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ABSTRACT In this paper, we focus on differential cryptanalysis of a lightweight ARX cipher. These ciphers

use three simple arithmetic operations, namely, modular addition, bitwise rotation, and exclusive-OR, and

therefore, are designed very well to perform over the Internet-of-Things (IoT) devices. We choose a very

well-known ARX cipher designed by the National Security Agency (NSA) of the United States of America

in June 2013, named SPECK. SPECKwas subjected to several years of detailed cryptanalytic analysis within

NSA and has been subjected to academic analysis by researchers worldwide. SPECK is specially optimized

for low-cost processors like those used in the IoT devices. We first find the differential paths for all the

variants of SPECK, and based on that differential path, we attack the round-reduced variant of the cipher.

Finding differential paths in ARX is one of the most difficult and time-consuming problems due to the huge

state space. We use a nested-based heuristic technique to find a differential path which is inspired by the

nested Monte Carlo search (NMCS) algorithm. NMCS was successfully applied before for different games:

Morpion Solitaire, SameGame, and 16×16 Sudoku, but the use of such heuristic techniques in cryptography

is entirely new and time-saving.

INDEX TERMS Differential path, ARX ciphers, nested Monte-Carlo search, IoT ciphers, differential

cryptanalysis, SPECK.

I. INTRODUCTION

ARX(Addition/Rotation/XOR) is a class of cryptographic

algorithms which use three simple arithmetic operations:

namely modular addition, bitwise rotation and exclusive-OR.

In both industry and academia, ARX cipher has gained a lot

more interest and attention in the last few years. By using

combined linear (XOR, bit shift, bit rotation) and non-

linear (modular addition) operations and iterating them for

many rounds, ARX algorithms have become more resistance

against differential and linear cryptanalysis. ARX lacks a

look-up table, associated with S-box based algorithms, and

therefore has an increased resistance against side-channel

attacks. Due to the simplicity of operations, ARX algorithms

exhibit excellent performance, especially for software plat-

forms used for IoT devices. After mobile internet technolo-

gies and the World Wide Web, the time has come for Internet

of Things (IoT). IoT consists of devices responsible for gen-

erating, processing and exchanging privacy-sensitive infor-

mation. It has a broad range of applications including health

management, smart homes, traffic, agriculture, weather mon-

itoring just to name a few. IoT devices are lightweight and

also have shallow energy footprints. This small amount of

available energy is generally used to execute core application

functionality and therefore supporting other challenges of

security and privacy is quite challenging. Due to lightweight

encryption methods, ARX ciphers are well suited for IoT

devices.

In our analysis, we focus on SPECK [1]. SPECK is a

secure, flexible and lightweight block cipher designed by

researchers from the National Security Agency (NSA) of the

United States of America (USA) in June 2013. It is known

for great performance both in software and hardware applica-

tions. Its design is similar to Threefish - the block cipher used

in the hash function Skein [2]. SPECK is a pure ARX cipher

with a Feistel-like structure in which both branches are mod-

ified at every round. SPECK consist of 5 variants SPECK32,

SPECK48, SPECK64, SPECK96 and SPECK128 with block

sizes 32, 48, 64, 96 and 128 bits, respectively.

16476
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The cryptanalysis of ARX design is more difficult. Since

a typical S-box consists of 4 or 8-bit words, the differen-

tial or linear properties can be evaluated by computing its

difference distribution table (DDT) or linear approximation

table (LAT) respectively. But with regards to ARX, for a

32-bit word it is clearly infeasible to calculate these tables.

However, a partial difference distribution table (pDDT) con-

taining just a few fractions of all differentials that has a proba-

bility greater than some fixed threshold is still a viable option.

This becomes possible due to the fact that the probabilities

of XOR (respectively ADD) differentials through the modu-

lar addition (respectively XOR) operation are monotonously

decreasing with the bit size of the word.

In this paper, we propose a method for finding good dif-

ferential paths in ARX ciphers. Finding a differential trail

becomes a problem since a huge state space exists and there

is no clear and obvious way to take the next ‘‘step’’. This

kind of problem exists in different areas, but our inspiration

comes from single-player games such as Morpion solitaire,

SameGame and Soduku. The heuristics called NestedMonte-

Carlo Search works very well for these games as shown

in [3]. We can treat a search for good differential paths also

as a single-player game and argue that this approach could

be a base for more sophisticated heuristics. However, our

modified algorithm depends on the technical complexity of

this problem, but it is also strongly inspired by NestedMonte-

Carlo Search.

In [4] and [5], we applied a naive approach algorithm to

all variants of SPECK and found good results only for one

variant with the smallest state size in SPECK32. For bigger

variants, our algorithm was demanding to reduce the search

space to enhance the random decision process and therefore

we used the partial difference distribution table (pDDT) [6] to

reduce the search space of our algorithm. In another work [5],

we applied this advance method to ARX cipher LEA and

found differential path for 13 rounds.

Besides the concept of pDDT our inspiration is drawn

from the highways and country roads analogy proposed by

Biryukov and Velichkov [6] and Biryukov et al. [8]. We relate

the problem of finding high probability differential trails in a

cipher to the problem of finding fast routes between two cities

on a roadmap, then differentials that have high probability

(with respect to a fixed threshold) can be thought of as

highways and conversely differentials with low probability

can be viewed as slow roads or country roads. Therefore, our

algorithm first tries to find a probability above the threshold

probability and if such a probability does not exist, then it uses

the low probability values. Using this concept, the algorithm

does not take a completely random decision in iterations and

hence improves the random decision process by using a much

smaller search space.

II. RELATED WORK

Biryukov and Velichkov [6] published a paper where they

analyzed ARX cipher SPECK and by introducing the concept

of partial difference distribution table (pDDT) they extend

Matsui’s algorithm, originally proposed for DES-like ciphers,

to the class of ARX ciphers. They found differential trails of

9, 10 and 13 rounds for 3 variant SPECK32, SPECK48 and

SPECK64, respectively.

Biryukov et al. [7] again presented a paper where they

propose the adaptation of Matsui’s algorithm for finding the

best differential and linear trails to the class of ARX ciphers.

It was based on a branch-and-bound search strategy which

does not use any heuristics and returns optimal results. They

report the probabilities of the best differential trails for up to

10, 9, 8, 7 and 7 rounds of SPECK32, SPECK48, SPECK64,

SPECK96 and SPECK128, respectively.

Song et al. [8] presented a paper where they develop

Mouha et al.’s framework for finding differential characteris-

tics by adding a new method to construct long characteristics

from short ones. They report the probabilities of the best

differential trails of SPECK for up to 10, 11, 15, 17, and 20

rounds of SPECK32, SPECK48, SPECK64, SPECK96 and

SPECK128, respectively.

In the context of security of IoT devices data, we have seen

some strong work recently by Wu et al. [10]–[13]. They have

been able to focus on security of IoT and Big Data. Both of

which are important factors going forward with Smart City

design and implementation.

The SIMON and SPECK families of block ciphers were

designed specifically to offer security on constrained devices,

where simplicity of design is crucial [13]. The NSA devel-

oped the SPECK as an aid for securing applications in very

constrained environments where AES may not be suitable,

such as IoT [14]. Specifically, in [15], results brought some

new insights into the question of howwell lightweight ciphers

like SPECK are suited to secure the Internet of things.

III. DESCRIPTION OF SPECK

SPECK is a family of lightweight block ciphers with the

Feistel-like structure in which each block is divided into

two branches, and both branches are modified at every

round. It has 5 variants, SPECK32, SPECK48, SPECK64,

SPECK96 and SPECK128, where a number in the name

denotes the block size in bits. Each block size is divided into

two parts, the left half and right half.

ROUND FUNCTION

SPECKuses 3 basic operations on n-bit words for each round:

• bitwise XOR, ⊕,

• addition modulo 2n,⊞

• left and right circular shifts by r2 and r1 bits, respec-

tively.

Left half n-bit word is denoted by Xr−1,L and right half

n-bit word is denoted by Xr−1,R to the r-th round and n-bit

round key applied in the r-th round is denoted by kr . Xr,L and

Xr,R denotes output words from round r which are computed

as follows:

Xr,L = ((Xr−1,L ≫ r1)⊞ Xr−1,R)⊕ kr (1)

Xr,R = ((Xr−1,R ≪ r2)⊕ Xr,L) (2)
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TABLE 1. SPECK parameters.

FIGURE 1. The round function of SPECK.

We can clearly visualize the round function of SPECK

in Figure 1. Different key sizes have been used by several

instances of the SPECK family and the total number of rounds

depends on the key size. The value of rotation constant r1
and r2 are specified as: r1 = 7, r2 = 2 for SPECK32 and

r1 = 8, r2 = 3 for all other variants. Parameters for all

variants represented in Table 1.

IV. CALCULATING DIFFERENTIAL PROBABILITIES

Lipmaa and Moriai [17] studied the differential properties

of addition. Let xdp+(a, b → c) be the XOR-differential

probability of addition modulo 2n, with input differences a

and b and output difference c. Lipmaa andMoriai [17] proved

that the differential (a, b→ c) is valid if and only if:

eq(a≪ 1, b≪ 1, c≪ 1)∧(a⊕ b⊕ c⊕ (b≪ 1))=0 (3)

where

eq(p, q, r) := (¬p⊕ q) ∧ (¬p⊕ r) (4)

For every valid differential (a, b → c), we define the

weight w(a, b→ c) of the differential as follows:

w(a, b→ c) = − log2(xdp
+(a, b→ c)) (5)

The weight of a valid differential can then be calculated as:

w(a, b→ c) := h∗(¬eq(a, b→ c)), (6)

where h∗(x) denotes the number of non-zero bits in x, not

counting x[n− 1].

A differential characteristic defines not only the input and

output differences but also the internal differences after every

round of the iterated cipher. In our analysis, we follow a

common assumption that the probability of a valid differential

characteristic is equal to themultiplication of the probabilities

of each addition operation. The XOR operation and bit rota-

tion are linear in GF(2), therefore for these two operations

for every input difference there is only one valid output

difference.

V. PARTIAL DIFFERENCE DISTRIBUTION TABLES (PDDT)

Partial difference distribution table (pDDT) proposed by

Biryukov and Velichkov [6] is a table that contains all XOR

differentials (a, b→ c) whose differential probabilities (DP)

are greater than or equal to a pre-defined threshold pthres.

(a, b, c) ∈ pDDT ⇔ DP(a, b→ c) ≥ pthres (7)

To compute pDDT efficiently, we will use the following

proposition: The differential probability (DP) of XOR of

addition modulo 2n is monotonously decreasing with the

word size of differences a, b, c.

pn ≤ ....... ≤ pk ≤ pk−1 ≤ .... ≤ p1 ≤ p0 (8)

where pk = DP(ak , bk → ck ), n ≥ k ≥ 1, p0 = 1 and xk
denotes the k LSB’s of the difference x that is xk = x[k − 1 :

0]. In our algorithm, we start from least-significant (LS) bit

position k = 0 and recursively assign the values to a[k], b[k]

and c[k]. For each bit position k : n > k > 0 check if

probability of partially constructed (k + 1)− bit differential

is greater than the threshold. If yes, then move to next bit,

otherwise go back and assign different values to a[k], b[k]

and c[k]. Repeat the process until k = n and once k = n

add (ak , bk → ck ) to the pDDT. Initial value of k is 0 and

a0, b0, c0 = φ.

In our nested algorithm. shown in Algorithm 1, we set the

threshold value equal to 0.1 and therefore the size of our
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Algorithm 1 Computation of a pDDT for XOR

Input: n, pthres, k, pk , ak , bk , ck .

Output: pDDT D : (a, b, c) ∈ D : DP(a, b → c) ≥

pthres.

function computepddt(n, pthres, k, pk , ak , bk , ck )

if n==k then

Add (a, b, c)←− (ak , bk , ck ) to D

end if

return

for x, y, z ∈ 0, 1 do

ak+1←− x|ak , bk+1←− y|bk , ck+1←− z|ck
pk+1 = DP(ak+1, bk+1→ ck+1)

if pk+1 ≥ pthres then

computepddt(n, pthres, k + 1, pk+1, ak+1,

bk+1, ck+1)

end if

end for

return

end function

TABLE 2. Timings of pDDT for XOR on 32-bit words using algorithm 1.

algorithms search space is equal to 3951388 from Table 2.

If we decrease the value of threshold the size of search

space will increase depending on the threshold value and the

differential path computational speed of our algorithm will

decrease in equal proportion.

VI. NESTED MONTE CARLO SEARCH

Our algorithm is inspired by Nested Monte Carlo Search

(NMCS) algorithms. The Monte Carlo method is a heuris-

tic based random sampling method. Coulom [19] proposed

an application to game-tree search based on Monte Carlo

method in 2007 named as Monte Carlo Tree Search (MCTS).

This algorithm was useful to games where it is hard to for-

mulate an evaluation function, such as the game of Go. Later

for a single player game, a variant called Nested Monte Carlo

Search has been proposed in [3].

Let us take a tree-like structure to understand the Nested

Monte-Carlo Search algorithm. At each step, the NMCS

algorithm tries all possible moves and memorizes the move

associated with the best score of the lower level searches.

In other words, a nested move of level 1 makes a playout for

every possible move and chooses to play the move of the best

playout. A nested move of level 2 does the same thing except

that it replaces the playout by a nested move of level one.

During the first iteration the initial state (root) is selected,

and for the selected state all legal moves are determined

FIGURE 2. Nested Monte Carlo search.

(Figure 2). Therefore at level 0 it plays the random game

for all possible moves valid for selected state (root). Then

it moves one step ahead to the next level with the greatest

associated score.

Therefore, we changed the original NMCS algorithm to

eliminate this problem for our cipher and presented a new

algorithm based on NMCS with an example in the next

paragraph. Instead of trying all possible moves, we try

only one random move.

The problem of finding a differential path in a cipher with

high probability could be treated as the problem of finding

fast routes between two cities on a roadmap. Let us try to

understand the algorithm in this context. Our goal is to find

the shortest path from one city to another city. We represent

all possible paths as a tree, as shown in Figure 3. The root

of the tree is considered as the starting point, and all leaves

are end points reached by different paths (nodes). Each edge

between nodes is associated with a number which represents

the distance between the two nodes. Initially, we have two

lists named BestPath and CurrentPath. They represent the

best available path from previous searches and a random path

which is under investigation, respectively. The last element in

both lists represents total distance traveled. Both the lists are

initially empty.

FIGURE 3. Different paths from the root (base node) to the destination
(leaf nodes).

Initially, the algorithm takes a random move from the base

node to the leaf node and saves the path in the Current Path

list. Let us say that the random path selected by the algorithm

is {a, b, d, i} with distance score 18. Since initially there was
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FIGURE 4. Random path from the base node to the leaf node.

FIGURE 5. A random path from the b node to the leaf node.

no better path available (BestPath is empty), then we save the

current path and its distance as BestPath (See Figure 4).

Again we move one level down in BestPath and start a new

random move from the node. Therefore in our example we

will start from node b, and we found a new random path

{b, e, k}. The new path score (including the distance above

b) is 10, which is better than the previous best path score.

Therefore we update BestPath by CurrentPath a, b, e, k and

update the score also (See Figure 5).

Again in the BestPath we go one step down and repeat the

same process. We play a random move from e and find the

new path is {e, j}(See Figure 6.) The score for CurrentPath

is 15, which is not better than the previous best path. Hence,

we do not update BestPath.

Once we reach the leaf node, we repeat the whole process

from the base node. This time BestPath would not be empty,

as there would be some result from the previous search.

FIGURE 6. Random path from node e to leaf node.

In this kind of problem, we often face the exploration

versus exploitation dilemma when searching for a new

path. In our algorithm, by letting it investigate entirely new

paths (starting randomly from the base node), the algorithm

‘‘cares’’ about exploration. On the other hand, by investigat-

ing BestPath on the subsequent levels of the tree, we exploit

BestPath and hope to improve it.

VII. FORMAL DESCRIPTION OF OUR ALGORITHM

BASED ON NMCS

To formally describe the algorithm, let us first define two

functions, which are the main building blocks of the algo-

rithm. The first function RandomPath(node_position) is the

function, which for a given node walks a random path in

the search tree until it reaches the leaf node. The function

RandomPath returns a list of nodes (from the base node to

the leaf) and the cost corresponding to the path.

Algorithm 2 A Basic Function to Generate a Random Path

1: function randomPath(node_position)

2: while node_position 6= leaf do

3: go randomly to the next node

4: end while

5: return path, cost

6: end function

The second function Nested(node_position) is a recursive

function, which calls itself on every level of the tree search

until it reaches the leaf node. The pseudo-code of the function

is given in Algorithm 2. In the given pseudo-code we use two

global variables, which keep a list of nodes in the best path

(best_path) and its corresponding cost (best_cost). Initially,

best_path is empty and best_cost is initialized with some

big value. (Here we assume that a lower cost means a better

solution.)

Algorithm 3 The Recursive Function Nested

function Nested(node_position)

while node_position 6= leaf do

path, cost = RandomPath(node_position)

if (cost < best_cost) then

best_cost = cost

best_path = path

end if

update node_position

by going a level below in best_path

if node_position 6= leaf then

Nested (node_position)

end if

end while

end function
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Algorithm 4 Iterative Calls to the Function Nested

1: best-score = 9999999, node_position = base node

2: while i < number_of _iterations do

3: Nested (node_position)

4: i = i+ 1

5: end while

Algorithm 5 Function to Find Differential Path

1: function int FIND-BEST-PATH(st0, st1, rounds)

2: while not end of the rounds do

3: if (st0 and st1) ∈ pDDT then

4: Add differential output and the weight to the

5: path and weight list, respectively

6: else

7: op = st1 ⊕ st0
8: wt = weight(st0, st1, op) (Calculate the

9: weight using method described in section IV)

10: Add differential output op and the weight wt

11: to the path and weight list, respectively

12: end if

13: SPECK Encryption operations

14: end while

15: return path,weight

16: end function

The Nested function can be called iteratively in a loop

until we meet our criterion as shown in Algorithm 3. The

criterion could be, for example, a number of iterations, time

limit or the maximum cost of the best path. The algorithm

could also be easily run in parallel. We can do this either with

completely independent instances or with a small overhead to

communicate best solutions between instances.

VIII. FINDING DIFFERENTIAL PATHS

In SPECK cipher, the only source of non-linearity is the

modular addition, and its complete differential properties

(differential distribution tables) are infeasible to calculate.

Therefore, we use our heuristics algorithm to circumvent this

limitation and to find the best differential trails. As described

earlier, the algorithm takes a random decision from the search

space. For the larger variant of SPECK this random property

of the algorithm is not enough to produce good results. There-

fore, we decide to reduce the search space of the algorithm

by introducing a partial difference distribution table (pDDT).

This table is used in our algorithm and instead of taking

random inputs for SPECK, we take the initial inputs from

pDDT table, which contains valid differentials above the

threshold value. We show the details in Algorithm VIII. Each

time SPECK starts the next round, the algorithm initially

checks the values in the pDDT table. If it does not find

such a value in the pDDT set, it simply calculates a valid

differential output for given inputs, without any threshold

condition. In our experiment with SPECK cipher, modular

addition for each round is treated as a node where we need

Algorithm 6 Finding Differential Paths in SPECK Through

Nested Monte-Carlo Search
1: function int Nested(st0, st1, rounds, best_weight ,

weight_above)

2: while not end of the rounds do

3: temp_path_list , temp_weight = FIND-BEST-

4: PATH(st0,st1, rounds)

5: if (temp_weight+weight_above < best_weight)

then

6: best_weight = temp_weight+weight_above

7: Update best_path_list by temp_path_list

(from

8: current round to end of the round)

9: Update weight_list by temp_weight (from

10: current round to end of the round)

11: end if

12: update st0 and st1 from best_path_list with the

13: decision for current rounds

14: weight_above = weight from first round to cur-

rent

15: speck round

16: rounds = rounds+ 1

17: end while

18: return best_weight

19: end function

Algorithm 7 Searching a Differential Path With NESTED

1: while best_weight > weight_threshold do

2: Take the ith indexed value of st0, st1 from pDDT list

3: path, best_weight = Nested (st0, st1,)

4: rounds, best_weight,weight_above

5: i = i+ 1

6: end while

to take a decision of required output (valid differential) and

the weight of a valid differential is treated as a score. Our aim

is to find a different path for a given number of rounds with

lower weight.

The basic FIND-BEST-PATH function runs the cipher for a

given number of rounds. The function checks the differential

values in the pDDT table having a probability greater than

some threshold value. In case the algorithm does not find

such a value in the table then it calculates a valid differential

output by XOR-ing the two inputs, which gives the highest

probability with given inputs (best possible path for given

differences). We have not mentioned the SPECK encryption

operations in the algorithm for simplicity, and it is trivial that

after each round of encryption st0 and st1 changes its value

and every time we check these two values in the pDDT table

list.

To calculate the differential path by our algorithm using

the pDDT table, we use the main function in Algorithm 6.

The calculated weight from round 1 to the current round

is represented by weight_above. The two lists weight_list
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FIGURE 7. Algorithm applying on SPECK Cipher.

and best_path_list saves the weight and list of the path for

each decision from one round onwards. Both lists are ini-

tially empty, and the value of weight_above and best_weight

given to algorithm is 0 and 9999 respectively. Every time

the weight_list and best_path_list is updated with the newly

found sequence, and the best move is played. The total num-

ber of rounds for whichwe are trying to find the lowest weight

is represented by srounds. The first and second half block of

SPECK cipher is represented by st0 and st1.

We can now call NESTED in a loop until a criterion is met

(for example best weight threshold).

IX. OBTAINING LONG CHARACTERISTIC

It is easier to find a short characteristic (for a small number

of rounds) instead of a long characteristic. Therefore, we use

the start-in-the-middle approach to find a long characteristic

from two shorter ones. In this method, we start our algorithm

from the middle of the rounds in two directions, forward and

backwards. In this experiment, we apply internal difference

inputs from in the middle of the given number of rounds.

For example, if we want to find a path for 14 rounds, then

we pass inputs to our algorithm and let it run for 7 rounds

in the forward direction and 7 rounds in backwards (reverse)

direction. Once results from both are achieved, we combine

them to get a long characteristic of 14 rounds. This method

also increases time efficiency and provides better results.

X. RESULTS

In this paper, we use our naive algorithm extended with

the partial difference distribution table (pDDT) for finding the

best differential trails in ARX cipher SPECK. We show the

practical application of the new method on round-reduced

variants of block cipher from the SPECK family. For the

32-bit state of the cipher, it only makes sense to analyze

the differential paths with probability higher than 2−32. It is

because a path with lower probability would not lead to any

meaningful attack, which would be faster than exhaustive

search in the 32-bit state. Similarly for SPECK48, SPECK64,

SPECK96 and SPECK128 probability should be higher than

2−48, 2−64, 2−96 and 2−128 respectively. We run the exper-

iments for long characteristics starting from the first round.

We report the differential path in Appendix I (Table 3,4) for

up to 8, 9, 11, 10 and 11 rounds of SPECK32, SPECK48,

SPECK64, SPECK96 and SPECK128 respectively. In the

table left and right part of the state are denoted by 1L and

1R, respectively. Differences are encoded as hexadecimal

numbers (Probability for a given weight is 2−weight ).

In the second part, we also perform the experiment starting

from the middle round and run our tool in both directions,

reverse as well as forward. Using this method we improved

our results and report the differential path in Appendix I

(Table 6,7) for up to 9, 10, 12, 13 and 15 rounds of SPECK32,

SPECK48, SPECK64, SPECK96 and SPECK128 respec-

tively. For variants with larger block size, say 96 or 128,

we achieved better results.

XI. DIFFERENTIAL ATTACKS

Dinur [20] proposed an enumeration technique for key recov-

ery in differential attacks against SPECK. Consider we have

differential characteristic of SPECK2n/mn with r number of

rounds that has probability p > 2·2−2n. The technique can be

used to recover (r+m) rounds. We first attack (r+m) rounds

with the value m = 2. The number of plaintexts required to

recover the keywill be 2·p−1 with an average time complexity

of 2 ·p−1 ·2(m−2)n encryptions. Then we can extend the attack

to the remaining instances, with m = 3 and m = 4.

Let us take one variant SPECK32, we have 8 rounds

differential characteristics with probability 2−30. Combined

with Dinur’s enumeration technique for key recovery, given

differential characteristics can be used to attack 12-round

SPECK32with 2·230 = 2·231 plaintexts and 2·230 ·232 = 263

encryptions.

XII. CONCLUSION

By applying our algorithm based on Nested and by reduc-

ing the search space using the partial difference distribution

table (pDDT) to all five instances of block cipher SPECK,

we obtain better results for all variants. Another method

we attempted was starting from the middle and working

in both directions. This method produced good results for

bigger state sizes. By changing the threshold, we can

increase or decrease the size of pDDT table. For a bigger

threshold value, pDDT size is small, and speed of experiment

is fast because of smaller search space. However, the trade-

off is that we may miss a few values which are necessary to

make a good differential path. On the other hand, for smaller

threshold values, pDDT table is large, and the resulting exper-

iment speed is slow because of the bigger search space. That

being said, the larger search space might include the values

which are necessary to make a good differential path.

APPENDIX I.

APPENDIX II.

DINUR’s ENUMERATION TECHNIQUE FOR KEY

RECOVERY ATTACK AGAINST SPECK

Generally for the key recovery of differential cryptanaly-

sis, counting techniques are common. We extract partial
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TABLE 3. Differential trails for SPECK32, SPECK48, SPECK64.

TABLE 4. Differential trails for SPECK96, SPECK128.

TABLE 5. Differential attack on SPECK.

key material from outer rounds of the cipher using sta-

tistical analysis. However in case of SPECK, Dinur [20]

increased the number of rounds attacked with the application

of enumaration techniques in the key recovery. The enumer-

ation technique tries all suggestions for the full key proposed

by a sub-cipher attack. To describe the attack on SPECKwith

enumeration technique, we consider the case when m = 2,

master key contains 2 words. This attack can be extended

to other cases when m = 3 or m = 4. Let us say, we have

r-round differential (1x0, 1y0)→ (1xr , 1yr ) of the cipher

with probability p. In such case we can proceed to attack as

follow:
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TABLE 6. Differential trails for SPECK32, SPECK48, SPECK64.

TABLE 7. Differential trails for SPECK96, SPECK128.

• Request the encryption of p−1 plaintext pairs P and P′ =

P⊕(1x0, 1y0) and denote the corresponding ciphertexts

by C and C ′, respectively.

• For the plaintext pairs P and P′: Execute the 2

round attack (Section ‘‘The 2-Round Attack’’) using

(1xr , 1yr ), C and C ′ and get suggestions for kr+1 and

kr . For the suggested value of kr+1 and kr , reverse the

key schedule to obtain the master key. Test the master

key using additional encryptions and if passes the test

return the master key.

In the given attack, we need 2 ·p−1 plaintexts. The average

time complexity is less than 2 encryptions in the key recovery

of 2 round attack (Section ‘‘The 2-Round Attack’’) and there-

fore the total time complexity of the attack is 2 · p−1. For

m = 3 or m = 4, by guessing the last m − 2 round keys,

we can recover r+m rounds with complexity 2 ·p−1 ·2(m−2)n

encryptions.

THE 2-ROUND ATTACK

In this section we present the details of 2 round attack on

cipher. We use r-round differential path for this attack. Con-

sider we have initial difference (1x0, 1y0) and final differ-

ence (1xr , 1yr ). We take final differences (1xr , 1yr ) as

the input of 2-round differential attack. We are given actual

values of (xr+2, yr+2) and (xr+2 ⊕ 1xr+2, yr+2 ⊕ 1yr+2).

We try to enumerate possible round keys kr and kr+1 so that

partial decryption of 2 round of the pairs (xr+2, yr+2) and

(xr+2 ⊕1xr+2, yr+2 ⊕1yr+2) is equal to (1xr , 1yr ).

The notation we use in our analysis is given in Figure 8,

where the XOR differential notation is given on the left,

and the notation of the intermediate encryption values for

(xr+2, yr+2) is given on the right.

All the XOR differences in the 2 round scheme can be

easily determined. Since 1xr+1 = 1yr+1⊕ (1yr ≪ β) and

1yr+1 = (1xr+2 ⊕ 1yr+2) ≫ β can be calculated using
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TABLE 8. Differential Attack on SPECK.

FIGURE 8. Two rounds of Speck.

known variables. The value of yr+1 = (xr+2 ⊕ yr+2) ≫ β

can be calculated using the known values of (xr+2, yr+2)

whereas xr+1 and (xr , yr ) remains unknown. Finding the

values of kr+1 and kr is equivalent to find the values of xr
and xr+1, as kr+1 = (yr+1 ⊞ (xr+1 ≫ α)) ⊕ xr+2 and as

yr = (xr+1⊕ yr+1) ≫ β, then kr = (yr ⊞ (xr ≫ α))⊕ xr+1
can be derived as well. Therefore we concentrate on finding

the intermediate values of xr and xr+1.

The problem of solving differential equations of addition

(DEA) of the form (x ⊕ δ1) ⊞ (y ⊕ δ2) = (x ⊞ y) ⊕ δ3
(where δ1, δ2, δ3 are given and x, y are unknown variables)

is a basic problem in the analysis of ARX cryptosystems, and

was extensively studied in several papers. For SPECKwe can

also write the same equation and find values of xr and xr+1,

we omit the right circular shift ≫, and then we have two

differential equations of addition:

(xr ⊕1xr )⊞ (yr ⊕1yr ) = (xr ⊞ yr )⊕1xr+1

(xr+1⊕1xr+1)⊞(yr+1 ⊕1yr+1) = (xr+1 ⊞ yr+1)⊕1xr+2

where all differences are known, and in the second equation

yr+1 and yr+1 ⊕1yr+1.
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