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Abstract—In this paper we propose a multicast routing protocol for mo-
bile ad hoc networks (MANETs). The protocol—termed Differential Desti-
nation Multicast (DDM)—differs from common approaches proposed for
MANET multicast routing in two ways. Firstly, instead of distributing
membership control throughout the network, DDM concentrates this au-
thority at the data sources (i.e. senders) thereby giving sources knowledge of
group membership. Secondly, differentially-encoded, variable-length desti-
nation headers are inserted in data packets which are used in combination
with unicast routing tables to forward multicast packets towards multicast
receivers. Instead of requiring that multicast forwarding state to be stored
in all participating nodes, this approach also provides the option of stateless
multicasting. Each node independently has the choice of caching forward-
ing state or having its upstream neighbor to insert this state into self-routed
data packets, or some combination thereof. The protocol is best suited for
use with small multicast groups operating in dynamic networks of any size.
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I. INTRODUCTION

There are generally two mainstream approaches used for mul-
ticast routing in fixed networks: Group Shared Tree (GST)
and Source-Specific Tree (SST). Both construct data forward-
ing paths interconnecting all group members, where a member
is understood to be a multicast receiver. Data is firstly forwarded
to the tree then along the tree paths to reach all group members.
Several protocols include data sources as part of the forwarding
tree as well. The GST approach builds one tree for the whole
group regardless of where the data sources are located. The
SST approach organizes multicast forwarding by data source.
A “session” is associate with each source and is identified by
the combination of group ID and source ID. For each session
there is one distribution tree formed from the union of all short-
est paths between the source and the group members. This form
of multicasting usually results in lower end-to-end delay since
the data is forwarded using the shortest source-receiver paths,
but typically consumes a greater amount of network bandwidth
than shared-tree approaches.

A characteristic shared among these traditional multicast pro-
tocols is that the multicast computation is distributed in the
network. Not only are the forwarding states constructed and
maintained by the network, group membership control (or lack
thereof) is also distributed over the network. While this ap-
proach improves scalability with respect to group size, it has
certain drawbacks. Firstly, distributed membership management
may make aspects of security more difficult due to the lack of
admission control. Without natural support for end-to-end sig-
nalling between sources and receivers, such approach needs to
rely on external mechanisms for security management. At the

same time, billing management becomes more complicated as
the information property owner, typically the source, has no con-
trol and knowledge over how and to whom its property (data)
is distributed. Secondly, distributed per group forwarding state
maintenance may result in large router resource usage. The
number of possible multicast groups formed among n members
grows combinatorially. While there is no efficient way to aggre-
gate multicast routing table entries, the linearly growing multi-
cast routing table (with respect to the number of active multicast
groups) may quickly become too much of a storage burden for
routers. The issue is worsen by the number of routers involved
in forwarding since all routers along the multicast forwarding
paths need to participate in multicast routing state maintenance.

To address this issue, recently there is an attempt of shifting
towards stateless multicast routing for small groups. [1] and
[2] lift multicasting out of routing layer so that multicasting no
longer requires router support. Multicast data is encapsulated in
unicast envelop and transmitted between end receivers. There-
fore no multicast routing state is installed on routers. [3] and [4]
propose connectionless, small group multicast as a “stateless”
approach to multicast routing. In these approaches, variable-
length destination lists are placed in packet headers that are self-
routed towards the destinations using the underlying unicast for-
warding tables.

We consider the problem of multicast routing in Mobile Ad
hoc Networks (MANETs). In MANETs all mobile nodes are
equipped with wireless communication interfaces and can move
at will. Here we assume their communications occur using
omni-directional antennas over broadcast media. The combi-
nation of node mobility and a wireless environment can result in
MANET topologies subject to rapid and unpredictable changes.
Because of these dynamics, and the fact that communication is
carried over a bandwidth-constrained broadcast media, the mul-
ticast routing problem in MANETs differs from that in fixed net-
works.

During recent years several multicast protocols have also
been designed specifically for MANETs (e.g. CAMP [5],
ODMRP [6], MAODV [7] and LAM [8]). These protocols
all follow the traditional multicast approaches, i.e. distributed
group membership management and distributed multicast rout-
ing state maintenance. In addition to the security and resource
use issues mentioned before, these approaches, especially when
applied for use with small and sparsely distributed (potentially
numerous) groups, may become even less efficient and more ex-
pensive to function in MANETs due to bandwidth constraints,
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network topology dynamics, and high channel access cost.

II. PROTOCOL DESCRIPTION

A. Overview of Proposed Approach

Aiming at the issues briefed in the previous section, we pro-
pose the Differential Destination Multicast (DDM) protocol.
This approach is motivated, in part, by the approach to unicast
routing of Dynamic Source Routing (DSR) [9] and derived, in
part, from the work of [3] and [4].

In DDM, the sources control multicast group membership
to ease certain aspects of security administration. More im-
portantly, and a departure from other proposed MANET mul-
ticast protocols, DDM encodes the destinations (i.e. the mul-
ticast group members to whom the data needs to be delivered)
in each data packet header in a fashion different from [3] and
[4]. This ”in-band” information can be used to establish soft-
state routing entries if desired. Using such an approach has two
advantages for MANETs. Firstly, there is no control overhead
expended when the group is idle; a characteristic shared with
DSR. Since many multicast applications do not have continu-
ous traffic flows, it can be expensive in terms of network control
overhead to maintain multicast forwarding state in routers dur-
ing idle periods. In-band control avoids this problem because
if there is no data traffic, there is no need for any control infor-
mation either. Secondly, it is not necessary for the nodes along
the data forwarding paths to maintain multicast forwarding state
if it chooses to run under stateless mode. When one interme-
diate node receives a DDM data packet, it only needs to look
at the DDM header to decide how to forward the packet; an-
other similarity to DSR. Assuming that routers can handle this
processing cost, this stateless mode can be very reactive and ef-
ficient. This stateless approach also avoids loading the network
with pure signaling traffic; a third trait shared with DSR. In so
doing, the hope is that the unicast algorithm can converge much
faster, with DDM then making immediate use of new unicast
routing knowledge.

While the fixed networks and MANETs can both benefit from
stateless, explicit multicasting because of its savings in storage
complexity, it is even more desirable to follow this approach
in MANETs due to the special characteristics of the MANETs.
Firstly, in wired Internet, network topology change rarely oc-
curs. Therefore if group membership is stable, after a multi-
cast tree is constructed, the maintenance effort is small and tree
links seldom need repair. On the other hand, MANET topology
is subject to constant and sometimes dramatic changes. Multi-
cast forwarding topology built in MANETs needs constant re-
pair even rebuild. Maintaining multicast routing state is a much
more expensive operation in MANETs than in wired networks.
This is even worsen by the tight bandwidth constrains of MA-
NETs. Secondly, the cost of medium access is high in wireless
broadcast networks due to the MAC mechanism and broadcast
transmission’s blocking effect to neighboring nodes. Although
packing routing information together with data traffic will en-
large data packet size, it reduces the total number of channel
accesses because it reduces the number of pure control pack-
ets generated by the protocol. Therefore such approach can be
more efficient overall in many scenarios. Thirdly in broadcast

networks, when a node needs to send to more than one neighbor,
it only needs to broadcast the packet once. So this approach has
better bandwidth consumption and channel access properties in
broadcast networks than in point-to-point networks. Lastly, the
performance bottleneck for Internet routers is typically at the
forwarding processing. The relatively complex processing of
the destination encoded headers prevents fast path forwarding
at Internet routers. On the other hand presently in MANETs,
the effect of per-packet processing on forwarding rate is less
significant relative to bandwidth, medium access, and energy
constraints. Also since mobile computing devices are typically
less resourceful comparing to their stationary and wired coun-
terparts due to weight and physical dimensional limits, saving
storage resource use becomes more important in MANETs.

In scenarios where the stateless approach is not favorable,
DDM may also operate in a “soft-state” mode. It is here that
DDM markedly departs from the work of [3] and [4]. In
this mode, as data packets with in-band control information
are routed through the network, each node along the forward-
ing path remembers the destinations to which it forwarded the
last time and how the data was forwarded (i.e. which next hop
was used for each destination). By caching this information,
the protocol no longer needs to list all the destinations in every
data packet header. When changes occur in the underlying uni-
cast routing or destination list, an upstream node only needs to
inform its downstream neighbors (i.e. its next hops) regarding
the differences in destination forwarding since the last packet;
hence, the name “Differential Destination” Multicast. Reporting
only these differences significantly reduces DDM header sizes.
Ideally, in a stable network where the topology and membership
remain unchanged, only the first data packet needs to contain
destination addresses and all subsequent packets would contain
no destination information. In practice, the state kept at each
node along the forwarding paths is “soft”. Each time data for-
warding occurs, this state is refreshed. Stale state eventually
times-out and is removed. This mode is better suited for ap-
plications which generates small data packets at relatively high
rate.

DDM is not a general purpose multicast protocol in the con-
ventional sense. The header-encoded destination mechanism
does not scale well with group size. The stateless mode, how-
ever, does scale well with the number of multicast groups, as
no per-group state is required in any routers. In MANETs,
if the number of multicast groups is small enough to permit
state storage, then the soft-state version using differentially-
encoded header processing can be used to reduce average packet
size and save bandwidth. This approach, however, has essen-
tially little applicability to fixed networks as the complexity of
the differentially-encoded header processing would significantly
slow down forwarding rates in high-speed networks.

B. Membership Management

In contrast with traditional multicast algorithms, a multicast
data source plays an important role in the DDM protocol. The
protocol proceeds independently for each source sending to a
multicast group (a session), and the remaining description ap-
plies to a single session. The source acts as an admission con-
troller for the information itself is sending. When a node (the
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“joiner”) is interested in a particular multicast session, it needs
to join the session by unicasting a JOIN message to the source for
that session. This JOIN message only needs to include the ID of
the group to which the node wants to join. Other useful fields,
namely the “joiner” ID and the source ID, are already included in
the unicast packet as the source and destination fields of the IP
header. Then it is up to the source to decide if the JOIN can be
accepted. The admission policies are beyond the scope of this
paper.

Upon receiving a JOIN message, if the joiner passes the ses-
sion’s admission requirements, the source adds the joiner into
its member list (ML) and the joiner becomes a receiver of the
session (also referred as a destination of multicasting in follow-
ing context). The source then acknowledges the JOIN message
by unicasting an ACK message to the joiner.

Back at the joiner, after the JOIN messages are sent, the joiner
waits for one JOIN WAITING PERIOD. If it has not received any
ACK till the end of this period, the joiner needs to resend the
JOIN message. When sending the JOIN messages, the waiting pe-
riod is exponentially backed off for every consequent JOIN sent.
The sending of JOIN messages is stopped when either an ACK

message is received (a success) or MAX JOIN RETRY JOINs have
been sent and the waiting period for the last JOIN message has
passed (a failure). Reception of a DDM data packet intended for
this joiner prior to reception of an ACK may or may not indicate a
successful join, depending on the security mechanism (if any) in
use and whether or not an ACK is required as part of this mecha-
nism. Security-related mechanisms are beyond the scope of this
paper. This paper essentially describes an unsecured session.
When join process is successfully completed on ACK reception,
any activate join waiting timer is canceled and no further JOIN

messages are generated.
The ML kept at the source node needs to be refreshed from

time to time to maintain up-to-date membership information.
Due to the dynamic nature of wireless networks, node reach-
ability may change unpredictably. When operating in hostile
environment such as battle field, nodes also may be destroyed
before any graceful exit procedure can be executed. Thus the
source needs to be able to purge stale members. In DDM
membership refreshing is source-initiated. Once every MEM-

BERSHIP REFRESH PERIOD data packets, the source sets a POLL

flag in the next outgoing data packet. Upon receiving such data
packet, a multicast session member needs to unicast a JOIN mes-
sage again to the source to express its continued interest. If af-
ter MAX REFRESH TIMEOUT such polling data packets have been
sent and there is still no JOIN message received from a particular
member, the source assumes that this member has left the mul-
ticast session. This member is then removed from the ML and
excluded from future forwarding computations. JOIN “implo-
sion” at the sender is not expected to be a problem due to small
expected group sizes. If necessary, random delay jitter may be
added to the transmission times of JOINs sent in response to POLL

packets to reduce congestive effects at the source.
This “polled” membership refreshment is used as a secondary

mechanism to detect an absent member. An explicit LEAVE mes-
sage is defined as the preferred way for a session member to
leave the source’s ML. It is a unicast message sent from the
leaving member to the session source. When received by the

source, this LEAVE message terminates the member’s member-
ship. The member is removed from the ML and is excluded
from future forwarding computations. To increase robustness,
instead of sending just one message, MAX LEAVE RETRY LEAVE

messages are unicast to the source when a node leaves the ses-
sion. After these transmissions, a member node removes all in-
formation associated with the multicast session. The source may
also dismiss a receiver by removing it from the ML at any time
if membership control policy suggests so.

C. Forwarding Computation

The key notion of DDM is forwarding computation based
on destinations (i.e. multicast receiver addresses) encoded head-
ers, may or may not be differentially-encoded depending on in
which mode a node operates. In this section, we describe the op-
eration under soft-state mode. The operation for stateless mode
is more straight forward.

C.1 Packet Formats

DDM employs two types of packets: control packets and data
packets, where it is understood that data packets may also con-
tain control information. There are four types of control pack-
ets: JOIN, ACK, LEAVE, and RSYNC. The first three are used only
by the membership control part of the algorithm. Each of these
control packets contains one field for the packet type and one for
the group address. Since they are unicast packets, the source and
destination of the packets are already included in the packet’s IP
header. They are used in admission processing as well. The
fourth packet type, RSYNC, is used by a node to request its up-
stream neighbor to re-synchronize the stored destination lists on
both nodes. The detailed used of RSYNC message will be ex-
plained later in section II-C.4 and II-C.5. This is a unicast mes-
sage with TTL of 1. It contains a three-state flag in addition to
the message type field.

Multicast data packets contain a payload and a DDM header.
Each DDM header is composed of a summary section, and at
least one DDM block. The summary section contains fields
such as membership refresh request flag, DDM header aggre-
gation length, and the sender’s address, etc. Each DDM block
is constructed for a particular downstream neighbor. Each DDM
block contains the intended receiver, the DDM block type, DDM
block sequence number and some other fields depending on the
type. There are three types of the DDM blocks: Empty (E)
blocks, Refresh (R) blocks and Difference (D) blocks. A D
block can be either an incremental block (Di), or decremental
block (Dd). Oftentimes only one DDM block is needed to de-
scribe the change in destination list for a downstream neighbor.
However, when both Dd and Di blocks are needed to describe
a difference, both blocks are constructed and put into the header
in a way that is consistent to all nodes (i.e. always put the Dd

block immediately ahead of the Di block).
The E block does not need any other field. It is followed

directly by the payload. The R block has a destination list L.
There is an incremental list (Li) in each Di block to tell the re-
cipient that it also needs to forward data to the destinations in
this list in addition to whom it is already forwarding. The decre-
mental list (Ld) in a Dd block informs the recipient that it no
longer needs to forward to the destinations in this list. In bothR
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Fig. 3. Forwarding Computation

and D blocks, there is a Time Of Life (TOL) value. Both D and
R blocks may be referred to as “informative” blocks in follow-
ing text since they contain forwarding list update information.

When used in broadcast media networks, DDM blocks for dif-
ferent downstream neighbors may be aggregated together to re-
duce the number of transmissions. When this feature is in use,
all aggregated DDM headers share the same summary section
and their DDM blocks are concatenated together. The DDM
header aggregation length of the summary section indicates the
number of DDM blocks being so aggregated. Each DDM block
is tagged by the intended receiver for the block so that when
this packet is received, the receiver can locate the correct DDM

block and the address list for itself. Figure 1 offers an example
of an aggregated DDM data packet header. More detailed spec-
ification for packet format as well as other parameters can be
found in [10].

C.2 Data Structures

The data structures involved in the forwarding computation
is shown in Figure 2. They are used by a node to remember to
whom and how it forwards multicast data. Such data structure is
only needed for nodes operating in “soft-state” mode. At each
node, there is one Forwarding Set (FS) for each active multi-
cast session. It records to which destinations this node needs to
forward multicast data. At the source node, the FS is the same
as the ML. At other nodes, this FS is actually the union of
several smaller sets. Each small FSk set records the destina-
tions included in data packets received from upstream neighbor
k. After receiving a data packet from a neighbor k, the receiv-
ing node will update the corresponding subset FSk and then the
unioned overall set FS where

FS = [kFSk; for all upstream neighbors k:

Associated with each set FSk, there is one sequence number
(SEQFS

k
). This is used to record the last DDM block sequence

number seen in data packet received from upstream neighbor
k. The reason for this sequence number is to detect the loss of
DDM data packets containing forwarding set updates. For each
multicast session, there is a cache for storing recently seen data
sequence numbers. Such cache is used to prevent data packet
looping and duplication.

The overall FS set contains all the destinations to which this
node needs to forward. However, these destinations may be
reached via different paths (i.e. next hops). Therefore, the FS
needs to be partitioned into subsets according to the next hops.
The destinations in theFS who use the same downstream neigh-
bor (next hop) will be put into the same subset. These subsets
resulted from partitioning the FS are called Direction Sets (a
DSl exists for each downstream neighbor l). For eachDSl there
is again a sequence number SEQDS

l
. It is initialized to 0 when

the DSl is created for the first time. Each DSl also contains a
“forced refreshing” flag. This flag has three states: “no forcing”,
“forcing once” and “forcing always”. The use of this flag will
be explained in sections II-C.4 and II-C.5.

For a pair of tree neighbors u and d, the DSd set on the up-
stream node u should contain the same list of destinations as the
FSu set on the downstream neighbor d.

C.3 Processing

Since MANET nodes commonly use broadcast, here we as-
sume that DDM header aggregation is in use. Most of the pro-
cessing consists of set operations. The computation complexity
on each participating node is thus bounded by O(n log n), with
n being the number of members in the multicast session. The
forwarding computation can be found in the flow chart in Figure
3.

When a node receives a DDM data packet from an upstream
neighbor k, it first tries to locate the DDM block intended for
itself by looking at the intended receiver field of each enclosed
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DDM block. If no such block can be found, the data packet is
dropped and the forwarding processing stops. After finding the
DDM block, the receiving node compares the sequence number
of the data packet (the identification and fragmentation offest
fields of IP header can be used for this purpose) with the contents
of local sequence number cache for this multicast session. If
this packet has been seen before, it is discarded and no further
processing is needed.

Then the receiving node accesses the FSk set. If no such set
is found and the received DDM block is a R block, a new FSk is
created along with its associated data objects. The newly created
set is initialized to empty. The SEQFS

k
number is initialized to

be 1 lower than the DDM block sequence number in the received
DDM block. However, if the block is E or D-type, this means
the FSk set is out of synchronization with the Direction Set on
the sender k. In this case, the receiving node sends a RSYNC

packet back to the upstream neighbor k.
Before a node proceeds further, it compares its SEQFS

k
value

with the DDM block sequence number in the received DDM
block. The reason for this step is to detect DDM update losses.
Because of the differential approach, it is very important to
quickly detect the loss of any packet which contains destination
list updates. When a node sends out a DDM block, it stamps
the block with a DDM block sequence number. This sequence
number is incremented by one every time the node sends out
an informative DDM block. The sending of E blocks does not
increment the sequence number since there is no change in the
destination list. Still, an E block carries the current sequence
number so a receiving node may detect previous losses.

If the received DDM block’s DDM block sequence number is
at least 2 greater than the SEQFS

k
and the block is an E or D

type, the receiving node knows that at least one packet was lost
and that packet(s) contains destination list updates intended for
its viewing. So the receiving node sends a RSYNC packet back
to the upstream neighbor, and the data packet is dropped. This
check is unnecessary for R blocks since they always contain the
entire destination list.

After verifying the DDM block sequence number, the
SEQFS

k
value is updated to the sequence number in the received

DDM block. If the received DDM block is an E block, there is
no change since the last data forwarding. Therefore the states
left by last forwarding computation can be reused: the receiving
node only needs to forward one copy for the data packet to each
downstream neighbor l whose DSl is not empty.

If the block is a R block, the node replaces its FSk by the list
L in the block.

FSk = L

When a node receives a Di or Dd block, it updates the cor-
responding FSk according to the D block: removing the ad-
dresses in the Ld from its FSk and adding the addresses in the
Li into its FSk set. Also the receiving node needs to look one
block beyond in the DDM header to see if the next block is also
a D block for itself. If so, the Li or Ld list in that D block needs
to be processed together.

FSk = (FSk � Ld) [ Li

After updating the FSk, the receiving node updates the union
FS. Then it partitions the new overall FS set into DS0

l
sets

according to the “next hop” l used by the unicast routes towards
the destinations in the FS. All destinations in the same DS0

l

share a common “next hop” l.
By comparing the contents of the new DS0

l
set and the exist-

ing DSl set (result of the forwarding of the last data packet) for
the same next hop l , the node assembles new DDM blocks for
next hop l for the outgoing DDM header. If there is oneDS0

l
but

there is no matching DSl, a R-type DDM block is constructed.
The sequence number for this DDM block is set to 0. Alter-
natively, if there is one DSl set but there is no DS0

l
, no DDM

block is constructed for l as l is no longer used as downstream
next hop.

For the case that there are both DS0

l
and DSl, the processing

checks if theDSl’s “forced refreshing” flag is set to either “forc-
ing once” or “forcing always”. If so, a R block is constructed
which contains all destination addresses in the DS0

l
. Otherwise

the contents of them need to be compared. If the DS0

l
set is

the same as the DSl set, an E block is used since there is no
change. Otherwise, R or D block(s) is constructed. By default
D block(s) is tried first. All destination addresses that are in
the DS0

l
(new Direction Set) but not in the DSl (old Direction

Set) form the incremental list Li. All addresses that are in the
DSl but no longer in the DS0

l
form the decremental list Ld. Ad-

dresses that are common in both sets appear in neither list. If
the total length of the Li and Ld lists is not shorter than the
destination list in DS0

l
, a R block is used instead to shorten the

overall list length. For D or R-type DDM blocks, the SEQDS

l

is incremented by one while it remains the same for E blocks.
The final SEQDS

l
is used as the block sequence number in the

constructed DDM block.

R header : L = DS0

l

or

D header :

�
Li = DS0

l
�DSl

Ld = DSl �DS0

l

After the DDM block is ready it is packed into the header of the
data packet. The “forced refreshing” flag is reset to “no forc-
ing” if its current value is “forcing once”. The contents of the
DSl set are replaced by the DS0

l
set and kept in memory for

the next forwarding computation. DS0

l
is self is discarded after

forwarding.
If DDM header aggregation is not in use, the data packet can

be forwarded to the downstream neighbor l right away. Oth-
erwise, more DDM blocks will be packed into the same data
packet header until it becomes full. The above DDM block con-
struction is repeated until allDS0 sets are processed. New DDM
blocks are inserted into the packet header if the header size does
not exceed the limit. Otherwise, the filled data packet is sent out
and a new data packet with the same payload is allocated. New
DDM blocks are then inserted into the header of this new data
packet.

C.4 Forwarding Set Synchronization

When operating in soft-state mode, usually only the differ-
ences of the destination lists are included in data packet head-
ers. Therefore it is very important to keep the Direction Set on
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the upstream side and the Forwarding Set on the downstream
side synchronized. The DDM algorithm uses sequence number
to maintain synchronization. For a pair of neighbors, the cor-
responding sequence number SEQFS

u on a downstream node d
should match with the SEQDS

d
on its upstream neighbor u.

This sequence number is carried inside of each DDM block
and its advertisement is data-driven. Only nodes which are
not exchanging data may remain out of synchronization for ex-
tended periods. If a receiver d detects missing sequence num-
bers, it knows that some data messages containing informative
DDM blocks intended for itself have been lost and its FSu set is
out of synchronization with the DSd set on the upstream neigh-
bor u. It needs to notify the upstream neighbor u using a RSYNC

(request to synchronization) message. When used for resynchro-
nization purpose, this message contains a flag telling the up-
stream neighbor to set the “forced refreshing” flag for the DSd
set to “forcing once”. The message is unicast to the upstream
neighbor.

Node u, upon receiving a RSYNC message, locates the DSd
set used for the sender of this RSYNC message (d) and sets the
“forced refreshing” flag to what the message says, in this case
“forcing once”. When u is forwarding the next data packet, it
will see the “forced refreshing” flag at theDSd set and the DDM
block construction algorithm described previously will produce
a R block. Since R block contains the full list, upon reception
the downstream neighbor d will have its FSu set synchronized
with the contents of the DSd set on node u again.

C.5 Timers and Dual Modes of DDM

DDM is a dual-mode algorithm where each participating node
can operate in either “stateless” mode or “soft-state” mode.
Timers, the “forced refreshing” flag, and the TOL field in each
DDM block are the mode control parameters.

There are timers associated with each set (both FSk sets and
DSl sets). When any of the timers expires, the corresponding set
is removed. Every time there is a packet received from neighbor
k, the timer associated with the FSk is reset to expire in TOL

seconds as specified in the received DDM block.
Every time a DSl set is used for forwarding, the forwarding

node picks an expiration period for the timer associated with this
DSl. Then in the outgoing DDM block, its TOL field is set to:

TOL = DSl life timer value �R R > 1

This action helps ensuring that, over a given link, the timer for
the Direction Set on the upstream side expires before the timer
for the Forwarding Set on the downstream side. Otherwise if the
DS set lives longer than the downstream’sFS set, the upstream
neighbor may use an E or a D block and the downstream node
will have to start the resynchronization process. Although the
timer setting scheme does not completely avoid this from hap-
pening (packet loss may still cause the same problem), it should
sufficiently reduce the probability of the occurrence of such un-
desired event. Also, by making the timer value for the DS sets
a local decision, nodes are given the opportunity to adapt the
timer values to their local environment. For example, if a node
moves rapidly relative to its surrounding nodes, it is reasonable
to choose a smaller timer value.

The preceding applies to “soft-state” operation. If “stateless”
forwarding is desired at a node, it may need to inform its up-
stream neighbor about its decision. If the upstream neighbor
is also operating in “stateless” mode, there will be no need for
the notification since all DDM blocks coming from it will be R-
type. If the upstream neighbor is in “soft-state” mode, indicated
by the reception of an E or D block from it, the “stateless” node
needs to send back a RSYNC message with the “forced refresh-
ing” flag set to “forcing always”. After receiving such RSYNC

message the upstream neighbor will only send R blocks from
the next data packet onwards since the DS set corresponding
to this “stateless” downstream neighbor has a “forcing always”
flag. This flag will not be reset after each outgoing DDM block
is constructed. In a “stateless” node, all FS and DS set timers
are set to zero so that none of the sets are kept. Later on, if a
“stateless” node ever wants to switch back to soft-state again,
it only needs to send another RSYNC message to its upstream
neighbor to cause the latter to reset its “forced refreshing” flag
to “forcing once”.

Using a combination of RSYNC message, TOL, and “forced
refreshing” flag, neighboring nodes can operate in different
modes but still work together.

D. Route Correctness Discussion

DDM is loop-free as long as the underlying unicast routing
is loop-free. Since the DDM routing (FS to DS’s partition)
calculation is carried out for every data packet, only the most
recent unicast routing information is used. Transient loops are
still possible during unicast routing convergence period, but will
disappear as the unicast protocol recovers. During this period,
some data packets may have been errantly sent using erroneous
route information. In this case, these data packets will either be
dropped when the IP TTL reaches zero, or will exit the loop and
head towards the destination when some forwarding node finally
corrects the loop.

Broken routes is also handled by unicast routing. It is not
necessary for DDM to learn about link status. The old DS and
the old FS sets on two ends of a broken link are left alone to
be deleted on time-out since no data packet is forwarded using
them. If there is alternative route available, or as soon as the
unicast routing finds one, DDM will use the next hop of the new
route when forwarding the next multicast data packet. When
there is new link to be added, DDM does not react either. In
fact, DDM is not aware of the change if this new link is not used
for reaching DDM destinations. Only after the unicast routing
protocol designates this link as a next hop for some DDM des-
tination will DDM utilize the new link. DDM will then set up
a new DS for this new link. By relieving DDM from multicast
forward path monitoring and maintenance, the only pure con-
trol traffic DDM generates during data forwarding is the RSYNC

packet.
Data packets may be lost during transmission. If the lost

packet is an E packet, it is simply a data loss. If the packet
is a D or R packet, the loss may de-synchronize the FS sets on
the receiving ends from the matching DS sets on the sending
ends. However, since all packets contain DDM block sequence
number, the receiving end of the lossy link will discover the
loss of an informative DDM block when receiving the next data
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packet. A RSYNC is then sent back asking for a R block to re-
synchronize the FS sets and the DS sets.

III. PERFORMANCE EVALUATION

A. Simulation Environment

The simulations are implemented using the NS-2 network
simulation package [11]. The simulation environment models
a MANET of 50 mobile nodes. At the beginning of the simu-
lation, nodes are randomly placed in an 1000m by 1000m area.
Node movement uses the random way-point model of [12] with
no pausing. When the simulation starts, each node randomly
picks a destination and moves towards it with a random constant
speed. After a node reaches its destination, it selects a new des-
tination and starts to move towards it at a newly selected speed.
Each simulation is executed for 900 seconds. There is no net-
work partition during the course of simulation.

The network stack of each mobile node consists of a link
layer, an ARP module, an interface priority queue, a MAC layer,
and a network interface. IEEE 802.11 is used as the MAC proto-
col. The radio transmission range is approximately 250 meters.
Each network interface transmits data at a rate of 2 Mbits/sec.

In all simulation runs, CBR traffic flows are injected into the
network from source nodes. The size of data payload is 512
bytes. Data packets are generated at each source at a rate of 4
packets per second. Group members and sources are randomly
selected among all 50 nodes. Source nodes may or may not be
group members themselves. To reduce side effects, member-
ship control features are turned off. All group members join the
multicast group at the beginning of the simulation and remain
members till the end of simulation.

B. Protocols

The performance of the DDM protocol is studied in two fla-
vors. The basic version of DDM runs above an omniscient uni-
cast routing algorithm which always knows the full topology
of the network and computes shortest path to destination. The
shortest path computation is purely based on network topology.
This decouples DDM from the characteristics of any given uni-
cast algorithm, and allows us to focus on its own behavior under
admittedly ideal circumstances. The performance obtained in
this case is probably an upper bound on that achievable with
DDM. Then DDM is also run above the MANET unicast rout-
ing protocol AODV (Ad Hoc On-Demand Distance Vector) [13].
This is done to assess the effectiveness of DDM over AODV, and
to see the side effects of using DDM over an on-demand proto-
col.

The AODV routing agent is already provided in the NS-2
package. When working with an on-demand unicast routing
protocol such as the AODV, DDM needs to be modified slightly
to work with the “reactivity” of the on-demand protocol. When
DDM needs a route towards one particular destination and the
unicast routing does not have a route, DDM encapsulates the
data packet in a unicast packet for that destination and passes it
to the unicast routing algorithm for forwarding. Since there is
now a “demand” for a route, the unicast algorithm will start to
build a route and eventually this data packet is delivered to the

waiting group member. Route information for the same destina-
tion is also ready for future DDM queries.

Other than DDM, we also implemented simple flooding and
the On-Demand Multicast Routing Protocol (ODMRP) [6] for
comparison. The ODMRP multicast routing agent implements
the specification of [6] without mobility prediction. In simula-
tion, ODMRP protocol parameters are set to the values used in
[14], which is produced by the authors of ODMRP. In addition,
the Forwarding Group timeout value is set to 4 times of the route
refresh interval, as suggested by [6].

C. Parameters

We alter the simulations by varying three parameters: the
maximum node speed, the number of members in a group, and
the number of data sources for the group. We only simulate one
multicast group. The first variable represents different levels of
node mobility, and thus the relative amounts of network topol-
ogy dynamics. Each node’s speed is set to a value evenly dis-
tributed between 0 and the maximum node speed. The second
parameter controls multicast group size. It translates into two
factors, membership density and overall network traffic level,
which both affect the simulation at the same time. The last
parameter controls traffic load. When the number of sources
varies, the total amount of data traffic circulating within the net-
work also changes.

The simulation runs under different combinations of param-
eter values. The standard case is for a multicast group with 2
sources and 10 members. All nodes are moving at a random
speed between 0 and 2 m/s. When we are studying the effect
of one particular parameter, it is set to different values while
the others are fixed at the standard case. The standard case has
relatively low traffic load and low mobility. This way we can
focus on the performance changes resulted from the change of
the parameter of interest. For the effect of node mobility on
protocol performance, the simulated range of maximum node
speed is between 1 m/s and 20 m/s. For group sizes, simula-
tions are run for groups with from 2 to 50 members. For the
impact of number of sources, we use from 1 to 10 sources. For
each simulation data point, results from multiple runs are aver-
aged. These runs are for the combinations of 3 different random
node placement/movement patterns and 3 different group mem-
ber distributions.

D. Simulation Results

D.1 Data Packet Delivery Ratio

The data packet delivery ratio is defined as the ratio of the
number of data packets actually received by group members to
the number of data packets that should have been be received.
Since the membership is static during the entire simulation (and
since there are no partitions), the number of data packets that
should be received equals the product of the number of members
and total number of data packets generated by all sources.

From Figure 4(a) we can see that the throughput of ODMRP
(which does not require any unicast routing support) is impres-
sive across the whole mobility spectrum. So too is the delivery
ratio of flooding. They are doing well because they use redun-
dant transmissions for data delivery. ODMRP uses mesh for-
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Fig. 4. Data Packet Delivery Ratio vs. (a) Max. Node Speed, (b) Group Size, (c) Number of Sources

ward topology instead of traditional tree topology. Data packets
are flooded within the mesh called “forwarding group” (FG).
A simplified view of which is that the FG is constructed as the
union of all Source Specific Trees for the multicast group. Given
a group with 10 members and 2 sources, the FG can contain
enough nodes to provide the redundancy needed for high deliv-
ery level. The basic DDM also offers good throughput at all mo-
bility levels. Since it runs over near perfect routing information,
this result is not surprising. In addition, since the network traffic
level is low, there is little data packet collision. However, the
throughput of DDM over AODV decreases as the node mobility
level increases. This is mainly due to inaccurate route informa-
tion AODV provides. When nodes move faster, the topology
changes faster. It becomes harder for unicast routing protocol to
maintain up to date route information.

When the group size changes, different protocols react differ-
ently. Flooding does well for all group sizes. ODMRP offers
high data delivery ratio when the multicast group is more popu-
lated. When the group is small, the FG constructed by the proto-
col contains a small amount of nodes and thus is relatively frag-
ile. The FG is easier to be broken by node movements. When
the group gets larger and larger, the FG size increases and thus
becomes more tolerant to node movements, – if one path is bro-
ken, the FG may very well contain other backup paths. Both
DDM variations behave the opposite from ODMRP: they pro-
vide high data delivery ratio when the group is small but the
performance degrades when the group gets larger. The basic
DDM’s data delivery ratio drops for large groups mainly due to
high membership density. When membership density is high,
data packet collision is more likely to occur since more nodes
need to participant in data forwarding. At the same time, DDM
block aggregation is more likely to be used since the number
of downstream neighbors is increased. DDM block aggregated
data packets are sent in multicast envelops. 802.11 sends them
without the RTS/CTS handshake and thus they become more
vulnerable to collisions. In addition such congestion related
packet loss happens more frequently near sources. A data packet
dropped near source has more negative impact on delivery ratio
than a packet dropped father away. All these factors reduce the
DDM’s delivery ratio for larger multicast group. The DDM over
AODV exhibits a faster performance drop due to the additional
fact that when there are more members, the AODV simply needs
to maintain more routes. The high data traffic level resulted from
high membership density also has negative impact on AODV
route accuracy since many AODV control packets are broadcast
packet. They are as vulnerable to collisions as the data packets.

Adding the number of sources increases network traffic level

even faster. Very soon, the whole network is badly congested
and all protocols suffer. Flooding is the least sensitive to net-
work load as it’s forwarding topology is the most redundant.
And it does not need any control messages to maintain this for-
warding topology. ODMRP is not as good as flooding due to two
reasons. Firstly its forwarding topology is smaller than flood-
ing’s. Secondly ODMRP needs to exchange control message
to construct and maintain its forwarding topology. These con-
trol messages can become victims of collisions too when the
network is congested. When traffic level is very high, such con-
trol message loss costs the drop of ODMRP delivery ratio. The
basic DDM does not need control message other than RSYNC.
However, as a tree forwarding protocol, DDM does not provide
redundant forwarding path. Thus data packet losses have more
serious impact on delivery ratio than packet losses in ODMRP.
For DDM over AODV, it is the worst since the consequences of
data packet losses is compounded with what resulted from the
overly stressed unicast routing.
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Fig. 5. Number of Data Packet Transmissions per Data Packet Delivered vs. (a)
Maximum Node Speed, (b) Group Size

D.2 Data Forwarding Efficiency

We measure data forwarding efficiency using the “number of
data packets transmitted per data packet delivered”. The greater
this number is, the less efficient a protocol is. This partially
measures the bandwidth efficiency of a protocol. Since data pay-
loads tend to be large in size compared to protocol control infor-
mation, the number of data packet transmissions is usually the
most important measure for bandwidth consumption of a multi-
casting protocol in terms of bytes.

The number of data packets transmitted includes the transmis-
sions of all packets containing a user payload. For DDM, this
includes all data packets. For ODMRP, this includes both data
packets and JOIN QUERY packets since those contain user data as
well.

Figure 5 shows the average number of data transmissions re-
quired to deliver each data packet. For all simulated node mo-

1199 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

N
um

be
r 

of
 C

on
tr

ol
 P

ac
ke

t T
ra

ns
m

is
si

on
s 

pe
r 

D
at

a 
P

ac
ke

t D
el

iv
er

ed

Maximum Speed (m/s)

ddm
ddmaodv

odmrp
flooding

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 C

on
tr

ol
 P

ac
ke

t T
ra

ns
m

is
si

on
s 

pe
r 

D
at

a 
P

ac
ke

t D
el

iv
er

ed

Number of Group Members

ddm
ddmaodv

odmrp
flooding

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 C

on
tr

ol
 P

ac
ke

t T
ra

ns
m

is
si

on
s 

pe
r 

D
at

a 
P

ac
ke

t D
el

iv
er

ed

Number of Sources

ddm
ddmaodv

odmrp
flooding

Fig. 6. Number of Control Packet Transmissions per Data Packet Delivered vs. (a) Maximum Node Speed, (b) Group Size, (c) Number of Sources
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Fig. 7. Number of Control Bytes Transmitted per Data Byte Delivered vs. (a) Maximum Node Speed, (b) Group Size, (c) Number of Sources

bility levels, ODMRP requires more data transmissions to de-
liver data packets to receivers. One reason for ODMRP’s high
data transmission number is its JOIN QUERY message. This mes-
sage, with data payload piggy-backed, is flooded throughout the
whole network periodically. Another reason is that ODMRP
uses mesh forwarding. The mesh contains all source-to-member
paths and the size of mesh is fairly large compared to the size of
multicast group. Partially, the large size of the FG’s is also the
result of the time for a node to stay as an FG node. After an FG
refreshing, a node of the previous FG may not be refreshed if it
is no longer on the paths between sources and members. How-
ever, it may remain in the FG and keeps forwarding data if its
FG flag has not expired. This adds forwarding path redundancy
and thus improve data delivery ratio. However, it increases the
size of FG and reduces data forwarding efficiency. Using tree
forwarding, DDM, either running above ideal routing or AODV,
uses small number of transmissions to deliver each data packet.
When the node mobility increases, both protocols forward data
packets less efficiently mainly due to the drop of packet delivery
ratio.

When the group size increase, data transmission efficiency of
both flooding and ODMRP increases due to the fact that more
and more members are included in their forwarding topologies,
whose sizes do not increase much because they are already quite
large. DDM is relatively insensitive to group size changes.
When group size increases, the overall forwarding efficiency
tends to increase slightly because the paths between sources and
receives are more likely to overlap. However, the increase is af-
fected by the drop of number of data packets delivered as group
size increases.

D.3 Multicast Routing Protocol Overhead

We observe multicast routing protocol overhead from two
perspectives: pure control packet overhead and control byte
overhead. Due to the high cost of channel access in wireless
broadcast environment, the former is more significant for MA-

NET protocols than it is for point-to-point networks. Flooding
does not exchange any control information so both of its over-
heads remain 0.

� Control Packet Overhead: Control packet overhead is defined
as the “number of control packets transmitted per data packet
delivered”. It shows relatively how much extra wireless channel
accesses is required for the protocol to exchange control infor-
mation. Here we only count pure protocol control packets that
do not carry user payload. For DDM, this only counts RSYNC

packets. For ODMRP, the count includes only JOIN REPLY and
ACK packets. The plots are shown in Figure 6.
Both variations of DDM rarely use pure control packets as they
mostly rely on control information enclosed in data packets.
Thus the number of protocol control channel accesses is kept
low. The control packet overhead of both DDM’s increase when
data packet loss increases, which occur when (a) node mobility
increases , (b) group size increases, and (c) number of sources
increases. There are two reasons for this increase. Firstly, the
loss of data packets which contain destination list update will
drive the downstream nodes to send out RSYNC messages to their
upstream neighbors. Secondly, the lowered data delivery ratio
decreases the denominator of the overhead and thus increases
the overhead.
ODMRP’s control packet overhead is higher than the rest.
This is due to the mechanism it uses to construct the FG.
When a group member receives a JOIN QUERY, it replies with
a JOIN REPLY. This JOIN REPLY will trigger all nodes between
the originator of the JOIN REPLY and sources to send more
JOIN REPLY towards the sources. After each member receives
JOIN QUERY, it needs to reply with JOIN REPLY and such chain
reaction is triggered again.
ODMRP’s control packet overhead increases slightly as node
mobility level increases. ODMRP does not employ adaptive
mechanisms to dynamically adjust FG refreshing period so the
JOIN QUERY’s are flooded out at the same rate for all node mo-
bility levels. The small increase is due to the following rea-
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son. When nodes move faster, the reverse routes to sources
learned when receiving JOIN QUERY become less reliable as the
next hops become more likely to move away. If the triggered
JOIN REPLY is targeting at a next hop which is no longer there,
the JOIN REPLY will be lost. In this case, after ODMRP re-
transmits JOIN REPLY for several times without success, the node
needs to find another route to source on the spot. The is done
by broadcasting another packet specifying the route it is looking
for. All neighbor nodes receiving such packet need to gener-
ate their own JOIN REPLY’s. This causes the increase of con-
trol packet overhead when topology changes faster. ODMRP’s
packet overhead decreases as group size increases and number
of sources increases. Although the number of JOIN REPLY mes-
sages generated also increases as the group size gets bigger and
there are more sources, the denominator, the number of data
packets delivered to members, increases even faster.
� Control Byte Overhead: Control byte overhead is defined
as the “number of control bytes transmitted per data byte de-
livered”. The number of control bytes includes both the whole
length of protocol control packets and embedded protocol con-
trol information in data packets. For DDM, the whole packet
size of RSYNC packets and the DDM header bytes embedded in
each data packet are both counted. For ODMRP, the control
bytes only include those of the control packets. For JOIN QUERY

messages that contain data payload, only bytes used by ODMRP
are counted. As we can see from Figure 7, in this criteria, DDM
is not particular advantageous compared to ODMRP.
ODMRP does not piggyback control information in regular data
packets. Control information is enclosed in JOIN QUERY packets.
However since these packets are flooded through the network so
this portion of control bytes remains at the same level for differ-
ent parameters. Other control bytes are from pure control pack-
ets. Therefore we see that roughly the change of byte overhead
follows the change of packet overhead for ODMRP.
For DDM, things are different. Majority of the control bytes are
from DDM headers enclosed in data packets. Thus we see less
correlation between packet overhead and byte overhead. When
the node mobility level increases, both DDM’s have higher con-
trol byte overhead due to more frequent route changes. Thus
DDM needs to use more D and R blocks to inform the down-
stream neighbors about the route changes. These blocks enlarge
the DDM header size. When the group size increases, the byte
overheads of both DDM’s tend to decrease. Because paths be-
tween sources and receivers overlap each other more, one data
transmission can effectively forward data for more members.
Also since routes are relatively slow changing due to low mo-
bility, most of the data packets only carry E blocks. However,
this trend is offset by the drop of data delivery ratio. When num-
ber of sources increases, both DDM’s experience byte overhead
increase. This is due to data packet loss, the use of more RSYNC,
and larger DDM header size for resynchronization.

IV. CONCLUSION AND FUTURE WORK

We have proposed a multicast routing protocol intended for
use with small multicast groups in ad hoc networks of any size.
The protocol is source-initiated and controlled, and uses in-
band, destination-encoded data packet headers to control a dis-
tributed routing computation. The result is a flexible, efficient

and robust protocol suitable for small multicast groups. The
protocol offers the option of choosing between “stateless” and
“soft-state” modes.

The simulation results show that DDM is very efficient both
in terms of data forwarding and control channel access. Espe-
cially for small groups, such characteristic stands out among all
simulated protocols. When the network traffic level is low, the
throughput of the protocol is affected by performance of the uni-
cast routing protocol DDM is operating upon. When the uni-
cast protocol provides good route information, DDM delivery
high throughput across all situations. DDM performs particu-
larly well for small groups. It is nearly ideal for multicasting to
small groups in networks that already have unicast routing sup-
port. On the other hand, ODMRP is better suited for another
end of MANET multicasting, multicasting to large and dense
groups.

The simulation also shows that DDM is more sensitive to net-
work traffic level compared to protocols using redundant for-
warding path. This is because data packet loss has more serious
consequence on protocol performance. When data packet loss
occurs, the DDM control information embedded in data packets
is also lost. With no redundant data forwarding, packet loss also
reduces packet delivery ratio.

In future studies, different modes and options of the DDM
protocol will be explored. More comparison studies will also
be included in future plan. Improvements to the protocol, espe-
cially those targeting at reducing data packet vulnerability and
the impact of data packet loss will be attempted.
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