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Abstract: The application of nanoparticles (NPs) in industry is on the rise, along with the potential for

human exposure. While the toxicity of microscale equivalents has been studied, nanoscale materials

exhibit different properties and bodily uptake, which limits the prediction ability of microscale

models. Here, we examine the cytotoxicity of seven transition metal oxide NPs in the fourth period

of the periodic table of the chemical elements. We hypothesized that NP-mediated cytotoxicity is

a function of cell killing and suppression of cell proliferation. To test our hypothesis, transition metal

oxide NPs were tested in a human lung cancer cell model (A549). Cells were exposed to a series of

concentrations of TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, or ZnO for either 24 or 48 h. All NPs aside

from Cr2O3 and Fe2O3 showed a time- and dose-dependent decrease in viability. All NPs significantly

inhibited cellular proliferation. The trend of cytotoxicity was in parallel with that of proliferative

inhibition. Toxicity was ranked according to severity of cellular responses, revealing a strong

correlation between viability, proliferation, and apoptosis. Cell cycle alteration was observed in the

most toxic NPs, which may have contributed to promoting apoptosis and suppressing cell division

rate. Collectively, our data support the hypothesis that cell killing and cell proliferative inhibition are

essential independent variables in NP-mediated cytotoxicity.

Keywords: nanoparticle; cell proliferation; transition metal oxide; cell cycle; apoptosis

1. Introduction

Nanotoxicology is the study of nanomaterial toxicity. Nanomaterials are defined as any

particulate or agglomerate that has at least one dimension in the size range from 1 to 100 nm [1].

Nanomaterials are being used with an increasing frequency in a variety of industries. Their use is

common in semiconductors [2], electronics [3], pharmaceuticals [4], cosmetics [5], consumables [6],

and drug delivery platforms being studied for cancer therapy [7]. It is estimated that by the year

2020 the global market for nanomaterial-based applications will reach approximately $3 trillion,

and there will be six million workers in the nanotechnology sector worldwide [8,9]. With the use

of nanomaterials increasing in frequency and application, exposure amongst the general public and

occupational workers has become a concern. While toxicological data exists for some of the microscale

equivalents of nanoparticles (NPs), the information cannot predict nanotoxicity, as nanoscale materials

have different physical and chemical properties than their microscale equivalents [10]. Particles of
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smaller size, specifically NPs, can be inhaled deeper into the lungs than larger particles and may

enter the circulatory system, resulting in inflammation, systemic distribution, cardiovascular disease,

and potential neurological effects [11]. To date, there have not been any epidemiological studies or

clinical evidence of NPs causing adverse health effects in humans [12]. However, studies have shown

toxicity of select NPs in animal models or in vitro studies [13]. The National Institute for Occupational

Safety and Health has designated workplace and occupation exposure limit recommendations for

some particles based on their size. For example, TiO2 exposure is suggested to be limited to 2.4 mg/m3

for particles less than 2.5 µm and 0.3 mg/m3 for particles less than 0.1 µm during work days lasting up

to 10 h during a 40-h work week [12]. Certain regulations on consumer exposure through food have

also been established [6,14].

Our previous studies have demonstrated relationships between NPs, production of reactive

oxygen species (ROS), and perturbation of intracellular Ca2+ concentrations ([Ca2+]in) [15–17].

NPs increase [Ca2+]in. The moderation of this increase is attributed to the influx of extracellular calcium,

membrane integrity disruption, and perturbation of store-operated calcium entry. The increases

in intracellular ROS levels may also have multiple sources. There exist synergistic relationships

between [Ca2+]in and oxidative stress (OS) as the increases in both can be reduced by antioxidants.

Finally, while [Ca2+]in and OS affect the activity of each other, they both induce cell death by distinct

pathways [17]. By systematically studying seven oxides of transition metals in the fourth-period of the

periodic table of elements (Ti, Cr, Mn, Fe, Ni, Cu, Zn), we delineated that cytotoxicity is a function of

particle surface charge, relative number of particle surface binding sites, and metal ion dissolution

rate [18].

NP-mediated toxicity is a rather complicated process and more factors, other than the ones we

have determined, are at work. There have been numerous reports on titanium oxide [19], nanogold [20],

carbon nanotubes [21], silica oxide [22], aluminum oxide [15], and cerium oxide [23] relating to cell

killing. The final cell number that researchers observed was more than just the effect of cell death.

Indeed, the outcome of reduced cell number could be the consequence of cell proliferation rate

alteration. Herein, we hypothesize that cell viability is a function of cell killing and suppression of cell

proliferation. To test our hypothesis, we conducted time- and dose-dependent cytotoxicity studies

using human bronchoalveolar carcinoma (A549) cells as a model. Particle properties such as shape,

size, and specific surface area were characterized by transmission electron microscopy (TEM) and the

Brunauer–Emmett–Teller (BET) method. Apoptosis measurement was performed with flow cytometry

and verified with cellular imaging. Tritiated thymidine incorporation was used to determine the rate

of cell proliferation. Toxicity was ranked according to severity of cellular responses and a correlation

analysis between viability, proliferation, and apoptosis was conducted to visualize the strength of

relation between the toxic responses induced by each NP. Alteration of cell cycle was assessed to

ascertain whether it contributed to changes in cell proliferation in the two most toxic NPs.

2. Results

2.1. Characterization of Nanoparticles

Physical properties of the seven transition metal oxide NPs were previously characterized

(Table S1) [18]. The approximate physical sizes (APS) of the NPs ranged from 16 ± 5 nm (NiO) to

82 ± 31 nm (Mn2O3). The APS measured in the report were similar to those in the data sheet provided

by the manufacture. TEM revealed needle-like (TiO2), nearly spherical (Cr2O3, NiO, CuO, ZnO),

or spherical (Mn2O3, Fe2O3) morphology for each of the NPs. The lowest specific surface area (SSA) of

the NPs was 8.7 m2/g (Mn2O3) and SSA ranged to a high of 179 m2/g (TiO2). It was noted that while

TiO2, Fe2O3, and CuO had similar APS, they possessed distinctly different SSA. This could be due to

differences in surface porosity, morphology, or particle aggregation.
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2.2. Reduction of Cytotoxicity

Concentration- and time-dependent cytotoxicity of the seven transition metal oxides is summarized

in Figure 1. These NPs can be arranged in three cytotoxicity “tiers” with Fe2O3, Cr2O3 and TiO2 being

nontoxic to mildly toxic, NiO and Mn2O3 being moderately toxic, and ZnO and CuO being highly toxic.

The two highly toxic particles were so devastating that the concentration ranges for these particles had

to be lowered to 0–20 µg/mL from 0–100 µg/mL that was used for all other particles. Specific viability

percentages can be found in Supplementary Table S2 (24-h) and Supplementary Table S3 (48-h). In the

low toxicity group, Fe2O3 and Cr2O3 did not produce notable changes in viability (n = 3, p’s > 0.05).

The 24- and 48-h viabilities of 100 µg/mL of TiO2 were similar, being 76.2 ± 5.1% at 24 h and 72.8 ± 4.7%

at 48 h. A significant decrease in viability upon TiO2 exposure was observed at both time points and

all concentrations except for 24-h 10 µg/mL (n = 3, p’s < 0.05). Both moderately toxic particles (NiO

and Mn2O3) demonstrated greater viability decline in the 48-h group compared to the 24-h group and

had significant decrease in viability at all times and concentrations (n = 3, p’s < 0.05). The 100 µg/mL

of NiO dose resulted in 36.8 ± 4.6% at 24 h and 9.7 ± 1.8% at 48 h, with the 100 µg/mL of Mn2O3

producing similar changes of 40.4 ± 5.5% at 24 h and 15.7 ± 5.1% at 48 h. In the high toxicity group,

greater toxicity was also observed with ZnO at 48 h. ZnO produced significant changes at 16 and

20 µg/mL after 24 h and all concentrations except 4 µg/mL after 48 h (n = 3, p’s < 0.05). The responses

varied between concentrations for ZnO with the values at 8 µg/mL being 94.0 ± 3.4% for 24 h but

48.4 ± 3.4% for 48 h. By doubling the concentration, the viability at 16 µg/mL dropped to 48.6 ± 2.1%

for 24 h and 1.6 ± 0.1% for 48 h. At 20 µg/mL, almost no living cells were detected. CuO viabilities

were similar at both 24 and 48 h across all concentrations but were all significantly different from the

controls (n = 3, p’s < 0.05). CuO exposure of 20 µg/mL resulted in a viability of 3.5 ± 1.0% at 24 h and

6.6 ± 2.9% at 48 h. The toxicity trend is similar to that of our previous findings [18]. This indicates that

1) the NPs have been stable in the storage condition specified in the Materials and Methods and 2)

variabilities between multiple experimenters are negligible.
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Figure 1. Viability of A549 cells after (A) 24- or (B) 48-h exposure to various concentrations of one of

seven nanoparticles.

2.3. Induction of Apoptosis

We combined early apoptotic cells with late apoptotic cells to determine the total proportion of

cells undergoing apoptosis at each time point. The total apoptotic percentage in the treatment groups

was compared to the corresponding control groups. The total apoptotic percentages for all seven NPs at

24 and 48 h are summarized in Figure 2 (Supplementary Tables S4 and S5). For the low to mildly toxic

tier, both time points and all concentrations of Cr2O3 and Fe2O3 showed no difference in apoptosis

when compared to the control group (n = 3, p’s > 0.05). TiO2 at 24 h exhibited elevated apoptosis at

100 µg/mL (12.5 ± 2.9%) and at all concentrations at 48 h (n = 3, p’s > 0.05). For the moderate tier,

NiO had significant apoptosis at 100 µg/mL (13.8 ± 2.5%) at 24 h and Mn2O3 induced significant

apoptosis at 50 µg/mL (17.3 ± 4.6%) as well as at 100 µg/mL (21.6 ± 5.4%) (n = 3, p’s < 0.05). NiO at

48 h exhibited significant apoptosis induction at all concentrations tested while Mn2O3 only displayed

significant increase in apoptosis at 100 µg/mL (23.8 ± 7.2%) compared to the control (n = 3, p’s < 0.05).

In the high toxicity tier, ZnO had significant induction at only 20 µg/mL at both 24-h (77.5 ± 7.8%)

and 48-h (68.4 ± 6.3%) time points (n = 3, p’s < 0.05). All tested doses of CuO produced significant

apoptosis in both time groups, with 100 µg/mL causing apoptosis in extremely high numbers at 24

(88.2 ± 5.3%) and 48 h (86.6 ± 4.6%) (n = 3, p’s< 0.05).
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Figure 2. Flow cytometry gating of cells treated with (A) 0 and (B) 20 µg/mL of ZnO after 24 h.

Total apoptosis of A549 cells after (C) 24- or (D) 48-h exposure to various concentrations of one of

seven nanoparticles.

2.4. Alteration of Cell Morphology

Alterations in cell morphology due to NP exposure were observed both by epifluorescence

microscopy (Figure 3A) and scanning electron microscopy (SEM) (Figure 3B). Apoptotic morphologies

such as membrane blebbing, nuclear fragmentation, and apoptotic bodies were clearly observed.



Int. J. Mol. Sci. 2020, 21, 1731 6 of 17

Membrane blebbing was particularly noticeable under the SEM close-up image. The severity of

apoptosis observed was similar to the trend set by viability results, with Cr2O3 and Fe2O3 treatment

resulting in none to minimal toxicity and small numbers of apoptotic cells, Mn2O3 and NiO having

moderate numbers, and ZnO and CuO having high numbers, with almost no healthy cells remaining.

Figure 3. (A) Fluorescence apoptotic stains with Annexin V-FITC and 7-aminoactinomycin D (7-AAD)

after cells were exposed to nanoparticles at 50 or 10 µg/mL. Green color alone indicates cells undergoing

early apoptosis. Red and green in combination indicate cells undergoing late apoptosis. Examples of (I)

blebbing, (II) nuclear fragmentation, and (III) apoptotic bodies are marked. Scale bar is 10 µm. (B) SEM

images of A549 cells after exposure to 50 µg/mL MnO. Membrane blebbing is quite noticeable in the

close-up image.
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2.5. Suppression of Cell Proliferation

Tritiated thymidine incorporation is indicative of cell proliferation rate. The percentage of cells

proliferating was calculated by taking the average of all radioactive counts in a dosage group and

dividing it by the average of the radioactive counts of the untreated group. Figure 4 shows time-

and concentration-dependent suppression of cell proliferation. Significant inhibition of proliferation

was observed at high doses in all seven NPs for both time points (Supplementary Tables S6 and S7).

Cr2O3 and Fe2O3 treated cells were the least affected with 24-h 100 µg/mL doses having cells actively

proliferating at 74.5 ± 10.4% and 79.6 ± 0.2%, respectively. These values were similar to the 48-h

values, with 73.9 ± 5.6% for Cr2O3 and 75.3 ± 0.3% for Fe2O3. Although, the decreases for Cr2O3 and

Fe2O3 were significant at 50, 75, and 100 µg/mL at both time points, as well as at 10 and 25 µg/mL of

Fe2O3 after 24 h (n = 4, p’s < 0.05). TiO2 differed from the rest of the low toxicity group by having

greater decreased proliferative percentages at 100 µg/mL (69.6 ± 8.9% for 24 h and 61.6 ± 2.9% for 48 h),

with significant decreases observed at all concentrations and times (n = 4, p’s < 0.05). The moderately

toxic group also produced a significant decrease at all times and concentrations (n = 4, p’s < 0.05).

While NiO had high time-dependent proliferative reduction at 100 µg/mL (43.8 ± 4.6% for 24 h and

21.6 ± 4.9% for 48 h), Mn2O3 inhibition of proliferation at 24 (15.2 ± 5.5%) and 48 h (5.8% ± 2.2%) was

much less prominent. ZnO had complete inhibition of proliferation at both 24 (1.7 ± 0.3%) and 48 h

(1.0 ± 0.7%) at 20 µg/mL, which should be considered background level radiation. ZnO doses of 12, 16,

and 20 µg/mL exhibited significantly decreased proliferation at both time points (n = 4, p’s < 0.05).

Cells exposed to 20 µg/mL of CuO experienced a similar degree of inhibition at both 24 (1.7 ± 0.6%) and

48 h (0.6 ± 0.3%), though all times and concentrations were significantly decreased (n = 4, p’s < 0.05).
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Figure 4. Proliferation of A549 cells after (A) 24-h or (B) 48-h exposure to various concentrations of one

of seven nanoparticles.

2.6. Alteration of Cell Cycle

We selected ZnO and CuO to study the alteration of the cell cycle (Figure 5,

Supplementary Figure S1, and Table S8). An increase in the S phase and a decrease in the G2/M

phase at 20 µg/mL of ZnO were observed in both 24 and 48 h (n = 3, p’s < 0.05). Compared to

24 h (+9.3%), the increase in the S phase was more prominent at 48 h (+17.1%), which might have

contributed to the more significant decrease in G0/G1 (−11.0%, n = 3, p’s < 0.05). Similar patterns

occurred upon exposure to CuO (n = 3, p’s < 0.05). However, CuO exhibited significant differences

from the control at lower concentrations, with almost no cells observed in G2/M at any concentration.

At 24 h, S phase increased significantly at 20 µg/mL (+11.6%) and G2/M decreased at all concentrations

of CuO, with 20 µg/mL having a change of −7.7% (n = 3, p’s < 0.05). All phases exhibited significant

differences compared to the controls after 48-h CuO exposure, with 20 µg/mL producing changes in

G0/G1, S, and G2/M of −15.2%, +21.7%, and −6.6%, respectively (n = 3, p’s < 0.05).
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Figure 5. Alteration of cell cycle of A549 cells after exposure to various concentrations of ZnO NPs for

(A) 24 h and (B) 48 h or CuO NPs for (C) 24 h or (D) 48 h. Values significantly different from the control

(p’s < 0.05) are indicated with *.

2.7. Correlation

The results of linear regression analyses between 24- and 48-h viability, apoptosis, and proliferation

rankings are illustrated in Figure 6.
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Figure 6. Linear regression analysis of (A) 24 h viability vs. proliferation (B) 48 h viability vs.

proliferation (C) 24 h viability vs. apoptosis (D) 48 h viability vs. apoptosis (E) 24 h proliferation vs.

apoptosis (F) 48 h proliferation vs. apoptosis.

3. Discussion

In this study, we investigated the cytotoxicity of seven fourth-period transition metal oxide

NPs and explored several cellular responses as components of cytotoxicity. We hypothesized that

cytotoxicity is a function of cell killing and suppression of cell proliferation and, as such, we assayed

for cell viability, apoptosis, cellular proliferation, and cell cycle progression. Data from cell viability

indicated the response to NPs is concentration- and time-dependent. Importantly, data revealed that

NPs exert a higher degree of toxicity towards 48-h and longer exposure. To our knowledge, the temporal

stability of NPs in storage has not been addressed. We took the opportunity to compare our current 24-h

viability data to the data from our previous study, which was conducted by a different experimenter [18].

Concentration-dependent patterns from both studies resembled each other, with some slight variations.

This is indicative of particle stability in storage conditions. However, we did notice that TiO2 seemed to
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be more toxic in these sets of experiments (approximately 96% in previous vs. 76% in current). Due to

this discrepancy, multiple researchers were asked to perform the same experiment to ensure our results

were reliable, which yielded almost the same outcome. We are unsure of what caused the difference,

but particle-specific aging is speculated.

Induction of apoptosis is a hallmark of NP toxicity [24]. For our purposes, early and late apoptotic

events were combined into a total apoptotic value. Concentration- and time-dependent apoptotic

effects were observed in TiO2, NiO, Mn2O3, CuO, and ZnO, with the last two showing a much more

severe degree of programmed cell death. Epifluorescent microscopy and SEM images confirmed

apoptotic morphologies, such as membrane blebbing and nuclear fragmentation, after exposure to

NPs. Cell viability reduction correlated with apoptotic events, indicating a close pathway-dependent

relationship (Figure 6A,B).

Plenty of nanotoxicological studies have focused on NP-imposed cell killing [25–27]. We believe

that cell killing may not be the only reason that results in cell number reduction. The suppression of cell

proliferation can have the same effect as cell killing in driving down cell numbers. Whether transition

metal oxides have influences over cell proliferative inhibition has not been systematically investigated.

In this study, all seven oxides of transition metal NPs in the fourth period of the periodic table showed

time- and concentration-dependent proliferative inhibition in A549 cells. In general, proliferative

inhibition followed the same tier trend as cell viability. NiO and Mn2O3 exhibited more prominent

time-dependent inhibition than TiO2, Cr2O3, and Fe2O3. Strikingly, the degrees of time-dependent

suppression of proliferation by CuO and ZnO were much steeper at 12 and 16 µg/mL as time

progressed towards 48 h. A significant correlation between cell viability reduction and suppression of

cell proliferation suggests a proliferative inhibition is an independent variable influencing cell number,

in addition to cell killing (Figure 6C,D). Previously we developed a model to estimate the number of

cells in the second generation [28]:

Cell # in Generation 2 = 2 (Proliferating cells) + Non-proliferating cells - Dead cells (via killing) (1)

This model assumes the doubling time of a cell line is 24 h and the rate of doubling time is

not altered by the NPs. Future studies should investigate the differential contribution of these two

components to the change in cell number.

The cause of the observed cell proliferation suppression may be multiple. Alteration of cell cycle

induced by the NPs could have a major influence. We selected CuO and ZnO to further investigate

this issue. Time- and concentration-dependent effects on cell cycle in response to NP exposure were

observed. In general, there was an increase in the proportion of cells in S phase and a decrease in the

G0/G1 and G2/M phases. Cells arresting in certain phases of cell cycle either attempt to fix damage

or accumulate too much damage and undergo apoptosis. The increase in S phase indicates that cells

exposed to CuO and ZnO are being stalled in S phase; the NPs may directly damage DNA or be

influencing DNA replication machinery. In this study, significant correlation between suppression

of proliferation and apoptosis may suggest cell cycle alteration-mediated cell death plays a role in

proliferative inhibition (Figure 6E,F). Other studies also have observed cell cycle alteration induced by

NPs and the phenomenon is quite dynamic. Arrest can occur in any phase, or in multiple phases of the

cell cycle. Phase-specific arrest depends on cell line, particle, and particle concentration of [28–33].

For instance, in one study [34] exposure to NiO NPs resulted in a significant decrease in G0/G1 and an

increase in G2/M in A549 cells. In contrast, exposure to NiO NPs led to a significant increase in G0/G1

and a decrease in G2/M in BEAS-2B cells [34]. Exposure to NiO NPs caused BEAS-2B cells arrest in

the G2/M phase, while ZnO and Fe2O3 did not affect the cell cycle [34,35]. It is important to be aware

of the fact that NPs composed of the same elements may have quite different physical and chemical

properties, such as surface charge, surface area, dissolution of ions, morphology, and crystalline

structure, in different studies. Consequentially, interpretations of the dynamic outcome in cell cycle

alteration becomes a complicated issue if NPs are not well characterized.
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4. Materials and Methods

4.1. Material Sources

A549 cells were obtained from the American Type Culture Collection (ATCC CCL-185, Manassas,

VA, USA). The seven transition metal oxide NPs (TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, and ZnO) were

purchased from Nanostructured and Amorphous Materials (Houston, TX, USA). Sulforhodamine B (SRB)

dye was procured from Biotium (Freemont, CA, USA). Annexin V-FITC and 7-AAD were obtained from

BD Biosciences (Franklin Lakes, NJ, USA). Tritiated thymidine came from Perkin-Elmer (Waltham, MA,

USA) and propidium iodide (PI) was purchased from Fisher Scientific (Pittsburgh, PA, USA).

4.2. Storage and Characterization of Nanoparticles

NPs were stored in an amber desiccator under a pure nitrogen atmosphere to protect them from

moisture, oxidation, and UV damage. Before being used, the NPs were further dried in an oven.

Characterization of the NPs followed our previous publication [18]. The shape and APS of NPs were

determined by TEM. The BET method was used to measure the SSA of the NPs.

4.3. Cell Culture

A549 are a common in vitro cell line model for nanotoxicity testing. Cells were maintained

in 10 cm tissue culture dishes at 37 ◦C in a 5% CO2 humidified incubator. The growth media was

Ham’s F-12 modified medium (Corning Inc., Corning, NY, USA) supplemented with 10% HyClone

FetalClone serum (GE Healthcare Life Sciences, Marlborough, MA, USA) and 1% of a combination of

penicillin/streptomycin antibiotics (MP Biomedicals, Irvine, CA, USA). Cells were allowed to grow to

a confluence of approximately 70–80% before being passaged or seeded for experiments. Cells were

only grown for approximately 20 passages before a new vial of cells was brought up from liquid

nitrogen storage.

4.4. Nanoparticle Treatment

NPs were prepared as a one mg per mL working solution by weighing out particles on an analytical

balance and suspending them in a corresponding amount of cell culture medium. The suspensions

were sonicated in sealed polyethylene vials for three minutes to break up aggregates and ensure an

even mixture of NPs. NP suspensions were immediately used for experiments following preparation

and were diluted to the desired concentrations in experimental dishes. For mildly and moderately toxic

NPs (TiO2, Cr2O3, Mn2O3, Fe2O3, and NiO), 0, 10, 25, 50, 75, and 100 µg/mL were used while cells were

only exposed to 0, 4, 8, 12, 16 and 20 µg/mL of highly toxic particles (CuO and ZnO). Apoptosis and

cell cycle experiments were limited to 4 doses of NPs, being 0, 25, 50, and 100 µg/mL for mildly and

moderately toxic and 0, 5, 10, and 20 µg/mL for highly toxic particles. Untreated cells were used as

a negative control in all experiments.

4.5. Cell Viability Assay

A549 cells were seeded into 24-well plates at a density of 45,000 cells per well for 24-h exposure

and 22,000 cells per well for 48-h exposure. Cells were treated with 0, 10, 25, 50, 75 and 100 µg/mL or 0,

4, 8, 12, 16 and 20 µg/mL for mildly and moderately or highly toxic NPs, respectively. At the end of

cell exposure (24 or 48 h) to NP suspensions, the medium was discarded and the SRB assay was used

to determine cell viability relative to the control group, with untreated cells being considered 100%

viable [36]. Briefly, the cells were fixed with cold 10% trichloroacetic acid (TCA) for 1 h at 4 ◦C. The TCA

solution was then discarded, and the fixed cells were washed three times with distilled water, followed

by complete drying. SRB solution (0.2% in 1% acetic acid) was added to stain the cells for 30 min at

room temperature. The solution containing stain was pipetted off and excess dye was eliminated

from the cells by rinsing three times with 1% acetic acid. Sample wells were allowed to dry before
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dissociating the dye in cold 10-mM Tris buffer (pH 10.5). Stained sample solutions were transferred

onto a 96-well plate in aliquots of 100 µL and absorbance was read at 510 nm using a microplate reader

(FLUORstar Omega, BMG Labtechnologies, Cary, NC, USA).

4.6. Apoptosis Analysis

The quantification of apoptosis due to NP exposure was measured using the fluorescent dyes

Annexin V-FITC and 7-AAD on a Cell Lab Quanta SC MPL flow cytometer (Beckman-Coulter, Brea,

CA, USA). Annexin V-FITC binds to and labels phosphatidylserine (PS), a cell membrane phospholipid

that flips to the extracellular surface during apoptosis. 7-AAD is a DNA stain that is only able to

penetrate the permeable membranes of dying cells. A549 cells were allowed to grow for 24 h in 6 cm

tissue culture dishes and then treated with varying concentrations of transition metal oxide NPs for

24 and 48 h. The seeding densities were 250,000 cells per dish and 120,000 cells per dish for 24- and

48-h treatments, respectively. The range of NP concentrations tested included 0, 25, 50, and 100 µg/mL

for TiO2, Cr2O3, Fe2O3, NiO, and Mn2O3 and 0, 5, 10, and 20 µg/mL for ZnO and CuO. At the end of

the exposure period, the media was removed, and the dishes were washed with phosphate buffered

saline (PBS). The cells were harvested using 0.25% trypsin-EDTA (Gibco, Life Technologies, Carlsbad,

CA, USA) and transferred to a centrifuge tube. The tubes were centrifuged, the supernatant was

discarded, and 1 mL of ice-cold PBS was used to wash the pellet. The tubes were then centrifuged

again, and PBS wash was removed. Each sample was resuspended in 5 µL of Annexin V-FITC, 5 µL

of 7-AAD, and 100 µL of 1x Annexin V binding buffer (BD Biosciences, Franklin Lakes, NJ, USA).

These tubes were incubated in the dark for 15 min. After incubation, another 400 µL of Annexin V

binding buffer was added to each sample and 250 µL of this cell suspension was transferred to a 96-well

plate (Corning Inc., Corning, NY, USA) for analysis via flow cytometry. Operating conditions for the

flow cytometer were the stock apoptosis protocol included with the software. The data was exported to

Microsoft Excel 2016 using the Quanta SC Analysis software and calculations of averages and standard

deviations were performed in Excel. The total fraction of apoptotic cells was determined by summing

the populations in early and late apoptosis.

4.7. Scanning Electron Microscopy Imaging

Microscopic examination of apoptotic and control cells was performed using a Hitachi S-4700

SEM (Hitachi, Tokyo, Japan). Cells were grown for 24 h at an initial density of 15,000 cells per dish

in 35 mm glass bottom tissue culture dishes (MatTek, Ashland, MA, USA) before treatment with

50 µg/mL of mildly or moderately toxic NPs or 10 µg/mL of highly toxic NPs for 24 h. At the end

of the exposure period, the cell culture media was removed. The dish was washed with PBS and

the cells were fixed in a solution of 3% glutaraldehyde in PBS overnight. After fixation, the cells

were dehydrated with an increasing series of ethanol concentrations from 50% to 100% for 15 min at

a time, with the final concentration (100%) repeated once. The cells were then dried using a mixture of

ethanol and hexamethyldisilazane (HMDS, Acros Organics, Fisher Scientific, Pittsburgh, PA, USA) for

15 min at a time using a ratio of 1:2 HMDS to ethanol, then 2:1, and finally ending with pure HMDS.

Like the ethanol, the final HMDS step was repeated once. The dishes were then mounted on pin stubs

with carbon dot adhesives or carbon paint. Then the dishes were coated with a mixture of gold and

palladium for 1 min in a Hummer VI sputter coater (Anatech, Sparks, NV, USA) to provide contrast and

prevent charging of the sample once in the SEM. The plastic sides of the culture dish were then pried off,

leaving only the cell-containing glass cover slip on the pin stub. A piece of copper tape was run from

the pin stub to the Au/Pd coated slip to provide a path to ground for the electron beam. The mounted

sample was then placed into the scanning electron microscope for imaging. Operating conditions for

the SEM followed the protocol of the Missouri S&T Advanced Materials Characterization Laboratory.
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4.8. Epifluorescence Microscopy

Qualitative imaging of apoptosis induced by exposure to NPs was observed using the fluorescent

dyes Annexin V-FITC and 7-AAD on an Olympus IX51 inverted epifluorescence microscope (Olympus

Corporation, Tokyo, Japan). Cells were seeded on 35 mm glass bottom microscopy tissue culture

dishes at 15,000 cells per dish and allowed to grow to approximately 70% confluence, around 24 h.

Cells were then treated with 50 µg/mL of mildly or moderately toxic NPs or 10 µg/mL of highly toxic

NPs for 24 h. Following incubation with NPs, the cell culture medium was removed, and the dishes

were washed with PBS. Annexin V binding buffer mixed with 5 µL of Annexin V-FITC and 5 µL of

7-AAD was added and the dishes were incubated in the dark for 15 min. After incubation, the plates

were washed with Annexin V binding buffer twice and enough buffer to cover the bottom of the dish

was left on the cells to prevent drying. The plates were placed into an opaque container to keep them

out of the light before imaging. The cells were imaged using the Olympus microscope, using green

and red filters for Annexin V-FITC and 7-AAD, respectively.

4.9. Tritiated Thymidine Incorporation Assay

The tritiated thymidine ([5′-3H]-thymidine) incorporation assay has been widely used to study

cell proliferation [37] and was used to determine the proliferation of NP-treated cells. A549 cells were

plated into 24-well tissue culture plates with seeding densities of 45,000 and 22,000 cells per well for

24- and 48-h treatment periods, respectively. Cells were exposed to 0, 10, 25, 50, 75, and 100 µg/mL

or 0, 4, 8, 12, 16, and 20 µg/mL for mildly and moderately or highly toxic transition metal oxide

NPs, respectively. At the same time as the cells were dosed with NPs, they were also treated with

20 µL tritiated thymidine. Thymidine working solution was prepared in 500 µL of PBS with 20 µL

of [5′-3H]-thymidine (1 µCi/µL). After 24 or 48 h of exposure, the cell culture medium was removed,

and the wells were washed with ice-cold PBS twice. Following the PBS wash, the cells were quickly

fixed in ice-cold 10% TCA for 5 min on ice. The TCA fixation was repeated once. After fixation, the cells

were lysed using 0.5 mL of room-temperature 1 N NaOH. The same volume of 1 N HCl was used to

neutralize the cell solution. The lysed cell solution was thoroughly mixed by pipetting up and down

and transferred to liquid scintillation counting vials with 4 mL of Econo-Safe scintillation counting

fluid (Research Products International, Mt Prospect, IL, USA). Sample vials were capped, labeled and

racked for analysis in a Beckman liquid scintillation counter LS6500 (Beckman-Coulter, Brea, CA, USA).

Untreated cells were considered to have 100% possible proliferative potential and treatment groups

were presented as relative to the control. All radioactive waste was disposed of following Missouri

S&T’s Department of Environmental Health and Safety procedures.

4.10. Cell Cycle Analysis

The alteration of the cell cycle due to NP exposure was measured using PI staining and subsequent

analysis via flow cytometry. A549 cells were seeded into 6 cm tissue culture dishes with initial

densities of 250,000 cells per dish for 24-h treatment and 120,000 cells per dish for 48-h treatment.

Cells were exposed to varying concentrations of transition metal oxide NPs (0, 25, 50, and 100 µg/mL

for mildly and moderately toxic and 0, 5, 10, and 20 µg/mL for highly toxic NPs) for 24- or 48-h periods.

After incubation with NPs, the cells were washed, harvested using trypsin, and centrifuged down into

a pellet. The cell pellet was then resuspended in 1 mL of PBS and 3 mL of ice-cold absolute methanol

was added dropwise to samples being stirred with a vortex. The cells suspensions were left at least

overnight in 75% methanol to ensure complete fixation. After fixation, the cells were washed once

with PBS and centrifuged. The cells were then suspended in PI staining solution (50 µg/mL PI, 0.1%

RNase A, and 0.05% Triton X-100 in PBS) and incubated in the dark for 20 min. RNase A was included

to destroy any RNA present, as PI can also bind to RNA, and to ensure PI staining was limited to

DNA. Triton X-100 ensured cell membranes were permeable to PI. After incubation, 1 mL of PBS

was added to each sample. Samples were centrifuged, supernatant was removed, and pellet was
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resuspended in 250 mL of PBS. The stained samples were transferred into a 96-well plate and analyzed

with a CytoFLEX flow cytometer (Beckman-Coulter, Brea, CA, USA). Alterations of cell cycle due to NP

exposure were determined through PI fluorescent intensity, as different phases of the cell cycle have

differing amounts of DNA content. The percentage distribution of cells in each phase of the cell cycle

(G0/G1, S, and G2/M) was determined using FCS Express 6 (DeNovo software, Pasadena, CA, USA).

4.11. Statistical Analysis

Each experiment was repeated at least three times independently with treatment groups having

multiple samples. Data are presented as mean ± standard deviation. Statistical analysis was completed

in Minitab 19. One-tailed unpaired t-tests were used to compare experimental groups to the control

group in normalized data sets, with µ > control or µ < control depending on the experimental

hypothesis. Analysis of variance (ANOVA) with Dunnett comparison was used to determine values

statistically significant from control groups. Significance was set at p < 0.05. The majority of figures

were produced using GraphPad Prism 4 except for cell cycle distribution graphs, which were produced

by Microsoft Excel 2016. For correlation analysis, each NP in each assay was assigned a rank from 1 to

7, with 1 having the least effect and 7 having the most severe effect. Once the particles were ranked for

every assay, ranks were compared against one another using linear regression analysis in GraphPad

Prism 4. The R2-value was calculated and displayed on each plot. A high R2 value indicates strong

correlation while a low R2 value is indicative of little-to-no correlation.

5. Conclusions

Our data support the hypothesis that NP-imposed cytotoxicity is a function of cell killing and

cell proliferative inhibition. The adverse effects are time and concentration dependent. Compared to

our study in 2013, cytotoxicity pattern is comparable indicating NPs have been stable in our storage

conditions over the years. Apoptosis and signature morphological changes were confirmed via flow

cytometry, fluorescent microscopy, and SEM observation. Cell arrest in the cell cycle leading to

apoptosis may play a role in suppressing cell division rate.
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