
Differential dataflow

Frank McSherry Derek G. Murray Rebecca Isaacs Michael Isard

Microsoft Research, Silicon Valley Lab
{mcsherry, derekmur, risaacs, misard}@microsoft.com

ABSTRACT

Existing computational models for processing continuously
changing input data are unable to efficiently support itera-
tive queries except in limited special cases. This makes it
difficult to perform complex tasks, such as social-graph anal-
ysis on changing data at interactive timescales, which would
greatly benefit those analyzing the behavior of services like
Twitter. In this paper we introduce a new model called dif-

ferential computation, which extends traditional incremen-
tal computation to allow arbitrarily nested iteration, and
explain—with reference to a publicly available prototype
system called Naiad—how differential computation can be
efficiently implemented in the context of a declarative data-
parallel dataflow language. The resulting system makes it
easy to program previously intractable algorithms such as
incrementally updated strongly connected components, and
integrate them with data transformation operations to ob-
tain practically relevant insights from real data streams.

1. INTRODUCTION
Advances in low-cost storage and the proliferation of net-

worked devices have increased the availability of very large
datasets, many of which are constantly being updated. The
ability to perform complex analyses on these mutating data-
sets is very valuable; for example, each tweet published
on the Twitter social network may supply new information
about the community structure of the service’s users, which
could be immediately exploited for real-time recommenda-
tion services or the targeting of display advertisements. De-
spite substantial recent research augmenting “big data” sys-
tems with improved capabilities for incremental computa-
tion [4, 8, 14, 26], adding looping constructs [7, 12, 17,
20, 25], or even efficiently performing iterative computation
using incremental approaches [13, 19], no system that ef-
ficiently supports general incremental updates to complex
iterative computations has so far been demonstrated. For
example, no previously published system can maintain in
real time the strongly connected component structure in the
graph induced by Twitter mentions, which is a potential in-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits
distribution and reproduction in any medium as well allowing derivative
works, provided that you attribute the original work to the author(s) and
CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)

January 6-9, 2012, Asilomar, California, USA.

put to the application sketched above.
This paper introduces differential computation, a new ap-

proach that generalizes traditional models of incremental
computation and is particularly useful when applied to iter-
ative algorithms. The novelty of differential computation is
twofold: first, the state of the computation varies according
to a partially ordered set of versions rather than a totally
ordered sequence of versions as is standard for incremental
computation; and second, the set of updates required to re-
construct the state at any given version is retained in an
indexed data-structure, whereas incremental systems typi-
cally consolidate each update in sequence into the “current”
version of the state and then discard the update. Con-
cretely, the state and updates to that state are associated
with a multi-dimensional logical timestamp (hereafter ver-

sion). This allows more effective re-use: for example, if
version (i, j) corresponds to the jth iteration of a loop on
the ith round of input, its derivation can re-use work done
at both predecessors (i − 1, j) and (i, j − 1), rather than
just at whichever version was most recently processed by
the system.

Incremental systems must solve two related problems: ef-
ficiently updating a computation when its inputs change,
and tracking dependencies so that local updates to one part
of the state are correctly reflected in the global state. Dif-
ferential computation addresses the first problem, but as
we shall see it results in substantially more complex update
rules than are typical for incremental systems. We therefore
also describe how differential computation may be realized
when data-parallelism and dataflow are used to track de-
pendencies, resulting in a complete system model that we
call differential dataflow. A similar problem is addressed by
incremental view maintenance (IVM) algorithms [6, 15, 23],
where the aim is to re-use the work done on the previous
input when updating the view to reflect a slightly differ-
ent input. However, existing IVM algorithms are not ideal
for interactive large-scale computation, because they either
perform too much work, maintain too much state, or limit
expressiveness.

We have implemented differential dataflow in a system
called Naiad, and applied it to complex graph processing
queries on several real-world datasets. To highlight Naiad’s
characteristics, we use it to compute the strongly connected
component structure of a 24-hour window of Twitter’s mes-
saging graph (an algorithm requiring doubly nested loops,
not previously known in a data-parallel setting), and main-
tain this structure with sub-second latency, in the face of
Twitter’s full volume of continually arriving tweets. Fur-

thermore, the results of this algorithm can be passed to
subsequent dataflow operators within the same differential
computation, for example to maintain most common hash-
tags for each component, as described in the Appendix.

The contributions of this paper can be summarized as
follows:

• The definition of a new computation model, differential
computation, that extends incremental computation by al-
lowing state to vary according to a partial ordering of ver-
sions, and maintains an index of individual updates, al-
lowing them to be combined in different ways for different
versions (Section 3).

• The definition of differential dataflow which shows how
differential computation can be practically applied in a
data-parallel dataflow context (Section 4).

• A sketch of the implementation of the prototype Naiad
system that implements differential dataflow, along with
sample results showing that the resulting system is efficient
enough to compute updates of complex computations at
interactive timescales (Section 5).

2. MOTIVATION
To motivate our new computational framework, consider

the problem of determining the connected component struc-
ture of a graph. In this algorithm, each node is assigned
an integer label (initially its own ID), which is then iter-
atively updated to the minimum among its neighborhood.
In a relational setting, a single iteration can be computed
by joining the edge relation with the current node labeling,
taking the union with the current labeling, and computing
the minimum label that is associated with each node ID:

SELECT node, MIN(label)
FROM ((SELECT edges.dest AS node, label

FROM labels JOIN edges ON labels.node = edges.src)
UNION (SELECT * FROM labels))

GROUP BY node

After i steps each node will have the smallest label in its
i-hop neighborhood and, when run to fixed point, will have
the smallest label in its connected component. The following
dataflow graph illustrates the iterative computation:

Loop Body ⋈ ∪ Min Edges

Labels

Output

To make the problem concrete, consider the example of
the graph formed by @usernamementions in a 24-hour period
on the Twitter online social network, and contrast four ap-
proaches to executing each iteration of the connected compo-
nents algorithm. Figure 1 plots the number of label changes
in each iteration, for the various techniques, as a proxy for
the amount of work each requires. We confirm in Section 5
that running times exhibit similar behavior.

The simplest and worst-performing approach repeatedly
applies the above query to the result of the previous iter-
ation until the labeling stops changing. In this case, all

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1 23

R
e

c
o

rd
s
 i

n
 d

if
fe

re
n

c
e

Iteration number

Stateless

Incremental

Prioritized

Differential

(1s change)

Figure 1: Number of connected components labels
in difference plotted by iteration, for a 24-hour win-
dow of tweets, using three different techniques. Also
plotted are the differences required to update the
third as an additional second of tweets arrive.

previously computed results are overwritten with new la-
bels in each round, leading to a constant amount of work
each iteration and the flat line labeled “Stateless” in Fig-
ure 1. Data-parallel frameworks including MapReduce [10]
and Dryad [16] maintain no state between iterations, and
are restricted to executing the algorithm in this manner.

A more advanced approach (“Incremental”) retains state
from one iteration to the next, and uses an incremental eval-
uation strategy to update the set of labels based on changes
in the previous iteration [13, 17, 19]. As labels converge to
their correct values, the amount of computation required in
each iteration diminishes. In Figure 1, the number of differ-
ences per iteration decays exponentially after the eighth iter-
ation, and the total work is less than half of that required for
the traditional approach. The incremental approach does re-
quire maintaining state in memory for performance, though
not more than the full set of labels.

The incremental approach can be improved (“Prioritized”)
by reordering the computation in ways that result in fewer
changes between iterations. For example, in connected com-
ponents, we can prioritize smaller labels, which are more
likely to prevail in the min computation, and introduce these
before the larger labels. This is similar in spirit to the pri-
oritized iteration proposed by Zhang et al. [28]. In fact,
the total amount of work is only 10% of the incremental
work, and corresponds to approximately 4% of that done by
a stateless dataflow system.

Allowing the inputs to change.
Differential dataflow generalizes both the incremental and

prioritized approaches and can be used to implement either,
resulting in the same number of records in difference. Al-
though differential dataflow stores the differences for mul-
tiple iterations (rather than discarding or coalescing them),
the total number retained for the 24-hour window is only
1.5% more than the set of labels, the required state for in-
cremental dataflow.

The power of differential dataflow is revealed if the input
graph is modified, for example by the removal of a single
edge. In this case the results of the traditional, incremen-
tal and prioritized dataflow computations must be discarded

and their computations re-executed from scratch on the new
graph. IVM algorithms supporting recursive queries can be
used, but have significant computational or memory over-
heads. In contrast our approach (“Differential (1s change)”)
is able to re-use state corresponding to the parts of the graph
that have not changed. A differential dataflow system can
distinguish between changes due to an updated input and
those due to iterative execution, and re-use any appropriate
previous state. In Figure 1 we see, when the initial 24-hour
window slides by one second, that only 67 differences are
processed by the system (which is typical across the dura-
tion of the trace), and in several iterations no work needs to
be done. The work done updating the sliding window is only
0.003% of the work done in a full prioritized re-evaluation.

We will show in Section 5 that the reduction in differences
corresponds to a reduction in the execution time, and it is
possible to achieve multiple orders of magnitude in perfor-
mance improvement for these types of computation.

3. DIFFERENTIAL COMPUTATION
In this section we describe how a differential computation

keeps track of changes and updates its state. Since we will
use the computation in later sections to implement data-
parallel dataflow, we adopt the terminology of data-parallel
dataflow systems here. The functions that must adapt to
their changing inputs are called operators, and their inputs
and outputs are called collections. We model collections as
multisets, where for a collection A and record x the inte-
ger A(x) indicates the multiplicity of x in A. Wherever an
example in the paper describes a generic unary or binary op-
erator it should be assumed that the extension to operators
with more than two inputs is straightforward.

Collections may take on multiple versions over the life-
time of a computation, where the versions are members of
some partial order. The set of versions of a particular col-
lection is called a collection trace, denoted by a bold font,
and defined to be a function from elements of the partial or-
der t ∈ (T,≤T) to collections; we write At for the collection
at version t. As we shall see, different collections within a
single computation may vary according to different partial
orders. The result of applying an operator to a collection
trace is itself a collection trace and this is indicated using a
[·]t notation; for example, for a generic binary operator

[Op(A,B)]t = Op(At,Bt) .

The computation’s inputs and outputs are modeled as col-
lection traces and thus vary with a partial order. Typically
inputs and outputs vary with the natural numbers, to indi-
cate consecutive epochs of computation.

3.1 Incremental computation
In incremental computation, we consider sequences of col-

lections, A0,A1, . . . ,At and compute Op(A0),Op(A1), . . . ,
Op(At) for each operator. The most näıve way to do this
(corresponding to the “Stateless” approach in Figure 1) is to
re-execute Op(At) independently for each t, as in Figure 2.

When successive At have a large intersection, we can
achieve substantial gains through incremental evaluation.
We can define the difference between two collections at sub-
sequent versions in terms of a difference trace, analogous to
a collection trace and once again taking on a value for each
version of the collection. Differences and difference traces
are denoted using a δ symbol applied to the name of the

Op A0 B0

Op A1

Op A2

B1

B2

Figure 2: A sequence of input collections A0,A1, . . .
and the corresponding output collections B0,B1,
Each is defined independently as Bt = Op(At).

A0

A0 𝛿A1 𝛿B1

B0

B0

A0 B0

𝛿A1 𝛿B1

𝛿A2 𝛿B2

Op

Op

Op

Figure 3: The same sequence of computations as in
Figure 2, presented as differences from the previous
collections. The outputs still satisfy Bt = Op(At),
but are represented as differences δBt = Bt −Bt−1.

corresponding collection or trace. For each version t > 0,
δAt = At −At−1, and δA0 = A0. It follows that

At =
∑

s≤t

δAs. (1)

Notice that δAt(r) may be negative, corresponding to the
removal of a record r from A at version t.

An operator can react to a new δAt by producing the cor-
responding output δBt, as in Figure 3. Incremental systems
usually compute

δBt = Op(At−1 + δAt)−Op(At−1)

and retain only the latest version of the collections At =
At−1 + δAt and Bt = Bt−1 + δBt, discarding δAt and
δBt once they have been incorporated in their respective
collections. For the generalization that follows it will be
helpful to consider the equivalent formulation

∑

s≤t

δBs = Op

(

∑

s≤t

δAs

)

. (2)

In practical incremental systems the operators are imple-
mented to ensure that δBt can usually be computed in time
roughly proportional to |δAt|, as opposed to the |At| that
would be required for complete re-evaluation.

Incremental evaluation and cyclic dependency graphs can
be combined to effect iterative computations. Informally,
for a loop body f mapping collections to collections, one can

reintroduce the output of f into its input. Iteration t deter-
mines f t+1(X) for some initial collectionX, and can proceed
for a fixed number of iterations, or until the collection stops
changing. This approach is reminiscent of semi-näıve Data-
log evaluation, and indeed incremental computation can be
used to evaluate Datalog programs.

Unfortunately, the sequential nature of incremental com-
putation implies that differences can be used either to up-
date the computation’s input collections or to perform it-
eration, but not both. To achieve both simultaneously, we
must generalize the notion of a difference to allow multiple
predecessor versions, as we discuss in the next subsection.

3.2 Generalization to partial orders
Here we introduce differential computation, which gener-

alizes incremental computation. The data are still mod-
eled as collections At, but rather than requiring that they
form a sequence, they may be partially ordered. Once com-
puted, each individual difference is retained, as opposed to
being incorporated into the current collection as is standard
for incremental systems. This feature allows us to carefully
combine differences according to reasons the collections may
have changed, resulting in substantially smaller numbers of
differences and less computation.

We must redefine difference to account for the possibility
of At not having a single well-defined “predecessor” At−1.
Referring back to Equation 1, we use exactly the same equal-
ity as before, but s and t now range over elements of the
partial order, and ≤ uses the partial order’s less-than rela-
tion. The difference δAt is then defined to be the difference
between At and

∑

s<t δAs. We provide a few concrete ex-
amples in the next subsection.

As with incremental computation, each operator deter-
mines output differences from input differences using Equa-
tion 2. Rewriting, we can see that each δBt is determined
from δAt and strictly prior δAs and δBs:

δBt = Op

(

∑

s≤t

δAs

)

−
∑

s<t

δBs . (3)

One consequence of using a partial order is that—in contrast
to incremental computation—there is not necessarily a one-
to-one correspondence between input and output differences.
Each new δAt may produce δBt′ at multiple distinct t′ ≥ t.
This complicates the logic for incrementalizing operators,
and is discussed in more detail in Section 3.4.

3.3 Applications of differential computation
We now consider three examples of differential computa-

tion, to show how the use of differences deviates from prior
incremental approaches. In particular, we will outline the
benefits that accrue from both the composability of the ab-
straction, and the ability to redefine the partial order to
select the most appropriate predecessors for a collection.

Ex 1: Incremental and iterative computation.
Imagine a collection Aij that takes on different values

depending on the round i of the input and the iteration j
of a loop containing it. For example, Aij could be the node
labels derived from the j-hop neighborhood of the ith input
epoch in the connected component example of Section 2.
Consider the partial order for which

(i1, j1) ≤ (i2, j2) iff i1 ≤ i2 and j1 ≤ j2 .

𝛿A00 𝛿A01 𝛿A10 𝛿A11

𝛿A02 Op 𝛿B00 𝛿B01 𝛿B10 𝛿B11

𝛿B02

A11 B11

Figure 4: Differential computation in which multi-
ple independent collections Bij = Op(Aij) are com-
puted. The rounded boxes indicate the differences
that are accumulated to form the collections A11

and B11.

Figure 4 shows how differential computation based on this
partial order would consume and produce differences.

Some of the differences Aij are easily described:

δA00 : The initial value of the collection (equal to A00).

δA01 : A01 −A00. Advances A00 to the second iteration.

δA10 : A10 −A00. Updates A00 to the second input.

Because neither (0, 1) nor (1, 0) is less than the other, neither
δA01 nor δA10 is used in the derivation of the other. This
independence would not be possible if we had to impose a
total order on the versions, since one of the two would have
to come first, and the second would be forced to subtract
out any differences associated with the first.

It is instructive to consider difference δA11 and see the
changes it reflects. Recall that A11 =

∑

(i,j)≤(1,1) δAij , so

δA11 = A11 − (δA00 + δA01 + δA10) .

The difference δA11 reconciles the value of the collection
A11 with the preceding differences that have already been
computed: δA00+δA01+δA10. Note that not all previously
computed differences are used: even though δA02 may be
available, it describes the second loop iteration and is not
useful for determining A11. Here the benefit of maintaining
each δAij becomes apparent: the most appropriate set of
differences can be used as a starting point for computing any
given Aij . Consequently, the correction δAij can be quite
slight, and indeed is often completely empty. In Figure 1,
several iterations of the differential computation (3, 5, and
after 11) are completely empty.

If a total order on differences were used, δA11 might be
defined solely in terms of A11 −A10. Despite already hav-
ing computed δA01 = A01−A00 (the effect of one iteration
on what may be largely the same collection) the computa-
tion of δA11 would not have access to this information, and
would waste effort in redoing some of the same work. The
product partial order is a much better match for collections
experiencing independent changes from two sources.

Ex 2: Prioritized and iterative computation.
Differential computation can also be used to implement

the connected components optimization in which the small-
est label is first propagated throughout the graph, followed
by the second smallest label, and so on until all labels have
been introduced [28]. This prioritized approach is more ef-
ficient because only the smallest label is propagated within
a component: larger labels immediately encounter smaller
labels, and are not propagated further.

To achieve this optimization, we use the lexicographic
order, for which (p1, i1) ≤ (p2, i2) iff either p1 < p2 or
p1 = p2 and i1 ≤ i2. Each label l is propagated with prior-
ity l, and its propagation is reflected through the differences
δAl0, δAl1, When using the lexicographic order, δAp0

is taken with respect to A(p−1,∞), the limit of the compu-
tation at the previous priority, rather than A(p−1,0). This
results in fewer differences, as label l’s progress is thwarted
immediately at vertices that receive any lower label. The
resulting sequential dependencies also reduce available par-
allelism, but this is mitigated in practice by batching the pri-
orities, for example propagating label l with priority ⌊log(l)⌋.

This optimization is the basis of the distinction between
the incremental and prioritized lines in Figure 1.

Ex 3: Composability and nesting.
An attractive feature of differential computation is its

composability. As incremental composes with iterative, and
prioritized with iterative, we can easily combine the three to
create an incremental, prioritized, iterative computation us-
ing simple partial-order combiners (here, the product of the
integer total order and the lexicographic order). The“Differ-
ential” line in Figure 1 was obtained with a combination of
incremental, prioritized, and iterative computation. The re-
sulting complexity can be hidden from the user, and results
in real-world performance gains as we will see in Section 5.

Support for the composition of iterative computations en-
ables nested loops: strongly connected components can be
computed with an incremental, iterative, prioritized, itera-
tive implementation (a four-dimensional partial order). We
present the data-parallel algorithm for strongly connected
components in the appendix.

3.4 Differential operators
We now describe the basic operator implementation that

takes an arbitrary operator defined in terms of collections,
and converts it to compute on differences. In the worst case
this basic implementation ends up reconstructing the entire
collection and passing it to the operator. Section 4.3 ex-
plains how most common operators in a differential dataflow
implementation can be optimized to avoid this worst case.

As a differential computation executes, its operators are
invoked repeatedly with differences to incorporate into their
inputs, and must produce output difference traces that re-
flect the new differences. Consider a binary operator f which
has already processed a sequence of updates for collection
traces A and B on its two respective inputs. Suppose that
new differences δa and δb must be applied to its respective
inputs, where the differences in δa and δb all have version τ .
Denoting the resulting updates to f ’s output by the differ-
ence trace δz, Equation (3) indicates that

δzt = [f(A+ a,B+ b)]t − [f(A,B)]t −
∑

s<t

δzs

where

at =

{

δa if τ ≤ t

0 otherwise

and similarly for b. It is clear by induction on t that δzt = 0
when τ 6≤ t, which reflects the natural intuition that updat-
ing differences at version τ does not result in any modifica-
tions to versions before τ . What may be more surprising is
that there can be versions t > τ for which δzt 6= 0 even if

Algorithm 1 Pseudocode for operator update logic.

δz← 0
for all elements t ∈ T do

At ← δAt

Bt ← δBt

for all elements s ∈ lattice do
if s < t ∧ (δAs 6= 0 ∨ δBs 6= 0 ∨ δzs 6= 0) then

At ← At + δAs

Bt ← Bt + δBs

δzt ← δzt − δzs
end if

end for
δzt ← δzt + f(At + δa,Bt + δb)− f(At,Bt)

end for
δAτ ← δAτ + δa
δBτ ← δBτ + δb
return δz

δAt = 0 and δBt = 0 for all t > τ . Fortunately the set of
versions that potentially require updates is not unbounded
and in fact it can be shown that δzt = 0 if t /∈ T where T
is the set of versions that are upper bounds of τ and some
non-zero delta in δA or δB:

T ′ = {t′ : δAt′ 6= 0 ∨ δBt′ 6= 0}, and

T = {t : t′ ∈ T ′ ∧ t is the least upper bound of t′ and τ}.

In order to efficiently compute δz for arbitrary inputs,
our basic operator must store its full input difference traces
δA and δB indexed in memory. In the Naiad prototype
implementation this trace is stored in a triply nested sparse
array of counts, indexed first by key k, then by lattice version
t, then by record r. Naiad maintains only non-zero counts,
and as records are added to or subtracted from the difference
trace Naiad dynamically adjusts the allocated memory.

With δA and δB indexed by version, At and Bt can be
reconstructed for any t, and δz computed explicitly, using
the pseudocode of Algorithm 1. While reconstruction may
seem expensive, and counter to incremental computation, it
is necessary to be able to support fully general operators
for which the programmer may specify an arbitrary (non-
incremental) function to process all records. We will soon
see that many specific operators have more efficient imple-
mentations.

One general optimization to the algorithm in Algorithm 1
reduces the effort spent reconstructing values of At and Bt.
Rather than loop over all s < t for each t the system can up-
date the previously computed collection, say At′ at version
t′. Doing so only involves differences

{δAs : (s ≤ t′) 6= (s ≤ t)} .

This often results in relatively few s to update, for example
just one in the case of advancing loop indices. By ensuring
that differences are processed in a sequence that respects the
partial order, the system need only scan from the greatest
lower bound of t′ and t until it passes both t′ and t. Addi-
tionally, if updates are available at more than one version τ
they can be batched, again potentially reducing the number
of collections that need to be reconstructed and the number
of evaluations of f .

The above explanation assumes that difference traces δA
will be kept around indefinitely, and therefore that the cost
of the reconstruction looping over s < t in Algorithm 1 will

grow without bound as t increases. In practice, δA can
be thought of like a (partially ordered) log of updates that
have occurred so far. If we know that no further updates
will be received for any versions t < t0 then all the updates
up to version t0 can be consolidated into the equivalent of
a checkpoint, potentially saving both storage cost and com-
putational effort in reconstruction. The Naiad prototype
includes this consolidation step, but the details are beyond
the scope of this paper.

4. DIFFERENTIAL DATAFLOW
We now present our realization of differential computa-

tion: differential dataflow. As discussed in Section 6, incre-
mental computation has been introduced in a wide variety
of settings. We chose a declarative dataflow framework for
the first implementation of differential computation because
we believe it is well suited to the data-parallel analysis tasks
that are our primary motivating application.

In common with existing work on query planning and
data-parallel processing, we model a dataflow computation
as a directed graph in which vertices correspond to program
inputs, program outputs, or operators (e.g. Select, Join,
GroupBy), and edges indicate the use of the output of one
vertex as an input to another. In general a dataflow graph
may have multiple inputs and outputs. A dataflow graph
may be cyclic, but in the framework of this paper we only
allow the system to introduce cycles in support of fixed-point
subcomputations.

4.1 Language
Our declarative query language is based on the .NET Lan-

guage Integrated Query (LINQ) feature, which extends C#
with declarative operators, such as Select, Where, Join and
GroupBy, among others, that are applied to strongly typed
collections [5]. Each operator corresponds to a dataflow ver-
tex, with incoming edges from one or two source operators.

We extend LINQ with two new query methods to exploit
differental dataflow:

// result corresponds to body^infty(source)
Collection<T> FixedPoint(Collection<T> source,

Func<Collection<T>,Collection<T>> body)

// FixedPoint variant which sequentially introduces
// source records according to priorityFunc
Collection<T> PrioritizedFP(Collection<T> source,

Func<T, int> priorityFunc,
Func<Collection<T>,Collection<T>> body)

FixedPoint takes a source collection (of some record type
T), and a function from collections of T to collections of the
same type. This function represents the body of the loop,
and may include nested FixedPoint invocations; it results
in a cyclic dataflow subgraph in which the result of the body
is fed back to the next loop iteration.
PrioritizedFP additionally takes a function, priority-

Func, that is applied to every record in the source collec-
tion and denotes the order in which those records should
be introduced into the body. For each unique priority in
turn, records having that priority are added to the current
state, and the loop iterates to fixed-point convergence on
the records introduced so far. We will explain the semantics
more precisely in the following subsection.

The two methods take as their bodies arbitrary differential
dataflow queries, which may include further looping and se-

Loop body Concat

In
g

re
ss

E
g

re
ss

Feedback

𝑊 𝑋

Figure 5: The dataflow template for a computation
that iteratively applies the loop body to the input
X, until fixed-point is reached.

quencing instructions. The system manages the complexity
of the partial orders, and hides the details from the user.

4.2 Collection dataflow
In this subsection, we describe how to transform a pro-

gram written using the declarative language above into a
cyclic dataflow graph. We describe the graph in a standard
dataflow model in which operators act on whole collections
at once, because this simplifies the description of operator
semantics. In Section 4.3 we will describe how to modify the
dataflow operators to operate on differences, and Section 4.4
sketches how the system schedules computation.

Recall from Section 3.2 that collection traces model col-
lections that are versioned according to a partial order. We
require that all inputs to an operator vary with the same
partial order, but a straightforward order embedding exists
for all partial orders that we consider, implemented using
the Extend operator:

[Extend(A)](t,i) = At .

The Extend operator allows collections defined outside a
fixed-point loop to be used within it. For example, the col-
lection of edges in a connected components computation is
constant with respect to the loop iteration i, and Extend is
used when referring to the edges within the loop.

Standard LINQ operators such as Select, Where, GroupBy,
Join, and Concat each correspond to single vertices in the
dataflow graph and have their usual collection semantics
lifted to apply to collection traces.

Fixed-point operator.
Although the fixed-point operator is informally as simple

as a loop body and a back edge, we must carefully handle
the introduction and removal of the new integer coordinate
corresponding to the loop index. A fixed-point loop can be
built from three new operators (Figure 5): an ingress vertex
that extends the partial order to include a new integer co-
ordinate, a feedback vertex that provides the output of the
loop body as input to subsequent iterations, and an egress

vertex that strips off the loop index from the partial order
and returns the fixed point. (The standard Concat oper-
ator is used to concatenate the outputs of the ingress and
feedback vertices.)

More precisely, if the input collection X already varies
with a partial order T , the ingress operator produces the

trace varying with T × N for which

[Ingress(X)](t,i) =

{

Xt if i = 0

0 if i > 0 .

The feedback operator takes the output of the loop body
and advances its loop index. For the output of the loop body
W , we have

[Feedback(W)](t,i) =

{

0 if i = 0

W(t,i−1) if i > 0 .

Finally, the egress operator observes the output of the
loop body and emits the first repeated collection

[Egress(W)]t = W(t,i∗) ,

where i∗ = min {i : W(t,i) = W(t,i−1)}.
We have said nothing specific about the implementation

of these operators, but their mathematical definitions should
make it clear that

[Egress(W)]t = lim
i→∞

F i(Xt)

where this limit exists.

Prioritized fixed-point operator.
This operator assigns a priority to each record in a col-

lection, and uses this priority to impose a total order on
the introduction of records into a fixed-point loop. Start-
ing from an empty collection, the operator sequentially in-
troduces records at the next unintroduced priority to the
collection, iterates to a fixed point (as above) and uses the
result as the starting point for the next priority.

The prioritized fixed-point operator makes use of the same
dataflow template as its unprioritized counterpart, compris-
ing ingress, feedback, egress and Concat operators (Fig-
ure 5), but it has different semantics. The ingress operator
adds two coordinates to each record’s version, corresponding
to its evaluated priority (p) and the initial iteration (i = 0):

[PIngress(X)](t,p,i)(r) =

{

Xt(r) if P (r) = p ∧ i = 0

0 otherwise

where P (r) is the evaluation of priorityFunc on record r.
The additional coordinates (p, i) are ordered lexicographi-
cally, as described in Subsection 3.3.

The feedback operator plays a more complicated role. For
the zeroth iteration of each priority, it feeds back the fixed-
point of iteration on the previous priority; otherwise it acts
like the unprioritized feedback.

[PFeedback(W)](t,p,i) =

W(t,p−1,i∗
p−1

) if p > 0 ∧ i = 0

W(t,p,i−1) if i > 0

0 if p = i = 0

where i∗p = min {i : W(t,p,i) = W(t,p,i−1)}.
Finally, the egress operator is modified to emit the fixed-

point after the final priority,

q = max {P (r) : Xt(r) 6= 0},

has been inserted:

[PEgress(W)]t = W(t,q,i∗
q
) .

4.3 Operator implementations
Section 3.4 outlined the generic implementation of a dif-

ferential operator. Although the generic operator update al-
gorithm can be used to implement any differential dataflow
operator, we have specialized the implementation of the fol-
lowing operators to achieve better performance:

Data-parallel operation.
Exploiting data-parallel structure is one of the most ef-

fective ways to gain benefit from differential dataflow. For
each operator instance f in the dataflow assume that there
is a key type K, and a key function defined for each of the
operator’s inputs that maps records in that input to K. The
key space defines a notion of independence for f , which can
be written as

f(A,B) =
∑

k∈K

f(A|k, B|k) (4)

where a restriction A|k (or B|k) is defined in terms of its
associated key function key as

(A|k)(r) = A(r) if key(r) = k, 0 otherwise. (5)

Such independence properties are exploited in many systems
to parallelize computation, since subsets of records mapping
to distinct keys can be processed on different CPUs or com-
puters without the need for synchronization. A differential
dataflow system can exploit parallelism in the same way, but
also crucially benefits from the fact that updates to collec-
tions can be isolated to keys that are present in incoming
differences, so an operator need only perform work on the
subsets of a collection that correspond to those keys. In
common cases both the size of the incoming differences and
computational cost to process them are roughly proportional
to the size of these subsets. It is easy to modify the pseu-
docode in Algorithm 1 to operate only on records mapping
to key k, and since δA and δB are indexed by key it is there-
fore easy to do work only for subsets of δA and δB for which
δa|k 6= 0 or δb|k 6= 0.

Operators such as Join and GroupBy naturally include key
functions as part of their semantics. For aggregates such as
Count, Sum and Min, we adopt a slightly non-standard defini-
tion that effectively prepends each operator with a GroupBy.
For example, Count requires a key function and returns a set
of counts, corresponding to the number of records that map
to each unique key in the collection. The standard behavior
of these operators can be obtained by specifying a constant
key function that maps every record to the same key.

Pipelined operators.
Several operators—including Select, Where, Concat and

Except—are linear, which means they can determine δz as
a function of only δa, with no dependence on δA. These op-
erators can be pipelined with preceding operators since they
do not need to maintain any state and do not need to group
records based on key: they apply record-by-record logic to
the non-zero elements of δa—respectively transforming, fil-
tering, repeating and negating the input records.

Join.
The Join operator combines two input collections by com-

puting the Cartesian product of those collections, and yield-
ing only those records where both input records have the

same key. Due to the distributive property of Join, the
relationship between inputs and outputs is simply

z = A ⊲⊳ b+ a ⊲⊳ B+ a ⊲⊳ b .

While the implementation of Join must still keep its input
difference trace resident, its implementation is much simpler
than the generic case. An input δa can be directly joined
with the non-zero elements of δB, and analogously for δb and
δA, without the overhead of following the reconstruction
logic in Algorithm 1.

Aggregations.
Many data-parallel aggregations have very simple update

rules that do not require all records to be re-evaluated.
Count, for example, only needs to retain the difference trace
of the number of records for each key, defined by the cu-
mulative weight, rather than the set of records mapping to
that key. Sum has a similar optimization. Min and Max must
keep their full input difference traces—because the retrac-
tion of the minimal (maximal) element leads to the second-
least (greatest) record becoming the new output—but can
often quickly establish that an update requires no output
by comparing the update to the prior output without recon-
structing A.

Fixed-point operators.
The Extend, Ingress, Feedback, and Egress operators

from Section 4.2 have simple differential implementations.
The Extend operator reports the same output for any i, so

[δExtend(δX)](t,i) =

{

δXt if i = 0

0 if i > 0 .

The Ingress operator changes its output from zero to δXt

then back to zero, requiring outputs of the form

[δIngress(δX)](t,i) =

δXt if i = 0

−δXt if i = 1

0 if i > 1 .

The Feedback operator is initially zero, but then changes as
the previous iterate of its input changes.

[δFeedback(δW)](t,i) =

{

0 if i = 0

δW(t,i−1) if i > 0 .

The Egress operator produces the final output seen, which
is the result of all accumulations seen so far

[δEgress(δW)]t =
∑

0≤i≤i∗

δW(t,i) .

Informally stated, Ingress adds a new loop index and
produces a positive and negative output for each input seen,
Feedback advances the loop index of each input seen, and
Egress removes the loop index of each input seen. The dif-
ferential implementations of the prioritized fixed-point op-
erators PIngress, PFeedback and PEgress follow in similar
fashion.

4.4 Scheduling differential dataflow
Scheduling the execution of a differential dataflow com-

putation is complicated by the need to reconcile cyclic data
dependencies. In our Naiad prototype, the scheduler keeps
track of the outstanding differences to be processed at each

operator, and uses the topology of the dataflow graph to im-
pose a partial order on these differences, enabling the system
to sort them topologically and thereby obtain a valid sched-
ule. The challenge is that the version associated with each
difference orders two outstanding differences at the same
operator, but says nothing in the case that there are out-
standing differences for two distinct operators.

Intuitively, there is a notion of causality: a difference d1 at
operator Op1 with version s causally precedes d2 at Op2 with
version t if processing d1 can possibly result in new data for
Op2 at a version t′ ≤ t. Recall from Section 4.2 that some
operators modify the version of an incoming difference: for
example, the unprioritized Feedback operator advances the
last coordinate of the version. The scheduler combines this
information with the edge relation of the dataflow graph to
determine the causal order and identify a set of minimal
outstanding differences. Thereafter, repeatedly scheduling
one of the minimal differences ensures that forward progress
is made.

Whereas some iterative data-parallel systems rely on an
explicit convergence test [7, 20, 25], in a differential dataflow
system convergence is implied by the absence of differences.
Therefore, if no outstanding differences remain, all of the
input has been processed and all loops have converged to
fixed points.

4.5 Prototype implementation
The Naiad prototype transforms declarative queries to a

dataflow graph that may contain cycles. The user program
can insert differences into input collections, and register call-
backs to be informed when differences are received at out-
put collections. The Naiad runtime distributes the execu-
tion of the dataflow graph across several computing elements
(threads and computers) to exploit data-parallelism. Since
operators in a differential dataflow system often compute for
only a short time before sending resulting output to another
computer, many of the design decisions were guided by the
need to support low latency communication and coordina-
tion.

The other technical challenges that Naiad faces relate to
new trade-offs that differential dataflow exposes. Many “big
data” systems leverage data-parallelism heavily, as there is
always a substantial amount of work available. Differential
dataflow reduces this work significantly, and we must re-
consider many of the common implementation patterns to
ensure that its benefits are not overshadowed by overheads.
For example, unlike many other distributed data-processing
systems, Naiad maintains each operator’s input collections
(as differences) deserialized and indexed in memory, to al-
low microsecond-scale reaction to small updates. Naiad’s
workers operate asynchronously and independently, rather
than under the instruction of a central coordinator. Most
of Naiad’s internal data structures are designed to amortize
computation, so that they never stall for extended periods
of time. Many of these properties are already in evidence in
modern database systems, but their significance for big data
systems is only revealed once the associated computational
models are sufficiently streamlined.

5. APPLICATIONS
To support the claim that differential dataflow can lead

to substantial performance improvements for incremental
and iterative computations, we now describe some example

0.1

1

10

100

1000

10000

100000

1 23

M
il

li
s
e

c
o

n
d

s

Iteration number

Incremental

Prioritized

Differential

(1s change)

Figure 6: Execution time for each iteration of the
connected components computation on the Twitter
graph, as described in Section 2 (cf. Figure 1, which
shows the number of label changes in each iteration).
Plotted values are the medians of nine executions.

applications, and present initial performance measurements
taken using the Naiad prototype.1

5.1 Twitter connected components
We measured the per-iteration execution times for the

connected components computation described in Section 2.
We performed the experiments on an AMDOpteron ‘Magny-
Cours’ with 48 (four 12-core) 1.9GHz processors and 64GB
of RAM, running Windows Server 2008 R2 Enterprise Ser-
vice Pack 1. Figure 6 shows the times for the Incremental,
Prioritized, and Differential (1s change) versions of the com-
putation, when executed using eight cores. Notice that the
curves exhibit the same relative ordering and roughly the
same shape as the counts of differences in Figure 1. Com-
pared to Figure 1, the one-second update is separated by
fewer orders of magnitude from the 24-hour differential com-
putation. This lower-than-expected speedup is due to per-
iteration overheads that become more apparent when the
amount of work is so small. Nonetheless, Naiad is able to
respond to one second of updates in 24.4ms; this is substan-
tially faster than the 7.1s and 36.4s used by either differential
or incremental dataflow, and makes it possible for Naiad to
maintain the component structure of the Twitter mention
graph in real time.

5.2 Iterative web-graph algorithms
We have also assessed Naiad’s performance on several

graph algorithms applied to the Category B web-graph from
ClueWeb.2 We draw on the work of Najork et al. [22],
which assesses the performance, scalability and ease of im-
plementation of several algorithms on three different types of
platform: the Microsoft SQL Server 2008 R2 Parallel Data
Warehouse (PDW) relational database, the DryadLINQ [24]
data-parallel batch processor, and the Scalable Hyperlink
Store (SHS) [21] distributed in-memory graph store. To al-
low a direct comparison, we run the distributed version of
Naiad on the same experimental cluster used by Najork et

al.: 16 servers with eight cores (two quad-core Intel Xeon

1Available to download from http://research.microsoft.
com/naiad.
2http://boston.lti.cs.cmu.edu/Data/clueweb09/

Algorithm PDW DryadLINQ SHS Naiad

Pagerank 8,970 4,513 90,942 1,404

SALSA 2,034 439 163 –

SCC 475 446 1,073 234

WCC 4,207 3,844 1,976 130

ASP 30,379 17,089 246,944 3,822

Table 1: Running times in seconds of several algo-
rithms and systems on the Category B web graph.
The first three systems measurements are from [22].

E5430 processors at 2.66GHz) and 16GB RAM, all con-
nected to a single Gigabit Ethernet switch.

Table 1 presents the results where we see Naiad’s general
improvement due to a combination of its ability to store data
indexed in memory, distribute computation over many work-
ers, and accelerate iterative computations as they converge.3

Notably, each other system implements only a trimming
pre-processing step for SCC, and then runs single-threaded
SCC on the reduced graph; Naiad is capable of expressing
the SCC computation as a declarative doubly nested fixed-
point computation, and distributes the full execution across
the cluster. None of these workloads are interactive, and
the measurements do not exploit Naiad’s ability to support
incremental updates. Nevertheless, each computation is au-
tomatically incrementalized, and could respond efficiently to
changes in the input graph.

6. RELATED WORK
Many approaches to incremental execution have been in-

vestigated. To the best of our knowledge, differential data-
flow is the first technique to support programs that combine
arbitrary nested iteration with the efficient addition and re-
moval of input data. However, the existing research in in-
cremental computation has uncovered techniques that may
be complementary to differential computation, and in this
section we attempt to draw connections between the related
work in this field.

Incremental view maintenance.
As noted earlier, differential dataflow addresses a similar

problem to that tackled by incremental view maintenance
(IVM), where the aim is to reuse the work done on the pre-
vious input when computing a new view based on a slightly
different input. Over the past three decades, the set of
supported queries has grown from simple select-project-join
queries [6], to fully general recursive queries [15, 23]. While
the latter techniques are very general, they are not ideal
for interactive large-scale computation, because they either
perform too much work, maintain too much state or limit
expressiveness. Gupta et al.’s classic DRed algorithm [15]
can over-estimate the set of invalidated tuples and will, in
the worst case, perform a large amount of work to“undo”the
effects of a deleted tuple, only to conclude that the best ap-
proach is to start from scratch. Nigam et al.’s extended PSN
algorithm [23] relies on storing with each tuple the full set of
tuples that were used to derive it, which can require a pro-
hibitive amount of state for a large computation. Ahmad et

al. have improved incremental performance on queries con-
taining higher-order joins, but do not currently support it-

3We are unable to present results for SALSA, as it uses a
query set that is not distributed with the ClueWeb dataset.

erative workloads [3]; this approach could be adapted to the
benefit of differential programs containing such joins.

Incremental dataflow.
Dataflow systems like MapReduce and Dryad have been

extended with support for incremental computation. Condie
et al. developed MapReduce Online [8], which maintains
state in memory for a chain of MapReduce jobs, and reacts
efficiently to additional input records. Incremental dataflow
can also be useful for coarse-grained updates: Gunda et al.

subsequently developed Nectar [14], which caches the in-
termediate results of DryadLINQ programs and uses the
semantics of LINQ operators to generate incremental pro-
grams that exploit the cache. The Incoop project [4] pro-
vides similar benefits for arbitrary MapReduce programs, by
caching the input to the reduce stage and carefully ensuring
that a minimal set of reducers is re-executed upon a change
to the input. None of these systems has support for iterative
algorithms, rather, they are designed for high throughput on
very large data.

Iterative dataflow.
To extend the generality of dataflow systems, several re-

searchers have investigated ways of adding data-dependent
control flow constructs to parallel dataflow systems.

HaLoop [7] is an extended version of MapReduce that can
execute queries written in a variant of recursive SQL, by re-
peatedly executing a chain of MapReduce jobs until a data-
dependent stopping criterion is met. Similar systems include
Twister [12] and iMapReduce [27]. Spark [25] supports a
programming model that is similar to DryadLINQ, with the
addition of explicit in-memory caching for frequently re-used
inputs. Spark also provides a “resilient distributed dataset”
abstraction that allows cached inputs to be reconstructed in
the event of failure. All of these systems use an execution
strategy that is similar to the collection-oriented dataflow
described in Section 4.2, and would perform work that is pro-
portional to the “Stateless” line in Figure 1. D-Streams [26]
extends Spark to handle streaming input by executing a
series of small batch computations, but it does not sup-
port iteration. The CIEL distributed execution engine [20]
offers a general execution model based on “dynamic task
graphs” that can encode nested iteration; however because
CIEL does not support mutable data objects, it would not
be practical to encode the fine-grained modifications to op-
erator state traces that occur during a differential dataflow
computation.

More recently, several iterative dataflow systems support-
ing incremental fixed-point iteration have been developed,
and these achieve performance proportional to the “Incre-
mental” line in Figure 1. Ewen et al. extended the Nephele
execution engine with support for “bulk” and “incremental”
iterations [13], where monotonic iterative algorithms can be
executed using a sequence of incremental updates to the cur-
rent state. Mihaylov et al. developed REX [19], which ad-
ditionally supports record deletion in incremental iteration,
but the programmer is responsible for writing incremental
versions of user-defined functions (UDFs). The differential
operator update algorithm (Algorithm 1) would automati-
cally incrementalize many UDFs, but the lack of a partial
order on updates would limit its usefulness. Finally, Conway
et al. recently introduced BloomL [9], which supports fixed-
point iteration using compositions of monotone functions

on a variety of lattices. The advantage of this approach is
that it is possible to execute such programs in a distributed
system without blocking, which may be more efficient than
Naiad’s current scheduling policy (Section 4.4), but it does
not support retractions or non-monotonic computations.

Alternative execution models.
Automatic techniques have been developed to incremen-

talize programming models other than dataflow. The basic
technique for purely functional programs is memoization [18]
which has been applied to a variety of existing systems [14,
20]. Acar pioneered self-adjusting computation [1], which
automatically incrementalizes programs with mutable state
by recording an execution trace and replaying only those
parts of the trace that are directly affected when a variable
is mutated. While the general approach of self-adjusting
computation can be applied to any program, it is often more
efficient to use “traceable” data types [2], which are abstract
data types that support high-level query and update opera-
tions with a more compact representation in the trace.

Reactive imperative programming [11] is a programming
model that uses dataflow constraints to perform updates to
program state: the runtime tracks mutations to “reactive”
variables, which may trigger the evaluation of constraints
that depend on those variables. The constraints in such
programs may be cyclic, which enables algorithms such as
connected components and single-source shortest paths to
be expressed in this model. However, convergence is only
guaranteed for programs where the constraints have a mono-
tonic effect on the program state, which makes it difficult to
express edge deletion in a reactive imperative program.

In principle, traceable data types or high-level dataflow
constraints could be used to implement differential com-
putation. Furthermore, differential dataflow could benefit
in many cases from incrementalized user-defined functions
(particularly user-defined GroupBy reduction functions), and
the techniques of self-adjusting computation offer the poten-
tial to do this automatically.

7. CONCLUSIONS
We have presented differential computation, which gener-

alizes existing techniques for incremental computation. Dif-
ferential computation is uniquely characterized by the fact
that it enables arbitrarily nested iterative computations with
general incremental updates. Our initial experimentation
with Naiad—a data-parallel differential dataflow system—
shows that the technique can enable applications that were
previously intractable and achieve state of the art perfor-
mance for several real-world applications.

These promising results in the context of dataflow lead us
to conclude that the techniques of differential computation
deserve further study, and have the potential to similarly
enhance other forms of incremental computation.

8. REFERENCES

[1] U. A. Acar. Self-adjusting computation. PhD thesis,
Carnegie Mellon University, 2005.

[2] U. A. Acar, G. Blelloch, R. Ley-Wild,
K. Tangwongsan, and D. Turkoglu. Traceable data
types for self-adjusting computation. In ACM PLDI,
2010.

[3] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic.
DBToaster: Higher-order delta processing for
dynamic, frequently fresh views. In 38th VLDB, Aug.
2012.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar,
and R. Pasquini. Incoop: MapReduce for incremental
computations. In 2nd ACM SOCC, Oct. 2011.

[5] G. M. Bierman, E. Meijer, and M. Torgersen. Lost in
translation: Formalizing proposed extensions to C♯. In
22nd OOPSLA, Oct. 2007.

[6] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa.
Efficiently updating materialized views. In 1986 ACM

SigMod, 1986.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient iterative data processing on large
clusters. In 36th VLDB, Sept. 2010.

[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. In
7th USENIX NSDI, 2010.

[9] N. Conway, W. R. Marczak, P. Alvaro, J. M.
Hellerstein, and D. Maier. Logic and lattices for
distributed programming. In 3rd ACM SOCC, 2012.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In 6th USENIX

OSDI, 2004.

[11] C. Demetrescu, I. Finocchi, and A. Ribichini. Reactive
imperative programming with dataflow constraints. In
26th OOPSLA, 2011.

[12] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: a runtime for
iterative MapReduce. In 19th ACM HPDC, June 2010.

[13] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. In 38th VLDB,
2012.

[14] P. K. Gunda, L. Ravindranath, C. A. Thekkath,
Y. Yu, and L. Zhuang. Nectar: automatic
management of data and computation in datacenters.
In 9th USENIX OSDI, Oct. 2010.

[15] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In 1993 ACM

SigMod, 1993.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In EuroSys, Mar. 2007.

[17] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In
2010 ACM SigMod, June 2010.

[18] D. Michie. “Memo” functions and machine learning.
Nature, (218):19–22, Apr. 1968.

[19] S. R. Mihaylov, Z. G. Ives, and S. Guha. REX:
recursive, delta-based data-centric computation. In
38th VLDB, 2012.

[20] D. G. Murray, M. Schwarzkopf, C. Smowton,
S. Smith, A. Madhavapeddy, and S. Hand. CIEL: a
universal execution engine for distributed data-flow
computing. In 8th USENIX NSDI, Mar. 2011.

[21] M. Najork. The scalable hyperlink store. In 20th ACM

Conference on Hypertext and Hypermedia, 2009.

[22] M. Najork, D. Fetterly, A. Halverson, K. Kenthapadi,
and S. Gollapudi. Of hammers and nails: An empirical

comparison of three paradigms for processing large
graphs. In 5th ACM WSDM, Feb. 2012.

[23] V. Nigam, L. Jia, B. T. Loo, and A. Scedrov.
Maintaining distributed logic programs incrementally.
In 13th ACM PPDP, July 2011.

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system
for general-purpose distributed data-parallel
computing using a high-level language. In 8th

USENIX OSDI, Dec. 2008.

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A fault-tolerant
abstraction for in-memory cluster computing. In 9th

USENIX NSDI, Apr. 2012.

[26] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: An efficient and fault-tolerant
model for stream processing on large clusters. In 4th

USENIX HotCloud, 2012.

[27] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce:
A distributed computing framework for iterative
computation. In 1st International Workshop on Data

Intensive Computing in the Clouds, May 2011.

[28] Y. Zhang, Q. Gao, L. Gao, and C. Wang. PrIter: A
distributed framework for prioritized iterative
computations. In 2nd ACM SOCC, Oct. 2011.

Demo: sliding strongly connected components

In this demonstration, we show how Naiad can compute the
strongly connected component (SCC) structure of the men-
tion graph extracted from a time window of the Twitter
stream, and then extend this to build an interactive appli-
cation that uses Naiad to track the evolution of these com-
ponents as the window slides back and forth in time.

Background.
The classic SCC algorithm is based on depth-first search

and not easily parallelizable. However, by nesting two con-
nected components queries (Figure 7) inside an outer Fixed-
Point, we can write a data-parallel version using Naiad
(Figure 8). Strictly speaking, the ConnectedComponents

query computes directed reachability, and the SCC algo-
rithm repeatedly removes edges whose endpoints reach dif-
ferent components and must therefore be in different SCCs.
Iteratively trimming the graph in alternating directions—by
reversing the edges in each iteration—eventually converges
to the graph containing only those edges whose endpoints
are in the same SCC.

Although Naiad’s declarative language makes it straight-
forward to nest a FixedPoint loop, the resulting dataflow
graph is quite complicated. Figure 9 shows a simplified ver-
sion with some vertices combined for clarity: in our current
implementation the actual dataflow graph for this program
contains 58 vertices. Nonetheless, the SCC program accepts
incremental updates, and differential dataflow enables the
doubly nested fixed-point computation to respond efficiently
when its inputs change.

Demo.
The interactive demo shows Naiad continually executing

the SCC query described above. The input is a month of
tweets from the full Twitter firehose, and we compute the
SCCs formed by the Twitter mention graph within a given
time window. A graphical front-end lets us slide the window
of interest forward and backward (in steps of at least one
second), and shows how the set of SCCs changes as the Naiad
system re-executes the query incrementally. In addition, we
maintain a continuous top-k query on the results of each
successive SCC computation, and display the most popular
hashtag within each component.

As incremental outputs are produced (in real-time with
respect to the Twitter stream), the GUI is automatically
refreshed to show the relative size and the most popular
term of the SCCs computed by Naiad. The user is able
to then investigate the ‘hot topics’ during the window, and
we can even relate specific conversations to actual events
that occurred at the time (for example, we see a component
favoring the hashtag #yankees at about the same time that
an important baseball game took place).

The demo highlights the responsiveness of Naiad while
executing a complicated incremental query that contains a
doubly nested loop. We argue that SCC is representative
of the sophisticated data analysis that is increasingly im-
portant in contexts ranging from data warehousing and sci-
entific applications through to web applications and social
networking. Our demo emphasizes the power of efficiently
composing incremental update, iterative computation, and
interactive data analysis in a single declarative query.

// produces a (src, label) pair for each node in the graph
Collection<Node> ConnectedComponents(Collection<Edge> edges)
{
// start each node with its own label, then iterate
return edges.Select(x => new Node(x.src, x.src))

.FixedPoint(x => LocalMin(x, edges));
}

// improves an input labeling of nodes by considering the
// labels available on neighbors of each node as well
Collection<Node> LocalMin(Collection<Node> nodes,

Collection<Edge> edges)
{
return nodes.Join(edges, n => n.src, e => e.src,

(n, e) => new Node(e.dst, n.label))
.Concat(nodes)
.Min(node => node.src, node => node.label);

}

Figure 7: Connected components in Naiad.

// returns edges between nodes within a SCC
Collection<Edge> SCC(Collection<Edge> edges)
{
return edges.FixedPoint(y => TrimAndReverse(

TrimAndReverse(y)));
}

// returns edges whose endpoints reach the same node, flipped
Collection<Edge> TrimAndReverse(Collection<Edge> edges)
{
// establish labels based on reachability
var labels = ConnectedComponents(edges);

// struct LabeledEdge(a,b,c,d): edge (a,b); labels c, d;
return edges.Join(labels, x => x.src, y => y.src,

(x, y) => x.AddLabel1(y))
.Join(labels, x => x.dst, y => y.src,

(x, y) => x.AddLabel2(y))
.Where(x => x.label1 == x.label2)
.Select(x => new Edge(x.dst, x.src));

}

Figure 8: Strongly connected components in Naiad.

Ingress

Input (edges)

Output (SCC edges) Egress

Ingress

Ingress

Concat

Join

Join

Where

Select

Join

Join

Where

Select

Select

Increment

Connected Components

Select

Connected Components

Figure 9: Simplified dataflow for strongly connected
components. The outer loop contains two nested
instances of the ConnectedComponents query.

