insufficient. The most important improvements are the usage of differentials
instead of characteristics, and the usage of characteristics that are not iterative,
but ‘almost iterative’.

The analysis shows that the combination of elements from two secure ciphers,
in casu Rijndael and Serpent, does not necessarily result in a secure cipher. The
round function of Q was composed by combining the nonlinear transformations
of Rijndael and Serpent, and leaving out all the linear transformations except for
the permutation. As a result, the diffusion properties of the round transformation
of Q are suboptimal. Whereas the designers of Rijndael and Serpent ensured that
there would exist no multi-round characteristics with a small number of active
S-boxes in the original ciphers, several such characteristics can be defined for
Q. Furthermore, the limited diffusion in the round transformation of Q allows
combination of many characteristics into one differential.
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A The Key Scheduling of Q

Generally, the cipher Q may work with a key of any length. Keys longer than 256
bits are reduced to 256 bits using the polynomial X?2%6 4 X193 4 X113 1 X6 41
in GF(2256). The other keys are expanded to the 256-bit keys by adding zeroes
as the most significant bits. The 128 least significant bits of the received key
material are called KL, and the 128 most significant bits are called K H. Thus
for 128-bit keys K H = 0 and for 192-bit keys the 64 most significant bits of K H
are zeroes.

Then the procedure described later runs r + 4 times, where r is a number
of rounds in Q, and their 128-bit outputs are taken as subkeys in the following
order:

Discard, KW1, KAB, Ky, Ky,...,K,._1, KW2.

The first output is discarded and the subkeys K A, KB are built from the words
0 and 1 of KAB respectively. In both, the corresponding 32-bit word is used
four times with the permutation applied.

The procedure description:

1. A single byte counter is XOR-~ed to the least significant byte of K L (a counter
is started from 0, and is increased for every procedure running).
KL=KL® KH.

. Byte Substitution layer is performed on KL.

The constant 0x9e377909 is XOR-ed to the word 0 of K'L.

. Bit-Slice layer (S-box C) is performed on K L.

. Permutation layer is performed on K L.

. Output KL.

N oUW

Note that for 128-bit keys, the knowledge of any 128-bit subkey suffices to
recover all other subkeys and the original key. For 192-bit keys and 256-bit keys
the knowledge of any two consecutive 128-bit subkeys suffices to recover all other
subkeys and the original key.
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