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introduction

The fundamental challenges of science are thogse of deseription and
predietion. Observing cerfain phenomena, we wish to know how to de-
seribe what we see now and how to determine the subsequent behavior.
In many important cases, at any time #, a finitc dimensional vector z(f)
provides a eonvenient and usable representation of the state of the system.
If we then assume that the rate of change of 2(¢) depends only on ¢ and
z(t) itself, we are led to the differential equation

"

i gle, 8,  x(0) =¢ (1)
a mathematical mine of apparently inexhaustible richness. Basic problems
are those of existenee and uniqueness of solutions, subject to various
types of inifial, two-point, and multipoint boundary conditions, the
behavior of the solutions of lincar equations with constant and wvariable
coefficients, and the stability of selutions of lnear and nonlinear differ-
ential equations.

As a result of intense and ingenious research, mueh significant informa-
tion concerning physieal proccsses can be derived from the analysis of
equations of the foregoing simple type. Furthermore, we now possess
powerful procedures for obtaining computational solutions using either
desk or digitul computers. Despite this very satisfactory state of affairs as
far as differential equations arc eoncerned, we are nevertheless foreed to
turn to the study of more eomplex equations. Detailed studies of the real
world impel us, albeit reluctantly, to take account of the fact that the
rate of change of physical systems depends not only on their present state,
but also on their past history. In place of (1), we must write

dz
Pl g(z(®), z(s), &), z(0) =g, (2)

where g ranges over a set of values less than ¢ Of the manifold equations
of this type, perhaps the simplest is a differential-difference equation

Z—f = glx(), z(t = &), -, z{t — &), D), 3)

iii
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where 0 << 4 < fy < --- < &. We shall discuss equations of this nature in
some detail,

Although many particular equations of this general cluss have appeared
in the mathematical litcrature over the last hundred years or more, arising
from geometrie, physical, engineering, and economiec sources, only within
the last decade and a half have they been intensively and extensively
eultivated. Consequently, there are very few systematic accounts available,
a fact which forees us to devote in the pages that follow a certain amount of
space to basic results essential for the study of more advanced material.

We begin with the study of the sealar linear equation with eonstant
cocfficients,

w' () + au(t) + am(t — w) = 0, t > w,
(4)
u(l) = g, 0<¢t<w
The Laplace transform permits us o obtain an explieit representation for
the function

v(s) =f uf{l}e=* dt.
0
From this, we derive an expression for w(t) itself as a contour integral,

employing standard inversion techniques. With some nontrivial modifica-
tions, we can employ the same technique to treat equations of the form

wW{l) + aw’(t — @) + au(t) + et — @) = 0, (5}
and, with the aid of the finite Laplace transform, equations of the type
u"(t) + aqult) + ault + w) = 0. (6)

The contour-integral representation permits us to diseuss the asymptotic
behavior of the solution as { — o, and, in some cases, to obtain convergent
series expansions. The successful application of these methods depends
erucially on & knowledge of the location and asymptotic behavior of roots
of cxponential polynomials of the form

p(s) + g(s)e, {n
where p(s} and g{s} are algebraic polynomials, and, occasionalily, of more
complex expressiors. In the final two chapters of the book these matters
are treated in some detail.

The corresponding analysis for vector-matrix equivalents of (1), such as

() + Awx(t) + At — w) =0, (8)

is not difficult in principle, but is rather tedious in practice because of the
usual obstacles encountered in dealing with matrices.
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As a final application of straightforward Laplace transform techniques,
we consider the renewal equation

wll) = f1) + f g()ult — 3) ds. 9)

This gives us some opportunities to discuss o few interesting and delicate
questions concerning asymptotic behavior of solutions of (9) as { — =
and briefly to indicate the applications of Tauberian techniques. The
vector-matrix analogue of (9), an equation arising naturally in the theory
of branching processes, requires for it analysis the rudiments of the
theory of positive operators, and, in particular, the Perron theorem con-
cerning positive matrices. :

We next turn to a study of the stability of solutions of lincar and non-
linear differential-difference equations, a subject of some dilliculty. The
usual methods of ordinary differential equation theory employed to study
equaiions in which the coefficients approach constants as t — o« do not
carry over. In their place, we use the method of the adjoint equation, and
obtain in this fashion analogues of the classical results. _

Next we turn to analogues of the classical result of Poincaré and Lia-
punov. The standard techniques, with appropriate modifications, yield
the desired theorems. Much of the work in this connection, and in connec-
tion with linear equations, is due to the research eiforts of E. M. Wright.

The applications of differential-difference equations, and of funetional-
differcntial equations in general, permeate all branches of contemporary
scicnce. We have atiempted to illustrate this by meuns of numerous
examples and references in the iext, but we have made no systematic
effort in this direction. The range of applications, in physics, engineering,
egonomics, and biology, certainly merits its own volume. Despite the
fact that in every direction there are paths leading to the unknown, we
have forced ourselves, in view of the already unwieldy size of this volume,
not to pursue them, or even to follow & number of known trails, Thus, for
example, we have not discussed the interesting work of Myskis, because it
is alrendy available in book form. We bope that our work will help the
reader discover his own goals and assist him in reaching them.

This book is addressed to mathematicians and scientists, and to students
of mathematies and science. Few readers will wish {o study this book in
lincar fashion from the front cover to the back. For example, persons
familiar with Laplace transform theory and the theory of ordinary differ-
ential equations may wish to skim over Chapters 1 and 2, referring to them
later if necessary. Chapters 3 and 4 are basic to an understanding of a large
part of the remainder of the book, bui most of the subsequent chapters
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can be omitted on first reading without peril. The reader’s particular
interests will guide his selection of material. Readers concerned primarily
with applications should pay particular attention to the exereises, where
many applications are mentioned. .

The book follows to a great exient the format of the monograph

R. Bellman and J. M. Danskin, A Survey of the Mathematical Theory of Time Lag,
Retarded Control, and Hereditury Processes, The RAND Corporation, R-256, 1954.

The additional material represents the work done by the prescnt authors
over the intervening period.

The research represented by this book has been done over a period of
many years, as a RAND Corporation stalf member by one author and as
a consultant to RAND by the other. We have learned a great deal from
our endeavors and we frust that the many applications of this work will
eompensate for the time and effort we have expended.

We wish to thank Mr. Vencil Skarda and Mr. David A. Huemer for
their careful reading of parts of the manuscript. Special appreciation is due
to Mr. Jeffrey D). Scargle, who read a large part of the manuscript, and
supplied Miscellancous Exercises 9-13 of Chapler 1 and 40-64 of Chapter
3, as part of a National Science Foundationn Undergraduate Rescarch
Participation program at Pomona College. Finally, we desire to acknowl-
edge the patient devotion and quick intelligence of Jeanette Hiebert, who
typed these thousands of formulas so unervingly and helped materially in
g0 many ways, and the usual perseverance and skili of Dorothy Stewart
and Katherine Ifaydock, who guided this book through publication.

Richard Bellman
Kenneth L. Cooke

The RAND Corporation and Pomona College
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CHAPTER ONE

The Laplace Transform

1.1. Introduction

In this chapter, we wish fo discuss the fundamental properties of the
Laplace transform, This is a transformation which replaces a function
St} defined for ¢ > 0 by a function F{s), defined for Re(s) sufficiently
large,* by means of the relation

F(s) = f; (1) dt. (11.1)

Oceasionally we shall write F = L{ f) to denote this relation.

Our interest in this transformation arises from the fact we shall establish
subgequently that with its aid we can transform linear functional equations
in f(#) involving derivatives and differences into lincar equations involving
only F(s).

This fact leads us {0 require answers to the following questions:

(a) Given that F = L{f}, bow do we determine f?

(b) When can a given functien F(s) be the Laplace transform of some
function f(2)?

{¢) Given L{f) and L{g}), how does one determine L-'(L{ f}L{g)},
the function whose Laplace transform is L{ f) L{g)?

The foregoing problems have many interesting ramifications, and a
great deal of study has been devoted to these matters. References
may be found at the end of the chapter. We shall restrict ourselves to the
derivation of a few basic results which will be used repeatedly in what
follows.

1.2. Existence and Convergence

The infinite integral appearing in (1,1.1) is defined as the limit of a
finite integral, thus
It
F(o) =lm [ () , (12.1)

Rm 0

* Ite(s) denotes the real part of s.
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where f(1) iz assumed to be integrable over any finite interval [0, R].
For our purposes, there is no need of the sophistication of the Lebesgue
integral and we may just as well use the old-fashioned Riemann integral,
At very worst, the functions to which we shall apply the Laplace transform
will be piccewise continuous. Most will possess at least one continuous
derivative.

It is not difficult to show that the convergence of the integral for some
value & = oy + ¢ro entails its convergence for ¢ = ¢ 4 #r for any ¢ > o
The functions f{f) we will encounter will usually possess bounds of the form

| ()] < cev, (1.2.2)

go that the integral in (1.1.1) will converge absolutely for Re (s) > «a.

An interesting aspect of the Laplace transform is that it maps real fune-
tions defied over { > 0 into analytic functions defined over half-planes
Re(s) > oo. A thorough discussion of the regions of convergence and
absolute convergence for the Laplace {ransform is contained in references
given at the end of the chapter.

EXERCISES

1. S8how how to obtain L{ f{at)) from L{ f{1)).
2. Bhow how to obtain the Laplace transform of the function defined by
g =Jf—Hh), 24

=, 0<1{<h,
from that of f(1).

3. Show that L{ f) = e /sii
fiy =0, 0 <t <a,

=1 t > a
4, Bhow that
L{e*t) = 1/(s — a},
T 1
L{tre®t) = Tin +—)-, > —1
fg — a)=f
5. Show that

3 (1 *te_") = log (1 + 1/s).



1.3. THE INVERSION PROBLEM 3

6. Show tbat

L[exp (~/9)] = 2exp () [ “exp (— ) du.

7. Show that
2
a4 L2 e
L () - (e

LF @Yy = sL(f) — f(0).
Here f({) denotes the derivative of f{¢).
9. Obtain the Laplace transform of f*(¢}, the nth derivative of f({).

8. Show that

1.3. The Inversion Problem

Let us now begin the discussion of the problem of determining f({} given
F(s). If F(s) is given explicitly, we can search various tables that have
heen constructed. ¥or theorstical and computational purposes, however,
we need some algorithms which furnish g series of operations to be per-
formed upon ¥ (s) to yield f().

The simplest of these, constructed by analogy with the theory of power
serics and Fourier series, is an integral transformation. Assume that the
integral

F(s) = fu T i) e=n diy (13.1)
converges absolutely for Re(s) > eg. Then for @ > ¢4, we may write |
Fla+it) = fu " f(6) exp [— (@ + )] dt (13.2)
where the integral is absolutely convergent.

Let us multiply both sides by e*@+% and integrate with respect to ¢
between — T and 7. The result is

T
[ getieF{g + 4t) di
-7

- T
= e‘“‘fu fliye—=n [frexp (7wl — 4t) dt] din. (1.3.3)

The interchange of the order of integration is justified by the absolute
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convergence of the double integral. Simplification of the right-hand side
yields the relation

r

. = sin T{u — &)
f earivuP (g + if) dt = 2eo f e ——— — M g (1.3.4)
— 0 (u — &)
The function
sin T(u — #)
Elu by, T) = ———— {1.3.5)
(u — i)

is called the Dirichlet kernel since it was first encountered by Dirichlet in
his investigations of the convergence of Iourier series. Upon its eccentric
behavier as T — o is based the most important inversion formula for the
Laplace transform.

1.4. Behavior of tha Dirichlet Kernel

Let us agree to take k{u, &, ) to have the value T at 4 = 1, so that
k(wu, t, T is continuous for all % as a function of #. Its graph has the shape
shown in Fig. 1.1,

ko, 1,,7)

/\\ v-*/T : Py A’I
S | N A S N A

Fie. 1.1.

As T gets larger and larger, the peak at f; = u becomes more and more
pronounced, It is consequently tempting to guess that as T — « the
value of the integral in the right-hand member of (1.3.4) becomes solely
dependent upon the value of the funetion f(#;)e=4 at §; = w. If this guess
is correct, we have a means of determining f(¥) for ¢ > 0,

1.5. Analytic Details

Let us now pursue some of the analytic aspects of the problem of de-
dueing the value of f{i) from (1.3.4}. To begin with, we wish to show that
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we can narrow the interval down from {0, «) to one immediately sur-
rounding the point #; = .
To do this, write, for uw > 0,

(0, @) =[0,bu—d]+ (u—dut+d]l+ (u+d =), (151}

where d is a small positive quantity, so that, upou referring to (1.3.4), we
have

T u—d wtd o
f C@HONF (o - 3t) db = Qe f 4 2em f 4 2o f . (152)
—T 0 w—d u+td
We now wish to show that, under reasouable assumptions concerning
F(8), we may eliminate the contributions from (0, u — d]and {u + d, =)
as 7" — o If this is so, we may write

T utel
lim f e@HF (g + if) di = lim 2e™ f [oeldh (15.3)
T-x “ =T Fwn u—d
To show that the first and third terms on {he righi-hand side in {1.5.2)
approach zero as T — =, we invoke the classical
Riemann-Lebesgue lemma. If [<_ | g{f} | di < oo, then

- gin T
lim f g(0) dt = 0. (1.5.4)
Pom Y —m cos T

The proof of this is rudimentary (integration by parts) if g(¢) posscsses
an absoluiely integrable derivative, but requires sophisticated Lechniques
if the weaker assumption above is employed. Proofs may be found in
several references listed at the end of the chapter,

We initially assumed that [j | f{!) |e®*dt < w«. Henece, the function
flt)e=/(u — #) is absolutely integrable over any closed interval not
including the point 4, = u. The Riemann-Lebesgue lemma allows us then
to dispose of the first and third terms in {1.5.2).

Let us then concentrate on the behavior of the remsining integral

. sin T(w — &)

— dh {1.5.5)

¢ fod
=20 [ jn)e
u—d
ag T — o,

Let us now assume that f(#;} is well enough behaved in the neighborhood
of u to possess a Taylor expansion to at leagt two terms, so that we may
write

flayemn = flu)e* 4+ Ry, &) (v — 6}, (1.5.6)
where
Fhiu, &) | £ &y, u—d <t <u+td (1.5.7)
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For this it is sufficient that f{t} be eontinuous and possess a first derivative
ath = u.
Bubstituting in {1.5.5), we obtain the expression

ukd
dtr + 2em f h(x, &) sin T{(u — &) db.

u—d

“ain T'(u — ¢
I = 2f(w) f ___(—‘)
u—d u - tl

(1.5.8)
Bince | sin T{(u — #) | £ 1, it is easy to see that the second integral is O (d)

uniformly as I — =,
Hence, making a change of variable T'(u — #} = », we find that

Td gip p
I, = 2f(w) f LY+ 0d). (1.5.9)
—ra ¥
Thus,
© gin ¥
lim 7. = 2(u) f P+ 0. (1,5.10)
Twm —on v

Since, as we shall establish in the exercises, the value of the integral is =,
we have, for any fixed d > 0,

lim Iy = 2xf(u) + O(d). (1.5.11)

T

Bince d jis arbitrary, we have, upon collecting the previous results, and
under the foregoing hypotheses,

r
lim f ¢aHionF (g + it) dl = 2af(w). (1.5.12)

P ¥ =T

EXERCISES
1. From the sum of the finite geometric series
1 + ei;: _|_ 82\'&1: + . + eﬂi.z — [etﬂi—l)iz p— 1]/((3& . 1),

deduce that
sin (n + %) =
1 4coszteos2r+ -+ cosnr = —(~—.—L
' 2sin 1z
2. Hence, show that
*gin {n 1 Lz
[t b,

0 gin iz 4

13
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. Using the Riemaun-Lebesgue lemnma, or otherwise, show that

2
—~]dx=0.

sinir =

lim, f sin {(n + &)z [
#eca T 0
. From this, conclude that

=2 gin (2n + 1z
nmf sin (04 Dz - _ 7
nem *Q & 2

and thus that

j’m sin z dx

L

1] x

. From the integral
® 1
f e dr = —, Re {y) > 0,
Q Y
deduce the values of
f ¢ o8 bx dx  and f &% gin bx dx.

] ]

. Using the relation
o . 1
f e ginx dx = ——,
0 1+ af

integrate both sides with respect to & from 0 to o, and so obtain the
value of [ 27! sin z dx.

1.6. Statement of Result
For further reference, let us state precisely the result we have established.

Theorem 1.1, Let f(f) be a function possessing the following properties:

{a) [7 f(t)e=t dl is absolulely convergent for some ¢ > 0.

(b) f(1) has a bounded derivative af a point u > 0. (L6.1)

Then

Fls) = f " enf() di (1.6.2)
]

exisls for Re(s) > a, and for b > a, we have

T

lim — f e®HOP (b 4 11) dt = f(u). (1.6.3)
T

Towtm 2 J_
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1.7. Jump Discondinvity

The requirement that f{Z) possess 2 bounded derivative at { = % can be
weakened considerably. This is important since we constantly encounter
step functions such as the funection defined as follows:

Ji) =0, D<it<e
(1.7.1)
s t>c
(ef. Exercise 3, §1.2).
In order to see how to treat a function with a jump discontinuity at a

point ¢, Iet us return to the integral in (1.3.4). We write it now in the form

- e—d - et o
F-Lfof o f o

Let us now assume that f(2) is continuous to the left and to the right at
the point ¢, and that in the interval (¢ — d, ¢}, f(#)e* may be written

J@ et = floye™ + (& — (s, o), (1L7.3)

with | gi(t, ¢) | < ki, and that f(f)¢—* posscsses a similar expansion in
(¢, ¢ + d). Fxpansions of this type will exist if f{#} possesses bounded
right-hand and left-hand derivatives at £ = ¢.

Following this path, we readily see that the analogue of (1.6.3) is the
result

lim j. fT e(H—ﬂ)cF(b + “) dit = w (].7.4)
Terc o -7 2
Here
fle—) = Him f(e — 4), d > 0,
d+0
(1.7.5)

fle+) = imf(c +d), d>0.
=l

1.8. Funclions of Bounded Variation
The foregoing result is, in turn, a special case of the following result.
Theorem 1.2. Let f(t} be a function possessing the following properties:
{a) fo “ F(tye—t di is absolutely convergent for some a > 0,

(1.8.1)
(b)Y f(t) ¢s of bounded variation in the neighborhood of u.
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Then, for b > a,

1 ;T -
Im — f F(b 4 ih) exp(b + @t)udfy = w, u > 0,
Terco 21" -7 2
= f(02+), =0 (1.8.2)

A proof of this may be found in references given at the end of the chapter.

1.9. Confour Integration

We have spent all this time and effort upon the derivation and discussion
of the foregoing inversion formula in order to pave the way for contour
integrals and thus for the powerful machinery of the theory of functions of
a complex variable.

Let us begin by writing

1 /7 I bt 4T
il f F@ + i) exp (b + i)t dty = — f P(s)etds, (19.1)
-7 2mi Sy ir

On e

where the expression on the right is now & contour integral taken along the
vertieal line joining the points b — 7 and b 4 7" in the complex plane.
To simplify the notation, we write

i BT
Fs)e* ds = lim — f F(s)et ds, (19.2)

) T LW S pmgT

whenever the right-hand side exists. In place of the inversion formula of
Theorem 1.2, we then have the notatiorally simpler formuls

) = f F(s)er ds, (1.9.3)

(B)

whenever f(t) is continuous for ¢ > 0 and of bounded variation in any
finite Interval.

That the function f{£) is independent of b for & > e follows from the
analyticity of the integrand for Re(s) > a, which is a consequence of our
assumption concerning the absolute convergence of [5 f{f) e~ dt.

If F(s) possesses an analytic continuation to the left of Re(s) = g,
we may evaluate f(£) explicitly, or what is usually of grester interest,
obtain its asymptotic behavior as £ — c« by shifting the contour of integra-
tion to the left and taking account of the singularities we encounter. The
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technique is extremely powerful in many applications of the Laplace
transform, and we shall make extensive use of it in later chapters.

1.10. Examples

Let us give some simple examples to illustrate the general method. More
interesting applications will be given further slong. Consider the problem
of inding L~'(1/s} which, of course, we recognize as the function f(£) = 1.

OQur problem is that of evaluating the integral

est dg
0w = f : (1.10.1)
w8

where b > (0, ¢ > 0.
This may be done in the classical manner, by means of the contour in
Fig. 1.2, The pole at s = {} contributes a residue of 1, and it is easy to see

-T+iT BT

-F-iT b-ir

Fis. 1.2,

that the contributions from the sides of the contour marked by arrows tend
tozeroas 7' — w,

It follows that I(¢) = 1for ¢ > 0, as expected. The evaluation of 7({0)
we leave as an exercise. For ¢ < 0, the function is zero, since we may then
shift the contour of integration arbitrarily to the right.

As another example, clogely related to the problems we ghall encounter
subsequently, consider the problem of evaluating the asymptotic behavior
of

et ds
1(8) =f B bs0, t>0 (1102

'
&) et — g —1

To begin with, we observe that the function e — § — 1 has a simple
zero at s = 0, and no zeros with positive real parts. 1t is shown later that
{ cannot be an accumulation point of real parts of zeros. Hence, we can let
&1 = b1 + il be a zero whose real part is least negative. We shall diseuss
in great detail below the localion of the zeros of functions of this type.
Meanwhile, let us content ourselves with these few results.
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Let us shift the contour of integration to the left past 8 = 0, picking up
contribution of —3%, duc to the residue at s = {}, stopping finally along the
line s = b,/2 + L. It is a worthwhile exercize for the reader to show that

e ds
f 0 Texp 0/2)] (1.10.3)
by f9} e —g—1
asf— w0,
It follows then that
Ity = —% 4+ O [exp (:4/2)] (1.10.4)

ag t — o, If we wish more precise information concerning the asymptotic
behavior, we must deterroine additionsl zeros of e — 5 — L.
Let

& = bl ']" 'i‘:tl, 8 = bg + itz, ey (110.5)
be the zeros arranged according to decreasing real parts,
by 2 by = -, (1.10.6)

Since, in this case, there are only & finite number of zeros with given real
part, we can shift the contour of integration to a line s = ¢ + #, and obtain
2 finite number of contributions. Thus, we will derive &n expression of the
form

Iy = -3 + i ryexp [(b; 3 #)E] + Ofe9), (1.10.7)

a much more precise expression.

In many cases, we will not, because of lack of adequate information, be
able to use this simple method of obtaining the asymptotic behavior,
Fortunately, there exist more sophisticated techniques, Tauberian methods,
which to some extent fill the gap.

Let us insert one final word of warning. The shift of the contour to the
left is not automatically valid. It is essential that the eontributions of the
terms obtained from the crossbars parallel to the real axis be considered.
This frequently requires a very accurate knowledge of the location of the
singularities of F{g), which in some cases is diflicult to ascertain.

1.11. The Fejér Transform

We have shown in the preceding sections that f({) can be determined
from a knowledge of F(s) provided that we impose conditions on the
derivative of f{f) or a condition such as bounded variation. Analyzing the
proofs given above, we see that the reason why continuity of f(£) at a point
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is not by itself sufficient is due to the fact that the integral

j';
diverges. We recommend that the rcader verify these comments.

It follows that if we wish to obtain a formula for f{#} under the. sole
restriction of continuity, we must use a different algorithm. Such an
algorithm was found by Fejér in the theory of Fouricr series, It is an
averaging process which replaces the simple average employed in (1.3.3)
by the more sophisticated mean

sin 2

dx {1.11.1)
x

T

I

T I , .
[ (=) emopia+ i
-7 T

£oH V/; f(tl)e_ah ];[_T (1 — %) cxp (?:Rt - itlt) dt:l dtl

> sin? (T/2) (x — )
g [ jlyesn dt. 1.11.2
e = (1.11.2)
The fact that the “kernel,” sin? {T/2) (v — &)/ T (u — #)?is nonnegative
and integrable over (0, «) has many important ramifications. We leave it
to the reader to show that

lim I{7T) = j(t) {1.11.3)
T
at any point of continuity of f(¢). Many further resulis will be found in the
refercnecs.

1.12, The Inverse Inversion Problem

In previous sections, we considered the problem of determining f(¢) =
L7I(F), given F{s). In the {ollowing chapter, we shall be confronted, in
the course of obtaining the solution of a linear differential-difference equa-
tion, with the problem of recognizing when a given analytic function is the
Laplace transform of some function f{¢).

Since we are not interested in the most general case, but only in the elass
of functions which arise naturally in the course of our investigations, we
shall restrict ourselves to proving:

Theorem 1.3. If F(s) salisfies the following conditions:

(2) F(s) is analytic for Re(s) > a,

(b} F(s) =c/es+ O(1/1s|?) us|s|— = along any lines = b + i,
b>a, (1.12.1)
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then
) = / F(s)etds, >0, (1.12.2)
0}
exists for b > e, and
#(s) = L{f) (1.12.3)
for Be(s) > a.
Proof. Let us write F(s) = e/s + g{s}. Then,

f(ty = le is:ds + fm gi(se ds

w 8

o+ f g(s)et ds, (1.12.4)

(&

supposing that & > 0. H & < 0, the first integral is zero.
Our assumption concerning g(s) ensures the absolute convergence of the
second integral. Tt remains to show thai,

g(s) = fo CLH) - e ds (1.12.5)

for Re(s) > b. This is readily established using a by-now familiar argu-
ment. We have

i3 ] b
f [ f (b + f)etHin dquu dt
0 —on

-3 s .
= f g(b + iu) [ f e«wu)e—"dz] du, (1.12.6)
— ]

where the inversion of the orders of integraiion is justified by the absolute
convergence of the double integral. Simplifying, we ate led to investigate
the limiting behavior of

=) eﬂi{—iu—c}it —_— 1
f a(b + ) [7J du (1.12.7)
b+ duw— 353

-

as B — =« . Since F(sg) is analytic for Re(s) > a, g(s) is certainly con-
tinwous, with continuous derivatives. Consequently, we readily obtain
(1.12.5).

1.13. The Convolution Theorem

" Up to this point, we have studied the most important aspect of the
theory of the Laplace transform—the inversion formula. Let us now turn
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to the most important tool in the study of linear functional equations—the
convolution theorem.

The problem we pose ourselves is the following: Given F = L{ f} and
& = L{g), how do we determine L-1(F@)?

Proceeding in purely formal fashion, we have

LYFGQ) = f F(s)G(s)et ds

)]

= f F(g)es [l/:o glh)e=n dtl} de

)

= f:a(!ﬂ {fm F(s) exp s(t — &) ds] dty,

{(1.13.1)
Since

f F(s)expls(t — ) ]ds = fi — &), for ¢ >4

@
(1.13.2)
= (), L <1,
the relation in (1.13.1) yields

t ]
L(FG) = fo GG — 1) di = [ f(B)glt — 1) db, (1.133)
0

as & change of variable shows.

Again, the determination of complete and best possible results would
require a great deal of effort. We shall obtain a result which is convenient
for our purposes, referring the reader interested in further details to the
classie sources.

The easiest way to derive our result, without imposing overstrict con-
ditions, iz to work backwards using our prior knowledge of the answer.
This is standard operating procedure in analysis where heuristic techniques
are used to derive the form of the result and rigorous techniques to verify
the result.

Let us eonsider the Laplace transform of the function

h(t) = f‘f(ti)g(t — &) dh, . (1.13.4)
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which we shall call the conwvolution of f and g. The German term Faltung
is occasionally used, and the notation A{f) = f*g is popular.
We have

fR h(f)e-t dt = fR e-u[['f(xl)g(s e dtl] d.  (1.13.5)
4

i} 0

Consider the repeated integral as a double integral over the shaded region
S in Fig. 1.3.

Fis. 1.3,

Then, inverting the order of integration, we have

f fs gl — 1) di dt = j; " [ f; " vt — 1) dt] dt

- f " menf (e [ f T g ) du] dh. (1.13.6)
1} a

As B — o, we obtain formally L{ ) L(g).
Let us now prove:

Theorem 1.4. If

@ [ el fn) 1dn < =,
(1,18.7)

(b} f " exp [ (@ + i)t] g(t) dt converges for ¢ = 0,
1]

f: higye dt = { fo ariC dt] [ fn " eyl dt:l (1.13.8)

for s = a + b, and generally for Re(s) > a.

then
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Proof. We have, referring to (1.13.6),

fu R e di = fo gp—— [ fo T o a0 du] dt;

= f: et (1) [[: e~*ug(u) duJ dfy

_ f: (1) [ f“’ ) du] dh.  (1.13.9)

f—i1

To obtain an estimate for the second integral, we break the range of #-inte-
gration up into two parts, [0, B/2] and [ R/2, R7. Since, by assumption,
the integrals [7 e~*»g(u) du and [T ¢ ¢ | f(1) | dt converge, we have

@ | [ evglu) du < o tor N 2 No(o),
N
(h) fm eg(u) du| < o, for N > 0, (1.13.10)
N
and

(c) fﬂ | e=s5f(u) | du < e, for N > No(e).

Thus,

/ R [ I

—e

=g () du] diy

<| f o | (1) | i
f1.13.11)

< f e {70t | dh = o,

¢
provided that B > Ru(e), and

[R 1 i (1) [ fR )

B
e““g(u) du] dly S 1 f g eh |f(31) ] dh < ¢

—iy Eiz
(1.13.12)
Combining these results, it follows that
R
1imf h(yet dt = L(HL(g). (1.13.13)
R0
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The foregoing result can be used to show that the equality L{k) =
L{f)L(g) hclds whenever all three integrals exist. The proof is an im-
mediate application of the concept of Abel summability. In most of our
applications L{ f) and L(g) will be absolutely convergent, obviating the
need for auy discussion of finer details.

EXERCISES
1. Using the foregoing result, show that

L [ [n ‘ F(t) dtl] EACK

]
2. Bvaluate

7 [ fo C = )i dtl]

. 1.14. The Fourier Transform

Let us now discuss an integral transform which bears the same relation
to the Laplace transform as Fourier series bear to power scries, namely, the
Fourder transform. In the expression for L{f), replace & by 4y where y Is
real. We thus obtain the function

Fliy) = gly) = f " ity dt, (1.14.1)

a

From the inversion formula

) = f F(s)e ds, (1.14.2)

L)

we have, upon setting b = 0Oand & = ¢y, — ¢ < y < oo, the relation

sy = o [ Flnesray
2r Ve

1 (e '
— f glylev'dy, >0 (1.14.3)
25 o

We are thus led {0 a reciprocity relation connecting the pair of funetions
f@ and gfy). The rigorous establishment of these relations leads to ques-
tions of some delicaey whieh we shall not discuss here. TFull details will be
found in references given at the end of the chapter.
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Ii we define ¢{y) by means of the relation

$(y) = ﬁ f_ : (1) di, (1.14.4)
then we can obtain
50 = —= [ oww) ay (1.145)
Vir .

a more symmefrical version,

1.15. Plancherel-Parseval Theorem

The Fourier transform can be used to derive an interesting and important
transformation connecting two inlegrals. Let

o) = [ aewa,

(1.15.1)
at) = [ e
Then
f_i n{Wealy) dy = f_i oY) U_Z efy(t) dt} dy
= f_im U_Z ai(y) e dy] di
- f_ Zm[_%fl(t)] a
- 27 f_ " ROA) db (1.15.2)

We shall give an interesting application of this relation below. Discussion
of the rigorous establishment of this transformation formula will be found
in the references at the end of the chapter.
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1.16. Application to Laplace Transform

Tet us write

1 o
x) = t)e =t dt 1161
b(z) v F() , (L.16.1)
where f{f) may or may not be zero for { < 0. Then, since
1 -
_ - f et di,  Rels) > 0, (1.16.2)
& — r )]

we obtain from the Plancherel-Parseval theorem the identity

[ e @ = o [T 2O (116.3)
o ‘\/2-71- e 8 — 1T
Since we know that
1 = !
50 = = f_ o), (1.16.4)

we see that the problem of inverting the Laplace transform is that of finding
a transformation which converts the funetion 1/(s — 4x) into e,

Perhaps the simplest of these is the transformation we have already
used. We have, for 2 real, b > 0,

est
f _ds = e, (1.16.5)

oy 8 —

which yields ancther explanation of the genesis of our inversion formula.

1.17. The Post-Widder Formula

Another type of inversion formula has its origin in the relation
. AL .
Hm (1 - —) = g~ (1.17.1)
] k

The expression {I — ¢xt/k)* can be generated hy repeated differentiation
of the right-hand side of (1.16.3). Setting

1 = {z) dr
\22?[' —rr 3_3:1:}

Fls) = (1.17.2)
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we have
F&(g)

1ence,

) o

(—1)%h!

@ afx) de

Ve L, (s — i)+

T

w[1 — (izt/k) ]+

(1.17.3)

(1.17.4)

We are thus led to suspect that under appropriate conditions, we have

{—1)% fhystt k
lim [ (—) F&® (—) .
It can be shown, following lines quite different from the foregoing, that this
relation is valid if f{£) is continnous for ¢ > 0 and of bounded variation,

1) =

1.18. Real Inversion Formulas

(1.17.5)

A problem of great Importance in application, which has not been satis-
factorily resolved, is that of determining the numerical values of the
funetion f{¢) for £ > 0 from the numerical values of F'(s) for s = 0. Dis-

TABLL 1.1
¢ wa(f) u(t) walt) Ji)
.0a .h108 L4191 .3612 1700
.10 LB6N3 LGO89 05 Fa22
.15 L6508 L7347 TTA3 G172
.20 3975 264 L7185 L9036
.25 .5413 L6429 .GRE3 L8302
30 L4802 .BRZY L6270 L7461
A0 4066 4834 Lalvy L5969
.50 L3438 . 4060 L4522 L4834
.60 L2059 L3468 L3661 . 4001
LT0 2684 . 2996 L3147 3370
B0 L2284 L2624 2740 L2884
.90 L2041 .2323 2412 . 2503
1.00 L1839 L2075 L2144 2197
1.50 L1203 L1307 .1324 13060
2.00 L0872 L0920 .0919 0880
2.50 L0672 0693 0686 0646
3.00 L0540 0546 D336 L0499
3.50 0447 .0445 L0435 L0441
4.00 L0378 0372 L0361 L0331




MISCHELLANEOUS HEXERCISES AND RESKARCH PROBLEMS 21

cussions of this problem, together with many other types of real inversion
formulas, will be found in the references and in some exercises below,

As an example of the applicability of the formula in (1.17.5), consider
Table 1.1, giving

6—11r4f
O (L.18.1)
and
wiy = 2 (E)Hl e (E) (1.18.2)
B\ :
fork = 1,2, 3.
EXERCISE

Consider the equation

flz) = f g8 dl, = > 0.
L]
Then forz = 0, 1, -+, we have

fin+1) = fm et (1) di

i)

ftqs(l l)dz fli (t) dt
= T 0T — = n .
0 gt 0 g

Examine the solution of this set of equations for g(f) by means of an
expansion of ¢(Z) into Legendre polynomials,

{D. V. Widder, Mechanical fnversion of the Laplace Transform, The RANTD Corpora-
tion, Resenrch Memorandum RV-187, July 15, 1349,
C. Lanczos, Applied Analysis, Prontice-Hall, Inc., Englewood Cliffs, N, J., 1956.)

Miscellaneous Exercises and Research Problems

1. Define the Mellin transform of f{z} by means of the relation

MLf} = ML 1@); ) = Fis) = [ fa)e da.
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1. THE LAPLACE TRANSFORM

LEstablish the relations
M[flaz)] = a—F(s), a >0,
ML zof(x}] = F(s + a),
MLf(1/=}] = F(—s},
ML ()] =—(— DF(s~ 1),
M f(=®)] = 3F{(s/2),
Mzf'(z)] = —sF(s).

. Obtain M[ f(x)], where

(a) flz} = a7 0<ez<1,
=0, x> 1;
(b} f{z) = (1 — =), 0521,
=0, x> 1;
(e) f(z) = e z 2z 0;
(d) f(z) = =, 0<z <1,
=2 — g 1852
=0, x> 2

. Making a change of variable z = ¢% obtain a relation between the

Mellin and Laplace transforms.

. Using this, obtain an inversion formula for the Mellin transform.

{The Mecllin transform is discussed in the works of Doetsch and Titch-
marsh cited at the end of the ehapter.}

. show that

M Lﬁ‘, f(kx)] = ()M ],

where (%) is the Riemann zeta function. Hence, obtain an expression

for 2 o f(kz) in terms of MT f1.

. Using the inversion formula for the Mellin transform, obfain the Perron

sum-formula

S g = 1 j{'}f(s)x* ds,

LT B 2:?: &
where C is the contour determined by ¢ = b + 4, b > @, and f(s) =
d-® e is absolutely convergent for Re(s) > a. Using the identity
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¢s) = 27, d{n)n~, where d(n) is the number-theoretic function
equal to the number of divisors of », derive from the foregoing the
asymptotic relation

> d{n) « Nlog N

i

ags N — =,

{(Bee L. C. Titchmarsh, T'ke Theory of Functions, Oxford University Press, London,
1939, p. 301.

E. C. Titchmarsh, The Zeta-Funciion of Riemann, Cambridge University Press,
London, 1930.

The fortnula was diseovered by Halphen and was the basis of the proof of the prime-
number theorem by Hadamard. The first rigorouz proof is due to Perron.}

7. What arc conditions upon the functions (¢} and f(¢) which cnsure that

£ = fhr(t—sJ dg(s), a<i<b

T
for some function g of bounded variation on [a, 57]?

{J. Chover, “A Theorem on Integral Transforms with an Application to Prediction
Theory," J, Math, Mech., Vol. 8, 1859, pp. $39-945.}

8. If f and g are continuous on [0, 7] and
; .
f fo)glt —w du =0, 0<t<T,
0

then f{¢) = O dfor 0 < ¢t < # and g(t) = 0 for 0 < ¢ < §
where &, + 8. > T,

(J. Mikusifiski, “Une simple démonstration du théoréme de Titchmarsh sur la
convolution,” Bull. acad. polon. sei., Ber. Sei. Math. Astr. Phys., Vol. 7, 1959,
pp. 716-717; and Uperationel Caleulus, Pergamon Press, New York, 195%.}

9. The generating funciion is an example of a {ransform on functions of a
discrete variable, or index, and is formally quite similar to the Laplace
transform. If fu,},n = 0, 1, 2, -+-, is a sequence, then ({(z) =
D> % , #.2" is the generating function of the sequence. Find the gener-
ating funections of the following sequences:

(a) u, = 1, n > 0;

(b} u. = 0, 0 £ n < m,
=1, " > m;

(e} v. =0, 0<n<m
= Un_m, n > m.
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10.

11.

12,

13.
i4.

1. THE LAPTLACE TRANSFORM

Prove the following inversion formulas for generating functions:

() f G(2) e d,

271'3

where € is a simple closed contour around the origin, entirely
within the region of analyticity of ¢(2};
1 d?

bY w, = ~— o
by w = o |,

Let {u.} and {v.} be two sequences, and define a third sequence by the
equafion 1w, = z’;;o UL o We then write {w,} = {u.} * {2,] and
say that [w,} is the convolution of {u.] and {v.}. Prove that the
generating funetion of the eonvolution of two sequences is the product
of the generating functions of the sequences. Is the convolution com-
mutative?

Consider the following generaiing function, involving a finite sum:
G(z) = 2N + )12 EE Uy €XP (M)
=N 28 41
Prove the inversion formula

= (2N + 1) 2 G(2) exp( 21rmz)
= 2N +1

(This generating function is used in R. J. Rubin, “Statistical Dynamics of Simple
Cubic Lattices,” J. Math. Phys., Vol. 1, 1960, pp. 309-318.)

IF G(z) = 2% uae™i, show that w, = [} G(2)e ™ gz,
Consider the transform F(y) defined in the following fushion:
M{f) = F(y) = max [e=f{2)].

)

Examine various conditions under which F(y) is defined and eon-
tinuous for ¥ > 0, and the validity of the inversion formula

f(@) = min [e*F(y) }.
vz

{See R. Beliman and W, Knrush, “On a New Functional Transform in Analysis:
The Maximum Transform,” Bull. Amer. Matk. Soc., Vol. 67, 1961, pp. 501-5063.}
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15. Show that the following are transform pairs:
(a) filx) = a -+ ba, 0 <2 < m,
= a + by, x>
Fiy) =a+ald—y), 0<y<h
=, y > b
(b) hle) =a+bloge, Fi(y) =a+ bllogh —logy — 1).
(¢} Ailz) = a+ blogx, 0Lz <o
= g 4+ blog z, x > o
Fily) = a+blog (b/p — y/m), 0Ly <y
= Fly), ¥ >y

where 11 = b/xo.

(d) file) = b2¥?, 0 <1/p <1,

b /byt
Fily) = - (“) ) I/p+1/g =1,
g \py
where
@) = e, Fly) = o,
16. Show that ander appropriate conditions, if

flz) = max [g(ylh{z — y}],

Dy

then
M) = M(@yM{R),

an analogue of the convolution theorem for the Laplace transform.

17. Hence, show that if
fn(.’t}') = Imax [gl(xl) + 92(32) + .0+ gﬂ(xn)jp

where the maximum is taken over the vegion oy + 2 + ... + 2, = =,
z; > 0,then M( f,) = J[:M(g:), and, under suitable conditions,

f.(z) = min [e™¥ H M(gs) L

(8ee B Bellman and W. Karush, The Mazimum Transform, I, System Development
Corporation, Technical Memorandum TM-665, November, 1961,

Thoe maximum transform is, on one hund, an analogue of the Laplace transform,
but, on the other hand, more closely related to the general theory of convexity and
quasilinearization, See
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E. F. Beckenbach and IR, Bellman, Inequalities, Ergebnisse der Math., Springer,
Berlin, 1961,

where reference to work of Minkowski, Fenchel, Bellman, and Kalaba may be
found.)

18. Consider the following technique for the numerical inversion of the
Laplace fransform, Using a Ganss quadrature formula (see the book
by Lanezos referred to above), replace the integral cquation

[ vaw at = son + 1)

by the system of linear algebraic equations
N
Xwgtyts = fln+1), n=01...,N—),
=1

and then solve for the unknowns wg (), ¢ = 1,2, ..., ¥. Obtain an

explicit representation of g(#4} in terms of the Legendre polynomial of
degree V.

{For applications of this technique, see

R. Bellman, R. Kalaba, and 3. Prestrud, “On o New Compulational Solution of
Time-Dependent Transport Processes—I: Cne-Dimensional Case,” Proe.
Nat. Acad. Sci. USA, Vol. 47, 1961, pp. 1072-1074;

1. Bellman, “On a New Computalional Solution of Time-Dependent Transport
Processes—II: Explicit Inversion of Mairix,”” The RAND Corporation,
Regearch Memarandum, RM-2842-ARTA, July, 1962,

BIBLIOGRAPHY_‘AND COMMENTS
$1.1, Two fundamental works on the Laplace transform are:

D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, . J., 1941.
G. Tostsch, Handbuch der Laplace-Transformation, 3 vols., Basel, 1950-1956.

All of the matters digcusgsed above will be found in these hooks, together

with historical details and further references.

§1.14. For a thorough discussion of the Fourier transform, see

L. C. Titehmarsh, I'nfroduction to the Theory of Fourier Infegrals, Oxford Universily
Press, London, 1937.



CHAPTER TWOQ

Linear Differential Equations

2.1. Introduction

Before plunging into our study of differential-difference equations, it is
worth while to devote some lime to an exposition of the essentials of the
theory of linear differential equations. On one part, the results obtained
here will gunide our thinking and show usg what to expeet. On the other part,
we will appreciate why the study of general linear funetional equations
presents mauy difliculties which do not arise in the simpler theory of
differential equations.

Our aim is to state some of the principal results and to sketch the proofs.
The reader unfamiliar with these matters will ind detailed discussions in a
number of references at the end of the chapter.

2.2. Linear Differential Equations

We wish to examine the possibility of finding functions () which
patisfy a linear differential equation
du +a dvty
e 45
dr O gt

Furthermore, we wish to determine all such funetions and to find out how
to single out particular members of the set.

To begin with, let us observe that we need never consider derivatives
of higher order than the first degree. Setting

doeee 4 aa(u = 0. (2.2.1)

=i,
du
=,
o
: (2.2,2)
d(n—l)u
= xn,
e

27
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we can write the equation in (2.2.1) in the form of a system of first-order
equations

dz
et
d&:z

= 2.2.3
” : )

dr,
dt

—m{fle, — <+ — @.({}an.

Let us then focus our atteniion upon the general first-order system

(11-3.’?1
E = aux + - + Q1aling
d..":g
= fa¥1 + v+ O, (224)
dt
az.,
dr = ¥ + e -+ Loy

where the cocfficients ¢ 4{f) are funclions of { defined over some interval
[0, tg). We shall suppose for the moment that the coefficients are con-
tinuous functions of £ over [0, &]. Subsequently, we shall lighten this con-
dition.

The advantage of this formulation lies in the fact that vector-matrix
techniques can be used te simplify greatly the arithmetic and algebraic
manipulations,

Setting
* anf{t) o+ an(f)
#y au () o Boa{t}
z=| ) A= . , (225)

Iy a’nl(t) e Qun (t)
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we can write (2.2.4) in the form
da/dt = A{&)z. {2.2.8)
As we shall see, a solution will be uniquely determined by an initial con-
dition
z(0) = c. (2.2.7)

2.3. Fundamental Existence and Uniqueness Theorem
We wish to establish the following result.

Thearem 2.1, If A(l) 75 conidnuous for O =< § < 4, there {s o unique soly-
tion of the equation

defdt = Az,  #(0) = (2.3.1)

There are several ways of establishing the existence of a solution, the
method of successive approximations, fixed-point techniques, and finite
dilference schemes, Subsequently, we shall consider a direct method ap-
plicable to the case where 4 (¢} is a constant matrix.

2.4. Successive Approximafions

The method of successive approximations can be applied in many ways.
One way is the following. Let 2® (i) be an initial guess at a solution, which
for convenience we take te be the constant ¢, and let the sequence {&™ (i)}
be determined inductively as follows:

dE® dt = A{)z®D,  g(0) =¢ N =1,2 ---. (241)

Then
I
2 = ¢ + f Al)e™ Vs) ds, 0<i<tn @ (242)
o

Introduce the norms
Nzl = 22 [l (2.4.3)
=1

where =, 2z, ++-, x, are the components of z, and

n

Hall= 2 lagl. (2.4.4)

&=
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Then from (2.4.2) we conclude that
W — V-l = fl A(s)[z®-1 — ™97 ds. (2.4.5)
0
Hence,

2
12 ~ oo || < [ (|40 || la® — 22 ||ds, N >2. (246)
1]

Since
i
[|z® — @ || < f | A(s) ] [} =@ || ds, {2.4.7)
0
we have
l2® — 2@ < mllc]l, (2.4.8)
where
m = max | A(s) [].
Qa<tn
Hence, inductively,
NﬁN
|| & — @1 (| < ?1_1,—[|c}[ (2.4.9)
N
Thus, the series
3 [a® — p@-17] (2.4.10)
N=1
converges uniformly in 0 < ¢ < 4, and therefore the limit
lim ™M) = 2(t) (2.4.11)
Neecz

exista. By virtue of the uniformity of convergence, we can let N — « on
both sides of {2.4.2) and obtain

z{t) = ¢+ f‘ A(s)z(s) ds. (2.4.12)

Bince x(1) as a uniform limit of continnous functions iz continuous, we sce
that z(f) is differentiable and satisfies the differential equation of {2.3.1}.
Clearly it also satisfies the initial condition z{0) = ¢.

Using the theory of Lebesgue integration, we see that the foregoing
proof can be carricd {hrough with minoer changes under the assumption
that || A(Z) || is integrable in [0, 4. In that case, we have from (2.4.7)

Ta® — oo < el [ 400 11 ds (24.13)
1]
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and thus, inductively,

e = s < Uelf | [ INa faspya 2aan

Bounded convergence permits the passage to the limit in (2.4.2}. However,
we cannot immediately conclude that (2.3.1) is satisfied everywhere.
It is eertainly true where A(t) is continuous, and, in general, almost every-

where in the range of ¢,

2,5. A Fundamental lemma
We shall make use of the following result in several ways.

Lemma 2.1, If¢; = 0, u(é) = 0, e(f) = 0, the inequality

I3
w(l) < e+ f w(s)w(s) ds,
o
mplies that
4
(€} < o1 exp [f v{s) d.s].
0

Proof. From (2.5.1) we conclude that

_u(!)ﬂtj _____ — < ().
et Jo uls)e(s) ds

Integrating beth sides over [0, £], we have

log [cl + f‘ u(s)u(g) ds_I —loge < f‘ v(s) ds,
. o ; 0
or

e + f‘u(s}v(s) ds < ¢ exp U: #(s) ds].

L]

Combining this with (2.5.1), we obtain (2.5.2).

2.6, Uniqueness Theorem

(2.5.1}

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

Using the foregoing resulf, we can readily establish the uniqueness of the

solulion of {2.3.1). Let 2 and ¥ be two solations of (2.3.1), then

s—y=[ A®G -1 &,

(2.6.1)
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whenee :
o=yl < [ 4@ Iz —ylds (262)
Trom this follows that
lo=ull < et [ HAG LI~ yld 26
for any positive constant ¢, Hence, using Lemma 2.1,
le=ull e |[ 1 aw ] (264)
Since this holds for any positive constant e, > 0, we see that |lz — ¢ || = 0.

Hence 2 = .

2.7. Fixed-point Technigues

Converting (2.3.1) into the integral equation
[
r=c —E—f A{g)x(s) ds = T'(x), (2.7.1)
o

we see that ithe solution x(#) can be regarded as a “fixed point” of the
trapsformation T(z). Applieations of this idea will be found in references
given at the end of the chapter.

2.8, Difference Schemes

A very powerful approach to the study of differential equations, and one
of fundamental importance for the numerical solution of these cquations, is
based upon the approximaiion of derivatives by difference quotients.

In place of (2.3.1), write
et 9_)\: M0 AW, w0 = (2.8.1)

where ¢ agsumes the valnes 0, A, 24, «-«, NA = §. Let 297 (1) represent the
solution cbtained by writing
2{t) = z(kA) + {§ — kA [2((k 4 1)A) — z{(kA)]/A (2.8.2)

for kA < ¢ < (k -+ 1)A.
It may be shown in several ways that 2™ (1) — (), the solution of
(2.3.1), as N — e,
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2.9. The Mairix Equation

Lot us now consider the matrix equation
dX/dt = A(HX, X0 = I, (2.9.1)

where [ 18 the identity matrix. The techniques used above readily establish
the existence of a unique solution. This solution furnishes a very useful
and elegant solution of

dejdl = A(f)z, x(0) = ¢ {2.9.2)
narely,
() = X{t)e. {2.9.3)

One important property of X(f) is that it is never singular for ¢ = 0.
This basie fact can be established in many ways. The most direct is based
upon the Jacobi identity,

| X(t) | = exp [ fo e [AE)] ds}. (2.9.4)

Iere | X | siguifies the determinant of X, and {r [A ] signifies the trace of
A, that is, the sum of the diagonal elements of A.
Alternatively, we can argue as follows. If | X{#) | = 0 at some point &,
0 <y < #y, there exists a nontrivial constant vector e such that X (t)e = 0,
The vector z(t) = X({{)c then represents a solution of the differcntial
equation
de/dt = A{t)x, z(f) = O {2.9.5)

The uniquencss theorem asserts that =(f) is identically zero in [0, i
This, however, 1s a contradiction at ¢ = 0, since x((}}) = X{Qc = ¢.

2.10. Alternafive Derivation

Another interesting way to establish the existenee of X-I1(¢) for ¢ > 0
is the following. Consider the matrix equation
d¥/di = =Y A(D), Y0 =1 (2.10.1)

As above, we establish the existenee and uniqueness of a solution. Using this
equation and {2.9.1), we have

dX dY
Y—+ — X = YAWX - YAWX = 0. (2.10.2)

Henee the derivative of ¥X is gero, which means that ¥ X is a constant, C,
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Bince YX = I at{ = 0, we see that YX = T for ¢t > 0. Thus ¥, obtained
from (2.10.1), is actually X—1(¢), which must exist for 0 < ¢ < 4.

2.11. The Inhomogeneous Equation

Let us now use the matrix equation to solve the inhomogeneous equation
defdt = Az + v, z(0) =c. {2.1L1D)

Write x = Xz, where X is the matrix obtained in §2.9. Then
dz/di = {(dX/dt)e + X{de/dt) = A{)X()z +y, (2.11.2)

whence
X(de/dt) =y,
(2.11.3)
dz/dt = Xy,
leading to
]
z=¢+ f X1{s)y(s) ds, (2.11.4)
v

Sinee z(0) = X{0)2(0), we sce that 2{0) = ¢. Thus the solution of (2.11.1}
may be written

z = X{t)e + f‘ X6 X—(s)y(s) ds, (2.11.5)

a very imporiant formula,

2.12. The Adjoint Equation

Let ug derive this formula in a more systematic fashion, one that applies
to all types of linear funetional equations. Suppose we multiply (2.11.1)
by a matrix Y ({) and integrate from 0 to £, We have

fus Y(s) %ds - f; Y(s) A(s)z(s) ds & f: Y()y(s) ds.  (212.1)

Integrating by parts, this leads to

tqdV :
¥(a(e)} — [ == a(s) ds =f Y (s) A(8)a(s) ds
L] 0

4 f Y ()yls) ds, (212.2)
1}
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or

‘[dY
Y(a() — Y0)z(0) =f(l [—d; T Y(S)A(s)] 2(s) ds

+/ Y(oule) s (2123)

Bince we are interested in a parficwler solution of (2,11.1), let us take
z(0} = 0. To obtain an explicit cxpression for x(f), let us choose ¥ 1o
satisfy the equation

ay
— T Y®AE =0, 0Zs<y, (2.12.4)
8

and the initial condition
Yy = 1. {2.12.,5)

If ¥ is determined in this way, we see that (2.12.3) yields
]
() = [ V(e ds. (2.12.6)
8

As we know, Y (s) = CX~(s) is the general solution of (2.12.4). The
initial condition of (2.12.5) determines € to be X (). We thus obtain the
formula of (2.11.5).

2.13. Constant Coefficiants—]

Let us now consider the impoertant case where A is constant. The solu-
tion of the matrix equation

dX/di = AX, X(0) =1, (2.13.1)

can now be written in the form X = e4* where the matrix exponential is
defined by the infinite scries

A Artm
et =T+ At +—+ - + oo (2.13.2)
21 n!
It is easy to verify in many ways that
gl = pdsgde (2.13.3)

The simplest proof ig that baged upon the uniqueness of the solution of

dX/di = X4, X(0) = e, (2.13.4)
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The solution of the inhomogeneous equation
de/dt = Az + y, z(0) = ¢, (2.13.5)

takes the elegant form
3
r = elle + f exp A{l — fy{l) di, {(2.13.6)
0

a result we shall derive again below using the Laplace {ransform,

2.14. Constant Coefficients—I|

Important as the foregoing results are, they fail in several ways. They
can be used neither to obtain precise analytic results, nor to derive com-
putational results. Let us then use a method due originally to Luler. We
atlemapt to find a sclution of

dx/di = Az (2.14.1)
of the form
z = e, (2.14.2)

whete ¢ is a constant veetor. Substituting in (2.14.1), there results the
cquation

he = Ae, (2.14.3)
or

(A — Ae = 0. {2.14.4)
If ¢ is to be nontrivial, A must be a root. of the determinantal equation
Y4 = A =0, {2,14.5)

the characteristic equation.

The transcendental problem of solving the differential equation has thus
been transformed into an algebraic problem. Having obtained particular
solulions in this fashion, we construet the general solution by means of
superposition. This problem is by no means an easy one, and we shall
therefore Icave the matter here.

2.15. Loplace Transform Solution

Let us now turn to the solution of linear equations with constant co-
efficients by means of the Laplace transform. To begin with, consider the
first-order gealar equation

du/dt = au + v, u(0) = ¢ {2:15.1)
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Taking the Laplace transform of hoth sides, we have

f st n df = a f et udi 4+ f ety dl. (2.15.2)
! o

0 0

Hence, integrating by parts,

w

ety ]y + sf e~y df = af ety di -+ f e~ dl, (2.15.3)
0 0 0
Writing
Liu) =f a5ty dl, L{w) =[ ety di, {2.15.1)
a [+

we have e L)
Liw) =

. (2.15.5)
§— 4 &§—a

The inverse of the first term is ce*!. To cobtain the inverse of the second
term we apply the convolution theorem, given in §1.13. The result is

]
u = et | f e=l=1p (g} ds, (2.15.6)
1
Turning to the vector-matrix case,
da/dt = Az + y, x(0} = ¢ (2.15.7)
we have
Llz) = (&f — A) e + (s — A)yL(y). (2.15.8)

Since the inverse transform of {sJ — A}~ is e4?, we obtain the expression

i
5 = etic + f Aty (5) ds. (2.15.9)
o

2.16. Characteristic Valves and Characteristic Functions
We are familiar with the Fourier series expansion
fi©) = X a.sinn! (2.16,1)
=l

for funetions f(¢) defined over 0 < ¢ < 7. The coeflicients are obtained by
means of the relation

2 T
Gn = -[ f{s) sin ns ds, (2.16.2)
T’
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a consequence of the orthogonality condition

l
=

T
f sin ns gin ms ds = m = n,
0
(2.16.3)
= r/2, M = f.

TExpansions of this type are particular cases of expansions obtained from
Sturm-TLiouville problems,

'’ 4 Me(Hu = 0,
w(0) + ' (0) =0, (2.16.4)

w(r) + b’ (m} = 0.
Tor example,
o) =1, b=k =10 (2.16.5)

vields the characteristic values X, = #?, and the characteristic functions
#. (1) = sin ni.

The most important fact about these characleristic funetions is the
orthogonality. If M, 5% A\, we have

f S tn (B um(t) dt = 0. (2.16.6)
i}
To see this, write
e+ A2 (Du, = 0,
(2.16.7)
' F A (D ttm = 0.
Then
tttn” = tnti” A (Ao — M) D (D hntin = 0. (2.16.8)

Integrating between ) and , we have

T

il

f [umun” — unum”j it + ()\,,2 - }m"")
1]

a("'""\

e wa. di = 0, (2.16.9)

or
Ctmttn’ — wntin 7 4 (A2 — M) f (Dt 4t = 0. (2.16.10)
a

Referring to the boundary conditions
Um (7} + bate () = 0, Un(0) + b’ (0) = 0,

(2.16.11)
uﬂ(ﬂ') -+ b2un!(7) = 0) un(o) + blun!(o) = 0,



2,16 CHARACTERISTIC VALUES AND FUNCTIONS 39

we sce that the bracketed expression in {2.16.10} is equal to zero. Hence
the equation in (2.16.6) is valid.

From this follows the important fact that the characterisiic values are
real if ¢(2) > 0. For if A and ) are two complex conjugate characteristic
values and w({), %{¢) the corresponding characteriztic functions, we have,
from (2.16.8),

f " st E) dt = 0, (2.16.12)
1]

a contradiction!

From the reality of the churacteristic roots, we can conclude that some
important transcendental equations have only real roots. Take ¢(t) = 1.
Then the general solution of

w4+ My =0 (2.16.13)
has the form
u = ¢ 08 A -+ ¢z sin M. (2.16.14)

The condition at { = 0 yields the condition
€1 T Achy = 0, (216]5)

The condition at ¢ = = leads to

c1cos Ar + cosin Ar -+ Dah{—crsin Ar 4+ czeos hwd = 0. (2.16.18)
Eliminating ¢ and e;, we have the characteristic equation

1 My
=0, (21617
feos dar — bod gin Ax)  (sin Az 4 b cog hr)

or
(1 + bib)2) sin e + (b — B)hcoshr = 0. (2.16.18)

Consequently, the equation

tan Ax (bl -— bg)

= 2,16.1
A (1 4 bybar?)’ (2.16.19)

considered as an equation in X2, always has real roots. We shall subse-
quently present a systematic procedure for determining the conditions
under which transcendental equationg of this general type have all of their
roots real,
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Miscellanacus Exercises and Research Problems

. Bhow that the Laplacc transform can be used to reduce the solution of

w” + (@ + ad)u = 0 to that of a first-order differential equation.
Obtain in this way eontour integral representations for the selutions,

. Obtain corresponding results for ithe equation

1™ 4 (a9 + ad)u? + oo+ (Ganos + Aat)u = 0.

. Comnsider the contour integral

1 633
wt) = — [ ——as,
2riJes + a
where the integration is along the line s = & + 47, —w < 7 < o,
b > 0. We cannot prove directly by differentiation that « is a solution of
u’ + au = 0, since the integral [¢ e% ds diverges. Let us, however, argue
as follows, We have

1 et ds 1 g%t
ufl) = — - f—ds—i—l.
o

2rilcat+a 2w 8
Hence
a et ds
wt) = —— [ ——
2wt Jo s(s + a)
Thus

WO+ - - [ BEOCE
4

2ri s(s -+ a}

Solve the equation

du t
—+au:bf u di, w() = ¢
&l 0

. 8olve the equation

d_u+au=¢(fudt), w() = e

o

. Btudy the solutions of the equation

w (L} + (1 4+ eeu =0

by taking laplace transforms and considering the resultant difference
equation.
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7. Use the same technique to study the Mathieu equation
w(f) + (1 4+ acos bty = 0,

(L. A. Pipus, “Tour Methods for the Analysis of Time-variable Circuits,” IRE
Trans. on Circuil Theory, Vol. CT-2, No, 1, March, 1955, pp. 10-11.}
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CHAPTER THREE

First-order Linear Differential-
Difference Equations of Retarded
Type with Constant Coefficients

3.1. Intreduction

In thiz chapter we wish to present certain fundamental facis conecerning
the solution of linear differential-difference equations with constant co-
efficients. We shall state and prove some exislence and uniqueness theorems,
and then turn to our principal aim, the solution of these equations by means:
of the Laplace transform,

By a differential-difference equation we shall, in all that follows, mean an
equation In an unknown function and certain of its derivalives, evaluated
at arguments which differ by any of a fixed number of values. Examples of
such equations are the equations

w (@ —w{t— 1)+ ult) =0, {(3.L.1)
wit) —ult — 1) —ult —+V2) =0, (3.1.2)

and
wl) — 2u(t) + ' — 1) — 2u(t — [) = & (3.1.3)

Many other exumples are to be found in various places throughout the
book,

In this book, we shall restrict attention mainly to problems in which «
can be regarded as a function of a single independent variable which we
shall take to be {. All derivatives will therefore appear as ordinary rather
than partial derivatives. We shall consider equations in which derivatives
and differences of various orders appear, and shall, as is customary, mean
by the differential order of an equation the order of the highest derivative
appearing, and by the difference order one less than the number of distinet
arguments appearing. For example, Equation (3.1.1) is of order 2 in
derivatives and of order 1 in differences, while the reverse is true of Eguation
(3.1.2).

42
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The general form of a differential-difference equation of differential
order 7 and differcnee order m is

F[t: u’(t)l u(t - wl): Tty '.'.t.(t - wm): u’(t)l u’(t - wl))
Cy e ), W ), v, wO (= an)] = 0, (3.14)

where F i3 a given function of 1 + (m + 1)(n 4+ 1) variables, and the
numbers w;, -+, @, called the spans or retardations, are also given.
Throughout this boolk, we shall require that ¥ and « be real functions of
real variables, and that the numbers wy, - -+, w, be real. Qccasionally, we
shall deal with complex solutions but we shall always be primarily interested
in real solutions, As long as we are dealing with linear equations with real
cocflicients, we can use corplex sclutions and then take real and complex
parts to obtain the full family of real solutions. When dealing with nonlinear
equations, we cannot proceed in this carelree fashion.

We have elected to discuss first of all very simple equations of the fore-
going form, gradually extending our results to more general situations.
In this way, we hope to bring out the general principles encumbered with
a minimum of detail, and thus to render the theory available to a wide class
of readers. For examnple, the next several chapters are devoted exclusively
to lnear equations of the form (3.1.4), that is, to equaiions of the form

2. 2 au(u(t — w) = f(1), (3.1.5)
=0 =0
where m and n arc positive integers, where 0 = wp < wy < ++v+ < oy, and
where f(£} and the (m -+ 1) (n -+ 1) functions a;({) are defined in some
interval of the real t-axis.
Moreover, our primary emphasis will be upon linear equations with
constant coefficients, of the form

2 Y (b — wi) = (1), (3.1.6)
=0 gt
sinee the theory of these equations Is much simpler and more complete than
the theory of the general linear equation of (3.1.5). This is analogous to
the situation in the theory of differential equations.
In this chapter, we shall further restrict our attention to the subelass of
equations of the form of (3.1.6) which are of the first order in derivatives
and dilferences. Such equations can be written in the form

Gnu’(t) + alu'(t - w) -+ buu(t) -+ I)]_’!Jr(t - w) = f(t). (317)

The theory of these special equations exhibits almost all the features of the
more general theory, yet it avoids some of the burdensome details of the
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latter, In subsequent chapters, we shall extend the results obtained here
to the more general elasses of equations, As is the case for differential equa-
tions, veclor-matrix notation ean be used to a considerable extent to
simplify the algebraie details.

Any one of the above differential-difference equations confrants us with
the problem of “solving” the cquation, that is, of finding functions = ()
which make the cquation an identity in £. For example, the function

2t FD

ult) = ¢4 ne (3.1.8)
14 ¢

is a solution of the equation in (3.1.3), as the reader may verify by sub-
stitution. The reader is doubtless aware, from his previous study of differ-
ential equations, that it is not always feasible to obtain solutions in an
explicit form like (3.1.8), and that even if it is, these explicit forms may be
too cumbersome to be useful in answering specific questions about the
nature of the solution. Tn such a case, it may nevertheless be possible to
answer particular questions of interest by some analytic procedure, so that
we can still regard the equation as solved in this sense. This is also the case
for differential-dilference equations. Indeed, there is a very close similarity
between the theory of differential-difference equations and the theory of
differential equations, We shall show in this chapter that many of the
methods useful in deriving information about the sclutions of differential
cquations can be extended in such & way as to be useful in analyzing
differential-difference equations, though not without added difficulty.

As we have noted in the previous chapter, every soluiion of a linear
homaegeneous differentinl equation with constant coefficients can be written
as a linear combination of a finite number of particular solutions, which can
be found by purely algebraic methods. From this representation, the value
of the solution at any point can be calculated, stability and asymptotie
properties of the solution ecan be predicted, and so on. We shall presently
see that solutions of linear homogeneous differential-difference equations
with constant coefficients ean likewise he written as sums of particular
solutions. However, there are infinitely many such solutions, which must
be found by transcendental methods, and the entire theory is accordingly
much more complicated.

Nevertheless, most problems of practical interest can be solved in a fairly
satisfactory way by the use of techniques to be explained helow. Among
the problems and techniques to be discussed here are the following:

{a) The eorrect formulation of the initial value problem.
(b} The ealculation of a solution at particular points.
{¢) The representation of a solution by sums of particular solutions.
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{d) The representation of a solution by means of definite integrals,
{e¢) The asymptotic behavior of solutions.
(£} The concept of stability of sclutions.

The reader will recognize that cach of these points is also the subject of
atudy in the theory of differential equations.

3.2. Examples

Before attempting to establish a general theory of even the simple
equation appearing in (3.1.7), we shall illustrate somne of the basic ideas
hy examining one or two differential-difference equations of special form.
One sich equation is

w'it) = ult — 1), (3.2.1)

a very intercsting cquation from many points of view. Let us seek o find a
[unetion () which is continuous for £ > 0 and which is a solution of this
cquation for all ¢ > 1. It is casy to see that +(¢) can be set equal to an
arbitrary continuous function over the initia! interval of length one. Once
this has been done, however, the solution %(f) is uniquely determined by
the equation in {3.2.1) for all larger values of ¢

For example, suppose that () = 1for0 < ¢ < 1. Then if (3.2.1) is to
hold for ¢ > 1, the values of %/ (f)} for 1 < ¢ < 2 are determined. Sinec #{¢)
is required to be continuous at ¢ = 1, these values determine % (f) for
1 < ¢ < 2 Infact, we have

w(t) =t =14+ (¢ —1), 1<t<2

Sinee #(8) 18 now known for 1 < ¢ £ 2, Equation (3.2.1) determines (£}
for 2 < ¢ < 3. In fact,
(t—2)°

u(t)=1+(t—1)+T, 2<t< 3

We can proceed in this fashion as long as we please, extending the
definition of #%(¢) from one interval te the next. We find, by means of a
gimple induetion, the relation
Y=g
w(t) = > ——="~ N<i<N+1 N=012 . (322

~ J!
Note that the equation in (3.2.1) implics that #’'(f) is continuous for £ > 1.
One can say that the initial discontinuity of «'(£) at ¢ = 1 is “smoothed
out” by Equation {8.2.1).
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The above example illustrates one of the Tundamental methods available
for the discussion of differential-difference eguations, the method of eon-
tinuation by which the solution is extended forward—that is, in the direc-
tion of increasing {—from interval to inferval. This method provides a
means of proving that an cquation has s solution, and moreover, gives a
procedure for actual calculation of this solution. The same kind of
argument can sometimes be used to extend the solution backward as well.
We shall say more about this possibility below. The example given also
illustrates the fact that a differential-difference equation ordinarily has a
great variety of solutions, one of which can be singled out by requiring that
it have specified values over a certain H-interval, just as one solution of a
first-order differential equation can be singled out by requiring that it have
a speeified value at a single point. SBuch additional conditions on a solution
are called Doundary conditions. From the above remarks, we sce that a
sensible boundary condition for Equation {3.2.1) is the condition

w() =g, 0<i<I, (3.2.3)

where g(¢} is any preassigned, real, continuous function. This condition is,
in faet, light enough to permit the existence of a continuous solution of
(3.2.1), yet heavy cnough to allow the existenee of only one such solution.

A houndary condition of the type (3.2.3), which prescribes ihe solution
#(!) in an initial interval of values of ¢, from which the solution can be
continued, iz also sometimes called an indtéial condition. Of course, it would
be possible to impose other kinds of boundary conditions on the solutions
of {3.2.1), and in fact certain others occur naturally in various applied
problems. It is of fundamental importance for the mathematician studying
differential equations, differential-difference equations, or other functional
equations, to determine boundary eonditions of various sorts that are of
the correct severity to permit the existence of a unigue solution of a speci-
fied type. In this book, however, we shall ordinarily impose an initial con-
dition similar to (3.2.3).

A somewhat different situation is illustrated by the equation

wi(f) =u(t —1) +2u'(t — 1), (3.2.4}

Again, let us suppose that w(¢) = 1 for 0 < ¢ < 1, and require that % ({)
be continuous for { > 0. If Equation (3.2.4) is to be satisfied for { > 1,
we must have #/(#) = 1, 1 < ¢ < 2, and therefore
ult) =1, 1<r<2
If BEquation (3.2.4) is to be satisfied for 2 < ¢ < 3, we must therefore have
w{) =t4+1,2 <t <3 and
u(t) = 24+t — 2 2£t£3
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By continuing this process, we can continue w (£} as far forward as we please,
though it seems not to be easy to find a general formula of the type in
(3.2.2). Morcover, the solution «(f} obtained has a derivative discon-
tinuous at every positive integer value of {. Equation (3.2,4} is satisfled at
such values only in the sense of left-hand limits and of right-hand limits.
In fael, though there are exceptions, it is in general not true that a solufion
of (3.2.4) will be continuous and have a continuous first derivative for all
t > 1. We may say that Equation (3.2.4) fails to “smooth out” a dis-
continuity of u'{f) at{ = 1.
As a final example, let us consider the equation

Wit — 1} = u{l), (3.2.5)

again subject to an initial condition of the form in (3.2.3}. It iz not hard
to see that this solution ean be continued backward by the same process
as was used on Equation (3.2.1). If, however, we attempt to continue the
golution forward, we have

w(t) =gt —1), 1<1<2,

provided g is differentiable. This determines #(f) for 1 < { < 2. Provided
g{t) is twice differentiable for 0 < ¢ < 1, u{t) is differentiablefor 1 < £ < 2,
and the cquation in (3.2.5) can be used to define w(?) for 2 < § < 3.
We see that this continuation process yields a solution for all { > 0 only if
the initial function g{¢) possesses derivatives of all orders for0 < ¢ < 1.

EXERCISES

1, Tse the continuation process to caleulate the solution of
w(t) =1+ allt — 1),
wlt) =1, 0<i<1,
in the intervaln < ¢ < n + L.
2. Use the continuation process to calculate the solution of
w' () = 2u(t — 1), > 1,
u(t)

I

£, 0<t<1,
for0 < ¢ < 5.

. Show that @ = ¢ is 3 solution of w'(t) = w(f — 1) if s is a solution of
ihe transcendental equation s = e

[
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4. ¥Find the solution of
Ply)=1-Ply ~ 1 - Ply—wl™= y2ew
Fly) =1l —-er(l+y), 0Ly<uy
in the interval new < y < (n + 1}w.

(.. Bilberstein, “(n a Hystero-differential Fquation Arising in a Probability Problem,”
Phil. Mag., Ser. 7, Vol. 28, 1940, pp. 75-84.)

5. Use the continuation process to caleulate the continuous solution of

2

w{l) = ult— 1) + u({t — &) dh, t> 2,

~—

n
—_

%(l)
for 0 < ¢ < 4,

o 0122,

6. Discuss the continuation process as applied to the equations

W) = W — 1) + f wlt — ) db, £ > 1,

142

w() =1, 0<¢<1.

7. Discuss the continuation process as applied to the cquations

il

T
W) = u( — 1) +[ w(t — by dy, > 2
1

() =1, 0<i1<2

% Show that u = ¢ is a solution of the equation in Fxcreise 5 if sis a
solution of the transcendental equation

= (84 e — g2,

3.3. Equations of Retarded, Neuvtral, and Advanced Type
The cquations in (3.2.1), (3.2.4), and (3.2.5) are all instances of the
general equation
ag’(8) + e’ — w) F beult} + biu(l — @) = f(t), (8.3.1)

which is of order 1 in derivatives and differences. However, the diverse
conclusions drawn from the three speeial equations suggest 1he desirability
of classifying equations of the form (3.3.1} into several eategories.
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Definition. A#n equalion of the form (3.3.1) s said lo be of retarded type*
if @y £ 0 and a; = (. It is said to be of neulral type @7 ay # 0 and ¢ = 0.
It 45 said to be of advaneed type if ay = 0 and o, =2 0,

If 2y = a1 == 0, the cquation is a pure difference cquation, a type of fune-
tional equation which has been treated in great detail If & = b, = 0, it
reduces to a pure difference equation. If @y = by = 0oray = b, = 0, it isan
ordinary differential cquation.

In applications, in which ¢ usually represents the time, an equation of
retarded typc may represent the behavior of a system in which the rate of
change of the quantity under investigation depends on past and present
values of the quantity. An equation of neutral type may represent a system
in which the present rate of change of & quantity depends on the past rate
of change as well as the past and present values of the quantity. An equa-
tion of advanced type may represent a system in which the rate of change
of a quantity depends on present and fulure values of the guantity {er
alternatively, in which the present value of the quantily depends on the
past value and the past rate of change).

Sinee ¢ usually represents the time in applicationg, we shall ordinarily
be intercsted in continuing a solution in the direction of increasing ¢. One
should note, however, that the substitution & = —{¢ converts an equation
of retarded type in { to an equation of advanced type in ¢/, and vice versa,
and converts an equation of neutral type into another equation of neutral
type. Thug, we can, without loss of generality, confine our invesligations to
increasing values of &

Equations of retarded Lype are in several ways simpler than equations of
neutral or advanced type. In keeping with our gencral policy of beginning
with the simple and advancing te the complex, we shall now give a thorough
discussion of ihe first-order equation of rctarded type. Later we shall de-
velop the corresponding theory of equations of neutral type and of equa-
tions of advanced type.

3.4. The Existence-Uniqueness Theorem

We are now ready to cstablish a general theorem regarding the existence
and uniqueness of solutions of the equation of retarded type,

ag’ {1} + bou(t) + hul — w} = f{8}, (3.4.1)

subjeet to an initial condition of the form w (¢} = g(t), for &y <{ < & + «.
We first. observe that the franslation t — & = {’ converts the equation in

* In the literature, such equations have also been designated delay differential equa-
tions or Aystero-differential equations.
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(8.4.1) into an equation of the same form subject to an initial condition
over £ ¥ < w. We may consequently suppose, with no loss of generality,
that {, = 0, and take as the initial condition

ult) =g(t), 0<t< o (3.4.2)

For cenvenience, we now introduce the following definition.

Definition. The set of all real funclions having k conlinuous derivatives on
an open tnderval i < ¢ < & 18 denoled by C* (&, &), If fis a member of this sef,
wewrtle f € C(4, &), or f € C¥on (fy, £). The symbol € is read “{s o member
of,” or “Delongs to.” If F & C*(by, &) for every & > f, wewrile f € C¥({y, = ).

For example, C°(0, ») denotes the set of real functions eontinucus for
0 <t < w. It is convenient to extend this definition to intervals which arce
1ol open. As usual, the symbols (4, 2], (4, &), (&, &1, and (i, &) denote,
respectively, the intervals &y <t < b h <t < h <t < Hhandh < < b

Deflnition. A function f is said to be of class C% on [k, &) if €t is of class C*
on (&, &), 2f it has a vight-kand kth dertvative af t;, and if the funciion f® (1)
defined over i < t < b by these values is confinuous from the right at 4. A
Ffunction f i3 said 1o be of class C* on (&, & ¢f these statements are valid when
“right’” 4s replaced by “left,” and 477 by 4.7 If bolh these conditions hold, f
18 said to be of class C* on [, L.

Theorem 3.1. Suppose thol f s of class Ct on [0, =) and that g is of class
0% on [0, w]. Then there exisis one and only one function for £ > O which 18
continuous for L > 0, which satisfies (3.4.2), and which safisfies the equation
n (3.4.1) for t > w. Moreover, this funciion u 1s of class Ct on {w, o) and
of class C% on (20, = ). If g is of class (M on [0, v, v’ is continuous at w if
and only if

aog’{w — 0} + bug{w) + big(0) = flw). (3.4.3)

It g 43 of class C? on [0, o], w'' is continuous al 2w if edther (3.4.3) holds or
else by = 0, and only in these cases.

The funection # singled out in the ahove theorem is called the confinuous
solution of (3.4.1) and (3.4.2).

In order to prove this theorem, we temporarily let

#(t) = f(&) — hu{t — o).
Fouation (3.4.1) can then be written
g’ () + byu(f) = v(f),

or
(d/dt) Lagu () exp (bef/ae}] = vt} exp (bot/as). (3.4.4)
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By hypothesis, #(¢) is of class C? on [w, 20]. By infcgrating {3.4.4), we
therefore see that there is a unique function %(t) which satisfies (3.4.1) for
w < t < 2w and for which w{w) = g{w). Since this function Is continuous,
v{f) is of elass €% on [w, 3w}, From (3.4.4), it follows that there is a unique
continuous function «{#) which satisfies (3.4.1} for « < ¢ < 3w. Since,
clearly, this process can be repeated as often as we please, we have estab-
lished the existence and uniqueness of the function w(f) for { > w.
From {3.4.1), we have

a' () = f(B) — bau(t) — bu(i — ), > (3.4.5)

Since () £ C°on [0, =), it follows that «'({) € C° on (w, e }. More-
over, the right-hand member of the equation in (3.4.5) is differentiable,
and, in faci,

ag () = F{8) — b’ (£} — buw'(§ — w), > 2w (34.6)

The right-hand member of the equation in (3.4.8) is of class C®on (20, «),
and therefore «{t) is of clags C? on (2w, « ).
If g is of class C* on [0, ],

2’ (w0 + 0} = flw) — bog(w} — big(0),
whereas
at’' (w — 0) = aug’(w — 0).
Therefore, w'(t) is continuous at e if and only if
aeg’{w — 0) + byg(w) + big(0) = flo).

If g is of class €% on [0, w], we see from (3.4.6}, which holds also
for @ < t < 2w, that ©" (¢} is continuous at 2w if and only if

bl (o + 0) — w'(w — 0)] = 0.

This will he the case if and only if either %’ is continuous at w or by = 0.
In the laiter ease, Equation (3.4.1} is a pure differential equation.

We now wish to observe that in many ecases we can assume without
significant loss of generality that g is of class C? on [0, w]. For suppose f
is of class T on [0, =) and g is of class CPon [0, w]. Take any #; > 2w, and
consider the equations

aw’ (1) -+ baw{t) + baw(t — «) = f{i + &), t >0, {34.7)
w(t) = u(l + 4), 0<t< {3.4.8)

These equations are of the same form as (3.4.1) and (3.4.2), and have a
unique eontinuous solution, namely, w(i) = w(t + &), £ = 0. Since u(f)
is of elass C* on (2w, ), w(i) is of class C? on [0, =), Clearly we can
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replace the original problem defined by (3.4.1) and (3.4.2) by ihe problem
defined by (3.47) and (3.4.8), if we are interested only in values of «(f)
for ¢ Z t;.

Thus, it involves no essential loss of generality to alter the hypothests of
Theorem 3.1 by requiring that ¢ be of class €% on [0, w | and thal (3.4.3)
hold, The function u €8 then of class C? on [0, ©). This assumption will
simplify some of our subsequent, work, and will often be made,

EXERCISES

1. Show that if {1} and g(f) are polynomials of degree at most », and if
by = 0, then for nw < ¢ < (n 4+ 1)w, u(f) is cqual to a polynomial of
degree at most r + #.

2. Bhow that the substitution
u(t) =w(t), 0=51§<w,
u{t) = exp (—=bt/a)w(l), >«

transforms Equation (3.4.1) into an equation in w of the same form as
(3.4.1) with by = 0.

3. Definition. A function [ is said {0 be pilecewise confinuous on an fnferval T
{open or closed) if it 45 of class C° on I except possibly for «a finile set of
simple ( Jump) disconlinuilies. In this case, we write f € P(on I. A
Sfunction [ 45 sasd fo be of elass PC* on I if if 4s of class CF on I, except
possibly for a finite set of points of simple discontinuily of T or one of s
first k deripatives.

Prove that if f is of class PClon [0, =) and if g is of class PPC° on
[0, @], then there exists one and only one function which is of class C°
on [, «}, which satisfics (3.4.2}, and which satisfics the equalion in
(3.4.1) fort > w in the gense that at a discontinuity point of 4{f — w)
or f{{), the right-hand values satisfy (3.4.1) and the left-hand values
satisfy (3.4.1). For £ > 20, the only discontinuities of ' oceur at the
discontinuities of f.

]

Ir

4, Show that under the condilions of Theorem 3.1, w{f} is of class €7 on
{nw, ¢ ), for any integer # for which f iz of class €2 on [0, =),

5. Assume that @ > 0, w > o, 8 > «, and let v = max (8, «). An equation
of the form

ape’ (£ + ' (t — w) + bou(t) + biu(t — w)

)
= f(2) +f btu(t — h) dt,  t> v,
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can be said to be of retarded fype if @p # 0, a1 = 0 (¢f. Chapter 12},
Establish an existence-uniqueness theorem for such an equation, with
initial condition of the form %2} = ¢(#), 0 £ { < v, assuming L{{), f{1),
and g({) continuous.

3.5. Exponential Solutions

In the preceding sections, the continuation process was described. This
process enables one to exiend the solution of a differential-diffcrence equa-
i1on with coustant coeflicients from interval to interval, and in some cases it
cniables one to establish & formula which gives the value of the solution in
any interval ko < ¢ < (b 4 l}e, & = 0, 1, 2, ++ -, In most cases, no such
formuls is readily apparent, but the method can still be used for the
caleulation of the solution by numerical methods if necessary, over apy
desired finite interval. In any event, such a formula may not be particularly
helpful in looking for certain properties of the solution. One such of par-
iicular gignificance is its behavior as { becomes indefinitely large. We shall
therefore present in this seetion a second fundamental method, that of
huilding up 2 solution as & sum of simple exponential solutions. This method
is, of course, well known in the theory of differential equations. Tt is the
fundamental method of superposition uponrr which mathemsatical physies
rests.

For convenience of notation, we shall define a linear operator L(u) by
the following equation:

Liw) = ag’ (1) + dou(t) 1 bu(t — w). (3.5.3)

The theorem below is an immediate conscquence of the linearity of the
operator L{u),

Theorem 3.2, If wi(f) ond u({} are any two solutions of the equalion
L{u} =0, and if &1 and ¢; are any two constants, then ey (8} + ene(t) 45 also
a sofubion of L{u) = 0.

The proof of this theorem consists in the observation that

Licrur + egue} = eall(w) + eal{un) =

Its significance, of course, is that we ean generate new solutions of (3.5.1)
by forming “linear combinations” emt: + e of known solutions. In a
similar vein is:

Thearem 3.3. [fv(f)} is o solution of L{u)} = §, and if w(f) 25 a solution
of L{u) =0, then v + w is a solulion of L{w) = f.
This is clear, sinee L{v + w) = L{v} + L{w} = f.
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Definition. Arn cguation of the form L{u) = 0 is said lo be homogeneous,
while an equation of the form L{u) = fis said {o be inhomogeneous,

Theorem 3.3 shows that the solution of the inhomogeneous cquation
L{u) = f, subject to an initial condition u = gfort < i < fy + w, can be
obtained by adding the solutions # and w of two simpler problems, namely:
(1} the solution v of L{z) =0,v = gforty €1 < + w;and (2} the solu-
tionwof L{w) = f,w = 0for it <t < { + w. Let us thercefore furn now to
the problem of finding a solution of {1},

The result in Theorem 3.2 suggesis the possibility of gencrating every
solution of the homogencous equation as a linear combination of gimple
solutions, as is done in the theory of ordinary differential equations. Since
in the latter theory the simple solutions are exponentials, it is not sur-
prising that we ean also find exponential solutions of differential-difference
equations. We have

L{ey = (aos + by + bie™m)et. (3.5.2)

Hence, u = e**is a solution of L(x) = 0, for all £, if and only if the number
¢ 1z a zero of the transcendental funetion

hi{s) = aps + by + e~ (3.5.3)

Definition. The funciion h{s) associated with the equation L{u) = 0 is
colled the characlerisiic function of L, the eguaiton h{s) = 0 iz called the
characieristic equation of L, and the roots of h(s) = 0 are called the characler-
tstic roots of L.

Corresponding to each characteristic root there is a solution (which may
be complex) of L(u) = 0, and to distinet roots correspond linearly inde-
pendent solutions. As we shall see later, there are, in general, infinitely
many roots. Moreover, a multiple root gives rise to several independent
solutions, as we shall now show. We first observe that

(s} = ay — bwe*,

BB () = (=1t k= 2,8, --e.

For any n > 1, we have

Ltrert) = apftrse™ + ni™le®) + bytre® 4+ bi(f — w)metU—).  (3.5.5)

If ({ — )" is expanded by the binomial theorem, we see that the coefficient
of v st (0 < & < n) in (3.5.5) is

(o
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Consequently,*
LI
Limet) = et 3, ( ) A ACTEYN (3.5.68)
= \k

From this cquation we see that L{t"e**) = 0 for any integer # in the range
0 <n <m— 1,if sig a characteristic root of multiplicity m, since &(s),
k' (8), -+, A" D (&) will all vanish for this value of s. Thus, a root s of
multiplicity m gives rise to m functions, e*!, &%, -+, {® %, which are solu-
tions of L{x) = O for all real {. As is well known, these m funetions are
linearly independent over any interval. Since the equation L{u} = 0 is
linear and homogeneous, p(t)e*t is evidently a solution if p(f} is any
polynomial of degree not. greater than m — k. In fact, we have the following
theorem:

Theorem 3.4. The equation
Li{u) = ap’ (1) + boult}) + biu(t — w) =0 (3.5.7)

18 saiisfied by
2 plen, (3.5.8)

where |} ts any sequence of characlerisiic roots of L, p.(t) is o polynomial
of degree less than the multiplicity of <., and the sum is either findte or is in-
Finite with suitable conditions lo ensure convergence.

Although the results of this section are gimilar to those familiar in the
theory of ordinary differential equations, there is one very important
difference. There are, in general, infinitely many characteristic Tools (and
therefore Infinitely many exponential solutions) of a differential-difference
equation whereas there are only a finite number of voots of a pure differ-
ential equation. This results in a great increase in the complexity of solution
processes. For example, one ovdinarily finds the solution of a differential
equation satisfying given initial conditions by writing down the gencral
solution as a linear combination of all exponcntial solutions and then
evaluating the constant multipliers with the aid of the initial conditions. An
attempt to do the same for Equation (3.5.7) suggests the following ques-
tions:

(a) TTow can we calculate all the roots &7

{(b) Can every solution of {3.5.7) be written in the form (3.5.8)7

(¢) If 80, how can we compute all the coeflicients p-(t) 80 as to meet the
initial conditions?

* We understand, as is customary, that (E) = 1 and A {g) = h{s).
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A good part of Chapter 4, ag well as the rest of this chapter, 1s devoted to
answering these questions.
EXERCISES

1. The use of operator symbolism is of some use in the solution of differential-
difference equations. Deflne the operators D, 4, and E by the relations

Du(t) ='(8), Au(t) = w(+ 1) — u(¥),
Eul{t) = ul{t + 1).
For any real numbers & and « define
(EE)*ult) = k*u(t 1+ w),
{(ED)u(t) = ku'(f),
(kA)u(t) = kfu{t + 1) — ult)].
Define sums and produets of these operators in the usual way:
(D 4+ Au = Du + Ay,
{DAYu = D{Au), cte.

Two operators are called equal if, when applied to an arbitrary function,
they producc the same result. Show that, with these definitions, the
commutbative, associative, and distributive laws hold, Show that

E=1fom () = Belay(t) = Boteng(f) = ul 4 w1 + w2).
2, Define the operator ¢*? formally by the serics
wi®

177 2 J—
€ 1+ wh 4 21

SR

Show formally that B~ = P,

3. Show that the equation
agte" (£ 4 @) -+ boult -+ @) + bau(t) = f(i)
can be wriften as
(D)u(t) = f(5),
(D) = aDe*® + bpes” + by,
4, Prove that ¢{D) (ke®!) = g(¢) ke and that
a(DY[ef ()] = eLg(D + )f(8)]

for any constants k, ¢ and any sufficiently differentiable function f.

where
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. Let the symbol

DNy = (@De*” + boe*” + b1) 7S (1)

denote any particular solution of the differential-difference equation
in Exercise 3. Prove that

g g 1(D)F(1)] = f(0),
g H DY (kest) = ﬁfi—, provided g{c) #= 0,
gle)
g DY (D] = e“[g~ (D + )f(D) ],
g (et sin ] = Ym [~ 1(D)eletitt],
and

D) = f £(t) dt + constant.

Prove the following theorem: In order to evaluate g WD pa(t), where
pa (L) 15 a polynomial of degree n, lel (D) be formally cxpanded in ascend-
ing powers of D. Let the resull be

g¢(D} = D1 + gD + -,
Let () + 1D + ---)~! have the formal expansion

1 + ?"lD + TQDE ‘[“ L
Then

gH{D)p(d) = o' D [(L + nD + o 4+ rDpa{f) ]

. Use the methods developed in the preceding problems to calculate a

particular integral ¢ 1(D)f(¢) of each of the following differential-
difference equalions:

(a) W't + 1) —u(} =1,
(b) w'(t + ) — ult) = =ndl

. Discuss the analogues of Theorems 3.2, 3.3, and 3.4 for the opcrator

L(w) = aw’(t) + bau() + buit — o) + fﬂ blt)ult — ) dh,

0 <o, Lo,a B

. Show that the function 1/{¢* — 1) has the expansion

1 1 1 ksl Bz—n

-+ -+ Z—:ﬂz“

e’—l_:c 2 p 27!
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for | | < 2. By use of the expansion

1 1 o 2z

-+ 2

e—1 = a=1 &7 -+ dnix?

obtain the connection between the sums D 2, n 2 (b = 1, 2, ...)
and the coefficients B;., the Bernoulli numbers.

10. Obtain a formal solution of the equation
w(l+ 1) —ult) = f{1)
by writing it in the form (e — 1}u(¢) = f(¢), and then inverting
u(t) = (¢” — 1) (&)
‘o _ o By, £ (1)
[ e an+ g + 2=

—  2n!

11. Hence obtain particular solutions of
w(t + 1) — u(l) = #,
(i + 1) — u(t) = e,

12. Obtain particular solutions of the first equation by repeated differ-
entiation with respect to a of solutions of the second equation,

3.6, Order of Growth of Solutions

In attempting to answer the questions raised at the end of the preceding
section, we shall find it helpful to use certain Laplace transform techniques.
For this purpose, it 1s convenient to have some a priori estimate of the
magnitude of solutions. In this section, we shall derive such an estimate
with the aid of the following lemma.

lemma 3.1. Ifw(l) is posilive and monotone nondecreasing, if u{f) > 0,
v(i) > 0, if all three functions are continuous, and of

w(t) < w(t) +f w()o(t) do, a<t<b (361
then

w(t) < w(f) exp [fx e dh}, e <{<bh (3.6.2)

L3
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To prove this lemma, observe that

'l:

u(£) u(h)v(tl) u(h)ﬂ(tl)
t:’—(z)-gl—i—fa @ d51_1+f w ()

since w is monotone nondeereasing. et us now invoke Lemina 2.1 of §2.5.
Considering the function %(f) /w(f), we sec that this lemma yiclds the
result

% < oxp U » (1) dzl], (3.6.3)

which in turn yields the desired result

ult) < w(i) exp [ f ") dtl] (3.6.4)

[

We ean now prove the following theorem.

Theorem 3.5. Leat u(l) be g solution of the equolion
L) = ap’(B) + bou(t) + bu{t — @) = f(1) {3.6.5)
which s of class Cton [0, = ). Suppose that f s of elass C* on [0, =) and that
[F() ] < ae,  £20, (3.6.6)

where ¢; and ¢z are positive constanis. Let

m = max | u(d) |, {(3.6.7)

O o

Then there are positive constants ¢y ond ¢, depending only on ¢z and the co-
efficients ¢n (3.6.5), such thal

| @) | < csler + myest, 2> 0. (3.6.8)

From the equation in {3.6.5), we find that

amu(t) = anefw) + f‘f(tl) di — bu[ u(ty) dis

!
- blf wlly — w) diy, {2 w,

@
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Therefore,

t £
o) | < Jaolm + e [ e+ 10l [ lus) | da
1]

L

+|b1rfu lu(t) |dt, 2w,

¢ ol + | B ¢
1u(£)]§m—{——-——1—-3“2‘—l—!—m|—;|—1|f|u(t1)|a’.tl, t> w.
Cg|au| |aoi_ 1]
Let,
( 1 ) fbo| + | b
¢y = max |1, s O = m——————,
ez | @ | | ao |
Then

| ufl) | < exler + m)e® 4+ ¢ ft Fuld) | db, 1> w (3.6.9)

Sinee 'ul(t) | < m < egme? for 0 € ¢ < w, (3.6.9) holds for ali § > 0.

It therefore follows from l.emma 3.1 that
[w(8) | < eser + m)glortonts, i >0,

which proves the theorem.

The same kind of argument can be used 1o establish theorems regarding
the continuous dependence of the solution of (3.6.5) on initial conditions
and on the form of L(x). Several such thecrems are listed in the exercizes
which follow.

EXERCISES

1. Let w,{f) and u:(f) be solutions of Equation (3.6.5) which are of class €2
on [0, = ). Buppose that fis of class Cton [0, =), and let

m = max [ wi(t) — ue(?) |-
0L tge

Show that there is a positive coustant ¢, depending only on the co-
efficients in {3.6.3)}, such that '

| us(d) — wa(t) | S meet, £ >0

2. Let u:(t) and u.{1)}, of class €% on [0, <« ), be solutions of L{u) = fiand
L{u) = fo, respectively, where fi and fz are of class C* on [0, = }. Define
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mn as in Exercize 1. Show that

| wa(B) — welt) | < [m + |} Ifo [ ity — falts) | dt1:| et =0

3. Let wa(t) and wy(t), of class €% on [0, =), be solutions of L, (%) = fi

and Fo(w) = fi, respectively, where f1 and f; are of class C! on [0, =),
and where

LJ_(’L\‘}) au%;(t) -+ buu(f) + b]ﬂ(t - w),
Lg(u) = agu'(t) + {bo + fo)u(ﬂ) + (b]_ "[" zl)u(t - m).
Suppose, furthermore, that

[ F:lt) | < et t>0, i =1,2, e > 0, ¢ > 0.

Define m as in Exereise 1 and let

e =max (|2, |al),

max | us(f) |
()

l

ma

Show that there are posilive constants ¢, ¢, and e, depending only on
ci, 6y, and the coeflicients aq, by, by, such that

Paaf) — we(t) | < [m + | aq| _lf | i) — falh) | dty + ecslen + mz}ec‘t:lﬂﬂy

t2 0.

., TLemima 3.1 and many similar results can be deduced from the following
principle. For any real numbers @ and b, with ¢ < &, let K denote the
class of real-valued continuous functions defined on [, b7]. Let T = Tuay
be an operator from K., to Kg,, where @, 8, and v are (ixed numbers
with @ < 8 < v, Assume that

(a) T is monoiene in the sense that if w € K., v € Ky, and «(f) < v(f)
for « <t < §, where 8 < § < 4, then (Tu) (1) < (o) {{) for
8 £ i< 8

{b) T is conlracting af a point in the sense that there 1s & function
g € Keaysuch that (To) (f) < g(t) for g <t < .

Now let u be a function of class K., which satisfies the inequalities
w(t) < (Tw)(, B<t<r,
u(l) < g, et <8
Then u(t) < g(@) fora < { < .
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This theorem can be proved by contradiction. If the conclusion is
false, there is a smallest number % such that w(f) < g(f), a < ¢ < 1%,
but «(t*) = ¢(1*). Here 8 < {* < v. Using propertics (a) and (b}, we
deduee that

(Tw) () < (TyH @) <g(), S48
Therefore u(f) < g(i), 8 < L < t*, contradicting w(i*) = g(i*).

. Lot T be defined by

(Tu) (1) = w(t) + fsu(tl)v(tl) dh, a<it<b
and ¢ by

g(t) = (1 + w(e) exp Ucv(zl) dzl} a<t<b.

&

Now deduce Lemima 3.1 from the principle enunciated in the preceding
excreise.

. Buppose that 5(¢) is eontinuous for & < ¢ < § and that f(£) and (1)

arc continuous for 0 < ¢ < v, and that (&) = 0, b{(&) > 0, f(t) > 0,
e1>0,¢ > 0. Assume that 0 < « € w € 8 < v and that

w() < o + f () i + .::Ef wlty — ) dh
& A

t ]
+fﬁ dtlf bt — &) dls, B <t <.

o

Using the principle of Exercise 4, show that if

a
m > max u(t), mes® > e, £ = €2+ f b(i) di,

B<t<p

then u(t) < g(t) for 0 £ ¢ < ¥, where

g{é) = emt [m + f; flh)e—=n dil].

. Let f € C[0, =), ¢ € C°[0, 87, and let «(¢) be a continuous solution of

the equations
3
a (1) + bt — w) = J(O + [ Bl —w) dn, 1> 5

u(t) = o), 0 <154,
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where 0 < & < w < 8. Show that there are positive constants m and ¢
for which

| (8 | < et [m + ft | f(t) | emen dtl], t >0

3.7. Laplace Transform Solution

Laplace transform methods are extremely useful in obtaining solutions of
linear differential-difference equations with constant coefficients. Let us
illustrate these methods by considering the simple equation

w{t) = uli — 1). (3.7.1)
If we multiply this equation by et and integrate from 1 to « (proceeding
in a purely formal fashion), we get
f W (et dl = f u(t — Lye—t dt. (3.7.2)
1 1
Using a change of variable, we find that

f w(t — 1le=tdi = e“*’/ w(l)ye=t di
o

1

e [fw u(t)est dt + f; u(fret dt]-

1

Integration by parts yields, assuming that w(f)e—* — 0 as{ — <,
f w{tle =t dt = —u(l)e + sf w(t)e st di,
L 1
Thus {3.7.2) takes the forin

(s — &) fw w()e—t di — u(1)e—s + &= fl w(t) et dt.
1 (1]

Assuming that s — ¢ # 0, we therefore obtain

@ 1 5 -—a (1 —&i
j‘ wlt)et di = w(l)e—s + e [L u(l)e dz’
1 § —e*

(3.7.3)



64 3. EQUATIONS OF RETARDED TYFRE

an equation which expresses the transform of w in terms of the values of «
over the interval 0 < ¢ < 1. Assuming that the inversion formula discussed
in §1.9 can be applied, we get

wl) = f Tu(l)e™ 4 e [Laffle—t dt] o

ds, > 1. (3.7.4)
() & — g=f

Thus, provided the various steps above can be rigorously justified, we see
that the solution of (3.7.1) can be expressed in terms of the initial values of
% over {0, 1] by means of a contour integral, We shall see later on that,
although such a contour integral can seldom be expressed in terms of
elernentary functions, it nevertheless provides an extremely important tool
in deducing useful information about the solution. In this section, however,
we with merely to extend the above technigue to more general first-order
equations, and to show that the procedure can be rigorously justified. Tt
will be necessary for us to assume the fruth of ihe following lemama which
will be proved in Chapter 12.

Lemma 3.2. The roots of
his) = aes + by + be™ = 0
all lie in the complex s-plare 1o the left of some verticol line. Thaf 4s, there 4s o

real constant ¢ such thal all reots s salisfy the condition Re(s) < ¢
Using this lemma, we shall prove the following theorem.

Thaeorem 3.6, Lef w(t) be the continuous solution of
L{u) = aw/{{) + bouelt) 4 bt — o) = f{1), t > w, ap # 0,
{3.7.5)

which safisfies the tnitial condition w(l) = ¢(1), 0 £ ¢ < w. dssume that g i3
CO[0, w], that f 45 C'[0, =), and that

[f@) | £ e, t >0, ey > 0, c; > O (3.7.6)

Then for any sufficiently large constant ¢,

ul(i) = f“ e 1(s) [po(s) + q(s)1ds, &> w, (3.7.71)
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e po(8) = aglw)e ™ — b j: g(f)en dty, (3.7.8)
o) = [ swyeaan, (3.7.9)
Also, )
w® = [ ew@ine @l t>0, 3710
where

p(s) = aug(e)e—r + (aos + bo) f gltyetdy,  (3.7.11)
0

provided g 4s C'[0, w].*

The influence of the initial function ¢ is represented by p(s) and that
of the forcing function f by g(&). The significance of the two forms given
will become clear as we proceed.

The hypothesis (3.7.6} enables ug to deduce from Theorem 3.5 that there
are positive constants ¢z and e for which

“ult) | < e >0, (3.7.12)
and hence that the integrals
f w(t)et di, f wlt — wyet i, f F(lye— de
0 7 1]
converge for any complex number s for which Re(s) > ¢. By integration
by parts, we get
t? ef
f Wt db = u(t)e' — glw)es + sf w(les dt. (3.7.13)

Binee u(t et approaches zero as £ — =« jf Re(s) > ¢4, by virtue of
(3.7.12), the right-hand member of (3.7.13) converges as ¢ — . Hence,
the left-hand member also converges, and

f T W @Westdl = —glw)e = + s f T uetdt.  (3.7.14)

w w

* The formula i {3.7.10) remaing valid for t > w if g is merely C°[0), wl.
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Moreover, it is clear that

fm u(f — wye ™t dt = gv {f

] o

Cultesdt + f: gByet dc]. (3.7.15)
Substituting into the equation in (3.7.53), we obtain

B [ u@etdi = mls) +¢(9),  Re(s) > e (37.16)
By Lemma 3.2, A(s) is not zero for Re(s) > cif ¢ is sufficiently large. Hence

[ utderrd = @ Inn(s) + o) Re(®) > e (37.17)
Sinee w(?) is of ¢lass €' on [w, <}, by Theorem 3.1, and therefore certainly
continuous and of bounded variation on any finite interval, we can employ
the inversion formula for the Laplace transform te obtain the equation
in (3.7.7.).
To obtain the equation in (3.7.10), we alter the procedure slightly.
Instead of using the relations in (3.7.14) and (3.7.15), we use

fm Wt dt = —glw)e—s + s [fm wl(iet df — f o (t) et dc],
[i] [1]

L

fw u{l — w)estdi = g fw ulf)e* di.

L}

When we gubstitute into the equation in (3.7.5) and solve for [ u(t)etdt,
we obtain

f T et dt = k() [pls) + a()],  Re(s) > e (3.7.18)
i]

Bince g{f) is assumed to be C[0, ], %#(L) I8 C*on [0, w] and [w, =), and
the inversion formula yields the result in (3.7.10).

It is Instruetive at this point to make a few remarks about the distine-
tion between equations of retarded type and equations of advanced type.
The equation in (3.7.5) is of the former type, while the equation

o (t — @) + bau(t) + bu(t — w) = F(8) (3.7.19)

is of the latter type. If we apply the above method to the latter, we are led
10 an equation of the form in (3.7.18), where

h(&) = (R ‘+‘ bu + ble“‘“’.
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We shall show later that this eharacteristic funetion has zeros of arbitrarily
large real part. For this reason, A'(s) has singularities for values of s with
arbitrarily large real part, and the previous procedure fails. As a matter of
fact, since each characteristic root gives rise to a solution of (3.7.19), the
solutions arc not exponentially bounded as in (3.7.12), so that the infiuite
integrals written before now diverge. It is elear that the procedure must be
extensively modified before it can be applied to equations of advanced
type. We have therefore clected to postpone discussion of such equations,
as well as of equations of neutral type, which exhibit a behavior inter-
mediale between the behaviors of the other types.

EXERCISES

1. Use the above procedure to find the solution of the linear first-order
differential equation

a’ (1) + bou(t) = 0, t >0,
u(O) = U,
in the form
gt bﬂ
u(t)-——f — et ds, t >0, e > - —,
{e) Qo + ho ay

2. Deduce from Exercise 1 that

est
a —— ds = exp {—bi/a), i >0,
Of(c)aus+bo P (~bi/a)

for any ¢ > —bo/a0.
3. Using the Laplace transform method, show that the solution of
a’ (1) + bou(t) = F(D), i> 0,

has the form

+ [2fB)en dt
wy = [ WOTIIWT

o) ax + bo
4, Using the relation (3.7.14), deduce from {3.7.17) that

[ w e i = il + opals) — gle)eh(a)]

w

Re{s) > e
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If «' is continuous and of bounded variation for ¢{ > w, this yields

W@ = [ eI @) + () — gl@evh()]ds, >

{2}

Differentiation under the integral sign in Equation (3.7.7) yields the
formula

W) = f e hi(s)[sg(s) + spo(s)1ds, ¢> w.

()
Show that

f e tae—wa d 3

(g}

diverges, and therefore, using the resuli of Exercise 4, that the above
formuls for w' (£} is invalid.

Multiply the equation in (3.7.5) by ¢*f and inteprate over (w, =}.
Using the relation

m

§ fm w(t — eletdf = glw — e + e—“f w{e st dt

fore = Gand ¢ = w, solve for [, #'(£)e—=! dt and show that

fm wi{Dedi = k{8 [;mis) + qu(s) ],

w

where

pi(s) = —big(0)e ™ — bug(w)e™ — bl""'“f g’ (e dy,
i}

a(s) = fl@)er + f " P e dh,

w

Deduce that

W) = f e h M i) + ()] ds, ©> a.
i

<}

. Apply the Laplace transform as in Fxereise 8, but express integrals in

terms of [3 «'(f)e~ di. Shew that if g is C*[0, ],

fa “w et dt = k() [pe(s) + uls)]
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for Re(s) sufficiently large, where ¢;(s) is defined in Exercise 6 and
pels) = —big(0)e ™ — byg(w)e™ + (aos + by} f: g’ (£) e~ di.
Deduce that if g is C*0, «),
WD) = f( ) +a@1ds 130 tFw

. Assume that the solution u(?) of
GU’U}’({) + bo‘!.&l:t) 4+ blu(t - r.o) = 0, > U,

is of elass C*[0, =), for a positive integer n, Using the inequality in
(3.7.12), show that

D) | < e, 120, =01, ntl,
and therefore that the integrals

[Twowend,  j=01, 0 n 1,

converge for Re(s) > cu.

. Assume that the solution %(t) of the equation in (3.7.5} is of class
Cr[0, =), and that fi= of elase C*[0, =}, for a positive integer n.
Apply the procedure of Hxercise 7 to the equation

au™ (1) + b0 (t) + bV ({E — @) = fOU(D)
to show that

fﬂﬂ u(""(l} e—et Jf = h—1 (3) [‘3}“4_1 (3) + Fn (S) ];

i)
where
Prair(s) = —byg D (0) e — byg™M{w)er
-+ (GOS -+ bo) f g"‘?' (31)6_‘“1 dﬁ],
L]
gu(s) = fov (e + [ (h)een d,

o

Deduce that

w0 (@) = [ W @lpen(s) + 0a(s)Vds, > 0.
{

€}
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Let %(t) be the continuous solution of
3i]
i (8) + boull) + bl — @) = ) + f B{tult — &) dh,

iy 7= 01 i > -89
u(t) = g(®), 10<t<5
where 0 < a £ » £ 8. Assume that g is C"[0, 8, that Jis C'[0, =},
and that fis of exponential order as £ — . Show that for any sufli-

ciently large constant ¢, «{{) can he expressed as in (3.7.7) where g{s)
is given by (3.7.9) and

B
mis) = ag(Byes — b [ eg() d
B

8 8
—i—f b{tyeu dtlf et (1} di.

-1
Show that if g is C'[0, 81, «{t} ean be expressed as in {3.7.10), where

g
p(s) = ag(8)e® + (aos + b} | cig(t) i
0

f—tw & f—1;
+ ble““'“[ eig(t) dt + f b(h)en dtlf eg (L) di.
n . 0

Multiply the first equation in Exercizse 10 by se—! and integrate over
(8, =). Proceeding ag in Exercise 8, show that

[ e a = i It + )]

g

where s
h(s) = ass + b + b~ — f B(t) et diy

;]
mis) = —byg(B — wle® — bg(fle™® — b f ey’ (1) di
et

A # g
+ et f B(t)g(8 — &) dis + f bt et diy f g’ (1) &,
o o g—6

mis) = fl@e? + [m e~ (1) dt.
A
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Henee if %’ is continuous and of bounded variation,

W) = [ en @) + a@lds, 1> 6
(g}

12. Apply the transform as in Fxercise 11, but express inlegrals in terms of
J5 e’ (£) di. Show that if ¢ i= C1[0, 8],

fm e—stu’(g) di = h—l(s)[pg(s) + ql(s)]!

Li]

for Re{s) sufficiently large, where g:(s) is defined in Exereise 11 and
where

8
pafs) = —bg{f — wie™ ~ by (Ble™ + (@ + bo) f e~y (1) dt
L]

d—u

3
T byeree f et (8) dt + e f B G(8 — &) dh

0

B £—ty
_ f el (k) diy f esig’ (1) dl.
Y [H

Hence, wherever »’ s continnons and of bounded variation

W) = f eh(s) [pe(s) + qu(s)]ds, ©> 0.

{e]

3.8. Solution of a Differential Equation in the Form of a Definite Integral

In Exercise 3 of §3.7, it was observed that application of the Laplace
transform method to the differentizl equation

agl (1) 4 bau(t) = f(8), t>0, w0 =,  (3.81)

leads to a solution in the form of a contour integral:

w(t) = f

(e

4124 e di
{" o + 7 f(t)e 1] etds, t>0. (382)

a8 + by

On the other hand, the elementary method of the integrating factor leads
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to a solution in the form of a real definite integral:
H

u(t) = woexp [—bot/an] 4 as* f F) exp [—by{! — &) /aa] dty, (3.8.3)
Ll

t > 0.

These two results must, of course, be cquivalent. The latter formula is
preferable for many purposes. For example, it shows clearly that the
value of # () is dependent on the values of £{#;) only for 0 < ¢ < ¢, whercas
this is not casily apparent from {3.8.2). On the other hand, as we shall see,
the contour integral representation has its own advantages.

One is led to wonder, then, whether there is a definite integral representa-
tion of the solution of the differential-difference equation (3.7.5), equiva-
lent to the contour integral representation in (3.7.7) or (3.7.10). We shall
sooh gshow that this is the case by deducing such a representation from
(3.7.7). In order to see how this might be done, let us first show that (3.8.3)
can be deduced from (3.8.2). Write (3.8.2) in the form

et (e dt
ult) = 'ugf — s —i—f { ALY 1:1 ds
() Fo8 + by (} ags + by

From the result contained in Exercizse 2 of §3.7, we see that the first term
of the right-hand member is wy exp (—bot/aq). Since ao/{as + &) is the
transform of exp (—be/ao} and [ f{h)e* df; is the transform of £(¢), it
follows from the convolution theorem (Theorem 1.4} that
o [y J()e dh
aps + bu

is the Laplace transform of the function

fa £() exp [—bo(t ~ 1) Jas] dh.

Thercfore,
et bt et g t
f M_”—j ds = Gﬂ_lf Flt) exp [—bo(t — 1) fav] diy,
) aps + b 0

and (3.8.3) follows from (3.8.2).

We now propose to apply the same method to deduce from (3.7.7) or
(3.7.10} an alternative form for 4 (¢). The key to the success of the above
method is the determination of a funetion whose transform is (ams + bo) !
Similarly, the key to success in discussing (3.7.7) is the identification of a
funciion whose transform s A71(s). In the next section, we shall introduce
such a function.
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3.9. Sclution of a Differential-Difference Equalion in the Form of a Definite
Integral

We shall begin by defining a function whose transform is A=1(s).

Definition. Lel k(1) be the unigue funelion with the following properties:

() k(t) =0, <0

{b) k(D) = ag?;

{e) E(t) s of class C® on [0, = );
(d) k(L) satisfies the equalion

ak’ () + bok(8) + Bkt — w} = 0, (3.9.1)
Jort > 0.

Existence and uniqueness of £(¢) does not follow directly from: Theorem
3.1, since ihe initial values do not define a continuous funetion over [ —w, 07,
but they do follow from the result of Exercise 3 of §3.4. It is easy to see
that k{2) ds of class C' on (0, @) and on [, =}, by writing (3.9.1) in a
form like that in (3.4.4).

Using Theorem 3.5, we deduee that k(¢} is exponentially bounded, and
consequently that the Laplace iutegrals of the terms in (3.9.1) converge.
If we multiply each term of the eguation in (3.9.1} by e~ and integrate
with respect to ¢ from 0 to o, we obtain the relation

f T kDot dt = h(s),  Re(s) > e (3.9.2)
L)

Since k' (f) has only gimple discontinuities, the function k(2) is continuous,
and of bounded variation for ¢ > 0. Therefore, the Laplace inversion
formula vields the representation

o) = [ Wetds, o> 0. (3.9.3)
(=}

We shall now employ the convolution theorem to rewrite the equations
in (3.7.7) and (3.7.10) in terms of real definite integrals. It will be con-
venient to introduce the following definition.

Definition. The ynil funciion e(1) 1s the function defined by the eguations

e() =0, t<0,
e(t)y =1, i >0
{ The value of e(t) el t = 0 45 immalerial.)
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From the equations defining e({), we sec that for any constant ¢, and
any function f(t),
fBye(t — ¢y =0, t < ¢

f{telt — ¢y = fliy, i > e
Hence, from (3.7.9),
g{s) =f Fte(t — w)e—n di,
0
That is, ¢(s)} is the Laplace transform of f()e{t — w). Since A-'(s) is the

transform of k{t), we deduce from the convolution theorem that the
funetion

fsj(tl)e(tl - nd)k(t - tl) 753
]

has transform ¢(s)A~1(s). Binee this funciion is continuous and of bounded
variation for { > w, we have

f eth () g(s) ds = f t Fk(E— ) dy,  t> e (3.9.4)

(e} w

Moreover, from (3.9.2) and (a},
A (s) e =f E(f)et+a g =f E(t — o)et dt.
0 0

Thus the transform of k(¢ — ) is A-1{s)e—>*, Bince k(1 — «) is continuous
and of bounded variation for ¢ > w, the inversion formula yields

f e b1 (s) aug (0} ds = aog(@h(t — ©), 1> @ (3.9.5)
{e)

Finully, the transform of g{f)e(w — 1) is
f g(t)elw — t)eh diy = f gt et .
0 ]

Bince A 1(s)e* is the transform of &(f — w), it follows from the con-
volution theorem that the function

fﬁ gli)elw — R — & — o) diy

- [kt —t—w s, 1> (396)
1]
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has the transform

ot

h“l(s)e“‘“f gt e gy,

]

Bince k{{) is continuous except for a jump at { = 0, the integral in (3.9.6)
is continuous and of hounded variation. Therefore,

f et [h—l(s)e—w f g(t) e dtl—l ds
(e} 0 -

= [kt —n -y, t> e @D

0

Combining the results of (3.9.5) and (3.9.7}, we have

f“ e () po(s) ds = aog()k(l — w)

~ b j:g(zl)fc(i —h—wd, t>w  (398)
From (3.7.11) we get
pls) = ag(© + [ [ag'(h) + bo@ i, (399)
after an integration by parts. Application of the above techniques yields
[ e et ds = gk
+ j: Caog’ (4) + bog () Th(E — &) dby, t> 0. (3.9.10)
Theorem 3.6 therefore implies the following theorem.

Thearem 3.7. Lef u(f) be the conlinuous solution of
Liu) = aw’(8) + bou(f) + bt —w) =J{(8), t>w, a;=0, (3.9.11)

which selisfies the tnitial condition u(t) = ¢(1), 0 < ¢ < w. If g 15 C*[0, »]
and f 45 C'[0, =), then for t > w,

u(t) = ag{e)k(f — o) — b fw gkt — i — w) dhy

[ rwke -1 de (3912)
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If g4s O[O, w], then for t > 0

u(t) = ag(0)k(t) + f: Lacg’ (1) + bog (i) Wit — £) dhy

+ ftf(tl)k(t — &) dth. (3.9.13)

In stating this theorem, we have omitted the hypothesis of exponential
boundedness of f(2}, {3.7.6) in Theorem 3.6, since %{t) as defined by the
equations in (3.2.12) and (3.9.13) can be verified to be a solution hy
direet substitution. Details of this verifieation are left to the exercises.

The Laplace transform can often be formally used to obtain a solution
which can be verificd by other techniques.

EXERCISES
1. Deduce from Lqguation {3.9.12) that

o

W) = aglelk'(t — w) — blf GUDR(t — t — ) dhy

+ as () + fef(tl)k’(t — 1) diy, £ > 2w,

and hence that Equation (3.9.11} is satisfied for ¢ > Ze.

2. Bhow that for @ < { < 2w,

w(l) = ag(@k(t — w) — blfn'"w Gk — t — o) di

t

+ f f(fl)f{;(t — 51) dh,

Hence, prove that

W) = gk (t ~ &) — aribg(t — )
_blm k't — b — w) di
an(zt ) di

+arf ) + [ ARG =) dh, e << 2.
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3. Using the result of Exercise 2, show that (3.9.11) is satisfied for
w <t < 2w,

4. SBhow that the right-hand member of (3.9.12) is zero, not g({), for
0 <t <o

5. If 0 < { < w, cshow that the equation in (3.9.13) reduces to

|

a(t) = ag(Ok() + [ Lag'h) + buplt) ot — ) dty
]

f eth~{ gy p{s) ds

{e)
and show {hat the last integral is equal to g{1).

6. Show that the equation in (3.9.13) defines & solution of the equation
m (3.9.11) for ¢t > .

7. Using the results of Exercise 6 of §3.7, show that
w{t) = —[byg(0) + bog{w) — flw) ot — w)

— b f F k(L —~ b — w) dy
1]

+ [ k- 1>

Assuming that g is C70, w], show from the result of Exercise 7 of
§3.7 that

w'(t) = —[by(0) + bog(w) + ay'(w) — ag'(0) — flw) Jk(t — «)

+ fo " Taeg" (k) + bog’ (8) Tt — £ dta

b
+ [ ke —wd,  1>0, i%a

8. Instead of defining %{¢) by propertics {a)—{d), and deducing the rela-
tions in (3.9.2) and {3.9.3}, we can adopt the reverse procedure. That
is, define %{f) by the equation in (3.9.3} for all &. Bhow that

ht(s) = (aws)™ + g(s),
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where g(s) = O{]s[?) as | s| — » along a line Re(s) = ¢, provided
all characteristic roots lie to the left of this line. Use Theorem 1.2 to
deduce that the equation in (3.9.3) defines k(#) for all £ and that the
transform of &(¢) is A7'(s). Show from (3.9.3) that k{¢) has propcrties
(a)—(d) in (3.9.1). Hént: To verify (d), show that

£ L
ade(t) + bo f k(1) dt + By f Bt — o) di

ig constant for t > Q. To verify {a), shilt the contour to + oo,

. Let w{{) be the unique functicn defined by the following conditions:

{a) w(t) =0, t < 0;
{(b) w{t) is of elags C?on {— e, +w};
(c) o' () + baw(f) + buo(t — w) = 0, t <0,

=1, >0

Show that the Laplace transform of w(¢) is sh(s), and that
w'(f) = k().
The continuous dependence of the solution (¢} on the initial valucs
wag Implied by Theorem 3.5, which was established using the con-
tinuation argument. The same conclusions can be deduced from the
integral representation theorems of this section, Take f(¢) = 0, for
convenience, and show from the equation in (3.9.12) that if g{¢) is
[0, w], then for any fixed ' > 0Q,

sup |u(f) | < e(T) [sup Tg(®) |1

0<i<T [
Here &1 (T} is independent of ¢(¢). Show from the results of Excrcises
1 and 2 that

sup [u'(8) | < eo(T) [sup |g(8) 1.

Py s b0
Show that there 1s a unique function k{¢} with the following properties:

(a) k{t) =0, t <0

{b) k(0) = as;

(¢) k() is of class € on [0, =};
(d) k() satisfics the equation

a
adk! (1) + bok(t) + Bk(l — w) = f b k(t — &) dt, &> 0.

Show that k(4)} is of class C? on {0, @) and [w, =).
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Using the results of the problems in §3.6, show that £(¢) is exponentially
bounded. Prove that,

k(2 = f Bi(s)etds, &> 0.
(e}

Let (¢} be the continuous solution of

agie' () =+ bou (i) + biu(t — ») = f{t) + fﬂ bt ult — ti) diy,

t> 8,
ul) =gt), 0<t<p

where 0 < « < w < 8. Assume that g is C°[0, 8] and that fis C°[0, = ).
Apply the methods of this section to the representations of Exercise 10,
§3.7, to show that

3
w(@) = ag(B)E(E — B) — blf Bt — o — t)gld) dh
B—w

&
+ f B{tL} dh fﬂ Elt — 1 — t)g(f) d

i~

T ftf(tl)k(t —a)dn, >4,
8

and, if g is ¢'{0, 8], that

g—w
u(t) = ag(0)h(t) & blj Bt — w — t)g(t) db
(1]
"l
+ [ k= ) Lo (8 + bog ()
# -1y
+ b 1 dl k — i1 T i 2 d
j; (t) afu (£~ t — £)g(t) b

-+ fif(tl)k(t— hydh, (>0
I

Assume that g and f are of class €1, and that %'(¢) is conlinuous and
of bounded wvariation for { > 8. Deduce from the representations of
Exercises 11 and 12, §3.7, formulas for 4’ (£} of the type given for u{f)
in the preceding excrcise.
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Let,
8
R(s) = aos + bo + b — f Blyen dh, a0,
and A71{s) = (aw)™t 4+ g(s). Show, using the Riemann-Lebesgue

lemma (§1.5) that if b(£) is integrable on [a, 8], then g{s} = O(| s [
as | s | — = along & vertical line Re(s) = constant.

. Instead of defining % (¢) as in Exercise 11, define

k(D) =f h-1(s)e*t ds,

{c]

assuming that all zeros of k(s) lie to the left of the line Re(s) = e
Use Theorem 1.3 to show that this equation defines k(f) for all ¢,
that the transform of k(f) iz A~1(s), and that k(#) has the propertics
stated in Exercise 11,

Miscellaneous Exercises and Research Problems

. Discuss the existence and unigueness of solutions of

k) hag
MRS + @@+ X [ sl dz = o

(B. Sherman, “The Dilferenec<liffcrential Equalion of Eleetron Energy Distribu-
iion in a Gas,” J. Math, Anal. Appl., Vol. 1, 1960.)

. Under what conditions does

w' (1) = ault — uft))
have a unique solution?
Under what conditions does
w'(t) =3 + ju(l) — w( — »()
have a unique solution?
{For a general discussion of equations of this type, see
R. D. Driver, Delay-differential Equations and an Application fo ¢ Two-body Problem

of Clussical Elecirodynamics, Tech. Rept., Dept. of Math., Univ. of Miunesota,
July, 1960.)
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. Find the Euler equation assoclated with the problem of minimizing
the quadratie functional

T I i
Jlu) = f w'{s)? ds —{—f f Kt — s)ult}uls) di ds.
—7 —7 e
{G. Domokos, “Simple Non-loealizable Systems,” Aefo Physica Acad. Sci. Hun-
garieas, Tomus 11, 1960, pp. 81-86.)
. Discuss the cquuation
du/df = —hu + Nbu(bi), #(0) = ¢y
which oeeurs in the theory of radioactive disintegration.
. Use the Laplace transform to obtain general solutions of the equation
20 20 (aat + ba)y(t + k) = g{1).
=0 k=0

{M. A. Soldatov, “The Solution of Linear Difference Equations with Linear Co-
efficients,” Mal. Sbornik, Vol. 47, 1959, pp. 221-226.)

. Congider the solution of

]

w'{t) = a fgu (th — s)u{t — s) ds + w(i},

w(®) =o(l), 0<t<4

(J. &. Nohel, “A Class of Nonlinear Delay Differeniial Equations,” J. Math. and
Phys,, Vol. 38, 1960, pp. 205-311.}

. Solve the equation

flx) — {=/2) = %fz flrw)u(2u — 1) du

4 G i

for 0 < z < a, where f{z) is & given function on ¢/2 < z < 2¢. De-

termine limg.o zf{x).

(T, H. Giess, “On the Asymptolic Behavior of Certain One-dimensional Flowa,”
Ballistic Resenrch Luboratories, Hept. No. 1008, March, 1960,

This problem ariscs in the study of the one~-dimensional fow of gas.)

. Consider the infinite produet

1 = THa-ga, lal<t
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Show that

(1 — g flgr) = f(z),
and thus show that
© {—1)ngrintDizge

=S | )

Follow the same procedure for [, (1 — ¢")~L

{R. Bellman, ‘*The Expansions of Some Infinite Products,” Duke Math. J., Vol, 24,
1957, pp. 353-356.)

Solve the equation
1 f= !
s2) =1 + = [Tot0r (2)
r o x

(A. C. Dixon, “Some Limiting Cases in the Theory of Integra! Fquations,” Proc.
London Math. Soc., Vol. 22, 1923-1924, pp. 201-222.)

Consider the integral equation

ZBF(z) = ¢ fw Flw — Dw ' dw,

with Fi(z) = 0,2 <0,

(T. E. Harris and E. W. Paxson, A Differential Eguation with Random Shocks,
The RAND Corporation, Research Memoerandum RM-74, December 3, 1948.)

Consider the equation
w(t+ 1) — ) =tw't+ 1) —w (] — Hu 4+ 1) -2

By first infegrating ss a Clairaut differential equation, and then
summing, obtain the soluticns

ull) = a(l® — ) — a¥% + f(¢)
and

u(l) =3¢ = 3+ i+ g(),
where g is an arbifrary eonstant, and f and g are arbitrary functions of
period 1.

Biot, “Bur les équations aux différences mélée,” Mémoires de PInstitu! des Sciences
Letires et Arts par divers savants, Vol, 1, 1806, pp. 206-327. Bee also 8. F. Lacroix,
Traité du calevl différentiel et du caleul intégral, Vol. 3, 2d Ed., Chap. 8, Paris, 1819.)

Show that any solution of

w(t+ 1Y + av'(t) + du(t + 1) -+ abu(f) =0
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has the form

w(t) = uge®t 4 e~b¢ ft {—a)ef{s) ds,
0

where £ is an arbitrary function with period 1.

The following problem, called the problem of reciprocal trajeciories, was
gonsidered by J. Bernoulli and L. Euler. Find a plane curve € whose
reflection €7 in the y-axis, when moved vertically parallel to itself,
cuts € in a congtant given angle. Show that this problem gives rise to
the equation

+ tan =
sz p—w

tan~! 2e,

where p(z) = y'(z). Show that

tan™! —%»— =c¢ + zf(x)
p(x)

is a solution if f iz any even function. Hence find solutions of the form

1
+ zg(x) i

#(z) = z col 2¢ + csc 2{:[
1 — zgf{x}

where ¢ is any even function,

{Lacroix, op. cif., §1263.)

. On a given curve C, consider two points P and P’ whose abscissae

differ by a fixed constant k., Draw the tangent at I’ and the secant
through P and P, and let their intersections with the z-axig be T and
8, respectively. Let @ be the projection of I’ on the z-axis. Find all
eurves € with the property that the subtangent @7 iz a constant
miultiple of the subsecant Q8.

{Lacroix, op. ¢it., §1267.)

The equation f(z} = flgx), ¢ > 0, ¢ # 1, is called a g-difference equa-
tion. Show that the substitution z = ¢ f{z) = ¢{i), changes this
equation to an ordinary difference cquation, and thus obtain the
general solution f(z) = p (log | z |/log ¢), # # 0, where p is an arbi-
trary function with period 1.

Solve f(x) = &f(qz} + ¢, ¢ > 0, ¢ # L.
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The functional equation f{zx} = f(xr — w(x)), where w(x) is a given
function, can be (realed by a method like that in the exercises above.
We make the substitutionsz = g(t), flz) = r({), 2 — wl(z) = ¢{t 4+ 1),
and f{x — w(x)) = r{t + 1). Then we bave the system

gt + 1} = q(8} — w(g(t)),
r(t+ 1) = r(t).

Show that if this system has a solution ¢(f), »{{}, and if the inverse
function ¢! exists, then f{z} = r(g(z)) 1s 4 solution of the original
equation (where f(z} is defined). Conversely, suppose f(z) is a solu-
tion of the original equation. Define ¢(¢) as any solution (if there is one)
of g(t + 1) = (1) — w(g{t)}. Let x = (1) and define »({) by r{f} =
Flg)). Show that g snd r satisfy the system of difference equations.

f

{This method is duc to Laplace. Cf.

D. F. Gregory, “On the Solution of Certain Functional Iquations,” Cambridge
Math. J., Vol. 3, p. 239, Reprinted in The Mathematical Writings of Duncan .
Gregory, M. A., Cambridpe, 1865, pp. 247-256.)

Apply the method of the preceding exercise, with ¢(f) = 2 forz > 1
and ¢(f) = 22 for 0 < z < 1, and obtain solutions of the funetional
equation f(zx) = f{z%).

Solve f (1_4:?‘2) = af(2).

(C!. Gregory, op. cil.)

Solve

fle®/z) = f(z).

(Cf. Gregory, op. ot}

Outline a method, analogous to that in Exercise 18, of reducing the
funetional differential equation f*(z) = flz — w(zx)}) to the differ-
enfial-difference equation »'{(¢) = ¢'(&rft — 1).

Apply the method of Exercise 22 with 2| = ¢' to reduce the
functional equation f'(x) = f{gz), 0 < ¢ < 1, to the form #'{f) =
gl @)r{t — 1).

Reduce the equation of the preceding excreise to the form
2(u) +uzlu) —az{lu —a) =0
by means of the transformation
r) = (), w =g+ 3.
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. Bolve the equation in Exervise 24 by the Laplace transform method.

. Apply the substitution of Excreise 22 to reduce the equation

af (V&)
) = —— , r>1
7z z(in ) In 2 ’
{0 a differential-difference equation,
Show directly that f(z) = {In x)* iz a soluticn of the cquation in the

preceding cxercise if A satisfies the transcendental equation AIn 2 =
a(2).

Transform the cquation f/{x) = f{1/¢) into the form g'(£) = efg(—1)
by puitiing z = ¢, flz) = g(t). By sccking solutions of the form
g(t) = e™ + ae®’, show that the gepneral solution is

— v3 T
flz) = ez cos (—2— log & — :’), x> 0,
where ¢ 13 arbitrary.

(L. Silberstein, “Solution of the Equation f{x) = f(l/x)," Phid. Mag., Tth series,
Vol 30, 1940, pp. 185-186.)

Congider the problem

. 1
(l—p)K(I)=f K dy, z>-, 0<p<l,

1
(1 — p)K{x) = prii—s), 1 <2< —.
¥y

Reduce to an ordinary differential-difference equation by differentiat-
ing the first equation and making the change of variable x = ¢
w = —log p, and show that K (z) approaches a constant ag x — 4 =,

(. Placzek, “On the Theory of the Slowing Down of Neutrens in Heavy Sub-
stances,” Phys. Rev., Vol. 69, 1046, pp. 423 438.)

Consider the integral equafion

u(z) = fﬂ EGnu(y) dy

-]

with boundary condition

lim w{zx} = 1.

g
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Assume that E(x) is measurable, 0 < kE(x) < 1 almost everywhere,
k(z) is increasing for x > ¢, and k(z) — 1l asxz — +=. Then if a
solution w{x) exists, it is unique, positive, nondecreasing for x > ¢,
and Ju(2) [ £ 1(—= <z < =),

(M. Slater and H. 8. Wilf, “A Class of Lincar Differenfial-difference Equa-
tions,” Pacific J. Math., Vol. 10, 1960, pp. 1419-1427.}

A necessary and sufficient condition for existence of a solution is that
1 — k{z) be integrable over {¢;, =% ). In this ecase, if

1
ket D 2 k@ [ k@

almost everywhere, then u{z) is nondecreasing on (— =, ).
It
a1
lim f 16(t+ 1) — k() | &t =0,
then limg. . u{x) cxists.

Consider the equation
NG =q [ ecoh@N@) + biw)]de,
+—1

governing the slowing down of neutrons in an infinite homogeneous
medium. Show that as z — =,

N(z) ~ ce¥,
where b satisfies a transcendental equation, if A(z) is a constant.

(V. C. Boffi, "On the Slowing Down of Neutrons in a Homogeneous Infinite Me-
dium,” Ann. Phys., Vol 9, 1360, pp. 435-474.

R. Marshak, “Theory of the Slowing Down of Neutrons by Elastie Collision with
Atomic Nuelei,” Rev. Mod. Phys., Vol. 19, 1947, pp. 185-238.}

. Bhow that the function I'(z) does not satisfy an algebraic differential

equation.
{This result is due to Moore and Holder; see

H. Meschkowski, “Differenzengleichungen,” Studia Math., Bd. 14, Gottingen,
1959.)

Establish the same result for the solution of

ulgzr) — eu{x) = b(z — 1).



36,

38.

30

40.

MISCELLANEOUS EXERCISES AND RESEARCH PROBLEMS 87

Consider the linear differential-differenee equation
w'{x + 2) = u(x), x> 1,
u(z) = g(z), -—-1<z<1L
Let we(x) = u{ex +28), -1 <x<L,k=0,1,2, ---, and

wiz) = 2 anPa(z), —1<z=21
=0
be the expansion in terms of Legendre polynomials. Using the relation

@+ 1) [ Put) dy = Pan@ — Paat),

show that
T ntt — Bi—1,n-1

r n =
’ (2n + 1)

What are the corresponding relations for the equations

w'(z + 2) = zulz), wr + 2) = uiz)?

. Find polynomials f{x) such that f(z®) 4 f{z)f{z + 1) = Q.

{12. W. Kilmoyer, “Problem B 1422, Amer. Math, Monthiy, Vol. 88, 1961, p. 178.}

There are 2* polynomials P.(z) of degree »n such that the functional
equation f(2%) = P,{2)f(z) has a polynomial selution f(z).

(V. Gunapathy Iver, “On & Functional Equation I and I1,” J. Indian 3 ath. Sec.
{N.B.}, Vol. 22, 1958, pp. 283-280, and Indien J. Math., Vol. 2, 1960, pp. 1-7.}

Consider the quadratic functional
T
f [0/ (8)? + and(t) + an(t — 1] di,
0

where u(f) = g(£), 0 < ¢t < 1. Derive the Euler equation for the
funetion «(t) and diseuss the problem of obtaining the solution of this
equation.

‘The equation
e’ (£) = waa(l), n=1223 120

may be called a differential-difference eguation, a recurrence differential
equation, or g system of differential equations. J suitable initial condi-
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41.
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tions are imposed, a unique solution, the scquence {u,(f)}, n =
0,1, 2, -+, is determined. For the conditions

u(f) =

o

0y =

1
1
0

3

H

i >0,
n =0,

n > 0,

find the solution w.{{} = t*/n! by means of a continuation process

similar to that used in §

3.2

Solve the following recurrence differential equations by the continua-

t1on process:

(a) w.'(f) + Aua(l) = Meaa{f),
uoll) = e,
u{0) = 1,

=0

¥

I

n=123 -t =0
i >0,
n =0,

n > 0.

(Answer: () = e ™M{A)*/nl, the Poisson distribulion.)

(b} . (£) + nhe {0} = (n—1) Au,_1(L}, n=2234 .+ 12>0

ul(t) =
1, (0) =

e—M,
1,
0,

i >0,
=1

1

n > 1,

(Answer: u,.(f} = e (1 — e} the Vule-Furry distribution.}

() /() = ()} +
uﬂ(t) = Q(t)r
u,(0) = N(n),

$(t),

no=1,28 <, t>0,
t> 0,
n=1,28 «-.

Establish an existence-uniqueness theorem for the equation
Pa(f}ua’ () + @ul(Dttasa' () + ra(Dua() + sl uana() = fuld),
no=1,23 s >0

gubjeet to the initial conditions

T.&u(t) =
%, (0)

where p,. (1), ++ -, f.(f) and g(f) arc known intregable functions, defined
for ¢ = 0, and {N(n)} is a known sequence. Assume p.{{} = 0 for

g(t),
N(n),

i >0,
n=1223 -

;
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¢ > 0. (Ilint: Treat the recurrence equation as a differential equation
for ua(£).)

Consider the set of equations
" (5) = nua(t) — na, (i), n=12323---,i>0,
w{t) = 1, i =0,
ua(0) = 1, =123 ¢+

¥ind 4:{¢) by dircet integration, and conclude that the solution is not
unique. Show that both %.(¢) = 1 and the Laguerre polynomials are
solutions.

Consider the sef,
w' (8} = Uaali), =012 4, t>0
uﬂ(t) = g(tjr

and show that the solution is uniquely determined without specification
of the %,{0), provided that g(t) has derivatives of all orders.

In order to solve recurrence differential equations by the Laplace
transform method, it is necessary to cstablish exponential bounds on
the solutions. Given the equation

agttn’ (£) + @ittt (8} + boreo () + bt {t) = fu (1),
n=123, -,
with
ue(t) = g(i}, i 20,
#x{0) = e, n=1213 -,

show that «,(£) and u.' (£} are exponentially bounded if (£} and f.(2)
are, using methods similar to those employed in §3.6. Under what
conditions is this bound uniform?

Solve the following equations by means of Laplace transforms with
respect fo i:

{a) The equations in Exercige 41.

(B wpd' () = tu(n + Duaya(t) + de()uaft), n =012 «-¢,
ue(t) =
1w, (0) =1, n =0,

=0, n > 0,

1

|
T—t
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with ¢.((}) = 0, and assuming ¢:() #= ¢ J) for 4 = 5.
(¢} The equation considered in Excreise 45.

Write the cquation of Exercise41(a}, with » = 1 {which amounts to the
change of variable ' = W) in terms of the differential operator 1) =
d/di, and solve the resulting difference equation for w«.(f}, to obtuin
w, = [1/(D -+ 1)*] ¢ By integrating the appropriate differeniial
equations, show that
l n . t!’l

————— e—-t = 8—~$ cntn——z + N e-—t’

(o + 1)» E n!
and then obtain the solution w,(f) = et */nl.

Use the operator method deseribed in the previous exercise to find the
solutions of the following:

(a) The problem in Exercise 43 with ap = —by = 1, by = a1 = 0,
FalE) = 0.

() The problem in Xxercise 41(Db).

{¢] The problem in Exercise 41{c).

(d) The problem in Xxercise 45. Do not complete the inversion of the
operators, but instead compare results with those of Exercige
46(c).

A very powerful technique for selving recurrence differential equations
iz based on the generating function, described in the cxercises of
Chapter 1. The cquation iz transformed {by multiplying the equation
by 2", and then summing over #n} to give a partial differential cquation
which the generating function, G'(z, {), of the sequence {u.({)} must
satisfy. Solution of this equation, und expansion of @ in powers of z
gives the solution u,(£). The initial value G{z, 0} is obtained from the
given values u,(0). Solve the {ollowing problems by a generating fune-
tion transformation:

{a) The problems in Exercises 41{a) and 41(b}.
(b) wa'(1) = uar(t), n=123 120

u‘[}(t) = 11 ¢ 2 D!

Ii
el

@, (0}

n = {,

=0, w > 0.
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Consider the problem
' (8) = (n + Dpan(f) + (n — 1)) — nlp + MNualt),
=123 -+, t 20,

w'(t) = pu(t), 20,
ua(0) = 1, n=1,
=0, n#= 1,

known in statistics as the birih-and-death process.

(a) Find the partial differential equation satisfied by the generating
function, solve by separation of variables, and obtain the solution

un() = [(z) m(z)]n_l (1 — i) [1 - (E) uo(t)}, A =

(b} Solve this problem in the case A = g,

Conesider the clags of polynomials «.(#) of Appell’s type, defined hy the
relation

oo

2. an(t)er = A(2)e”,

n—={
for arbitrary 4(2). Prove:

{a) that apis a constant;

{b} that the e.(f) satisfy an’(Z) = a._1(t), assuming that 4(z) has a
Maclaurin expansion; and

{c) the converse of (b).

52. The Hermite polynomials A, (t) are characterized by the generating
function
w  JT.(f)z"
3 @ = exp {—22 4+ 2a),
=) !

or by the power series expansion

_ Int2] (_1)%[(2;)1«—2&
Hi(t) = E, Eln — 281’

where [2] is the integral part of n.
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(s} From the relations

H(8) =2nH,. (), n=123 ...

o) =1,
(—1)mip!
II"(U) =TT n = OJ' 2! 4; Tt
(n/2)1
= (), =135 «--,

obtain the generating function of the Hermite polynomials.

(b) Use the results of Fxercise 41(e) 1o obtain the power series repre-
sentation of the Hermite polynomials.

(e) Use the recursive relation

tH/(t) = nH,. /(1) + nH.(t)
to obtain the generating function.

Find the generating function of the simple Laguerre polynomials L, (1)
from the differential recurrence relution

LJ(f) = Lot/ (1) — Lua(t)

and the initial values Lt} = 1, L, () = 1.
(Answer: (1 — g)~lesti=D )

Find the equation for the generating function of the solutions of
e {E) + wd’ ()] — nlwat) — wea(t)] =0, n =123+,
() =1, n=128 - -,

ue{t)y = 1.

This set does not have a unique solution. In fact, u.(¢} = 1, the Bate-
man polynomials z,(f), the Sister Celine Fasenmeyer polynomials
C.(5), the Bessel polynomials ¢.(1, z), and Rice’s H.(¢ p, v} all
satisfy it.

55. Obtain the generating function of the Gegenbauer polynomials

Cr(t), given that
RELHON NG
dt dt

C3{) =1,
(—=1)"(»)x
n! ’

- (2 +mCD), n=012 -,

Ce(0) = n=0,12 -

Cona{0) =0, n=012 .-
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where () = G+ 1)(p+2) - (b+u—1), n=123- ;
(V}u = l,v;éO.

. If J.(¢) is the Bessel function of order n, then

2Jn!(£) = Jﬁ—l{t‘) - Jn+1(ﬂ), h = 0, :|:]., :EQ, v,
J.0) =1, =0,

=0, =m0
{2) Find the generating function of the Bessel functions.
= iz — 1/2
(Answcr: > Ju(t)er = exp [_(_ T/_)_j_)

(b) Bhow that J.(z) = (—1)*J..(2).

. The Neumann polynomials {in 1/s) §.(s) satisfy

2Qr\!(s) = Qu—l(s) - Qn+1(s)r n = 1: 21' 3: "t

Defining the generating function

oa

(s, 2) = Z &n (8) Jn(z):

n=[

where J.(2) is the Bessel function of order 2, and
e = 1, n =0

2, n > 0;

and making use of the facts

Qo(s) = 1/s,  Chis) = 1/&,
find G, 2).

The Bernoulli numbers, B., may be defined by the generating function
e g Bazr/n) = 2(¢* — 1)~L The Bernoulli polynomials 3.() satisfy

et
B,/ (t) = nBa,ali), n=121223, ---
By(t) =1,
B.(0) = B, =123 -
Find the generating function of the B, ().

. In some gimple cages, the higher-order derivatives of w.(t), evaluated

at ¢ = 0, may be calculated inductively directly from the recurrence
cquation. Show that, for the cquation

uﬂl(t) = u'“—l{tj! 1= 1: 2; 31 "t
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with we{?) = 1, the mth derivative of 4.(t), evaluated at { = 0, is
given by

un(m)((}) u:.s—m(o); n 2 M,y

=), n < M.

(a) Apply this result to obtain the power series expansion for the
Bernoulli polynomials,

B.() = ,EJ Byrn (D

{Cf. Exercisc 58.)

(b} Tind the power series expansion of the Hermile polynomials,
{Cf. Exercise 52.)

Find the power series solutions (o

(a) w'(8) = wan{t) — wa{t}, 0 =0, 1, £2 1o,
ua (b} = N(n).

(b) The problem in Exercise 41(a).

1

Sometimes when faced with a recurrence differential equation one is
able to find a function %.*{f, p) which satisfies the equation for all p,
and such that

w*0,p) =1, p=mn
= 0, P #E N

Such a function is called an influence funciion for the equation. Then, if
the principle of superposition of solufions holds for the equation, we can
write the general solution as

() = 22 N(plua*(t, p).

p=—t0

Consider the problern
unr (t)
u, {0)

and show that the general solution is

wn(t) — ualt), all n,
N{n), all »,

il

—F

ol [
unfi) = ,,:.Z_:m N(p)t ﬂm.
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Show that the equation

2

mﬁx,‘(o = kX (D) — Xa(h)] — E[Xa{) — Xama(t)]

{all #) can be reduced to a first {(differential) order equation by means
of the substitution

usa(t) = Vm dXn/dt,
u‘jﬂ+1(t) = '\/E(Xn - Xﬂ+l)-

Find an influence function for, and thence the solution of, this cquation.
{Cf. Exercise 56.)

The method of power series representation consists in representing the
solution of a recurrence differential equation in the form wu.(f) =
2 o Un(n)i®/m!, so that U,(n) remains to be found. Show that

the solution of
un!(c) = un-}-l(t) + un—l(t); all n,
u, {0} = N{n), all n,

can be written as

o m tm
(1) = Z_U % (?:) Nin+m— 2 ;};—1

Solve the problem
" (t)
u:(0) = N(n), all n,

by power series representation.

Un {1}, all n,

. Bhow that the differential-difference equation

w'(§) = g{u(f), u(t — 1}), t > 1,
w(f) = h{f), 0<t<,
can be reduced to an infinite system of ordinary differcntial equations
un' (8} = gun(), uaa(8)), 0851,
by means of the change of variable (¢ + n)} = wu,.(1).
Hence, solve
Wty = u(t — 1), £t>1,
uft) = 1, 0£t<1,
by using generating funetion technigues.

I
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Show that by a recursive scheme of computation involving the solution
of first one, then twe, then three, and so on, ordinary differential
equalions, the numerical solution of the equation of Exercise 65 can
be obtained by means of the solution of ordinary differential equations
with initial value conditions.

{R. Bellman, “0On the Computational Solution of Differential-differcnee Equa-
tions,”” J. Math, Anal. and dppl., Vol. 2, 1861, pp. 108-110.

R. Bellman, “From Chemotherapy to Computers to Trajectories,”’ Proc. Amer,
Math. Sve. Sympostum on Applications of Mathemuties to Biology and Medicine
{forthcoming).)

Show by means of similar reasoning that in the solution of the fwo-
point boundary-value problem

W+ gluy =0,  w(0) =u(l) =0,

one can earry ouf a method of successive approximations based upon
the scheme

u,:_;_l + g(ur:) + (Hn—:-l - un)g’(uﬂ) = 0; g 1(0) = un+l(1) =0

{(quasilincarization), without ever having to store a previous approxi-
mation in order to compute a new one,

(. Beliman, ‘‘SBuccessive Approximations and Computer Storage Problems in
Ordinary Differential Equations,” Comm. dssoc. Compui. Machinery, Vol. 4,
1961, pp. 222-223.)

Consider the equations

dhy
— == gty + Q12Ms, ul(o) = £y,
dt
dt
E = Quth + Uasile, 152(0) = Cuy

valid for { > 0 and 0 < uy, % < 1. As soon as cither w; or %, attains the
value 1, it instantaneously returns te zero value, leaving the other
value unchanged, and the above equation takes over. When do periodie
solutions exist? {Problems of this type arise in the study of the firing of
nerves in neurophysiology.) '
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BIBLIOGRAPHY AND COMMENTS

§3.1. The theory of lincar difference equations has heen investigated in
deiail. See

N. Nérlund, Vorlesungen iber Differenzenrechnung, Berlin, Springer, 1924, reprinted
New York, Chelsen, 1952,

3. Bochner, “Allgemoine linesre Differenzgleichungen mit Asymptotisch Konstanten
Koeffizienten,” Math. Z., Vol. 33, 1931, pp. 426-450.

The equations in this chapter are sometimes called mived differential-
difference equations to distinguish them from equations such as those in
Migcellaneous Exercises 4064, which are then called simply differential-
difference equations. Certain integro-differential-difference equationa are
treated in the Exercises in this and subsequent chapters.

§3.3 The classification of equations ag retarded, neutral, or advanced
was used by A. D. MyEkic, Lineare Diflerentialgleichungen mil nacheilendem
Argument, Berlin, 1955 (translation of 1951 Russian edition). This work
containg a number of interesting resulis concerning equations of retarded
type in which the retardations arc nonconstant.

£3.5. Lxplicit formulaz can be readily found from the representation for
the solution furnished by the Laplace transform.

§3.6. Instead of first establishing an a priori cstimate, one ean use the
Laplace transform In a purely formal way and then verify that the results
obtaincd are correct, by some direet method. A second alternative is to
use the finite Laplace transform. This will be done in Chapter 6, where it is
imperative in discussing equations of advanced type, but is aveided here
since the iInfinite Laplace transform is a little simpler and more familiar.

The method of proof used in Exercise 4 has been used by a number of
writers in various special problems. For example, a speeial case of Exercise 7
was given by A. D. Mygkic in the work cited.



CHAPTER FOUR

Series Expansions of Solutions
of First-order Equations of
Retarded Type

4,1, The Characteristic Rools

In Theorem 3.6 we proved that under suitable conditions the solution
u(t) of

age’ (£} + buu(f) + bu(f — w) =0, i > o, a7 0, (4£11)
u(t) =g¢{t), 0=t<q (4.1.2}
is given by
u(t) = f esh{s}p(s) ds, {> 0, (4.1.3)
{e)

for an appropriate ¢. For many purposes, it is of great value to obtain a
represenlation of, or expansion of, 1(#) in the form of an infinite series
It is easy to see how such an expansion can arige, for if it were possible to
deform the line of integration in the expression in (4.1.3) into a contour
surrounding all the zeros of A(s), the residue theorem would at once
vield the relation

#(f) = sum of residues of [e*h1(s)p(s) ]
This suggests that we may be able to establish expansions of the form

ut) = 2 p(the,

where the sum is over all characteristie roots s,, and where p, (£} is a poly-
nomial in £ if 8 is o multiple root.

It is a somewhat eomplicated matter to prove such an expansion theorem
in a completely rigorous manner, especially for the more geuveral equations
to be discussed in later chapters. In the first place, it is clearly necessary
to have » good idea of the location of the zeros of h(s). Since a complete

98
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discussion of the distribution of these zeros is in itself an extensive matter
which, if presented here, might distract attention from the essentials of cur
procedure in obtaining a series expansion, we have postponed such a dis-
cussion until Chapter 12. We shall quote those few results that we need at
the moment. Reecgll that the characteristic function has the form

h{s) = aes + bo 4 bres. (4.1.4)
Since we can write
h(s) = aws[1 + e(s) ] + bie™s,

where ¢(8) — 0as|s| — «, it is reasonable to suppose that the zeros of
h(s) and the zeros of

ags + b (4.1.5)

are close together for | s | large. Actually, a change of variable converts
one funetion into the other with a different cocflicient b, The zeres of
the function in (4.1.5) safisfy the relation

g | = [ /ey

or
Re(s) + wllog |s] = wllog | by/as], b #= 0. (4.1.8)

It is, in fact, proved m Chapter 12 that the zeros of (s} lie asymptotically
along the curve defined by (4.1.6). The nature of this curve is thoroughly
discussed there. It is readily seen to have these properties:

{a) It is symmetrie with respect to the real axis.
(b} It lies cutirely in a left half-plane.
(e) Tt is similar to an exponential curve for large [ s |

(d) As |s| — = along the ecurve, the curve becormtes mere and more
nearly parallel to the imaginary axis, and Re(s) — — .

The general appearance of the curve is suggested by the heavy line in
Fig. 4.1.

Moreover, the asymptotic location of the zeros of h(s) can be very
precisely deseribed. In Chapter 12, we show that there is a constant ¢ > 0
such that all zeros of sufficiently large modulus lie within the region V
defined by the inequalities

—¢ £ Re(s) +ollog|s| £ e (4.1.7)
The region V is represented by the region between the dotted lines in Fig.
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Fia. 4.1.

4.1. Indeed, all zeros for which | s | ie sufficiently large have the form*

T2 (1)]
a , (1
ke k

z log &
+ - [cl + 27k + O (—)], (1.1.8)
w | kE

b

1]

o + 2k

w

— log

§ = ot [log

where % represents uny large positive integer, and ¢; is =7/2 according as
ay'h; 18 positive or negative. As we observe in Chapter 12, this means that
the zeros are spaced along the curve of Fig. 4.1 an asymptotic distance of
2r/w apart, and moreover that there exists a sequence of closed contours
Cifl =1,2, ---) m the complex plane, and a positive integer Iy, with the
following properties:

(a) (1 containg the origin as an interior point.

(b} (' is contained in the interior of €y fl = 1,2, +--]}.

{c) The contours € have a least distance d > 0 from the set of all zerog
of k(s). That is, when ¢ lies on a contour and &, is a zero,

nfls— s =d>0

(d}) The contour C; lies along the circle | s | = Ir/w outside of the strip
V. Inside the strip V, it lies between the circle |s| = (I — 1)7w/w
and the cirele [¢| = (I + )x/w.

* For readers not acquainted with the ¢ notation, we observe that ¢(z(t)) a8 i > «
denotes z function %{f) such that for any € > 0, |u{) | < £ 2@ | for ¢ > file). The
symbol O{p(f)) denotes a function w(#) such that there are conslants ¢ > (t and & for
which |u(t) | < e{e{) | for ¢ > . A more complete discussion is given in the work of
Frdélyi cited at the end of the chapter.
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(e} The portion of €;within ¥is of 4 length which is bounded as{ — + .
(f) Forl > Ik, there is exactly one zero of A{s) between ', and €y,

The general appearance of the contours is illustrated in Fig, 4.2.%

(£t wiaw

Ct+l

F1c. 4.2, X indicates a zero of A(s).]

It is perhaps appropriate to make a few remarks here about the essential
difference between equations of retarded, neutral, and advanced types.
The nature of the distribution of the zeros of the characteristic function
hag been described above for the retarded equation {4.1.1). Tor the neutral
cquation

apt’ (f) + (8 — w) + bou(f) + bt — ) =0, mee = 0, (4.1.9)
the characteristic function is '
his) = aos + a8 4 by + b, (4.1.10)

and, as shown in Chapter 12, the zeros are asymptotically distributed along
a vertical line. Since the zeros thus fail to have the property that Re{s) —
— w a5 we follow along the eurve, the nature of the solutions is considerahly
altered. For the equation of advanced type,

at’{f — o) + bou(l) + bhu(l — w0y =0, a #= 0, (4.1.11)
the characteristic function,
h(s) = awse™ + by + be, (4.1.12)

* Contours which ure generally rectangular rather than eircular eould be used.
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has zeros asymptotically distributed along 2 curve on which Ref{s) — + «,
Most of the previous dizcussion fails to apply to this case. For cxample, it
is clear that

f ul(f)ert dt
0

must fail to exist, no matter what the value of Re(s).

Consequently, we must modify the technigue applied in the previous
chapter. Nevertheless, as we shall show in Chapter 6, the Laplace transform
ean still be applied—but in a slightly different form.

4.2, Series Expansions

Lei. us now show how we can obtain a scries cxpansion, of the type sug-
gested in §4.1, for the solution w({} of the equations in (4.1.1) and (4.1.2).
If % (t) is of clasy €0, w], we have from Theorem 3.6

ul) = f el s pols) ds, ¢ > w, (4.2.1)
(e}

where
pole) = ale)e s — b fu glt)e e diy, (4.2,2)
o

and where the path of integration in (4.2.1) is any vertical line Re{s} = ¢
for which ¢ is sufliciently large. If u(t} is of class C[0, w7, then

u(t) = f{ RN () p(s) ds, £ > 0, (4.2.3)
&)

where p(s) can be put in the form given in (3.9.9),
p(9) = 0g(0) + [ [o/() + bog(t) T dte.  (4:24)
]

We can, in fact, take for the line of integration in (4.2.1) and (4.2.3)
any vertical line which lics to the right of all characteristic roots. To see
this, we first observe that if a line lics to the right of all characteristic roots,
then it is uniformly bounded away from the set of characteristic roots, as
indicated in §4.1. In Theorem 12.19, it is demonstrated that in a region in
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which ¢ is uniformly bounded from the set of characteristic roots, the
magnitude of 2(s) is at least as great as a constant times the magnitude of
any of its terms. In particular, for s in such a region,

[his) | = O(s[) as |s]— = (4.25)

Now consider the integral over a horizontal scgment,

og b ir

| e ep() as (4.2.6)
el +Hir

where ez > ¢ and all characteristic roots lic to the left of Re(s) = e
Since p(s) = O(L) on the segment as | # | — o, it is clear from (4.2.5) that
the integral approaches zero as |r| — o, with { fixed. This shows (ef.
§1,10) that wc can shift the contour in (4.2.3) to the lefi, as long as it lics
to the right of all characteristic roots. Similarly po(s) = O(l) on the
segment, and we can shift the contour in (4.2.1),

We now consider the integral of e*h7(s) ps(s) over one of the contours
('; described in the preceding seetion. If { is sufliciently large, C;is cut by
the line Re(s) = e. Let €y, denote the part of C; to the right of Re(s) = ¢,
and let €:_ denote the part to the lefi, both traced in the counterclockwise
sense. We have

f e h=1(s) pols) ds = f e h1(8) po(s) ds + f eh1(5) po(s) ds
e ¢ Cr 4.2.7)

= 2#¢ [sum of residues of e*A{s) po(s) within C;],

by the residuc theorem. Moreover, since no zeros of A(s) lie on or to the
right of the line Re(s) = ¢, the contour €, can be deformed into a segment
of the line. For sufficiently large I, at least, the conlour € will lie along
| s| = Ir/w where it intersects the line Re(s) = ¢, und consequently
these intersection points will be conjugate. Retnembering that [y denotes
a Cauchy principal value, we therefore have

1
Zhim [ ehi(s)me(s) ds = f R (s) pols) ds = u(l). (4.2.8)
278 e Yo fe}

If we can show that
fim f 1 (s) po(s) ds = 0, (4.2.9)
v “Cp=

it will at once follow from the relations in (4.2.7) and (4.2.8) that

() = lim [sum of residues of e*A=1(g)pe(s) within ¢], (4.2,10)

1+
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from which we shall find it easy to write the series expansion of u (¢} which
we degire. Our problem iz therefore to establish the equation in (4.2.9).
From that in (4.2.2), we have

f e=h~1{s) po(s) ds = awg(w) f exp [ — w)sh{s) ds
Ci— O

— b fmg(tl} dslf exp [{f — o — t)sTh1(s) ds.  (4.2.11)
(] o

-

The interchange of the order of integration is justified by the continuity
of the integrands,
Now choose any number ¢ > (0 and let

f e s) ds = [, + I,
Ti—

where I) 1s the integral over the poriion of €, on which Re(s) < —ulog|s|
and [, is the integral over the portion on which Re(s) > —pu log |s].
Because of the manncr in which the contours C: were constructed, they
are uniformly bounded from the zeros of £(s), and from (4.2.5) we have

[R(s) | = O,  s€ Ch (4.2.12)

Moreover, the length of ¢, in Re(s}) < —p log [s]is O(), and in
—ulogls| < Rels) < eis O(log ). Hence

Ii= O(emtbxd) = o(1), (> 0.

The convergence to zero is uniform in {; < { < © (f > 0) and bounded in
t > 0. Also

Iy = O[ (et log 1) /1] = o(1), t = 0.

The eonvergence is uniform in 0 < <t andind < ¢t < wif e < 0,
Combining results, we have
lim f ek i(s) ds = 0, &> 0, (4.2.13)

o <O

boundedly in 0 < § < &' and uniformly in 0 < & < ¢ < 8. I e < 0, the
eonvergence 18 bounded in ¢ > 0 and uniform in ¢ > # > 0. Tn §4.6 below,
we shall, by more careful analysis, derive a stronger result.
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Applying this result to the equation in {4.2.11), we get fort > o

lim f enl1 () puls) ds
I+oo 0 —

- b lim[ a () dtlf
o [

lwcn

exp [(t — w — f)sfh1(s) ds. (4.2.14)

I

Moreover, the uniformily of convergence in {4.2.13) enables us to con-
clude that

lim fm glt) dh[ exp [{f — o — H)sh s} ds

(ST =3 LA

= [w g(t) \[lim f exp [{§ — w — h)sTh(s) ds} dhy = ¢ (4.2.15)
i) lz—uao - ]

for t > 2w, and therefore that the relation in (4.2.10) is valid for ¢ > 2w.

If we work with the equations in (4.2.3) and (4.2.4) instead of those in
(4.2.1) and (4.2.2), this result can be improved. Procecding exactly as
before, we obtain

#(l) = lim [sum of residues of e®#h~t{s)p(s) within C;] ({4.2.16)

I+

for all values of ¢ for which

limf etsht(g)p(s) ds = (. (4.2.17)

lam “ 05—

But

f ¢k () p(s) ds = ag(0) f e h1(s) ds
(4 0

—

+ fm [og’ (G} + bag(ti) ] dhf exp [{t — t)sThi(s) ds. (4.2.18)

2

Tsing the equation in (4.2.13), we casily see that the limit in (£.2.17) is
correct for ¢ > o, uniformly for v < & <t K G'orforw < & £ < =
ife <0.

Before summarizing our conclusions, we should like fo discuss the
uniformity of approaeh to the limit in (4£.2,10) and {(4.2.16). Consider the
latter. The naturc of the convergence is determined by the nature of the
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convergence of the integral in (4.2.17), already discussed, and of the
integral

lim f b (5)p(s) ds. (4.2.19)

r—+co ¥ p—dr

Let ug consider this integral. Choose any number ¢ such that ne zeros of
h(s) lie on Re(s) = ¢. Using the equation in (4.2.4), we can write this as

g (0) f eh1(s) ds
(e

+ f es=ht(8) I[ Cacg’ (f1) + bag{iy) Je—int dtl} ds.  (4.2.20)

(@ 0
The integral obir
lim f eh1(s) ds (4.2.21)

—ir

converges for all ¢, provided the line Re(s) = ¢ containg no characteristic
roots. The convergence is uniform In ¢ for ¢ in any closed finite interval
cxeluding zere, bounded in any finite interval, and uniform for ¢ = & ({4 > 0)
provided ¢ < 0. The proof is obtained by writing

8!3 e(f— aria
f el (s) ds ~ f - blf s, (4.222)
() (o) @os + ba @ (G0 + bo)h(s)

assuming that aee + by # 0. The first integral in the right-hand member
has the stated convergence properfics, as is well known, The second is
uniformly convergent for ¢ in any finite interval, sinee | A71(s) | = O(] s |71),
and jor { > 0if ¢ < 0. This proves the statements concerning the integral in
(4.2.21), and also shows that it is O(e®t). If aec -+ by = 0, and no zeros of
h(8) lie on the line Re(s) = ¢, the same conclusions are valid, since we ean
shift the contour in (4.2.21) slightly to a line Re{s) = ¢’, and then use
(4.2.22), The integrals over the erossbars are uniformly (1),
The last integral in (4.2.20),

J

k() [ L/ () + bug() Jeon dnds,  (4223)
{e) 13

is also uniformly convergent over any finite interval, and is O(es!). If
g is €70, «], we can prove this by another integration by parts. If g
is merely C0, @], we must use a more sopbisticated argument, which
is deferred to §12.15. In any case, then, we conelude that the infegral in
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(4.2.19) is uniformly convergent for 0 < & < ¢ < &' and boundedly con-
vergent for 0 < ¢ < &, provided no zeros of A{s) lie on the line Re(s) = e
Tt is Ofest) agt — 4 <o,

Similarly the integral of the form in (4.2.19) containing p(s) instead of
p(s) iz uniformly convergent for w < & < t < &',

If we now combine the results obtained for the integrals over € and (¢},
we find that we have cstablished the following theorem. A sirengthened
version of this theorem will be given in §4.6.

Theorem 4.1. Lel w(t) be the continuous solufion of
a’ (1) + bou(t) + bu(t — ) =0, > w, {4.2.24}
ult) = gli), 0<t<w {4.2.25)

Let h(s) denote the characteristic funclion, h{s) = @ + by + b~ Lel
Tt = 1,2, -++) denole the sequence of “nearly circular” eoniours described
in §4.1. Let p(s) and po(s) be defined as in (4.2.4) and {4.2.2). If g(i) s
C'[0, w], then:

(a) For any ¢ such thot no zeros of h(s) We on the line Re(s) = ¢, the
integral

f e*h~1(s) p(s) ds
(eh
converges boundedly for ) < 1 < &' and wniformly for 0 < & <t < 4.
If ¢ < 0, 7t converges wuniformly for 0 < & < & For any ¢, i1 18 O{¢®)
as i — + oo,
(b} If all characteristic rools le fo the left of the line Re(s) = ¢,

wl(l) = f sk l(s)p(s) ds, &> 0. (4.2.26)
()

{e) u{l) = lim [sum of residues of e#A~1{s) p(s) within €], ¢ > w.

l»oo

(4.2.27)

The limit 13 wniform forw < b SE< b orforw <t < i < o if all
characleristic roots lie in a half-plane Re(s) < & < 0.

If g () iz merely OV, ], then similar statements apply: the integral in (a},
with p{s) replaced by po(s), s convergent for § > w; if p{s) is replaced by
po(s), the equation in (b) is valid for t > w and that in (¢} for £ > 2w.
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4.3. Other Forms of the Expansion Theerem

Let us add a word about the nature of the residues appearing in (4.2.27}.
Let & be a zero of i(s). Write the following scries expansions:

I

> s — s,

n=1=FK

B (s)

p(s} = i (s — &)7,

e 6"?(3 —_ 3;)“
[ J— t .
g = gt E . .

n=Al T

On multiplying these together, we find that the cocfficient of (s — s,)!
in the Laurent series for e®A~1(s) p(s) has the form e, (£), where p.(£) iz a
polynomial of degree K — 1 at most. That is, the residue of e*h~1{s)p(s) af
s 18 e*'p, (1), where p. (1) is a polynomial of degree less than the multiplicity of
the zero 3, of h{s}. 1t follows that the equation in (4.2.27) can be written

w(t) =lim Y, e'p(t), >, (4.3.1)

I prelly

where the sum is taken over all zeros of A(s) lying within €.

Bince there is exactly one zero of 2(s) between ; and €14 for all large /,
the expression in {4.3.1) can be written as an ordinary infinite sciies,

g

u(t) = 2 e'p(), >0 (4.3.2)

+=1

As indicated by the representation in (4.1.8); the real roots of A{s) are at
most finite in number, and {he noureal roots oecur in conjugate pairs. They
can be put in order of increasing absolute value, for example, with the one
of a cenjugate pair having positive imaginary part being put before the
other. This ordering is readily seen to conform to the description of the
contours '; given in §4.1. That is, we can choose the contours o that g4
lies bhetween Cp and €y for alll > I, where m is constant. It is alzo clear
that the zeros can be put in order of Inereasing imaginary parts, with the
one of & conjugate pair having a positive imaginary part being put hefore
the other, for example, Furthermore, if s, and s, denote {wo roots with
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positive imaginary parts corresponding to values £ and & 4+ 1 in (4.1.8),
we [ind that

Re(sy) — Be(sen) = o tlog ——————— + o{k D)

1
— +o(b) a8 k- w,
wk

It follows that Re(se) — Re(sia) > 0 for all sufficiently large &, Thus the
ordering £ = 1, 2, 3, «-- In {1.1.8} puts the roots in order of decreasing
real parts, with possibly a finite number of exceptionz. In conclusion, we
see that the orderings of the zetos by inercasing abseclute values, by in-
creasing imaginary parts, or by decreasing real parts are the same wilh at
most a finite number of exceptions {provided conjugate pairs are ordered
in the same way in cach).
Thus we can replace Theorem 4.1 by the following,

Theorem 4.2. Suppose that g(t) 4s C [0, o |. Lel es'p (1) denole the residue
of erh~"(s)p(s) af a zero s. of h(s). Let {s,} be the sequence of zeros of h{s)
arranged i order of decreasing real parts (or of increasing imaginary ports
or absolule values). Then

w(e) = 3 ovpD), 1> e (4.3.4)

The series converges uniformly for t in any findte interval 0 < & = £ < 1Y,
and for > by > wif oll characteristic roots e in o half-plane Refs) <o <O

We can be still more explicit in the present case, since it is easy to =ee
that there is at most onc multiple root of A{s). In fact, if

ay #= b cxp (1 + bgw/ae), (4.3.5)
all roots are simple, and the residue of e#A1{s}p(s) at s, is

e rpla) /b ().

Thus we have the following corollary to Theorem 4.2,

Corollary 4.1. Uinder the hypotheses of Theorem 4.2, if

ay # b exp {1 -+ bow/ag),
then -
u(t) = 2 oo™, > o, (4.3.6)
1
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where
o = pl8)/h (s). (4.3.7)

Theorem 4.1 furnishes a link between two of the methods of Chapter 3—
the method cof exponential solutions described in §2.5 and the Laplace
transform or contour integral methed deseribed in §3.7. In faet, Theorem
4.1 here is a kind of converse of Theorem 3.4, gince the former shows that
every solution has a series expansion of the general type of that in {3.5.8).
It can be seen that Theorem 4.7 answers questions (b) and {c¢) at the
end of §3.5. )

There is & close connection between the work of this section and the
“method of partial fractions,” which is so frequently used in the solution
of ordinary differential equations. Tn solving such an equation, say

u () + au= () + -0 + aull) =0,

by the Laplace transform method, one obtaing a solution of the form

u(t) = f e (s) p(s) ds, (438)
(e
where

k(.‘:‘) = gn f gl oae. | Ty (439)

and where p(s) depends on the injtial conditions. In practice, one fre-
quently expands (s} into partial fractions of the form

1 o fir 4

IDY

s TS G- s

where the outer sum is over all zeros s, of A(s), and where n, is the multi-
plicity of s.. The coeflicients ¢ ; can readily be evaluated by algebraic
means. After this has been done, it is an easy matter to find

(4.3.10)

W) = [ eohois) ds (4.3.11)
(1
by standard inversion forms, and then to find % (¢) itself, in the form of a
finite series. The method given in this section for solving the differential-
difference equation {4.2.24} iz analogous, and the series for (&) and for
k(1) (see Tixercize 1 below) can be regarded as arising from a partial frac-
tion expansion of A71(s).
Finally, we remark that it iz possible to obtain expansions of solutions of
inhomogeneous cquations such as

agt’(§) + boult) + bt — w) = f(£).
See §6.9.
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EXERCISES
1. Starting with the equation
ED = f e=h1{5) ds, >0,
(e}
show that

k() = lim [sum of residues of e®#A—1(s) within C7].

[=ecxy

Using the stated convergence properties of the integrals in (4.2.13)
and (4.2.21}, show that the limif in the above equation is uniform in {
for ¢ in any (inite interval 0 < £, < ¢t < &, bounded for ¢ > 0, and uni-
form for ¢t > £ > 0 if all characterisiic roots lie in & half-plane Re(s) <
er < 0. Since auk’{f) = —bk{$) — bik{t — ), there is a similar series
representation for &'(1), valid for ¢ > w.

2. From Theorem 4.1 and the equation
a’ (1) = —bwu(t) — biu(t — w), > o,
we have, if g(t) is C°[0, w],

W = —bait 3 exp (58) pr(l)

=1

— b 3 exp [t — )] pi(t — @),

Tl

fort > 3w, where exp (8:2) p-(£) is the residue of exp (s8) po(s). If g(¢) is
C10, «7, a formula of the same kind is valid for { > 2w, where now
cxp {4t} p.(t) denotes the residue of exp (st) p(s). Using the result of
Exercise 7, §3.7, with f(t) = 0, show that if g(t) is C?[0, &, then for
t > w,

w () = lim [sum of residucs of e*A(s) p:(s) within C;],

[=o:

where

pa(s) = —[bg(0) + boglw) + aog’(ew)Je™ + awy’ (0}

+ fw Laog” (t) - bog’ (1) Je™>* dt.
4

Also see §4.6.
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3.

oI

(L.

Find the condition under which A{s) = 0 and k'(s) = 0 have a common
solution. Henee show that all characteristic roots are simple if the
inequality in (4.3.5) holds,

. I"ind the series form of the solution of

w'(f) = u(i — 1), t > 1,

w(t) =1+ ¢ 0<¢< 1.

. Let {8} denote the sequence of roota of se* = 1. Show that

1

1
a1 and Y ————— =2,
2 T md X T

where the sums are over all characteristic roots.

Silberstein, *On a Hystero-differential Iquation Arising in a Probability Problem,”
Phil. Mag., Ber. 7, Yol. 28, 1940, pp. 75-84.)

. It can be shown {cf. Chapter 12) that under mild conditions on b(¢)

the zeros of

i
B(s) = s -+ bo - b — f B(t)en dh

{ae = 0,0 < o < w < 3 fall into one or two retarded chains, and that
it ig possible to construct a sequence of contours C;(I = 1, 2, --+) with
the same propertics ag before, except that between €7 and €y there
may lie a finite but bounded number of zeros. Assume this to be the casc,
and let %(t) be the continuous solution of

7
Gu’u.’(t) 4 buu(f) 4 blu(t - w) f b(ﬁ)ﬂ.(i bt i]_) dil, > ,8,

1l

u(l) = g(t), 0<iL4

With po{s) and p(s) defined as in Bxercise 10, §3.7, show that Theorem
4.1 remains valid exeept that {c¢) holds for ¢ > g rather than for ¢ > e,
and so on. Note that in the series in Theorem 4.1 the terms corresponding
to reots in the same annulus—that ig, between two given contours
and Ca—are grouped together, whereas this is not true in the series
in Theorem 4.2, It is therefore not evident whether the latter {heorem
remains correct in the present case. Bee §6.7.
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4.4, Asympfotic Behavior of fhe Solufion

One of the mogt important problems in the study of differential equations
or of differential-difference cquations and their applications is that of
describing the nuture of the solutions for large positive values of the inde-
pendent. variable. It is clear from Theorem 4.1 that the nature of the solu-
tlons, for large ¢, is closely relafed to the distribution of the characteristic
roots. It is the purpose of this section to explore this connection in grealer
detail. Since in many applicalions «{{} will represent the deviation of
some physical quantity from a desired or equilibrium state, particular
attention will be given to the problem of finding eonditions under which a
solution approaches zero as ¢ — s, oris “very small” for all , or is bounded
asf{— w,

The general method to be used here iz quite simple. From Theorem 4.2,
we see that for any positive integer 12,

Fiy
w(t) = 3 eip,(t) + error, (4.4.1)
=1

where the error is the sum of terms of exponential order of decrease to zero,
The larger we take fi, the smaller are the error terms. It therefore seems
plausible that for large {, u#{f) is closely approximated by the terms in the
st in {4.4.1). In this section, we shall give a rigorous development of this
idea.

From Theorem 4.1 we have

ult) = f R ()p(s) ds, > 0, (4.4.2)
{e)
or
wlt) = f ek (s)po(s) ds, &> (4.4.3)
{2

for any ¢ which cxceeds the largest of the real parts of the characteristic
roots, Let us now push the contour to the lefi to a line Re(s) = ¢/, on
which no characteristic roots lic. To do this, we can consider the integral
around a eontour 'y formed by the portion of C; bounded by the lines
Re(s) = ¢and Re(s) = ¢/, and by the scgments of these lines cut off by C;
(ef. Fig. 4.3). The integrals over the upper and lower arcs of C;" approach
7ero as | — oo, by the argument used to show that the integral in (4.2.6)
approaches zero. Hence from (4.4.3) we get, for f > w,

w(f) = lim {f eBh(8) pols) de 4 > e“f‘p,(t)—|, (4.4.4)

PR 2ec 1 Refe et
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Fic. 4.3,

with a similar expression arising from (4.2.2}. In this equation, the sum
represents the sum of residucs at characteristic roots within C; and to the
right of the line Re{s) = ¢'. The integral is taken over the segment of this
line eut off by €. Since there are at most o finite number of characteristic
roots in the strip ¢’ < Re{s) < ¢, the equation can be rewriticen in the form

w(l) = f e pa(s) ds + 3 erp(l), (>, (445)
(e} Relapr)ire!

and if is clear that the integral over Re(s} = ¢’ has the same uniformity
properties ag the integral over Re(s) = .

The magnitude of the iniegral in {4,4.5) can easily be estimated. By
the device used in (4.2.22), we car show that the integral

[ eoiis) s (4.4.6)
(")

15 O(e"?) as t — + o, and therefore from the known form of pe(s) we can

show that

f e b1 (s)po(s) ds = O(e”?),  t— o, (4.4.7)
{ef)

where the implicd constant is a function of the magnitude of ¢({) over the
initial interval, Thus we have the following theorem.

Theorem 4.3. Suppose that g is of class C[0, w], and let « be the con-
tinuous solution of the equation
ot (£} + baw(f) + bt — w) = 0, > o, ag ¥ 0, (4.4.8)

satisfying the nitiol condifion w(t) = g1}, 0 < { < w. Lel evv'p. (1) denole
the residue of e*h™(s)po(s) af o zero s of h{s). el

m, = max | g{f) |. (4.4.9)

g )
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Let ¢ be any number such that no zeros of h(s) lie on the line Re(s) = ¢
Then there iz o positive number ¢y, tndependent of ¢ and g, such that

() — 2 eop () | < eymge, t > w, (4.4.10}

Lclar e

where the sum s taken over afl characteristic roots s, to the right of the line
Re(s) = .

We shall conclude this seclion by stating, as corolluries of this theorem,
conditions under which all solutions of the equation in (4.4.8) approach
zero a8 bt — + @, and conditions under which they are all bounded.

Corollary 4.2, A necessary and sufficient condifion in order that all con-
tinnous soluttons of the eguation tn (4.4.8) approach zero as ¢t — w0 13 that all
characleristic roots have negative real paris.

The sufficiency 18 an immediate conscquence of Theorem 4.3. The
necessity follows from the fact, proved in §3.5, that each function e,
where ¢, is a characteristic root, ig itself a continuous solution.

Corollary 4.3. A necessary and suffictent condition in order that all con-
tnuous solutions of the equation in (1.4.8) be bounded as t — o is thal

(a) all characteristic roots have nonpositive real parls, and

(b} <f s, 28 @ root with zero real part, the residue of e*h~1(s) al s, 13 bounded
agi— o,

A necessary and sufficient condition for (b) s that each root with zero real
part be simple.

The necessity of these conditions follows from the fact that the residue
of e*h™1(g) at s. is a solution of the equation in (4.4.8), for every char-
acteristic root s.. T'o prove this, we let

u(t) = f ek (s) ds,
4
where € 18 a closed contour surrounding the zero s, and no other zero, and
then we can easily show that u(f) satisfles the equation. To prove the
sufficiency, we use the following lemma.

Lemma 4.1. If s. i3 o choracleristic roof with zero veal part, and if the

residus af 8, of eth(8) is bounded as i — «, then s, is a simple pole of h~1{8).
Suppose that

h=i{s) = i ci{s — &)iw
=0
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Then the residue at s, of e®h~1(s) is easily seen Lo be
r—1 ti
et D et T
= il
Since Re(s.) = 0 and this sum is bounded, ¢co = &1 = -+« = g, 2 = O.
Henee 8. is a simple pole of A—1(s).
In Theorem 4.3 take anv ¢ < 0. A solution «(t) is bounded if, and only if,
> erpdt)
Telerl e
i bounded. Among the finite number of roots with Re(s,} > ¢, some may
have negative real parts. The corresponding terms estp, (¢} tend to zero.
Others must have zero real paris. For these, lhe value eip (1) is the
residue of e#h~(s}p(s), which by the lemma is seen to be

et (8],

and ig bounded. This proves Corollary 4.3.

Methods for determining conditions under which all characteristic roots
have negative real parts, or nonpositive real parts, are diseussed in Chap-
ier 13,

EXERCISES

1. Let erfq(f) denote the residue of ¢®h~1(s) at a zero s of k(s). Show
that if no characteristic root lics on Re(s) = ¢, there is a positive number
g such that
B — 2 e | < e, >0
Relsrize
A similar relation holds for &'}, { > w, since ;k’(8) = —hk() —
bll'lc(f; - w).

2. Buppose that g{t) is C°[0, ], and let p.{4) exp (s.) denote the residue
of pu(s) exp (&) at s. Let m, = max | g(¢) |. Use Iixercise 2, §4.3, to
show that the solution of (4.1.8) has the property

T () — > eipre) | < eamgett, £ > 3w,
Relssd=e
where
pr*(i} = _h[ﬂﬂ_lﬂ-(!) - blﬂ-n'_le-”s'p,-(i — w}.

3. Show from Exercise 1 that the conditions of Corollary 4.3 are sufficient
to cnsure that k(1) be bounded as { — . Use this fact and Theorem 3.7
in a second proof that the eonditions are sufficient to ensure that all
continuous solutions be bounded.
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4. Verify that Theorem 4.3 and its corollaries remain valid for the solu-
tions of

B
aote’ (£) + bae(t) + bt — w) = f b()u(t — ) dis, t> B, @ = 0.

4.5, Stability of Eguilibrium

Theorem 4.3 and its corollarics and generalizations are useful in dis-
cussing the “stability” of mechanical, electrical, or economic systems which
can be deseribad by differential-difference equations. 11 seems appropriate
at this time to discuss briefly the concept of stability, and to reformulate
some of our conclusions in terms of this conecept. In order to suggest the
origin of the definitions to be given, we shall imagine that «(2) represents
the displacement or deviation of some quantity from an undisturbed or
equilibrium state, and that «{¢) satisfles a homogeneous equation of the
form

age’ (8) - Brell) + bu(l — w) =10, ap > 0. (1.5.1)

It is often of erucial importance that the deviaiion «(¢) should tend to die
out—in other words, {hat the system in question should return to its equi-
librium state, or at least that the deviation should not become too large.
If a system exhibits this predilection for its undisturbed condition, it is
said to be “‘stable.”

It is evident that this somewhai vague notion must be given a precise
mathematical formulation suitable to the context in which it is to be used.
We shall here describe a few of the most frequently used formulations,

Definition. The zero sofution of the equation in (4.5.1)—that 1s, the solu-
tion which 13 zero for all § > 0—is said to be stable as t — o, if, given any fwo
positive numbers ty and &, there exisis a number § > 0 such thai every con-
tnuous solution u(t) of (4.5.1) which salisfies

max |u(f)| <& (4.5.2)
fe i ot
will also saltisfy
max [u(t) [ < e (4.5.3)
in< E o

In intuitive terms, the zero solution is stable if every soluiion which is
initially small remains small for all ¢. Tn general, the number § depends on
both t, and «. If we ean find a § > 0 independent of &, we say that the zero
solution is uniformly stable with respect to 5, or more briefly thal it is und-
formly stable. That is, we have
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Definition. The zero solution of the equation i (4.5.1) 15 said to be uni-
Jormly stable ag t — o, 4f, given & > 0, there exisls § = (e} > O such that if
u(f) 48 a solution of {4.5.1) which satisfies (4.5.2) for any & = O, then w (1)
satigfies (4.5.3).

We ghall presently sce that for the simple equation in (4.5.1), stability
implies uniform stability.

Another important econcept is that of asymplotic stabifily, which is de-
fined as follows.

Definision. The zero solution of the egualion in (4.5.1) s said to be asymp-
totically stable as ¢ — « if:

(a) it 4s stable;
(0) for each &y > 0 there s @ 8 = 8(l) swch that every solution which
satisfies (4.5.2) will also sutisfy the relalion
lim w(f) = 0. {4.5.4)
) f>oo
If this definition is to be satisfied, all solutions starting with sufficiently

small initial values must tend to zero. In muny applications, however, it is
of interest to allow large initial values. This leads us to our last definition.

Pefinition. The zero solution of the equation in (4.5.1) is said to be asymp-
totically stable in the large, or asymplolically stable for arbitrary perturbations,
i

{a) ¢ s stable;

{b} every solution u{t) satigfies the relation in {(4.5.4).

Speaking in terms of applications, a system governed by an equation of
the form in (4.5.1) is asymptotically stable if small initial disturbances dic
out, whereas it i3 agymptotically stable in the large if every inifial dis-
turbance, no matter how large, dies out.

The various definitions of stability given above are adequate for the
treatment of most of the applications we shall cite in this book. Although
other definitions are more appropriate or more useful in certain situations,
we shall omii & more detailed discussion here.

With the aid of the results in §4.4, we shall now establish the following
theorem.

Theorem 4.4, A necessary and sufficient condition in order thai the zero
solution of the equation

a’ (1) + bu(d) + bu(t — w) =0
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be stable ag § — w 45 that

{a) all characteristic roots have nonposttive real parts, and

(b} 4f s is @ root with zero real part, the residue of e"h'(s) at s, s bounded
asl —» w,

A necessary and sufficient condition for (b) is that each root with zero real
part be simple,

The conditions {a) and (b) are necessary and sufficient in order that the
zero solution be uniformly stable,

Suppose that the reots satisfy (a) and {b). Let «(?) denote a continuous
function which satisfies the equation in (4.5.1) fort > & + w, and let

m = max [u(}) [ {4.5.5)
tgtiptw
Let
7 =1 — i, p{r) = u(i). (4.5.6)
Then #{r) satisfies
a'(r) + b{r) + bw(r — w) =0, T > W (4.5.7)
and satisfies
max | #{r} | = m. (4.5.8)
fsr<w

Let &, 82, +++, sy be the characteristic roots with zero real parts. It then
follows from Theorem 4.3 that there is a constant e1 > 0 for which

N
() [ S em + X lerp(n ], > (45.9)
yrel
where ¢, does not depend on g.

By the argument used to prove Corollary 4.3, the terms in the sum are
bounded as + — <«. Morcover, cach of these terms is the residue of
eh (s} po(s) at the simple pole s, and is a multiple of €7po(s.). From
the known form of po(s) given in (4.2.2),

fo(r) | £ em, 120, (4.5.10)

where e; is not dependent on g.
Now let e > 0 be given, and choose § = ¢/¢s. Then for any # and any
u{l) for which m < 3§, it follows from (4.5.10) and (4.5.6) that

Jult) | <em < ed =¢ L2 b (4.5.11)

This shows that. the hypotheses in (a} and (b) are sufficient to guarantee
uniform stability, and of course also stability.
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On the other hand, suppose there is one characterizgtic root with positive
real part, or one with zero real part not satisfyving (b}. It then follows from
Corollary 1.3 that there is an unbounded solution. Since a multiple of a
solution is & selution, there are unbounded solutions with arbitrarily small
infiial values. Henece, the zero solution is not stable, and of course not
uniformly stable.

In conclusion, we shall state a theorem on asymptotic stability, which
follows at once from Corollary 4.2

Theotrem 4.5. A necessary and sufficient condition in order tha! the zero
solution of the equation

awe' () + b + bt — w) =0

be asymplotically stuble én the large is that all characleristic routs have negalive
real parts.

In order to apply these theorems to particular problems, we must, of
course, be able to determine whether the characteristic roots of an equation
all have negative real parts, or nonpositive real parts. As we have men-
tioned before, methods for determining this are discussed in Chapter 13.
We also call the reader’s attention to Chapter 10, in which we give some
more general theorems on stability.

EXERCISES

- 1. Many scemingly more complicated stability problems ean be redueced
to the ones discussed above. SBuppose, for example, that a physical
system is governed by a nonhomogeneous equation of the form

act’ (1) + bow(t) + bl — w) = f(1). (4.5.12)

Here the funetion f{f) might represent a continuously acting forcing
function, As pointed out in §3.5, every solution %(f) of the equation in
(4.5.12) ean be written as . (f) + w(t), where 2, (f) 1s the solution of
the homogeneous equation in (4.5.1) having the same initisl values as
u(t), and where 4:(¢f} is the particular solution of the equation in
(4.5.12) having zero initial valucs. If the zere solution of the homo-
geneous equation is, say, asympiolically stable in the large, then (1)
approaches zere ag # — =0, In this ease, every solution of the nonhomo-
geneous equation tends Lo approach #s(i) as { — =, In the theory of
electricity, w(%) is often called the steady state solution of the equation,
and ¥ (f} is called the fransieni. Thus we see that if the zero zolution of
{(4.5.1) is asymptotically stable in the large, then all solutions of {4.5.12)
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approach a steady state solution. That is, there 1s a solution w.(f) of
(4.5.12) such that

lim [w(t) — wf(t})] =0 (4.5.13)

f+o

for every solution (¢} of (4.5.12). We have assumed without cxplicit
mention that f{f) and «(¢) satisfy suitable hypotheses of the Lype pre-
viously eneountered. Suppose that the zero solution of the homogeneous
equation in (4.5.1) iz stable. What cun be said of the solutions of the
nonhomogeneous equation in (4.5.12)?

2. Formulate a similar statement for the eases in which the zero solution
of the equation in {4.5.1) is uniformly stable or asymptotically stable.

3. Under what conditions is the zero solution of the equalion in Exercise 4,
§4.4, stable as ¢ — =7 Under what conditions is it asymptotically
gtable in the large?

4.6, Fourier-type Expansions

In the last two sections, we have concentrated on finding analytic expres-
sions for the solution of

ao’t&!(ﬂ) + hnu(i) + blu(t - w} = 0, t > @, (46])
u(t) =gt), 0L1< o, (4.8.2)

which would be useful for large values of t. In fact, the serieg expansion in
Theorem 4.2 wag shown to be valid only for £ > w. In this section, we shall
show that it is valid for 0 < ¢ < w and thus obtain expansions for g(t).
We shall sce that these are analogous to ordinary Fourier series,

We should now like to follow the procedure in §4.2 {o obtain a series rep-
resentation of w{{}, but we want this to be valid for ¢ > 0 rather than for
{ > w only. A re-examination of §4.2 reveals that the cruecial point is to
cstablish that

lim [ e h(s)p(s) ds = 0 (4.6.3)
jem YO0

for ¢ > 0, rather than for £ > w. This, in turn, would follow rcadily if the
lirnit in (4.2,13) were valid for ¢ > —w rather than for ¢ > 0. A more ecare-
ful analysis does, in fact, establish the following lemma.
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Lemma 4.2. 7 h(s) = aes + By + b *{as 5 0, by 5 0), then

lim f loohi(s) |[ds| = 0, ¢> —w (4.6.4)

I+ -

The convergence ts uniform for L in any fintle inferval —w < f) £ ¢ < &,
Ife <0, it s uniform as t — + =.

To prove this, we write the integral over Cp. as the sum of integrals
over A;  and B; where 4, is the portion of ;_ in the half-planc
Re(s) < 0, and B, is the portion (if any) in Refs) > 0. By (4.2.5), we
sec that the integral over B; approaches zero, uniformly for ¢ in any finite
interval, If ¢ < 0, this integral does not occur,

To treat the integral over 4., we recall that | A(s) | is greater than a
fixed multiple of the maguitude of each of its terms, il & is uniformly
bounded away from the characteristic roots. Henee, since ah = 0,

| B(s) [ = O[min{s [T [e= )], s€ Cu (4.6.5.)

Consequently,

f | eht(s) f| ds| = O UA | et | min (| ste—er |, 1) | ds |],

A

The contour A,_lies ulong | s | = Ir/w, except within the strip ¥ {cf. §4.1).
In the integral in the right member of the above equation, we now replace
the modified ares within ¥ by the eircular ares. Sincc Re(s) < ¢y — o llog| s
within V, the integrand iz Ofexp [ —1{t + «)w ? log I} along these ares.
Since the length of the modified ares is bounded, the change is therefore
uniformly o1} if &t = {4, for any & > —w.

The integral over 4,. can accordingly be replaced by the integral over
the full semicircle | s | = Inr/w, Re(s} < 0. Putting & = —lxe®/w, thiy last
integral becomes

xf2
f exp [ —Irw'(t + w) cos 0] min Lﬁ exp (Ir cos ), 1] Ir df/w
— i

m
w2 Ir
=2 f exp (—lww ' sin #) min [1, — exp (—Ir gin 8)] .
0 @

Let 8§ be the number between 0 and #/2 which satisfies the equation

lrwlexp (—frsin ) = 1. (4.6.6)
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The last intepral is then the sum of J, and Js, where

3
J = f exp { —Imw~l sin 6) df,
0 .

=2 t
Jo = f {rw" exp [—E'Jr (l + —) sin 9] d8.
& £,

By Jordan’s inequality,®
28/r < sin g < 8, 0 <9 <a/2 {4.6.7)

we obtain, for ¢ > —w,

w2 i
Js < f Ire oxp [—zz (1 + —) 8} b
&

w

= {(z + w)~! exp [—2£ (1 + {—) 6]}

o

From {4.6.6), we see that

log !
§ = o (14 ()] {4.6.8)

Therefore J» = o(1) as{ — =, if { + w > 0, uniformly for { + w bounded
away from gero. On the other hand, if { > 0, then J, = O{8) = o{l),
uniformly. If —w < ¢ < 0, then

:
Ji=10 [[ exp (—lrwt6) dﬂ] = O[5 exp (—Irwtd)]
[i]

= O (log [)I-te+aie],

Thus J, = ¢(1) for —w < ¢ < 0, uniformly for ¢ bounded away from —,
This completes the proof of the lemma. _

Since p(s) = O{| e |} on C., the equation in (4.6.3) iz at once seen
to be valid for ¢ > 0, uniformly in 0 < # < ¢ < 1. Likewise, since py(s) =
O(} e |} on €', the equation in (4.2.9) is valid for ¢ > w, We therefore
obtain the following theorem, which improves the results given in Theorems
4,1 and 4.2.

*SZae, for example, E. T. Copson, An Intreduction to the Theory of Funciions of a
Complex Variable, Oxford University Press, London, 1935, page 136.
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Theorem 4.6. Let u(f) be the continuous solution of the equation tn (4.6.1)
with inilial condition in (4.6.2). Let p(s) and po(s) be defined as in (1.2.4)
and (£.2.2). Let {8} be the sequence of characleristic raols arranged in order
of decreasing real parts (or of increasing imaginary parts or absolule values).
Assume that gy = 0, and that g(t) 1s C[0, wT. Then parts {a) and (b) of
Theorem 4.1 hold, and part (¢} ean be replaced by the following:

(") ”
u(t) = lm 3 evin (£) = 2. erip(8), ¢ 0, (4.6.9)

i+m O =1

where p, ({)e™*t s the residue of e"A(8)p{s) of o characterislic roof s,.
The series converges wniformly in any finite tnterval [&, &), & > O
If all characieristic roots lie in a half-plane Re{s) < & < 0, the
series converges uniformly in [t, = .

If g () is merely €0, w], the series expansion of (¢} holds for £ > w, where
e*rtp, (£} denotes the residue of e*h1{s)po(s) af &

Now suppese that we are given an arbitrary function g(2) of class ¢
on some interval [0, «7, and asked to find a serics expansion of g{£) in
terms of the zeros of a function A{s) of the form

h(g) = ms + bo + e, gy = 0, b # 0. (4.6.10)

To do this, we form the differential-difference equation corresponding to
k(s), namely the equation in (4.6.1), and regard g(¢) as the initial funetion.
This initial function can he continued to a solution w(?) for £ > 0, and this
solution has the serics expansion in (4.6.9). Tor 0 < { < w, this provides
the desired expansion of g(#). Thus we have:

Theorem 4.7. Let (&) be a given function of class C'[0, »], and let h(s)
be a given function of the form in (£.6.10), Then for 0 < t < w,

() = lim 3 et () = 30 e, (0), (4.6.11)
e Oy el

where the nolation is the same as in Theorem 4.6.

The expansions in (4.6.11) are analogoug o ordinary Fourler series.
In fact, to obtain the Fourier series of a periodic function ¢{¢) of period 1,
we can consider the following differenee equation:

w(t) —u{t —1) =0, t> 1, (4.6.12)

u(t) = g(b), 0<t<l. (4.6.13)
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Employing the Laplace transform technique as in our treatment of (4.6.1),

we obtain
w(t) =f

i
[e"h—‘(s) [ g(il)e_“ldtl] ds, (>0, {(4.614)
(e o

where
his) =1 — e (4.6.15)

The zeros of h(s) are at § = 2nai (n = 0, &1, £2, ---}. Though these
zeros do not have the property Ile(s) — — s used in the above discussion,
it is nevertheless true, ag we shall show in Chapter 5, that

wl(t) = lim 3 evip, (1), O <& <1, (4.6.16)

I (O

Here the residue is

eip () = exp L+ 1s] j; g{t) exp (—sdy) div

Hence {4.6.16) takes the form

g(t) = E‘i [fl gt} exp {(—2rity) dt;] exp (2mit), 0Q<it<1.(4.6.17)
. :

I=—cor

In a gimilar fashion, each differential-difference equation gives risc to a
Fourier-type expansion. Conversely, if we wish to expand a given function
g(8) in ithe lorm

g(t) = }:; (L) e, (4.6.18)

where the g are Lhe roots of a given function
R(8) = aws + bo + e, (4.6.19)

and where the ».(¢) are to be determined, we can obtain the expansion by
considering the related differential-difference equation. For example, sup-
posc we wish to expand a given funetion g(£) in a series (4.6.18) where the
% are Toots of

his) =s —e* =0
The corresponding differential-difference equation is

w () —wll — 1) =0,
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The zeros of A{s) are easily scen to be simple, and from {4.6.4) we have
1
p(s) = g(e + 5 [ gltyesn an,
(1]
Hence the required expansion is

g(t) = Z a6,

=1

where

o o £ B (=5) + 5 [3 g exp (—sh) d
1+4exp (—s) '
This method is applicable when the s, are roots of much more general

exponential polynomials than (4.6.19), as we shall point out in later
chapiers.

EXERCISES

1. Let #() be a solution of (4.6.1) and (4.6.2) which is of class €' on
[0, « ). Let g{s., ) denote the residue of

el (s)p*(s,1) = e"h™Y(s) [609(0) + f Coag’ (1) + bog () Je—n dﬁl}
at s, Show that

u(t) = f R (8)pH(s, £ ds, 0 <1< w,
{c}

and hence that

w(t) = lim Y ¢(s, 1), 0<it<ow.

o arglly

2. Using Theorem 4.8, improve the result in Ixercise 2, §4.3.
4.7. The Shift Theorem

‘We have found that we can obtain a solution of a differential-difference
equation in the form of a contour integral, or of a real definite integral, or of
a series of exponentials. In §4.4 and §4.5 we showed how useful these forms
are in describing the hehavior of the solution for large values of &. However,
if we are interested in small or intermediate values of ¢, the fundamental
method of continmation is still of prime importance. In this section, we
should like to show how Laplace transform methods csn sometimes be
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useful in providing this continuation. To illustrate the procedure, we con-
sider the equation

w'{l) =u(t— 1), L > 1, (4.79.1)
with the initial condition
u(t) =1, 0<t<1, (4.7.2)

From Theorem 3.6, we know that, if the real part of s is sufficiently large,

oo 1
h(s) f wlt)et dt = e + sf ettt =1,
(1] [1]

and » 1 1 1
[Tuerdt = o = —— = = (1 = e
L]

Expanding by the binemisal theorem, we get

f w(Bert dt = 3o g-teigms, (4.7.3)
[ n={
provided Re(s) is sufficiently large. We now use the well-known fact that
o nl
LTl 13 i —
fo rendt = (4.7.4)

together with the exponential shift theorem which says that if e(¢) is the
unit function defined in §3.9, then

f T = oye(t — c)etdt = e f "iherd, o3>0, (475)
1] 1]

From the relations in (4.7.4) and (4.7.5), it readily follows that
g ernl
s"l‘f‘l '

fm (£ —e)re(t — e)e ™ dt =
i

Because of the uniqueness of the Laplace transform, it now fellows formally
from the equation in (4.7.3) that

© (f —n)*e(l —n)

w(t) = > : . >0
=l ni
That is,
N z_‘j
u(t):EE-—_—'g—)—, N<I<SNAL N=012-- (476
=0 J:

This result agrees with that found by dircet continuation in §3.2.
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The above procedure can most easily be rigorously justified on the basis
of the contour integral representation of the solution. From Theorem 3.6,
we have

u(f) = f g = f < (1 — ste)tds,  (47.7)

@ & — e ey §

This ean be writien

N

u(t) = 2 / st exp [({ — n)s] ds + I(t, N),

n=0 * (e}

where

1 N
ets [ —_ Z s—(ﬂ+1)e—ne] ds.

§ — e w=ll

I{, N) = f

(e}

Summing the finite geometric series, we get,

ex i — N — 1)s]
I W) =f p[r( Yol
@  SNHs — )

Fort < N + 1, we see that 7{f, N} = 0, since we can shilt the contour
arbitrarily far to the right. Therefore

15 Nt — n)'n
ulf) = }:f g+ pxp [(t - ?z)s] ds = 3", NZLUSN4I
w=0 * g _ n=f} R

As another example, consider the equation in {4.7.1) with the initial
condition

u{f) = e, 0<e< 1. {4.7.8)

Here we get, after expanding by the binomial theorem,

f:uu)e—um - Si—l +le—1) 281 _e 8
The expansion in partial fractions
1 1 1 1 1
sl — §) :;+s_2+ +;‘+1—~s

indicates that the inverse transform of s»(1 — ¢)~is

4 tﬂ—l

bt e
TR Aty R
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Hence it follows formally that

w(t) =et+ {e— 1) Z [1 +{i—n)F s — et |ell — n),
a=l1 L, - .

or in other words that

(t — .n_)n-—l'

n—0110

N<t{<N+1; N=01 - (479

u(t)=e‘—N—}—(e—1)Z[l—{—(t—n)—!—---—i—

el

It ean be verifled that the function «(¢) defined for ¢ > 0 by the equation
in {4.7.9) is continuous and satisfies {4.7.1) and {4.7.8),

The above method is applicable whenever the funetion [ g(£)e** df can
be expressed as a combination of functions whose inverse transforms are
known., We shall omit any general discussion of the validity of the method.
In any particular case, an answer obtained in this way can be checked
directly. In case [ g{t)e* dt cannot readily be expressed as a combination
of funetions with known inverse transforms, it may still be possible to use
simpilar expansion methods to advantage. This iz illusirated in Exercise 4
below.

EXERCISES

1. For the equation

w' () — u(t — 1)

i
—_

, t> 1,
u(l) =1, 0<t <],
show that
fm wultye=tdt = “iel.
v s{e — )
Hence show that
¥ (- p)n

() = —1+2 2

n=0 ki3 T

s NStSN"‘l; AT:U,]_,Z,"‘.

2. For the equation
w'(t)

u(t) =14, 0<i<1,

i — 1), > 1,
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show that

1 F 2t —m)m 2e( — )"
§+£[ n+ 1! n! ]

for N<t< N+ L;N=0,1,2, ---. Compare with Exercise 2, §3.2.

w(ty =

3. Let u(t) be the continuous solution of
w'(t) + bt — w) =0, > w,

u(t) =g, 0£i<a
Define

at) =g @Welw —4), >0,
£
g—n(t) = f gl—n(tl) dﬂ!., i > 0, n = 0; ]! 2) "
]
Show that, for ¢ > 0,

o _bl ES
w®) = g0) 5° ,)

H

{t — nw)me(t — nw)

£ 3 (b gt — ne)elt — nw).

=0

Hint: Use the expansion of k~1{s) in powers of s7'¢~**, and show that

s-ﬂ—lf gf(tl)e—-stl dtl
0

is the transform of g_.{{).
4. Use the formula in Exercise 3 to find the solution of
w(f) = ult — 1), t > 1,
w(t) = /1, 0<t <,
over the interval {0, 3].
5. The solution u(f) of
wit) = u(t — o), i > e,
u{f) =1, 0<i<a,
has transform

[

= 1
f u(Be=tdt = — (1 — sl = Z gn=lg—nes,
8

L1} w=0
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The solution #(#) of the integral equation
[ max{f )

o) =1+ f ot — telts — w) diy = 1 + f o(t — &) dby,
q w

where ¢(f) is the unit jump funetion, has the same transform (ef.
Chapter 7). Show that the method of term-by-term inversion of the
transform is equivalent to the Liouville-Neumann series solution

t £ b
vii) =14+ i{f — df, + f1 — df fa ~— Fitd
() fuc(l w) di fue(l ) f olly ~ @) dt

TR

{L., B. Robinson, “Application of the Laplace Transform in the Solution of Linear In-
tegral BEqustions,” J, Appl, Phys, Yol 19, 1948, pp. 237-241.)

6. Use the method of this seetion to find, for 0 < ¢ < 4, the solution of the
equations

w'(8)

2
fu(t—tl) d, > 2
1

i 0<i<2

2% (1)

1

Miscelluneovus Exercises and Research Problems

1. Discuss the equation
(1) = bx{t — &} + f g(z)zlt — & — 2) da.
0

(P. J. Wangersky and W. J. Cunningham, “Time Lag in Population Models,” Cold
Spring Tarbor Symposia on Quantitetive Biology, Vol, 22, 1957.}
2. The equation
f@ — Mz —-1) =g
possesses an entire solution if g(x) is an entire function.

{0. Polossuchin, fber eine besondere Klasse von differentialen Funkfionalgleichungen
Inaugural Dissertalion, Zirich, 1910.)

3. Consider the sclution of
e’ + au = f(1), (0 = ¢
As ¢ — 40, what happens to the solution?
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4. Consider the solution of
e’ 4 au’ + bu = f(1), w{l) = ¢, uw (1) = e
As £ — 0, what happens to the solution?
5. Consider the kernel
1 erds
Ko =— [
i Vo 8 + aeme

where ¢ > 0, and C represents 4 line of the form s = gy 4+ 47, — 0 <
T < o, with & > || Show that as ¢ > 40, K(¢, ¢) — K(¢,0), uni-
formly for 0 < { < t; < =, where §, is any fixed quantity.

8. Consider the equation
w'{t) + au{l — &) = g(1), > e
u(t) = f{t), 0Li<e
What happens to the solution as ¢ — 0?

(R. Bellman and K. L. Cooke, “On the Limit of Selutions of Differential-difference
Equations ss the Retardation Approaches HZero,” Proe. Nat. Acad. Sei. USA,
Vol. 45, 1062, pp. 1026-1028.)

7. Consider the functional differential equations
(@) = alx)f(x/k) + b(z),
Fy) = ay)fly — w) + b8{y).

Show that the second is transformed into the first under ihe transfor-
mation ¥ = log z, and conversely,

I

8. Consider the functional differential equation
flz) = a(m)f(a/k) +8(x), [k] 21,

for complex values of @. Let a(x) and &{x) be regular in the circle
[2] < ¢ Show that there is one and only one regular solufion in
[ 2| < ¢ taking a prescribed value at ¥ = 0. When a(z) and b(z) are
entire transcendental functions, so 1s f(x).

(P, TFlamant, “Sur une équation différentielle fonctionelle linduirve,” Rend. Cire. Mal.
Palerino, Vol. 48, 1924, pp.-135-208,

8. Izumi, “On the Theory of the Linear Funetional Differential Equations,’” Téhoku
Math_ J., Vol. 30, 1929, pp. 10-18.)

9. Let D be any domain containing the origin with the property that if =
isin D, then k~'r is in D, Show that if | k| > 1, the unigue solution of
Flamant’s equation ean be continued throughout D.



MISCELLANEOUS EXERCISES AND RESBEARCH TPROBLEMS 133

10 Buppose a(z) isregularin | 2 | < e but 6(x) has a simple pole at z = 0,
Show that the selution has the form

flz) = g(z) + hix) log »,

where g(z) and h(2) are uniquely determined functions regular at
x =40

11. Suppose a{z) has a simple pole at x = 0 and b(x) is regular. Show that
the solution has the form

flz) = z7mgiz) + A(x) log z,
where m is an inleger and ¢{x) and k{z} arc regular.

12. In the linear functional equation
@) = a@f{e(x) + b),

let a(z), b(x), and «(x) be rvegular in |z| < 1, and «{0) = 0,
| wix) | < 1for[z! < 1. Show that there is one and only one solution,
regularin |z 1 < 1, taking a preseribed value at z = 0. (Izumi, op. ¢it.)

13. Ifa(z), b(x), and w(z) arcregularinlz | < land w(0) = 0, |wfz) | < 1
for 2! < 1, then there exists 4 solution regular for |z | < 1. (Izumi,
op. cib.}

14. In the lincar nth order equation
Fo2) + mlz)fo V(o)) + -+ + aulz)flo.e)) = b(2),

suppose that a;(x) and «.(x) are regularin fz | € 1, w;(0) = 0, and
lwdz) | < 1for x| <1 ( =1, 2 «, n). Given f(0}, £7(0), -~
F1{0), there is a unique solution regular in | x | £ 1. (Izumi, op. cit.)

15. The solution of Izumi's equation cannot in general be sontinued beyond
the circle | x| = 1, even if af{z), b{z}, and w(z) are entire functions,
unless there is some restriction on the magnitude of w(x). For example,
the solution of the equation

Fz) = alx)j(e),

where a(z) is an enlire function with positive coefficients, has the
circle [z | = 1 as a natural boundary.

{L. B.. Bobinzon, “Une pseudc-fonetion et I'équation d'ITzumi,’’ Bull. Sec. Math. France,
Vol. 64, 1936, pp. 66-70; and “Complément 4 une étude sur I'"équation fenetionnelle
d'Tzumi,” Bull. Soc. Math. Franee, Vol. 64, 1936, pp. 213-214.)

16. Consider the functional equation

y'(x) = g(x) cos (ux + vy(px + ¢) + w),
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17.

18,

9.

20.

21.

(F.

22.
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where u, v, p, ¢, and w are constants. Under the assumption that
gix) — 0asx — o, find the asymptotic behavior of y{x} as 2 — .

. B. Kelman, “A Class of Differential-functional Systems,’” Trans. dmer. Math. Soc.,
Vol. 96, 1060, pp. 54-66.)

Consider the eguation
w(f) + aw(d) + aeu(t — 1) = f{i), > 1,
w(t) =0, 0<t<1,

What are the necessary and sufficicnt eonditions upon @; and a. that
#(t) be uniformly bounded for all funetions f{1) which are uniformly
bounded for ¢ > 17

Under what conditions does the foregoing equation possess a unique
bounded solution?

If 7(¢) is periodic of period w # 1, when does the equation have a
periodic solation of period « and what is its analytic representation?

Let u(t) be a continuous solution of
duﬂ-f(t) + bou(f) + blﬂ(t - (.0) = 0, g 7= 0,
for — e < i < w.Bhow thut u(f) 18 of class C= on every finite interval.

Let #(x) denote the number of zcros of u(2) in the interval [z, z + .
Buppose that n{z) is bounded as | z | = «. Then «(¢) mnust be a linear
combination of a finéfe number of exponential solutions.

Schirer, “Uber die Funktional-Differentialgleichungen f'(x + 1) = af(z),” Ber,
Verhandl. sichs. Akad. Wiss. Leipzig, Math-phys. Kl., Vol. 64, 1912, pp. 167-236.)

Consider the equation
eu ) u{l) —u(E— 1) =0, a >0,
with initial condition
ul(t) = g1}, 0=t L

Show that if g is C°[0, 17, there iz a unigue continuous solution, and
that

[ () | < max|gft) |

0l

Show that #(?) — u{f — 1} — 0 for any solution.
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23. Bhow that if @ > 1, every solution % () tends to a periodic function
() of period 1. This function has derivatives of all orders and
w® () — p®{) -0 as t— e, EF=10,1,2,---.

24, If 3 < e < 1, there iz a function p(t) of period 1 such that
]
w*¥{E} — p(k)(z — f 4= dtl) — 0 as {— =, E=012 ---.
1

{See the following article, where more general results are proved:

N. G. de Bruijn, “The Asymptotically Periodic Behavior of the Solutions of Some
Linear Functional Equations,” Amer. J. Math., Vol. 71, 1949, pp. 313-330.)

25. Let ®(:) be monotone decreaging with limit zero and
[Tew a < w.
4]

Tet w(t) and (1) be continuous and satisfy
q(t) =14+ O[®{)] and w(t) >0, t >0,
= m o dE
Beo[- [ o] =
If u(t) satisfles
w{thw () + u(t) — ¢(u{t — 1) =0, it >0,
then lim,.,, u(f) exists.

(N. G de Bruijn, “On Some Tinear Functional Bquations,” FPubl. Math. Debrecen, Vol.
1, 1950, pp. 120-134.}

26, Show that w(?) = (log {)~! implies that
= % e
Ee){p [— fn——l m} = @,
27. Any continuous solution of
w' () = u(t — 1), i >0,
is of the form
u(t) = At + A4+ O[(t + 1)1

{de Bruiin, “On Some Linear Functional Equations,” op. ¢il.)
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28. Any continuous solution of

w(E) = tult — 1), L >0,
is of the form
w(@) =LA+ 00 )/ (r+ D exp[i(r — 1 +771) + &7],
where re™ = .
(de Bruijn, “On Beme Linear Funetional Equations,’ op. eif.)
29. The function ‘
w(t) = " e [=3(t + 1) = exp (6 ~ H)]
is a particular solution of the equation
w{t) = et — 1).
(de Bruijn, '*On Some Linear Functional Eguations,” ep. cit.)
30. Let {s:} be the sequence of zeros of A(s) = s — & *, Show that
o prelt=D
r=1']7;:;=0, 0 <<,

and therefore that the expansion of a function ¢(f) in terms of these
zeros, as obtained in §4.6, reduces to

90 = 2 ber,
=1

where

srewrﬁ

1
ettt = 71 g(ﬁ)ﬂ_"“ dty
14 ey

E t '
= Residue of [—— f gt pestimiw di1J-
his) Jo
31. Let @{s) be a meromoarphic function, and let {s.} be its set of poles.
Let g(ty ¢ £(0, 1), The Cauchy exponeniial scrics of ¢ relative to @

is > cest, where

1
et = Residue at s, of [Q(s) f gl{t)et—n dfl]-
0

Now suppoée that g is of bounded variation on (0, 1), and Q{s) =
s/(g + ¢e™). (For ¢ = —1, the Cauchy cxponentlial series is the series
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> besrt of the preeeding problem.) Then the Cauchy exponential
series of ¢ is uniformly equiconvergent with the Fourier series of ¢
in any interval strictly interior to (0, 1).

(3. Verblunsky, “On a Class of Cavehy Exponential Series," Rend. Cire. Mat. Palermo,
Ber, 2, Vol. 10, 1961, pp. 5-26.)

32. If g € L{0, 1) and the Fourier series of f is summable (C, 1) io «
at a point §, 0 < { < 1, then the Cauchy exponential series of g is
summasable (€ 1) to ¢ at ¢, provided

1 2 L]
(log;) fu [glt+8) — gl — )] dh = o(1),  v— 0+

(8. Verblunsky, op. eit.)

33. Let %(¢, A) be a characteristic function of the second-order differcntial
equalion »” + My = 0, u(0) = 0, (1) + au(l) = 0. Obtain ihe
coefficients in Fourier-type expansion

w(f) — 2 ault, A), 0 <t <1,
n=1

in two ways; first by using the Laplace transform technique given
ahove, and seeond by using the orthogonality of the characteristic
functions.

34, Using the Mellin transform, consider the expansion of the solution of
w{f) + ulat) = 0, 0 <a<l,

under suitable Initial conditions. What i1z the connection between
these expansions and the power series solution

u(t) = 2. exdt,
B=0
with ¢y = 1, 6p = —a®™D/5?

BIBLIOGRAPHY AND COMMENTS
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N. G. de Bruijn, Asymplotic Methods in Analysis, North-Hollund TPublishing Co.,
Amsterdarn, 1958,
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3. Lefschetz, Differentinl Equations: Geometric Theory, Interacience, New York, 1957,

E. Coddington aud N. Levingon, Theory of Ordinary Differential Equations, MeGraw-
Hill Book Co., Ine., New York, 1955.

R. Bellman, Siability Theory of Differential Equations, McGraw-1Iill Book Ce., Ine.,
New York, 1953,

N. Minorsky, Fniroduction to Non-linear Mechantes, Fdwards Bros., Aun Arbor, Mich,,

1947,

J. 1. Stoker, Nonlinear Vibrabions in Mechanical and Elecirical Sysiems, Interscience,

New York, 1950,

§4.6, The important point here is that the Laplace transform technique
yields a systematic method for finding the coeflicients, without the luxury
of orthogonality, The proof of Lemma 4.2 ig taken from

3. Verblunsky, “On a Class of Cauchy Exponential Series,’” Rend, Cire. Mat. Palermo,
Ser. 2, Vol. 10, 1961, pp. 5-26.

§4.7. Results of the type presented here ocour over and over in applica-
tions of probability theory and in mathematical physies in general,



CHAPTER FIVE

First-order Linear Equations of
Neutral and Advanced Type

with Constant Coefficients

5.1. Existence-Uniqueness Theorems

In this chapter, we shall develop a theory of linear differential-difference
equations of neutral or advanced type analogous to the theory in Chapters
3 and 4. The procedures to be used are for the most part similar to those
employed previously, allowing us to focus attention on the significant
differences. We shall begin by using the continuation method to establish a
fundamenial theorem on the existence and uniqueness of soluticns of a
first-order equation of neutral type,

ant’ (1) + axw' (8 — @) + bau(D) 4 bu(t — @) = f(t), @ =0, a =0
{5.1.1)

As usual, the initial condition is of the form

ul(t) = g(i), << o (5.1.2)

Theorem 5.1. Suppose that f s of class C° on [, =) and that ¢ is of class
Chon [0, w]. Then there exists one and only one function u(t) for t > 0 which
i3 continuous for ¢ > 0, which satisfies the inifial conditton in (5.1.2), and
which satisfies the equationin (5.1.1), 4n each of the infervals [ jo, ( §F + 1)w],
7 =1,2,8, -«-* This function iz of class C? on the indervals [ ju, (734 1],
F=0,1,2 ««: It is of class C' on [0, =), and satisfies the equalion in
(5.1.1) on [w, «), i and only f ¥ has o continuous derivaiive al § = w.
This s true of and only if

af’ (w — 0) + a1y’ (0) + beg{ew) + big(0) = flw). (5.1.8)

* That is, the equation is satisfied for jo < £ < {§ + 1)w, it is satisfied by right-hand
values at ¢ = jo, and it is satisfied by left-hand values st { = (§ + Lw.

139
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Suppose that f is of class Ct on [0, =} end that ¢ s of class C2 on [0, w].
Then the funcltion which satisfies the equation in (5.1.1) on [Jo, (§j + D],
J =12 3, ---, and the initial condition n (5.1.2) 45 of class C? on
Liw, (F 4+ 1wl § =0,1,2, o, If the equalion ir (5.1,3) {s sofisfied, this
Sfunetion is of class €% on [0, =) if and only if the cquation

aof” (@ = 0) + ig”(0-+) + by'(w —~ 0) + by’ (0+) = f'(w) (5.14)

s safigfied.

The funetion # singled out in the above theorem is called the conttnuous
solution of (5.1.1} and (5.1.2). Note In particular that s sclution as here
defined ueed not satisfy ihe equation at every point in the strict sense.

It is interesting to compare this theorem with Theorem 3.1, An cquation
of retarded type seems to smooth out irregularitics in the initial values —
that is, if the initial funetion is merely of class €9, then the solution is, by
Fxereise 4 of §3.4, eventually of class C* for any = for which f is of class
€=~ Om the other hand, an cquation of neutral type has no such smoothing
effcet. The solution retains the degree of regularity of its initial values,

In order to prove this theorem, we let

v(f) = f(f) — e’ {t — &) — bhu{t — w). (5.1.5)

The equation in (5.1.1) can then be written in the form
d
7 [awu(t) exp (bu/as) ] = v(t) exp (bot/ ). {6.1.6)

Bince f{{} is of class €° and g(2) is of elass C! on [0, w], #(f) is of class °
on [w, 2w]. Tt follows by juiegration that thete is a unique function w(t)
which satisfies the equation in (5.1.1) for @ < { < 2w and for which
#{w) = g(w). This function is of elass €' on [w, 2w ],* and therefore ¥(£) is of
clase €° on [20, 3w]. Clearly this process can be repeated as often as we
pleasc. This establishes the existence and unigueness of the funetion
u(2) for { > 0. The function is of class €% on [0, o}, and of elass €' on
the intervals [ juo, (j + L)ool 7 = 0, 1, 2, ---. From the equation in
{5.1.1}, we readily deduce that

alw' ((j+ Do+ 0) — o' ((§+ Do — 0)]
w gl (jo+0) —uw(Gu—0)], j=12- - (5L7)

* Recall that it is required that the one-sided derivatives cxist ab « and %, and that
these be the limils as { approaches o and 2w, respectively, of the derivative at an interior
point 2. A symbol such as w'{w + 0) therefore denotes cithor the ripht-hand derivative
or right-hand limit.
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Therefore w ig of class C' on [0, ) if and only if %'(¢) is continuous at
t = w. This is true if and only if the difference

afu'(w + 0) — u'(w — 0)] = flw) — ag'(0+) — boglw)
—bg(0+) — aw'(« — 0)

vanishes. This yields the relation in (5.1.3).
Now suppose that f is of e¢lass CTon [0, o) and thaf g is of class (2 on
[Q, w]. From {5.1.1) we have

at’ (1) = (8} — am’{t — @) — bau{f) — bl — w),
{5.1.8)
te [jo, (§+ Dwl, § =12 -

Since the right-hand member of this cquation has a continuous derivative
on [w, 2w ], u(f) 1s of class €? on [w, 207. By repeating this argument for one
interval after another, we find that (1) is of class C* on [jw, (§ 4+ 1w,
F=0,12 -+ From the equations in (5.1.7) and (5.1.8}, we have

el w”((j + Do +0) —w"{(j + e - 0]
= —mlu"(jo + 0) — w"(jo — 0) ]

(Ij_bo — biao 'y re s
T[’w(}w +0) - w(jw— 0]
Assuming that «'(¢) is continuous, we see that w () is of class P on [0, =)
if and only if +''{{) i3 continnous at { = ., This iy true if and only il the
cquation in (5.1.4) is satisfied.

Let us consider next the first-order equation of advanced type,

at' (= @) + () + bl — o) =F(8), a0, =0, (5.1.9)

gubject to an initial condition of the type in (5.1.2). We shall first extend
our definition of the classes €% as follows.

Definition. A funciion f s said {6 be of class C® on (4, f.) if {1 possesses
confrnuous derivatives of all erders on the open interval § < & < . If 4s
satd fo be of class C° on [h, &) #f ¥ is of class C= on (, ) and if for
k=0,1,2 «+«, it has a right-hand kih derivative at t, and the funciion f® ()
defined over &y < & < ty by these values is continuous from the right at t,. Tt is
of elass ('™ on (f, ] if these statements are valid when “‘right”’ is replaced by
Sleft' and “H7 by “B.7 I ds of class CF on [h, to] ©f i 48 of class O on
[51, fg) and R (i;[, 32]

We shall now prove the following theorem.
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Theorem 5.2. Suppose that f s of class C= on [0, =) and that g ¢s of class
C= on [0, w ). Then there exists one and only one function w(t) which satisfies
the initiol condition in (5.1.2) and which safisfies the equolion fn (5.1.9)
tn each of the intervals [ ju, (§ + V)], 7 = 1,2, 8, - --. This funclion is of
class C= on each of the intervals [Joo, {(j + VDwl, 7 =0, 1,2, »+-. Hisof
class €= on [0, =), and satisfies the equation in (5.1.9) on [w, =), of it is
continuous and has continuous derivatives of oll orders at t = . This is frue
if and only if all the relations

a0 (0+) + bg® (e — 0) + bg®(0+) =[0(e), k=012 -,

{5.1.10)
are salisfied,
In order to prove this theorem, we write the equation in {5.1.9) in the
form
bou(t) = »(i}, (5.1.11)
where
() =f{t) — aw’'(t — @) — bhu{i — ). (5.1.12)

Bince gis C*on [0, @], »(¢) is C=on [w, 2w . Hence, the equation in (5.1.11)
determines a unique function %(t) over [w, 2w], and this function is of
class € on [w, 20]. It then follows that »(f) is of class C= on [2w, 3w], and
g0 on. From the equation in (5.1.9), we have

bo[u® ((§ + Do + 0) — u®((j + Do — 0)]
= —a[u*#D (G + 0) — u( ju — 0)]
— B[u®(jo + 0) — uP (o —0)], F=1,23 -
E=0,1,2 -

From this equation we see that if »® (¢) is continuous at { = w for all k,
then it is continuous at ¢ = 2w, 3w, + -+, for all & The relations in (5.1.10),
obtained from (5.1.9) and (5.1.2}, are the conditions that 4® (f) be con-
tinuouwsat ¢ = w, &k =0,1,2, «»»,

If the initial function g is mercly assumed to be of class C¥ on [0, ],
for a fixed N, then ¢(1) is of class C¥1on [@, 20 ] and %(¢) is of class CV!
on [w, 2w]. The continuation process cannot in this situation be repeated
arbitrarily often, and the existence of u(t) can be established only for the
interval [0, (N 4+ 1)w]. Thus it appears that an equation of advanced
tvpe tends to destroy the regularity of an initial function, rather than to
smooth irregularities as was done by an equation of retarded type. It
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is impossible for 4 solution* of an equation of advanced type to extend to
+ % unless its initial values comprise a funetion of class €.

Of the threc classes of equations we have distinguished, equations of
retarded type are by far the most important for applications, beeause
systems with feedback subject to a time delay are usually described by
them. For this reason, we shall devote more attention to such equations
than to others. However, it is entirely possible to encounter the other types
in applications. For example, in a dynamical system the speed at time ¢
might be a function not only of the position at some prior time ¢ — w but
aleo of the speed or acceleration at time i — . In such a case, the governing
equation might be of neutral or advanced type.

EXERCISES

1. Prove that if fis of elass PCPon [0, @) and if ¢ is of elass PCton [0, o),
there exists one and only one funetion w(#) for ¢ > 0 which is continuous
fort > 0, of class PC on [0, ), which satisfies the initial condition
in (5.1.2) and which satisfies the cquation in (5.1.1) for { > @ in the
sense that at a discontinuity point of

e(f) = JI) — @’ (T — ) — bl — w),
the right-hand values satisfy (5.1.1) and the left-hand wvalues satisfy
(5.1.1).

2. What is ihe analogue of Theorem 5.2 if f is of class PC= on [0, =) and
g is of class PC= on [0, «]7?

5.2. Solution by Exponentials and by Definite Integrals: Equations of
Neutral Type

The considerations of §3.5, relating to exponential golutions, remain
valid for equations of neutral or advanced type. The linear operator now
has the form

L{u) = aw/(t) + a'(t — w) + bou(f) + bu(t — o), {(5.2.1)
and the characteristic function is now
h(s) = as + ase™ + by -+ b (5.2.2)

The statements and proofs of Theorems 3.2 and 3.3 arc unaltered, as is the
statement of Theorerm 3.4, The proof of the last-mentioned theorem is left
as an exercise.

* #3olution”™ here is meant in the sense implied by Theorem 5.2. Also see Exercise 2
below.
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For cquations of neutral type, it is again possible to obtain an exponential
bound on the magnitude of solutions, as was done for equations of retarded
type in §3.6. The proof cannot now rest on Lemma 3.1; two demonstrations
are outlined in Exercises 5 and 16 below. No such bound can exist for equa-
tions of advanced fype, since such equations have characterisiic roots of
arbitrarily large real part. It follows that the Laplace transform method
uged in Chapier 3 for deriving a solution in the form of a definite integral
can be used for equations of neutral type but not for equations of advauced
type. We shall therefore restrict attention, in the next four sections, to the
former. We shall find that the theory is almost identical to that developed
in Chapters 3 and 4, and shall therefore leave the working out of many
details to the reader.

Later we shall present a modilicd approach applieable to equations of
advanced type.

We now apply to the equation L(u) = f the transform teehnique of
§3.7. Using the relations

f wi{thet dt = —g(w)e + Sf w(t)e st di,

w

f ult — et dl = e f w(tye~ di + e f g dl,  (52.3)
" i)

“w

[Twi - et = —gew + s [Tutt — e a

]

we obtain -
ws) [ whye s dt = po(s) + oa), (5.2.4)
where w

pofs) = agg(w)e™ 4+ amg(0)e — (as + bl)e—"’*[ gityetdi,  (5.2.5)
0

0s) = [ jea (5.26)

Or, instead of the first two relutions in (5.2.3), we can use
JTwwerd = —g@e s [Tutgerra s [ g a
w )] 1]

. . (5.27)
f wlt — wet di = e~mf ult) e~ dt,
m ]
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and obtain

h(s) [ﬂ T w@e dt = pls) + q(s), (5.2.8)

where
p(s) = aggle)e + a;g(0)e 4 (as + bo) f g(yet dt. (5.2.9)
a

In the neutral case, there is no partieular advantage in using po{s) rather

than p{s}), as there was in the retarded case, since they contain the same

power of s, and since we must in any case assutne that g is of clags C'[0, »7].
Integration by puarts shows that

puls) = ag(w)e™™ + mg(w)e e — go f Lag'(2) + Big(t) Jet dt,
0 (5.2.10)

]

p(s) = ag(0} + aig(0)e + f i Lag’ () + bog(t) Je~ di. (5.2.11)

We now deduce the following theorem.

Theorem 5.3. Suppose that fis of class C° on [0, =) and that ¢ is of class
C1oon [0, w]. Let u(i) be the continuous solution of the equation of neuiral
type (aoa; # 03,

L{w) = ant’ (1) + e’ (f — w) 4+ bou(f) + bt — w) = f{i),

Jo <t < (j+ e, i=1,2/8, «--, (5.2.12)

with iniliel condition
w(f) =g}, 0=LfLw (5.2.13)

Suppose further that
7 < ae, ¢20, >0 >0 (5214

Then for any sufficiently large real number ¢,
u(t) = f ek (s) [po(s) + g(s}1ds, > w, (5215)
(e

or

u(f) = f ekl (s)[p(s) + q(s}]ds, ©>0, (5.2.16)

(e}

where po, B, and ¢ are defined above,
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The use of the Laplace inversion formula is justified by the fact Lhat
(i) is continuous for £ > 0, and of class ¢ on cach interval [ jo, (§ + D],
J=10,1,2 -+ and is therefore contiunous and of bounded variation on
any finjte interval to the right of £ = 0. We have again assumed as is proved
in Chapter 12 that all characteristic roots lie in a left half-plane.

We shall now proceed, as in §3.9, to obtain a representation of the solu-
tion by means of a real definite integral.

Definition. Lef k(1) be the unique function with these properiics:

(a) k(f) =0, ¢<0;

(b) k{0) = as;

() the function a(t) + ak(t — w) isof class C2on [0, w);
(d) k(1) salisfies the equation of neutral type (e = 0),

L{k) = ad’(t) + ab’(f — @) + bok(t) + bkl — @) = 0, (5.2.17)
on the indervals [fo, (7 + 1], F=012 ...

The existence and uniqueness of this function &(¢) can be proved by a
continuation argument, asg in §5.1, taking [ —w, 0] as the initial interval.
This function is of class C1on [jo, (j + 1)w], 7 =0, 1,2, +»+. From the
condition (¢} it appears that k(1) may have jump discentinuities at the
points w, 2w, +++, and that

alk((j+ Do+ 0) —k((j+ Do — 0)]
= —afk(jo+0) —k(jo— 0)], j=0,1,2 -+ (52.18)

It can be shown that k(¢} is of exponential order as ¢ — « ({sec Exercise
10 below}. Hence we can multiply the equation in (5.2.17) by e, inte-
grate over [0, =), and thus obtain a fornula for the transform of k(t).
In performing the usual integrations by parts, we have to exercise some
care because of the discontinuities in k(#). Since ak(t) + ak(t — w) is
continuous, we have

fw Ladk(D) + @k’ (t — w)Je—t dt
1]

i

—[adk(0) + ak(~w)] + s fm Lak(t) + adk(t — w)Jett dt
0

"

—1 + [aws + a5e~] fm Eityet dt,

a
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Therefore we get
f E{tye =t dt = R 1(s), Refs) > c. (5.2.19)
(1]

Since &(f) hag bounded left and right derivatives at every point, the In-
veralon Theorem of §1.9 yields®

E(@) = f ehm1(s) ds, it >0, i # juw, i=12 -+ (5220)
e}

The derivation of {(5.2.19) and (5.2.20) can also be effected by a method

analoegous to that in Fxercise 8, §3.9, We shall demonstrate this in a more

general case in Chapter 6.

The convolution theorem can now be used {o obtain from the equa-
tiong in {5.2.15) or (3.2.16) a rcpresentation of u(t) as a real definite
integral. Since the procedure is the same as in §3.9, we shall omit the
details and shall proceed at once to the statement of the result. As hefore,
we omit the hypothesis in (5.2.14) and present an independent verification
of the result,

Theorem 5.4. Suppase that f is of class C° on [0, =) and that g s of class
Cv on [0, w]. Let ult) be the continuous solution of the eguation in {5.2.12)
with the indtial conditions in (5.2.13). Then for t > o,

u(t) = [ak(l — ) + @b — 20) Ig(w)

— [ ag®) + g et — b~ ) dn

+ [ ke — 1w an 5221)

Also, for £ > 0,
w(t) = [ak(t) + ak(t — w) Jg(0)

+ f“' [awg' () + bog{t) ket — ) ds

+ f ‘ FDE(E — &) db (5.2.22)

* At points ¢ = jw, the integral converges to [k{(t+) + k(t—)]/2.
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The verification of this theorem is more complicated than it was for
equations of retarded type, because of the discontinuities of k{t}, and we
shall sketch the details in a series of exercises helow.

Representations of the derivative #'(t) by contour integrals and definite
integrals can be deduced somewhat as in the problems in §3.7 and §3.9.
Refer to Exercise 15 below.

EXERCISES
1, Bhow that
h(3) = ap — awse™ + () — bw)es,
AR (g) = (—1)*e=[guwbs + (o' — koot )], B =23 -

2. Show that the cquation {3.5.6) is valid if L and k ure defined as in the
present section, and prove that Theorem 3.4 remains valid.

3. Istablish the walidity of operalor symbolism, as in Ixercizses 1-6,
§3.5, for equations of neutral type of the form

at’ (1 + @) + e’ (1) + bou{t + w) + bu(t) = f{1).

4. Use the operator methods of the preceding problem to calculate &
particular inlegral ¢ 1{(D}f(¢) of each of the following differential-
difference equations:

(a) w'(t + 1) — 2u(t 4+ 1) + «'(t) — 2u(d
() «'(t 4+ 1) — 2u{t + 1) + «'(t) — 2u(l)

et

H

It

e,

5, Assume that
| F(£) | < mecet, t> 0,
and let
m = max |u(f) {.

[l bl

Show by induction on j that there are positive constants ¢; and o4 such
that the solution of the equation in (5.2.12) satisfies

lu(®) | < esler + ment,  jo <t < {(j+ Do, J=012 -
6. Let the hypotheses of Theorem 5.3 be satisfied, and let
m = max [ u(®) | + |/ |1

<ige
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Using the equation
a’ (1) = () — aw’{t — w) — boul(t) — hu(t — w),

and the result of Ixercise 3, show that there are positive constants
s and ¢, depending only on ¢; and the coefficients in the cgquation,
such that

| w8} | < esfer + m)ess, t >0,
|u’('l’) | < ex{es + myemsy, gw <t < (j4+ e,
j = 0! I, 2: Tt

. Buppose that fis of elass C'on [0, =) and that g is of class C! on

[0, w], and that
e [ feae, 120, ¢=01-1—-1
Let
i
m = max 2 | g@() |-
0<tcw =D

Show that there are constants ¢r and ¢s, depending only on ¢; and the
coefficients in the equation, such that

L9 (0) | < orles + myest, 5= 0,1,2, -+, ]
Jo << (§+ Do, §=0,12 2.

Establish analogues of the results in Exereiscs 1, 2, and 3 of §3.6 for
equations of nentral type.

. Using the result in Exercise 1 of §3.1, show that Theorem 5.3 remains

valid if fis of class PC"an [0, =) and g is of class PC7 on [0, o]

Show that k{f) is of exponential order as { — o, Ilini: From the
equation in (5.2.17) we have

%3 [agk(t) oxp (g)] = —exp [(E — E)t] % [alk(t — w) exp (Z—lj)],

t> 0

Suppose ¢ is not a multiple of w and let &N be the integer such that
{ — w < Nw < & Using the relation in (5.2.18), we find

: a1y’ 1 .
b+ 0) — kG = 0) = =(2)o = G012

o o
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By integrating the first equation from 0 to ¢, and using an integration
by parts in the right-hand member, we can therefore deduce that

[/71A byt
aule (1) exp (—) < || Bl — @) | exp (—)
0]

iy

¢ bt
f oxp (2) VE(L — w) | di

0 @
bty &
exp (—o) >

L1F)) =1

boy — aoln

ag

Gl2l
1___

)

Gy

+

Since the sum is of exponential order of Increase at most, we can now
use an inductive arpument to show that there are positive constants
es and ey for which

|k(8) | < caesr, ¢ > 0.

11. We now wish to sketeh the proof of Theorem 5.4. It suffices to establish
the relation in (5.2.22). By property (c), the equation in (5.2.22)
defines a eontinuous function «(f) for { > 0. From property (a),
u(0) = g({1). Let us suppose that { is not & multiple of w. Let N = N (¢}
be the integer such that § — « < Nw < {, N = 0. Show that k{f — ;) is
discontinuous at §; = £ — Ne, ¢ — (N — 1), cte., and hence that

d o
- f Caug' () + bag(te) Jh(t ~ b db

= [ o) + ho (@)W e ~ 1) d
0

+ [’ (i — Now) + bog(t — Nw) Jéx, £ > 0,
and that

d ] ]
Eﬂfwml)k(w b dh = f FUDR (t — 1) dt

N—1

+ Dt —jw)d, >0,
=0
where
3 = k(jo +) ~Ek(jo—), j=101---, N

{For N = 0, interpret the empty sum as zero.) Deduce a formula for
w' (£).
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12. Show that
u{f — w} = [ah{t — @) + ak(t — 2w) g(0)
+ fﬂ [aug’(tl) + bog(tl)]k(t — W — tl) dtl
[1]
+ f FUE( — 4 — w) dh,
and that
Wt — @) = [aok' (i — &) + ab’(l — 2) Tg(0)
+ [ Lo’ ) + bog() Wt — @ — 1) dty
0

+ [awg’(t — Nw) + bog(t — Nw) 18y
N1

T f FEOE (F — 6 — @) db + 2 J{1 — ju) by,

=1
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1> w,

P> w.

13. Combining the results in Excrcises 11 and 12, find for £ > «, { not a
multiple of «, an expression for L{u(t)). Deduce from {c) of the
definition of k(¢) that aid; + ab;q = 0,7 = 1, -+, N — 1, and there-

fore that
L{u()) = jlt), £ > w, i # 7.

14. Show that for 0 < { < w the formula in {5.2.22) yields w(£) = g(&}.
This with the result of Exercise 13 establishes that the equation in
{5.2.22} defines the desired soluiion as asserted in Theorem 5.4, Hind:

For 0 < ¢ < w, ak'(¢) + bok(t) = Oand k(¢ — ) = 0.

15. Multiply the equation in (5.2.12) by e¢—* and integrate over (w, «).

TUsing the relations in (5.2.3), deduce the formulas

[“‘ wit)ewtdt = B (s)[p:(s) +4q(9)] =12,

oy

where
Xy = i g = 0,
pi(8) = —[heg(w) + bg{0) Je~= — {as + bl)c—“ﬂf g (tyeet dt,
1]
o) = s [ fed,

Pa(s) = —bg(0)e e — bog{w)e™ + (ass + bo) f g'{tye du.
o
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16.

17.

18.
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Deduee from this the formula

W@y = [ e pls) + g Ids, 0> 0,
{

€l

for t not a multiple of w, provided fis €0, <} and g is C?[0, w»].
Finally, obtain a formula for «'(f) in terms of definite integrals, as in
Theorem 5.4. ' '

Buppose that « and f are nonnegative continuous funetions for 0 < ¢ < ¥
and that ¢; 2 0,2 > 0, ¢; = 0, @ = 0. Assume that

ul(l) < e + ft JE) dh + el —w) + o f‘ u{h — ) diy,

w <t < .
Define

[3
g(t) = gt [m + f f(t) exp (—edy) dt;], 0<i<y,
5
where m = max |u(f) |

DLt

and where ¢; and rg are chosen sufficiently large. Using the principle
of Exercise 4, §3.6, show that u(f) < g(!),0 <1 £ v. Deduce that a
continucus solution of the equation in (5.2.12) satisfies

t
| u(t) | < eieoet [m + f J(t) exp (—eddy) dil]: 0<t <y

b3

Let w(1) be the unique function defined by the following conditions:
{a) w{i) =0, i <0

(b} w(f) is of elass C%on {— =, +-=);

{e) oo’ (&) + e’ (t — @) + baw(t) + bpe{t — @) = 0, t <1,
1, >0

Show that w'(t) = k{{},t = ne,n =0, 1,2, «+-.

Fxercises 5 (or 16} and 6 imply the continuous dependence of ()
on ¢(#) and of #'() on ¢(¢) and ¢’(¢). This can also be established from
the integral representations we have obtained, ¥rom the equation in
{5.2.22) it is evident that

sup lu@®) | < ea(T) sup [[¢® [+ g |1

0gtgT e
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By inlegrating by parts in (5.2.22), show that
w(f) = &{t — @)[ag(0) + ag(w)]
+ awg(t — Nw)[£{No+) — E(Nw—)]

+ fw [{Iok’(t — i]_) + bok(i — t_[) ]g(tl) dth

No<ti< N+ 1o, N=012: -

and thercfore that
sup ju(t) | < eo(T)[sup fg(d) ],
BT Dt

for any T > 0. Using the expression for »'(1) obtained in Exervisc I1,
show that

sup [« () | < es(T) sup [|g(&) | + |¢'(t) |

bt T I i

5.3. Series Expansions: Equations of Neutral Type

Series expansions of solutions of equations of neutral type can be found
with almost the same procedure previously used for equalions of retarded
type. The distribution of the characteristic roots will first be described. The
characteristic function is

h(s) = aws + mse ™ + by - be
{5.3.1)

IE

as[1 + a(s) ] + awse[1 4 e(s}],

where &,(s) and e(s) approach zero as | s | — =. It is therefore reasonable
to suppose that the zeros of A{s) and the zeros of

aps + mse™ = s{ay + @) (5.3.2)
are close together for | s | large. The zeros of the function in (5.3.2}, ex-
cluding & = 0, satisfy v

Re(s) = o log | ar/ae . (5.3.3)
It is, in fact, proved in Chapter 12 that the zeros of A(s) lie asymptotically

along the vertical line defined in (5.3.3). More precisely, all zeres for which
!¢ | is sufficiently large have the form

1
§ == {log

e}

28]

C2 ’ i €3
+ o + ofk '2JJ + - [cl + 27k + B + o(k--l)], (5.3.4)

i

Gul
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where k represents any large positive integer, ¢ 1s « or 0 according as auae!
is posilive or negative, and ¢; and ¢; are constants depending on aq, ay, b, by,
and w. Once again there exists a set of closed contours C; (£ = 1,2, »++} of
the type described in §4.1. Also, it is still true that in a region in which s is
uniformly beunded from the set of characteristic roots, the magnitude of
h{s) is at least as greaf as a constant times the magnitude of any of its
terms. In particular, for s in such a region,

Ei(s) = O(ls|™) if @ 5 0. (5.3.5)

Suppose that g 1s of class € on [0, w ] and let »(£) be the continuous solu-
tion of the equations

a8 + 't — w) 4 bl + bhull — w) =0,

(5.3.6)
Jo <t <{j+ Do, §=1,2 v,
u(t) =g}, 0<i<uw (5.3.7)
By Theorem 5.3,
ulty = f e h sy pis) ds, > A} (5.3.8)

(e}

for ¢ sufficiently large, where p(s) can be put in the form in (5.2.11},

w(s) = ag(0) + ay(0)e + f Caog’(h) - Beg(t) Jetr dhu.
e (5.3.9)
The conlour in (5.3.8) can be shifled {o any line Re(s) = ¢ such that all
characteristic roots s, satisfy Re(s) £ e < e, since integrals over hori-
zontal crossbars can be shown 1o approach zero with the aid of (5.3.5).
We shall now show that

ljmf e*h~(s)p(s) ds = 0, 1> 10, (5.3.10)

fweon Y0~
uniformly for 0 < &, < { < &, or for 0 < i <t < =« if ¢ < 0, from which
it will follow as in §4.2 that

u(f) = lim Y, e*'p (1), (> 0. (5.3.11)

I grelly

To prove the relation in (5.3.10), we recall that the characteristic function
has at least the order of magnitude of each of its terms, in a region uni-
formly bounded from the characteristic roots. Hence

| () | 2 o1 | se== |, s < L {5.3.12)
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From this we can deduce that

fim f leshoi(s)| [ds| =0, &> —a, (5.3.13)
jroa -
boundedly in —w <t < & and uniformly in —a < & < £ < &', by splitting
the integral inte two as in the proof of the relation in (4.2.13} of Chapter4.
Hence

lim f ek (8) [ag(0) + mg(Q)e=Tds =0, ¢>0. (53.14)

Iww ¥ Lf—
Moreover, by (5.3.13), we have
| p(sYes | = O(1), Rels) < e (5.3.15)

From (35.3.14) and (5.3.158) we deduce (5.3.10}, and therefore (5.3.11).
As in treating the equation of retarded type, we must also consider the
uniformity of convergence of the integral

o i
lim f et ki (s) pls) ds. (5.3.16)
Let M denote the set of real parts of the zeros of the characteristic function
h{s), together with the limit points of these real parts. Assume that ¢ § M.
The integral in (5.3.16) can be written as

g (0) f el 1(s) ds + ag(0) f( exp [{t — w)sTh1(s) ds
i1

{e B
+]

e“}rl(s}f Cang’ (4 + bug() Je—t dli ds. (5.3.17)
1€ 0

It is proved in Theorem 12,19, by methods more advanced than we wigh to
introduce at the moment, that the integral

E(fy = f e*h~1(s) ds, o & M, (5.3.18)
(e}
converges for all {, boundedly on any finite interval, and uniformly on any
finite interval 0 << £ < ¢t < & except in the neighborhood of points t = jo,
J=1,2, «++. By Theorem 12.20, the integral

J

{e)

eh=1(s) fo L) + bg(t) e~ dhds  (5.5.19)
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is uniformly convergent for ¢ in any finite interval, and is O(e) ast — =,
Combining the results on the integrals in {5.3.18) and (5.3.19) will yield a
result on that in {5.3.16). Thiz can bhe improved, however, by noting that
h(s) — bn - bl e

s

@+ e = (5.3.200

Hence we can replace the expression in (5.3.17) hy

¢ (0) [f PR — [ enigs) E’“—-F:"ids]

cy § 3]

+)

(e}

eh1(s) f Coog'(t) + bog(h) Jetrddfy ds. (5.3.21)
o

The integrals

ers - ets
/ as, [ “as, (5.3.22)
() 5}3(8) ey

conhverge uniformly for ¢ in any finite inferval {¢f. Theorem 12.19), ex-
cluding ¢ = 0 for the latter, and are O(e®) as { — =, Thus we can con-
clude that the integral in (5.3.18) has these properties.

The proof of the representation in (5.2.11) 1s thus complete, and the
uniformity properties determined. This representation, in turn, ecan be
replaced by an ordinary infinite series. There are at most a finite number of
real characteristic roots. The nonreal roots oecur in conjugate pairs, and
can be put in order of increasing absolute value or of lucreasing imaginary
parts {but no longer of decreasing real parts), with the one of a conjugate
pair having a positive imaginary part being put before the other, say. We
can therefore summarize our conclusions in the following theorem.

Theorem 5.5. Let u(t) be the continuous solution of the homogeneous equa-
tion of newlral type fn (5.3.0) with the initial condition in (5.3.7). Assume
that g is C'[0, w . Let h(s) denote the characterisiic function, given in (5.3.1),
Iet {C4 denote the usual sequence of confours, and lef p(s) be defined as in
(5.3.9). Then:

(a) Lef M denole the set of real parls of the zeros of h(s), together with their
Umil points. If ¢ § .M, the infegral

f esh1(s) p(s) ds
€]

converges uniformly for t in any finite inferval, except near { = 0,
and is O(e™*) we &t — oo, If ¢ < 0, it converges uniformly for £ > (.
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(b} If ¢ exceeds the upper bound of the real paris of the characleristic roots,

w(®) = [ eni @l ds, 1> 0.
(ed
(e) Leiep, (1) denote the residue of e*h=1(8) p(s) at a characleristic roof s,.
Then
u(t) =lim 2 evip(8), >0 (5.3.23)

A

If the roots s, are arranged in order of increasing absolute value or tn-
creasing imaginary parls, this relation lakes the form

w(t) = 3 ertp ), £ 0. (5.3.24)

=1

The function p.(f) 15 a polynominl of degree less than the multiplicity
of the rool 5, The series converges uniformly in any fintle inferval
G <ty <t <t It converges uniformly for § > & > O if the upper
bound of the real paris of the characleristic rools is negolive.

EXERCISE

Let w () be a solution of the cquation of neutral type {5.3.6). Suppose
that u is of class C¥+0, «) for some integer N > 0. Then by differ-
entiating (5.3.6) N times, show that the function «'*¥(f) satisfies the
game equation for all # > w. Also, from (5.3.7), we obtain ™ (f) = g™ ({),
0 < i < w, where g% 1s of class ("[0, ] Deduee from Theorem 5.5 that

utNH gy = f e (s} pw (s) ds, t> 0,
&

where

pu(s) = (a0 + ae=)g"(0) + f Lag ™0 {11) + bog® (&) Je~** i,

0

and that

<)

WM (E) = 3 erp(l), >0,

F==],

where e~'p,x(£) is the residue at s, of ¢k '(s)py(s). Deduce the same
result, for N = 1, from Exercise 15 of §5.2.
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5.4, Asymptotic Behavior and Stability: Equations of Neutral Type

We should like to derive some results coneerning the asymplotic nature
of the solutions of the homogeneous equation of neutral type

a’ () + aw'{t — o) + bt} + bu{i — w) =0, agy # 0. (5.4.1)

Bince the real parts of the characteristic roots now have a limit point
greater than — oo, this is a more diffieult matter than it was [or equations
of retarded type. For example, we cannot always use the first few terms in
the series in (5.3.24) to provide a good approximation to u(f) for large &
Tudeed, if the least upper bound of the real parts of the eharacteristic roots
18 an acceumulation point of these real parts, then no finite set of the terms
in (5.3.21) is likely to yield a good approximation. The general question
of the asymptotic nature of solutions of equations of neutral type has as yet
been little investigated, and we shall be content here to give a condition
under which all soluiions approach zero as § — .
From Theorem 5.5 we have.

ulty = f e hi(s)p(s) ds, &> 0, (5.4.2)
(c}

provided ¢ exceeds the upper bound of the real parts of the characteristic
roots. Proceeding exactly as in §4.3, we obiain for ¢ > 0

w(f) = lim [f eh~1{s)p(s) ds + > e”"‘;p,(t):!, (5.4.3)
jnca {e3¥) epel i Relar)=al
where the integral is over the segment of the line Re(s) = ¢, ¢ < ¢

¢’ & M, which lies within €. The integral over ¢ can be written ag in
(5.3.17), and its magnitude estimated by use of Theorems 12.19% and 12.20.
It is found that it is O(e”!), where the implied constant depends on the
magnitude of g and ¢’ over the initial interval. Thus we obiain the following
analogue of Theorem 4.3.

Theorem 5.6. Suppose thal g 78 of elass CU0, w], and let w(f) be the con-
tinuous solution of the equation of neutral type in (5.4.1), with the initial con-
dition u (&) = g(#),0 < ¢ < w. Let

m, = max [|g(&) | + [g'(8) |]. (5.4.4)
0ige

Let M denole the set of real parts of the characleristic vouts, together with ull
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their timil poinis. Then for any ¢, e § M, there is a positive number ¢, inde-
pendent of { and g, such that

| w(t) — lm 2 e, (1) | < evmge®, >0, (5.4.5)
f—eo0
where the swm s {oken over all characleristic rools s, within the confour C
and to the right of the line Re(s) = c.
If the upper bound of real parts of the characteristic roots is negative,
we can take ¢ < 0 in Theorem 5.5. Then

w(®) = [ ehi@p(s) ds = 0() = o), 1 .
[©}
Thus we have Lhe following corollary, In which we restrict attention to the
clags S of continuous sclutions which are of class C! on an interval of
length o, say [0, «].

Corollary, Constder the neutral equotion in (5.4.1). A sufficient condition
in order that all solutions of the class § approach zero as t — oo is that the
least upper bound of the real parts of the characteristic rools be negative.

Tt is, of course, necessary that all roots have negative real parts, and it
can be shown that this is necesgary and sufficient for the sealar equation
in (5.4.1). Sec §6.8 for further diseussion.

5.5. Other Expansions for Solutions of Equetions of Neviral Type

The resuliz of §4.5 and §4.6 can be extended without difficulty to equa-
tions of neufral type. In fact, we can obtain a Fourler-type expansion
by direet application of Theorem 5.5. The result can be stated as follows,
and is illystrated in Exercise 1 below.

Theorem 5.7. Let g(f) be a given funection of class C'0, w, and let h{s) be
a given, funetion of the form

k{s) = as + arse™* + by + big™, aa; # 0. (5.5.1)
Define p(s} asin (0.3.9), and let esrp, (1) denote the regidue of e*h1(8)p(e) at

a choracteristic rool 8,. Let the roots &, be arranged in order of increasing abso-
lute values or tncreasing imaginary parts. Then for 0 < 1 < w,

@

gty = 2 ew'p(1). (5.5.2)

=1

The series converges uniformly tn gny subinterval.
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Expansions analogous to those in §4.7, using the Exponential Shift
Theorem, are also possible for equations of neutral type. The process is
illustrated in Exercise 2,

EXERCISES

I. Let g(#) be of clags C1[0, w]), and let {z,} denote the sequence of roots of
cos 2 -+ az sin 2 = 0 {where a is a complex constant}. Find a condition
on ¢ under which all roots are simple, and assuming this eondition
satisfied, expand g(¢} in a series of the form

gh = Zareizrt‘

=L
Hint: Letting cos 2 = {(g® 4 ¢%)/2, sin 2 = {e¢®* — e*)/2¢, and
8 = fz, we can write the equation for the roots in the form
as — age™@ — 1 — ¢ = (.
The ecorresponding diflerential-difference equation is
auw'(t) — e’ (i — 2) — w(t) —ul(t — 2) =0.
2. Consider the differential-difference equation
W) —w(f—1) +bu(t— 1)y =0
with initia} condition w(#) = 1for 0 < ¢ < 1. Show that the continuous
solution is given by

uw(f) = by(f), N<t<N-+1,
where

13 . 2\ t:i
() = X 0w ()5 w=012
| 3l

Hint: Show that

o & — b n

= B8

et Su:l
find the inverse transform of (s — &)"s!, and use the exponential
shift theorem.

5.6. Equations of Advanced Type

As we have already pointed out, it is not possible to carry through the
previcus theory for equations of advanced type, since the characteristic
roots of such equations have arbitrarily large real paris, This shows that
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the solulions are not, in general, of exponential order of growth, and there-
fore that the Laplace integrals will be divergent. However, it is still possible
to obtain an expausion of any suitably regular solution in a series of ex-
ponentials. The method utilizes the finite Laplace transform, somctimes
called the Fuler-Laplace transform, and is equally applicable to equations
of retarded, neutral, or advanced type. This mcthod will be explained in
detail in §6.10, in connection with the eguation

2 2 aquti (b — w) = f{D),
=0 =0
of which the first-order equation of advanced type,
o' (§ — w) 4 b () + hu(t — @) = 0,

18 & speeial ease,

Miscellanecus Exercises and Research Problems

1. In the equaiion of advanced type
w(t) +ult) —u(t+1) =0
make the formal substitution
W(t) = Ault) — B + JA%(l) — -,

and show ihat the resulting equation is satisfied if A% (f}) = 0. The most
general solution of the latter equation is u(t) = (1) + g(&), where f
and g are arbiirary functions of period 1. Hence find a solution of the
original equation in the form w (¢} = of + g{f).

(8. D. Poisson, “Mémoire sur les équations aux différences mélées,” J. de UEeole Poly-
technigue, Vol. 8, Cakder 13, 1806, pp. 126-147.)

2. Show that the trivial zolution of #/(1) + w{f + 8 = 0 is unstable if
& > 0, no rnatter how small & may be,
3. Show that the Bruwzer series

<~

u(®) = 2

=0 ﬂ!

alﬂ

(t + neo)?

converges if [ a | < (e |w{)! and represents a solution of

w' (1) = au(t + w).
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4. Under what conditions is the Bruwier series

=)

A
u®) = 25— (t + nw)"

n=l ?’LI

a solution of

W (@) + au®D(t 4+ w) + e + au(l + ko) = 07

(L. Bruwier, "“Sur I'4quation fonetionclle #iMz) + my™ Mz 4+ ¢ -+
guay(z + (n — L) -+ awylz + ne) = 0,7 Comples Rendus du Congrés Na-
tional des Sctences, Bruxelles, 1930, 1931, pp. 91-97; “Sur une équstion aux
dérivéces of aux différences mélées,” Mathesis, Vol. 47, 1933, pp. 96-105.}

5. Show that the series

11 a“
u(t) = 2. — (t + na)",
n=(} nI
where econvergent, is equal to
es!
1 — ws

where s 1s the root of the characteristic equation 8 = ae*” of smallest
absolute value.

(0. Perron, “Uber Bruwiersche Reihen,” Math. Z., Vol. 45, 1939, pp. 127-141.)

6. Use the Mellin transform and inversion (ef. Miscellaneous Exercises
and Research Problems in Chapter 1} to solve the integral equation

Fiz) =e*+4+a fm e F(u) du.
1]

Discuss the representation of F(x) by a series of residues.

(C. Fox, "“Applications of Mellin’s Transformation to Integral Equations,” Proc.
London Math. Sec., Ser. 2, Vol. 38, pp. 495-302.)

7. Study the equation
n d n &
11 (— + a,c) flz) = (H xk) f flz + ) dH@), >0, X>0,
x<1 M bl ]

subject to the condition that lim,..., f{z) exist ({inite).

(8. Karlin and (. Szegd, “On Certain Differential-integral Equations,” Math. Z.,
Vol. 72, 1959-1960, pp. 205-228.)
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8. Consider the equation of advaneed type (5.1.9), Suppose that f is of
class C¥—1 and ¢ is of class %[0, w]. Let

N
max 3 | ¢? () |,

ULtdw §=0

Ifo | €ea, i=01,---¥N—-1, 0£t< N+ Do

il

"

Show thal there is a number ¢, independent of f and g, such that
|u@(@) | < e +m), =01, N =141,
on the interval (! — Do < § < Jo.



CHAPTER SIX

Linear Systems of Differential-
Difference Equations with

Constant Coefficients

6.1. Introduction

In thig chapter, we shall show that, with the aid of an appropriate
notation, it is a fairly easy matter to extend most of the work in Chapters
3, 4, and 5 to much more general cquations such as the equation

2D et~ wi) = F(t), (6.1.1)
= J—0
where m and n are positive integers, where 0 = wy < @1 < -+ < @, and
where f(§) is a given function, Still more general is the linear syséem of
equations

33 anu (= @) + 2 3 bawuslt — ) = filt),

= j=1 =0 =1
k=1,2 ¢, m, (6.1.2)

involving » unknown functions (£}, -« -, u.{¢}, and their first derivatives.
Indeed, we shall show that the equation in (6.1.1) can be (ransformed into
a gystem which 1s of the type in (6.1.2). To do this, we define new variables
t1, + e, v, by means of the relations v; (8 = w9 {) (7=0,1,+++, 2 — 1}.
Then the equation in (6.1.1} is equivalent to the system

n'(6) — n() =0,

I

b (D) = w(t) =0,
Do ans (t — w) F 2o it — wi) = f(8).
i=0 =0 =1

We see that this system is a special cage of that in (6.1.2).

164
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The present chapter will be devoted to systems of the form in (6.1.2),
and the methods used will for the most part be those already introduced.
The study will be greatly facilitated, however, by the use of the notaiion
of veclor and matrix theory, just as is the study of systems of ordinary
differential equations.

In the final part of the chapter, we discuss the use of the finite Lapluce
transform, an integral of the form J? ¢~*f(#) dt. By means of this technique,
we can handle equations of retarded, neutral, and advanced type, circum-
venting in this latter case the difficuliies due to presence of characieristic
roots with real parts approsching + e

6.2, Vector-matrix Notation

We shall use the rudiments of vector-mattix notation to simplify our
presentation. As in Chapter 2, we shall use lower case letters such as =z, ¥
to denote eolumn veetors, c.g.,

2=, (6.2.1)

and upper case letters A, B, ++-, to denote » X n matrices

o vt
A=Aay) = | ta 2 -+ am | (6.2.2)

a1 Gaz st dan
Whenever we say that a vector or matrix is of a class C*, we mean that

each of its components is of this class.

6.3. Classification of Systems

With the aid of the veetor-matrix notation, we shall now write the
general linear system of cquations in (6.1.2) in simplified form. Indeed, if
we let ¢ and f represent the column vectors

U1 fl
s=| ") = 2 (6.3.1)

Hy fa
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respectively, Iet A, be the matrix the Ejth element of which is @, and let
B be the matrix the kjth clerment of which is b5, we see at once that the
system takes the form

i‘. Ag'(t — w) + f} Byt — wg) = f(8). {6.3.2)
i=0 ]

Tt is with this equation that we shall work throughout this chapter.*

We should like to begin our study of the system in (6.3.2) by cstablishing
general existence and uniqueness theorems. Recall that for the scalar equa-
tiong considered in Chapters 3, 4, and 5 we obtained existence thecrems of
three different kinds according as the equation was of retarded, neutrsl, or
advanced type. In the same way, we may expect to obtaln theorems of
different kinds for systems of the form in (6.3.2). However, it is not im-
mediately clear how to classify such systems in an appropriate fashion.
One way to shed light on this matter is to examine the distribution of the
roots of the characteristic equation. As shown in §06.5, this equation is

det D, (A5 + B) exp (—ws) =0, (6.3.3)
=0

It is shown in Chapter 12 that the roots of large inagnilude of this equation
are grouped in a finite number of ehains, each chain being of the kind dis-
cussed in Chapter 3, 4, or 5. That is, each chain of roots lies asymptotically
along a certain curve of one of the kinds encountered in the scalar case.t A
chain of roots may be said to be a refarded chainif Re(s) — — @ as| s |-,
a neufral chain if Re(s) is bounded as [ 8| — w«, and an adranced chain if
Re{s) — +was|s|— .

If all the root chains of a system are retarded, we naturally expect to be
able to prove an existence-uniqueness theorem analogous to that for the
scalar equation of retarded type (Theorem 3.1}. If all the rootl chains are
neutral or retarded, it seems most likely that the existence-uniqueness
theorem will be analogous to that for the scalar equation of neutral type
{Theorem 5.1). Tinally, if there is a root chain of advanced type, it secms
likely that the theorem will be analogous to that for the scalar equation
of advanced type (Theorem 5.2). We shall sce that these expectations are
borne out by the facts, provided we exclude certain exceptional situations.

In $12.10 we shall show that a sufficient condition in order that all root
chaing of the system in (6.3.2) be retarded or neutral is thai det Ay = 0.

* We continue for the present to assume that the matrices A;and B¢, 4 = 0,1, - - -, m,
are constant.

t This statement needs medification in the neutral ease. In general, we can then only
assert that the roots lie within a eertain vertieal strip | Refs) | < ¢.
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While this condition is not neecssary, it turns out, as we shall demonstrate
below, that all other cases in which the chains are all neutral or retarded arc
of the exceptional character already mentioned. Hence, we shall first deal
with systems of the form in (6.3.2) for which det 4, 0.

6.4. Existence-Uniqueness Theorems for Systems

We shall now prove the following theorem on existence and uniqueness of
solutions.

Theorem 6.1, Consider the system of differential-diflerence equations with
constant coefficients,

3wt — o) + Baylt — wd] = 50,

{=0
0= < < v < Dy det 4, = 0, (641)
and the tnitial conditions
¥(t) =gt), 0<1{< wn (6.4.2)

Let 8 denote the set of points of the form
b= 3 jws (6.4.3)
=0

where the j.: are infegers, let S dennte the intersection of 8 with [wa, =), and
let Sq denote the inlersection of S with (wwm, = ). Suppose that the vector g is of
elass CL on [0, wn |, and that the vector f is of class C° on [0, «), except for
possible findte jump discontinuities af points of the sef 81. Then there exists one
and only one veclor funclion y(t) for £ > 0 whick {s continuous for £ > 0,
which safisfies the tnitiol condition tn (6.4.2) and which satisfles the equation
in {(64.1) for § > wn, t & Sa Furthermore, y(&) 48 of elass C* for ¢ > 0,
t § 8. If f has no discontinuities on [0, o=}, the funetion y(t) s of class 1
on [0, =), and salisfies the equation in (6.4.1) for all t > w,, if and only if
it has a continuous derivative af { = wn. This s true if and only f*

S LA (= @) + Baglom — 0] = flan).  (644)
furcl]

that the left-hand derivative and the leii-hand limit of the derivative are equal st wn.
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Suppose that f s of class Cr on [0, =) and that g is of class C* on [0, w. L
Then y(t) is of class C*for £ > 0, ¢t € 8. A sufficient condition tha it be of
class €% on [0, =) {s that the equation in (6.4.4) and the squation

D [Ag" (@ — 0 + By (0 — )] = f(ow) (6.4.3)
fuml}
be satisfied.

The function y(t) singled out in the above theorem is called the con-
tinuous solution of (6.4.1) and (6.4.2).

Since A, is nonsingular, we can multiply the equation in (6.4.1} by
Ag?, obtaining a similar equation in which the coefficient of y'(£) is 1.
Ience we may suppose without loss of generality that the system under
consideration hus the form in (6.4.1) and 4, = I. We now let

e(t) = ft} — i fAg/(t — wsg) + Byt — wi) ) (6.4.6)

=]

The system can then be written in the form

%[egﬂ‘y(t) ] = ePot(t). (6.4.7)

Bince fis of class €% on [0, o0}, except on 8y, and g is of class C on [0, w. ],
#(f) 1s of class C® on [wm, wm + w1 |- It follows by integration that there is a
unique function y{¢) which satisfies the equation in (6.4.1) on (ww, @m -+ o)
and which satisfies y{t) = ¢(t}, 0 £ ¢ £ w,. This function is of class "
on [0, wy + wi], except for a possible jump in ¥ (1) at § = w. It follows
that (£} is of class C° on [wn, @wa + 2w ]| except for possible jumps at
points of the form ¢ = wm + @y (7 = 1, « <+, m}, for which { < ws + 2w
By integration we can therefore continue the definition of y{f) over the
interval [0, w, + 2w ]. This function s of elass €° on [0, wn + 2w,
satisfies the equation in (6.4.1) on {wm, wm + 2wi) except at the points
b= am + o (=1, v+, m), I < wm + 20, and i3 of class €' on
[0, wn + 2w except for possible jumps in the derivative at £ = w. + w;s
(J=0,---,m},t <wn+ 201

Repeating the use of the relation in (6.4.6), we see that »{{} iz of class
Ct on [wm, @ + 3wi] except for posgible jumps at peints of the form
t=wmtwjta(f=1--,mk=01++,m), { < @n + 3, o0rin
other words, at points of the form { = 2.7, juws, ¢ < wn -+ 3wy, where
cach 7; is a nonnegative integer, 5. > 1, and 2 < >.% 7, < 3. By inte-
gration of the relation in {6.4.7), we can now continue y{{) over
[0, wm + 3wi]. Clearly this process can be continued indefinitely, and we
see that it establishes the existence of a unique function y (!}, of clags €°
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on [0, =}, which satisfies the initial condition in {6.4.2) and which satisties
the equation in (6.4.1) for { > ww, t § S. This funection is of clase C' for
t > 0, except for possible jumps in the derivative when £ € Sy

It is easy to see from the above discussion that if £ is of class Con [0, =),
then y is of class €% on [0, %}, and satisfies {6.4.1) for all i > wn, if and
only if it has a continuous derivative ut { = wy. This will be true if and
only if ¥ {wm 4+ 0} = g'{wn — 0}, thal is, il and only if the relaiion in
(6.4.4} holds.

Now suppose that fis of class C! on [0, ») and that g is of class C? on
[0, wn] From the equation in (6.4.1) we have

¥ =0 - By(t) — L [Aw' (¢ — i) + Byt — w)]
=1

for ¢ > wa, t § 8. Since the righi-hand member of this equation has a con-
tinuous derivative on (ww, wn + wi), ¥{{) Is of class C® on [wm, wn + @il
By repeating this argumeni for one interval after another, we find that
y(t)is C*fort > 0,¢ ¢ 8. Itis C*{or! > 0 H, in addition, " {w. + 0) =
g {wwm), which leads to the relation in (6.4.5). This completes the proof of
the theorem.

We should like to point out an interesiing feature of the formulation of
the initial value problem given in (6.4.1) and (6.4.2). Consider the scalar
cquation

u”(t} -+ au"(t — wl) + bu(t — L!Jg) = 0, 0 <oy < wa

Putting w1 () = u(f), wo(t) = w'(£), we obtain the equivalent formulation
as a systemt,

w0’ (1)
s (t)

1

u?(t)) L > uy,

—bu {t — wi) — A — wi), £ > .,
The initial condition in {6.4.2) becomes

wi (L)
w2 ()

where gi{t) and g:(¢) are arbitrary functions. Notice in particular that g
need nob be the derivative of g, though in the original form this can he
assumed. Anather chservation we make is that our formulation requires
that the vector g{t) = {({{), g:(£)) be given for 0 < & < w. Actually
we see from the above scalar equation that the continuation procedure
depends only on g (£) for 0 < ¢ < wsand g:(8) for @z — o < § < o, It 8
simpler, however, t0 use the vector formulation in (6.4.2), imagining gy (¢)

i

gl(‘)r 0 S ¢ S g,
g:{f), 02§ <

i
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extended in an arbitrary way over [0, 2], since the values on [0, wy — an]
do not affect the solution for £ > w..

Let us consider systems of the form in {6.4.1) for which det 4, = 0. We
shall present an argument which indicates that an existence-uniqueness
theorem for such a system cannot ordinarily be of the type given in Theorem
6.1. Incidentally, such a system can have root chains of all three kinds, but
in some cages will have only neulral chains. Let ug wrile the system in the
form

At = )~ 3 Ayt~ 0) ~ 3 Byt —w), (648)

=l

and let (4} (k = 1, 2, -++, n) denote the kth ecomponent of a soluticn
vector y{(t). Since dei 4y = ¢, the syslem in (6.4.8), regarded as an alge-
braic gystem in #'(t), ---, v.'(¢), is dependent. Henee the rows of the
vector Ay’ () are linearly dependent, and a certain linear combination of
the rows in the right-hand member of (6.4.8) is zero. This, however,
means that there iz a linear relalion among the elements of the veetors
g (&), y (6 — wi), =, ¥t — wu), v (§ — w1}, =--, ¥ {f — @), the constants
in the relation depending only on the A, and B, (4 =0, 1, -, m).

The system in {6.4.8) can thus be replaced by a new system consisting
of n — 1 of the differential-dilference equations in (6.4.8) and the linear
relation already deseribed. More generally, if 4qis of rank r < n, the system
in (6,4.8) leads o a new syslem containing + equations from {6.4.8) and
n — r equations which are lincar algebraic relations among the components
of the veetors y(t), y{t — wn), + oo, 5 — wa), ¥ — w1), +» -, ¥ (§ — wu).
However, such a system will not in general possess a corffnuous solalion.
For the latter set of # — r equations can be golved for 1 — » components of
y{f) in terms of the other » components of y{(¢} and all the components
of y(t — w), <o, {8 — wa), ¥’ (8 — w), +++, ¥ ({f — wa). Substituiing
back into the set of r equations from {6.4.8), we obtain a set of r independ-
ent equations for r components of y(¢), in terms of all the components of
Y — @), oo, gt — wn), ¥ — @), +or, ¥ (8 — wa}. Now suppose
() = g(f) iz given arbitrarlly over [0, w.]. Applying the continuation
process, we then obtain continuous continuations of the r components of
y(t) over [0, w, + wi]. The other n — r components are then found over
[wWm; @m + wi] as linear ecombinations of the r already found and of the
components of g(£) and ¢'(£). These n — r components will not, in general,
be continnous at ! = wn,

The preceding discussion provides a method for obtaining existence-
uniqueness theorems for systems in which det A, = 0, as well as indicating
that such theorems will not be of the same character as Theorem 6.1.
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However, since we shall rarely need to deal with such systems, we shall
omit any detailed discussion of these thcorems. We have included a fow
gpecial cases in the exercises helow in order to illustrate the above remarks
and o suggest the nature of the theorems which can be obtained.

We should now like to consider systems of the form in {6.4.1), for which
all the root chains are retarded, since in this case we might expect to be
able to replace Theerem 6.1 by a stronger theorem analogous to Theorem
3.1. We shall not prove quite this mueh here, because a completely general
discussion would be quite complicated at the moment. This corresponds
to the fact, shown in §12.10, that the precise eonditions for a system to have
only retarded root chaing are rather involved. There is, however, one
interesting special case which includes many systems encountered in
practice, and which can be treated quite simply in the vector-matrix nota-
tion, This is the ease in which det 4o # 0 and A; = 0 (that is, every
element of A,is zero) for € = 1, «» -, m, dealt with in the theorem below.™*
Another retarded case i3 given in Exercise 4 to illustrate further poss-
bilities.

Theorem 6.2. Consider the system of differential-di fference equations

A + S Byl — w) =), O =< < e <am (649)

]
and the initial conditions
y{8) = g{0), 0 <t < wn,

and suppose that det d¢ #= 0. Suppose that f is of class C" on [0, «) and that
g 48 of class C° on [0, wn . Then there exists one and only one funclion for
t = 0 which is continuous for t > 0, which salisfies (6.4.2), and which
salisfies the equalion in (6.4.9) for § > wn. Moreover, this function y is of
class O on (W, ©) and, 8f 45 €, of class €% on (2w, =). Ff g is of class
Cton [0, wml, ¥ 18 continuous of wn if and only if

A (wm — 0) + > Bg(wnm — i) = flon). {6.4.10)
i=0

We shall leave the proof of this theorem to the reader, since it is almost
identical to the proof of Theorem 3.1.

The continuity of y*(f) for { > wm, proved in Theorem 6.2 for systems of
the special form in (6.4.9), actually holds for ¢ > nw. (n = dimension of

* These condilions are sufficient to ensure that the system have oanly retarded root
chaina,
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the system) for any system of the form in {6.4.1), provided all root chains
are retarded and provided fis of elass C® on [0, = ). However, a direct proof
of this would involve quite extensive calculations, In Exercise 1 of §6.7, we
shall give un indirect proof which is very simple.

In Exercise 6 below, we state u theorem, analogous to Theorem 5.2, for
systems of the form

Bay(t) + S [A&'(t — 0 + Balt — w)] = J(0),

fum]

det By = 0. (6.4.11)

It is shown in Chapter 12 that these conditions are sufficiont to ensure
that there is at least one advanced chain of roots.

EXERCISES
1. Show that the two-by-two system
w i +nl) +plt — o) =0,
nt— @)+ pll) +nlt - o) +wit—w =0,

is of the form in (6.4.1) with det 4o = 0, det 4; = 0. Show that the
systern has no continuous solution satisfyiug the initial condition

n) =l =1, 0<i<o
Show that this initial condition, together with the requirement that

11(2) be of class C® on [0, =), determines a unigque solution.

2. ¥ind a necessary and sufficient condition on ¢ and g, in order that the
system in Fxercise 1 have a unique continuous solution satisfying the
initial condition

wn(t) = qll), (i} = @), 0 £t < o

3, Prove Theorem 6.2. Also, discuss the continuity properties of a solu-
tion, in successive intervals, if f and g are of elass €%, where ! is a posi-
tive integer.

]
—_

4. Consider the two-by-two system of the form in (6.4.1) with m
wg = 0, w1 = @, By and B, arbitrary, and

i0 1 -1

A.o= y A1= .
0 1 1 -1
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It can be shown that its root chains are all retarded. The existence and
uniqueness of a continuous solution follow from Theorem 6,1, Show that
if fis C° and g is C! the solution is of class C'for ¢ > 2w. Hini: After
subtracting onc given equation from the other, show that 4/(t) —
pe' (1) 18 continuous for ¢ > e,

. Write the initisl value problem
w’ (i) = u(t — w), > w,
u(t) = 1, 0<t< o

in vector-matrix notation. Discuss existence and uniqueness of a solution,
and use the continuation process to calculate the solution for w < ¢ < 3.

. Prove the following theorem: et S, 81, and 5; be defined as in Theorem

B8.1. Suppose that f is of class €% on [0, w, + Nwi], where N ig a fixed
positive integer, except {or possible simple discontinuitics in f or one of
its derivatives at points in 8;. Suppose that g is of elass C¥ on [0, wa .
Then there exists one and only one veetor function y(¢) which satisfies
the initial condition in {6.4.2) and which satisfies the equation in (6.4.11)
for wy <t < wm + Ny, £ § S5 This function is of class ¥4 on
00, e 4 Jows ] — Sy (j = 0, -+, N). If fis of elass C¥ on [0, @m + No]
and if y(¢) is continuous and has ¥ — 1 continuous derivatives at
t = wm, then it is of class O on [0, wn + jonjforj = 0,1, +++, N,
and satisfies the equation in (6.4.11) on [ww, wm + Newi]. This will be
the case if and only if the relations

Bog® (wn — 0) + 35 [Ag% (in — w0) + Bg®(om - @) ] = £ (n)
=1

are satisfied for k = 0, 1, -++, N — 1. The statements of this thecrem
are valid if N = <. Hinl: Solve the equation in (6.4.11) for y({} and
apply the continuation process.

6.5. Transform Solutions: Retarded-Neutral Systems

In the remainder of this chapter, we shall be concerned with series expan-

sions and asymptotie properties for the general system

i (Aa'(t — v + Byt —wa)] = f8). (6.5.1)

QOur procedure and results will be analogous to those of Chapters 3-5.
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We first observe that the discussion in §3.5 relating to exponential solu-
tions can be extended to systems of the form in (6.5.1). In fact, if we define
a lincar operator L over the space of allowable solution vectors y(f) by the
equation n
Liy(t)) = 2 LAy (¢ — @) + Byt — e ], (6.5.2)
it is apparent that the analogues of Theorems 3.2 and 3.3 are valid. It is
also true that there is a valid analogue of Theorem 3.4. A proof is outlined
in Exercises 14 below,

If det Aq = 0, it is again possible to establish an exponential bound on
the magnitude of the solutions of the equation in (6.5.1). We shall leave
the proof to the exercises.

Let us now carry out the solution of the equation L.y} = f by means of
the Laplace transform. In this section, we shall assume that det 4, = 0,
so that the solution is exponentially bounded if f is. We take as initial
condition

() =g(t), 0=<1< wn (6.5.3)

define S, S, and 8; as in Theorem 6.1, and suppose that g is C[0, wa]
and fis C°on [0, «) — 8. Then y({) is Ctfor ¢ > 0, ¢ § 8. Using the
relations

W

[ vt —wpertiat = e [ ywesateme [T gena,
Wi i i (ﬁ.:}f.‘:)

and

f Yt — westdt = ~glom — eide 8[ gt — wg)et di,

wm (6.5.5)
we obtain -
H) [ yWedi = pols) + o), (6.5.6)
where m
H(s) = 2. (As + Bews, (6.5.7)

i—0

mo(8) = e 3 A glwm — @)

=0

— X (At Bewe [ gend, (658
=i

wm—aq

gls) = f " f(tyemt dt. (6.5.9)
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Or, instead of using the relation in (6.5.4), we can use
f y(t — w)etdt = e f yltle =t dt — 6_“’""f g(t)et di,
e o 0

(6.5.10)

and solve for the integral from 0 to . The result is

H{s) fm y{e=tdt = p(s) + q(s), {6.5.11)

where

p(s) = e 3, dglon — @)

£l

+ 2" (As + Bg-)e—“'f”f g(e—stdl, (6.5.12)
=0 a

As in Chapter 3, the form in (6.5.8} can be used with weaker conditions
on g than the form in (6.5.11), if A, = 0 {{ = 1, +++, m), since in that
case po{s) does not contain a power of s whereas p(s) does. Since we are
nolt too concerned about requiring differentiability of g, we shall work
primarily with the latter form. We note that an integration by parts
brings p(s) into the form

pls) = 2 Awrg(0) + 2 e f T LAg0) + Ba) e
= = 0

(6.5.13)
and pe{s) into the form
po(s) = e~ 3. Ao g (wn)
=0
— 3 i f [Ag () + Bgld) et dt. (6.5.14)
i=0 wn—wi

1t is shown in Chapter 12 that when det Ay # 0, all zeros of det H(s)
lie in some left half-plane, Re(s) < e Since ¥ has bounded left- and right-
hand derivatives in a neighborhood of every point, by Theorem 6.1, we
ean apply the inversion theorem and obtain:

Theorem 6.3. Tel (1) be the confinuous solulion of the equation in (6.5.1)
which saligfles the initinl condition in (6.5.3). Assume thal det 4, = 0, tha!
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g is of class O on [0, wa), thal f is of elass C° on [0, =) except for possible
Jump disconfinuilies al poinis of the set 8y, and thal f{i) 1s exponentially
bounded as £ — . Then for any sufficiently large real number c,

v = [ eHASIBE +o(9]ds,  ¢>0,  (6515)

{ch

where p and g are defined as in (6.5.12) and (8.5.9). I g is merely C° on
[0, un], fis C®on [0, w),and A; = 0 (£ = 1, -+, m), the equation in
(6.5.15) ds volid for § > we i p(s) 18 replaced by py{s).

EXERCISES
1. Let L(y) be defined us in (6.5.2). Show that if ¢ is any constant veetor,

Lcest) = H(s)ee,

where "

H(s) = 2. (As + Bew=,

=0

Hence show that to each root A of det H{s) = 0, there corresponds a
nonzero characleristic vector ¢{A) such that y = c(\)e** satisfies
Liyy = 0.

2. Show that

HOG) = 3 [ds + B (—w)* + ke,

k= UJ 1! "ty
and therefore that
L{trerts) = [ (n) k() (s)—| evle,
k=0 k .
and that
bl " & n -
L (Z .f,"—’“e“c;,) = gmt ik Z 3 IIe=d(s)e;.
£=0 =0 =0 k-

3. Let II(s) be any analytic matrix function of s ncar s = A, and let A
be a root of det H(s) = 0 of multiplicity ¢ + 1 {¢ 2 0). Show that
there are nonzero vectors ¢, e, -+, ¢, such that

.
Do (Ne; =0, E=10,1,0

=0

Iing: Bolve for co, ey, = -+, €, In sUccession.
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. Let L{y) be defined as in {6.5.2), and let H(s) he the characteristic

matrix function. Let X be a characteristic root of multiplicity ¢ - 1
(g =2 0). By combining the results of Exercises 2 and 3, show that for
any » < g there ig & vector polynomial

pell) = 2 e
£=0

of degree n such that p,(¢)e*t is 4 solution of L{y) = 0.

. Consider the equation in (6.5.1) and suppose that 4, = I and that

LA || = cemy, £ >0, e =0, >0

Let (£} be a continuwous solution of the equation in (6.5.1) for { > wm,
of elass Ctiort > 0,1 ¢ 8 (see §6.4 for the delinition of the set 8). Let

m = max |[y{#) |}.

0 tum

Show ihal there are posilive consiants ¢ and ¢, depending on o, e,
and the 4, By, and w, {i = 0, 1, -+ -, m), such that

By |l £ eslor + m)e, £ 0.

Hini: Follow the induelive procedure suggested in Exercise 5 of §5.2.
Vse the fact that || edf || < gltdil e,

Using an integration by parts, deduce from the equation in (6.5.6) that
f y'(edt = H (&) [spos) + sg(8} — H(s)gl{awm)e ]

Show that if g is C¥0, w. {and fis CH0, = ) and exponentially bounded,
then

Y@ = [ e HA (o) + sals) — H(s)glum)en] ds

(e
for ¢t > Wm, T qi_ .SL

Show that diffcrentiation under the integral sign in

y(0) = [ cHASIpols) + g(s) ] ds

(el

does not yield a correct formula for y'(¢}.
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8. By applying the Laplace transform to (6.5.1) and expressing Inlegr
in terms of [5_ ' (£)e—* dt, show that

fm y' (et dl = HA(s)[pu(s) + q() ], Rels) = ¢,
where

qls) = flwn)en f ” J{t)eso diy,

pi(s) = =2 Bglwm — wi)esne
=0 " o
— 2 (As+ B;)e—mf g’ (tye= dy.
F=l =i §

Deduce that
VO = [ eHAOE +a@1dy 1> o LE S
(e}

9, By applying the Laplace transform to (6.5.1) and expressing integrals
in terms of [7 ' {{)e™t dt, show that

fo Cy@endt = B p(s) + ()], Rels) 2 ¢

where ¢,(s} is defined in Exercise 8 and ps(s) ig obtained from p1(s) by
changing the integration limits from (w. — wi @n) 10 {0n — wy, 0.
Deduce that

Y@ = [ H @G +a@ld, >0, 168
(]

10. Buppose that 4 and J are continuous nonnegative functions for £ > 0,
and that s > 0,0 > 0, @y = 0 (i = 1, --+, m). Show that the in-
equality

u(t) < e + fzf(tl) dt; + i am(l — wg) + e ftu(tl) dty,
0 =1

]

i > tm, 0= oy <oy << +vr < iy,
implies the inequality

4
ul{f} < cg-:“{m 4 f fl) exp (—eify) dh}, i > 0,
0
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for suitably large positive constants e; and ¢, by applying the method
of Lxercise 4, §3.6.

11. Deduce from the equation in {6.5.1) that

PO ELR MIET P A RN PR

+ (§ t2a) f Iyl &> on

Use Fxercise 10 to establish ihat

4
9@ 1 < e [+ [ 1) oxp (=ety au], 120,
0
12, Diseuss the analogues of Theorems 3.2, 3.3, and 3.4 for the operator

L) = 2 [A9(t— w) + Bylt — wd]

2
+ [ Bt -, 0 <a<i < <o <h

6.6. Solution of Neutral and Retarded Systems by Definite Integrals
For the equation
S [Ag'(t — w) + Bylt — 0d] =f(t), det 4o = 0, (66.1)
el

with initial condition
() =g(), 0<1< o, (6.6.2)

we can again find a representation of the solution by means of a real,
definite integral. We proceed as in §5.2. As before, we let S denote the set
of points of the form

t= . jas {6.6.3)
—0

where the §; are integers. Let Sy denote the intersection of S with the half-
plane (0, =}.
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Definition. Let K (1) be the unigue mafriz function with these properties:
fa} K{&) = 0, L <0

{b)y K{0) = A

(¢) The function .7y AK({E — w,) 1s of class €2 on [0, =),

(d) K(t) salisfies

LK) = 2J[AK'(t — w) + BE(E — )] =0

=0

fort > 0,8 ¢ S
Exislence and uniqueness of K (f) ean be proved by the usual continua-
tion argument. K (#) will be of class Ctfort > 0, £ § S5, but will in general
have jump disconiinuities at points in S,. It can be shown that K (£} is
of exponential order of growth as { — =, Hence we can apply the Laplace
transform to the equation L{K) = 0. The condition in (¢) allows us to

employ integration by parts to obtain

f ST AKN(E— w)ettdt = ~1+j s AK(L — we=tdl, (6.6.4)
[v] 4] =0

4=

and therefore
[T K@erdt = #1),  Ro(s) > e (6.6.5)
L]

Since K (f) has bounded lefi and right derivatives at every point, the
inversion theorem of §1.8 yiclds*

K(f) =f SH-Us) ds, £330, td 8, (6.6.6)
{e)

for any sufficiently large real nurmhber ¢.
Tt is interesting to note that K (¢) also satisfies the equation

SIE(t —w)d; + Kt —w)B]=0, (>0 t¢ 8. (6.6.7)
=0

This can be shown in the following way. Let K (f) denote the soluiion of
the equaiion in (6.6,7) which salisfies conditions (a) and (b) and the
condition

{¢") 20 K(t — w)A:is of class €7 on [0, «).

* At points of 84, the integral converges to 3 [Ki{t4+) + K{{—]]
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It is casily seen that
f Kty di = II'(s),  Re(s) > o (6.6.8)
a

By the uniqueness of the inverse transforim, K,{¢) = K(!). Thas K{{) also
satisfies the equalion in (6.6.7), and condition (o).

We can now usc the convolution theorem to transform the representa-
tion in {(6.5.13} into a representalion by means of “convolution integrals”
with kernel K. Tor examnple, using property {a) we see thai the {rangform
of K{(t — «) i3 H ()¢ for any w > 0. Hence the transform of

3K (= w)A.g(0) (6.6.9)
is -
H-(s) X, Aeig(0). (6.6.10)

From the inversion theorem, since the sum in (6.6.9) is continuous for
t >0, we get

f eIl (s) [Z Ae “”g(O}] ds = 2 K(t — wi)Adg(0), &>0.

{e} i1 = (6‘6‘1]_)
Proceeding in this way, we abtain the following theorem. The formula in
{6.6.12) is found from that in (6.5.13), and that in (6.6.13) from that
in (6.5.14).

Theerem 6.4, Suppose that det A 5 0, that g is of class C* on {0, wn],
and that 25 of class COon [0, =) except for jump discontinuities on the sel 5.
Let y(t) be the continuous solution of the eqguation in (6.6.1) with the initial
condition wn (6.6.2), Then, for t > 0,

¥t = i K(t — @) Ag(0) -l'f K{t — 4)f(t) diy

=0

gy —td §

+ 3 [TRG - 6 - w)[Ag @ + Bg)Tdh (6612)

=0 "0

Also for t > wn

ity = Zm: K{t — e — wi) dglon) + f Kt — t0f(h) dy

=0

W,

~ 3 [7 K-t w4 FBatld  (66.13)

Wy
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Ifd;=0{ =1, ---, m), the lailer relation is valid if g i3 merely C° on
[0, wn]and fis C" on [0, =).

As usual, it is not necessary that f be exponentially bounded, as it can be
verified directly that the formulas define a solution of the system in (6.6.1}.
We shall omit this rather lengthy verification.

EXERCISES
1. Let W () be the unique function defined by these conditions:

{a) W({H) =0, <0
(b) W(2) is of class C*on (— 0, +o);

© SSTAW(E — o) +BW(E ~ )] =0, ¢<0,

=1, t>0.
Show that W'(f) = K(¢), t§ 8,
2. Assume that f{{) = 0and that g(#) is C1[0, @y . Forany { > wm, £ § 84,

let the points of S; between { — on and ¢ be denoted by Ty, Ty, -~ -, Ty,
where | — wp < 1% < +-+ < Ty < L. Show from (6.6.12) that

Yty = 2 Kt — wi) Ag(0)
+ 3[R~ - w)[Ag't) + Bat))dn
=0 g

+ 3 S IE(TA) — K(T-)]

c[Ag'(t — Ty —w)) + Byt — T — wi) ]

Hence deduce that

sup 170 [l <) sup (gl || + g @) 11

ohi 01 Cum

Using an integration by parts in (6.6.12), or Exercise 11, §6.5, show
also that

sup ly{t) | € e(t) sup {lg(t) [

oLt O om
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6.7. Series Expansions for Nevtral and Retarded Systems

We shall now use the method of §4.2 to establish the fundamental expan-
sions for systems of the form

SUTAS U — w) + Baylt —wd] =0, det o= 0, (67.1)
i~
y(@) =gt), 051X om {6.7.2)

From Theorem 6.3, we have for any sufficiently large ¢

y(E) = f e*H(s)p(s) ds, &> 0, {6.7.3)

()

under the assumption that ¢ is C'[0, w.], where p(s) is defined in (6.5.12)
or {6.5.13). In fact, this is true for any ¢ which excceds the leagt upper
bound of the real parts of the zeros of det H(s). To show this, we need
only show that the integrals of H~1(s}p(s) exp {ts) along horizontal cross-
hars approach zero as | s | — e« {see §1.10). But this follows from the fact
that p(s) = 0{1) on these crosshars, by the equation in (6.5.13), whereas
H-1(s) = O(] &]™), by the results to be proved in §12.12,

As we have already remarked, the zeros of the characteristic function
det H (s} appear in “chains,” each chain being of the type encountered in
the first-order case. To be more precise, the zeros of large modulus lie
within strips of asymplotically constant width surrounding & finite number
of curves of the form Re(s) + @ log | s | = & Within each strip, the zeros
are agymptotic to the zeros of a certain comparison function formed of
those terms of det H(s) which are of dominant magnitude. Morcover, as we
shall show in Chapter 12, there exists a scquence of closed contours €
(I = 1,2, +-+) having essentially the same properiies as in the sealar case.
Specifically:

{a} C: containe the origin in its interior,
by CiC Cn (1 =1,2, --4).

{¢} The contours ('; have a positive distance from Lthe set of all zeros of
det II(s).

(d) Forl = I, C;lies along a circle | s | = &I, where k is a eertain fixed
number, except within the strips containing the zeros. Within these
strips, i lies between | 8] = (I — Dkand |s] = (I 4- 1)k

{8) The total length of the parts of C; within the strips is bounded as

i — w,
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{f) The number of zeros of det I (s) between € and )}y, is bounded

asl — w,

We now proceed just as in §4.2. We let {1 denote the portion of €; in
the half-plane Re{s) < ¢, and C}, the portion in Re(s) > ¢, both traced in
the counterclockwise scnse. As before, we abtain

() = lim [sum of residues of e*H-1{s)p(s) within C;], (6.7.4)

lawm

provided it can be shown that

im f e H(s) p(s) ds = 0. (6.7.5)

e VO

Using the expression in {6.5.13), we sce that

f;_ e"H1(s)p(s) ds = i [f

=i Cr—

exp [({ — wgs H(s) ds} A0}

{exp [(6 — w)s]H(s)

=0 " Cp—

. f e [Ag (4} + Byg(t)Je—n drl} ds. (6.7.6)

Let n denote the order of the system under consideration. By examining
the order of magnitude of 7-'{s} on C':, we show in Theorem 12.17 that

nmf esHs) || [ds| =0, t> (n— Dem  (6.7.7)

i+~ Op—

The convergence is uniform in any finite interval & <{ < 8,4 > (0 — 1}wn
and bounded in {(» — e, <t < &' It is uniform as { — + ecprovided
e < 0. Applying this result te the expressions in (6.7.6), we find that the
relation in (6.7.5) is valid for £ > 7w, with uniform convergence for
h =& £ &' (& > nww). Henee we obtain the expression in (6.7.4) for
t > nwm.

We can also make some imnportant assertions concerning the convergence
of the integral in {6.7.3). As in §6.3, we let S denote the set of points

8 = {t e = 3 jues, §e = int.eger} (6.7.8)

=i
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and let 8° dencte the set
S = [”t = Zjiwi:ji = 0: ZJ* =1 - 1}' (679)
=0 =0

Note that 8' = Sn[0, (n — Dwal

Let M denote the set of real parts of zeros of h{s) = det H{s}, Logether
with their limit points, and assume that ¢ § M. It is shown in §12.15 that
the integral

K@) = f e TI-1(s) ds (6.7.10)

(el

converges for all & The integral converges boundedly on any finite interval,
and uniformly except in the neighborhood of points of 5% if all root chains
are retarded, or of S if there are neutral root chains, If ¢ < 0, the con-
vergence is uniform as £ — <+ o, Writing the integral in (6.7.3) ia a form
similar to that in (6.7.6), but with integration along Re(s) = ¢, we see
that for £ > nw, it converges houndedly on any fizite interval, and uni-
formly except near points of S if there are neutral root chains. We can, in
fact, say more than this, Since

i H{s) — ). 7, Bews

D Ao = = ——= s # 0, (6.7.11)

i=~0 8

we obtain {(fore #£ 0, L > nw,.)

f e H-s)p(s) ds

(=)
N Y R L

tey 8 =~ {c) 8

+ g f eI 1(s) f:mw‘exp[— (hh + w)s]

e}

[Ag'(4) + Bglh)ldhds., (6.7.12)

Ag shown in Theorems 12.19 and 12.20, the integrals in (6.7.12) are
uniformly convergent in any finite interval, since the convergence is
impreved, on the one band, by the factor s in the denominater, and, on the
other hand, by the integration with respect 1o &, and ate O{e®) asé — o,
Since the convergence propertics of the expression in {6.7.4) depend on
those of the integrals in {6.7.5) and (8.7.12), we have:
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Theorem 6.5. Suppose thal g is of clase C1 on [0, wal, and let g
unigue condinuous solulion of the nih order system in (6.7.1), det A,
with intfial condition in (6.7.2). Let

p() = L Awy(0) + Seoe [ [AgD) + Byl a
fead)

=4 0
Then for § > nowm,
y{t) = lim [sum of residues of e*H(s)p(s) within €]

i

= lina 3 erip (1),
{»m Of
where ¢tp. (¢} denoles the residue of e*H(s)p(s) at a zero s of det H(s).
The {imit s uniform in any findle tnterval b < £ < W (b > nwa). If all
characteristic rools le in a half-plane Re(s) < o < 0, the imit is uniform
for fo £ 1 < . The function p.(t} is a vecior polynomial of degree less than
the mulliplicily of s..

The uniformity of convergence for & < £ < o« if all characteristic roots
he in Re(s) <€ ¢ < 0 {ollows from the fact that we can take ¢ < O in
(6.7.3) and (6.7.5),

Since there arc only a finite number of zeros s in the annulus bounded
by Ci.q and €, these zeros can be ordered in some definite fashion. It is
then possible to consider the ordinary infinite series

o0

3 erip. (1) (6.7.13)
=]
in the expectation that it might converge to (t). However, this need not
be the case (see the bibliographical note at the end of the chapter). Of
course, if it does converge, its sum is ¥ ().
There 1s an important circumstance in which we can be sure that the
scries in (6.7.13) converges, as we now prave.

Theorem &.6. Let the conditions of Theorem 6.5 be sulisfied. Moreover,
suppose that there 18 a positive nwmber d such that the set of dislances belween
pairs of characteréstic roots has the lower bound d. Let the characieristic roots
be arranged in order of nondecreasing absolule value, with those of equal
abselule value put in any prescribed order, in a sequence 8y, 8s, &, +++ . Then
the series in (6.7.13) converges to y(8) for § > nwa, uniforinly in any finde
interval b < £ < & (o > nwn).

This theorem can be proved by the same argument as hefore, if we replace
the contours C; hy certain other contours. Let each zero s, he surrounded
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by a circle K, of radius d' = d/8. Let Iy’ denote the circle | 8| = |5 |
{k =1,2, --+}. Wherever I't/ intersects a circle K, lct the portion of 13’
between the intersection points be replaced by an arc of X,—the arc outside
Iy if r < kand the are ingide Ty if r > k. In this way, we oblain a contour
T which encloses s, sz, «- -, $ only, and which is such that each point of T
is at a distance at least d’ from every characteristic root. The contours
T'x now have properties similar to properties (a)—{f) listed above for the
contours (', Tn particular,

(i} the contours T arc at a positive distance from the set of character-
istie roots,

(i) the total length of the parts of Ty within the root strips is bounded

as k — =, and
(iii) the zero s, and no other, lies between I'y_y and T,

The limit in (6.7.5) will not be affected if we replace €. by I'i- and let
k — c_ Indeed, in establishing this limit in Chapter 12, we use an order
estimate on H-1(s¢) which is valid as long as 2 is uniformly bounded away
from all characteristic roots, and we use the fact that the contour is uni-
formly O(k) as k — . The condition (i) assures us of the former, and
(it} of the latter.

Another improvement in Theorem 6.5 is possible if det A, # 0, since
in thal case the limit in {6.7.7) is valid for { > —uw,, by Theorem 12,17,
Thus the series representation tn Theorems 0.5 and 6.6 represents y(¢8) for
{ > 0if det A, # 0. In this ease the system has only neutral root chains.
The series then provides a Fourier-like series for ¢ (i) over the initial interval
(ses §5.5).

EXERCISES

1. Trom Fxercise 9 of §6.5 we have

v = [ eH i Op ds  1>0, 1€ S,
(e}
where, by an integration by parts, p.(s) can be put in the form

po(s) = 2 Ag (O — 2 [Ayg (wn — @) + Bglam — @) Joon

+ e [T LA ) + Bg') T di,
i} 1]
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assuming that g is C7[0, wy, |. Assume that det Ay = 0 and that all root
chalns of det H{s) are retarded. Use Theorem 12.18 to show that the
infegral

f e IT=\(s)pa(s) ds

1]
converges uniformly for &y < { < &’ (& > nw.), and therefore that ¢/ (£)
is continuous for ¢ > nw.. This verifies the statement made after Theorem
6.2,

2, let K (1) be the kernel matrix for a system of the form in {6.7.1) which
has only retarded root chains. Show from the equation in (6.6.6) and
Theorem 12,18 that K (i) is continuous for { > {n — 1}lwa.

3. Under the conditions of Exercise 2, show that

K(t) = lim 2 en@(8), &> (n— Dam,
o €y
where e7Q,.({) is the residue of e"'H-1{s) at a characteristic root s.
Show that the convergence is bounded for (n — ljw, < ¢ < &', and
uniform on ty < ¢ < &' forany & > (n — 1)wa, and that the set need not
be bounded above if all characteristic roots have negative real parts.
Hint: Use Theorems 12,17 and 12,18,

4. Assumc that det 4, £ 0, that all root chains of det H(s) are retarded,
and that g is C40, wn |. Let #(¢) be the solution of the system in (6.7.1}.
Show that for { > nw,

¥() = lim D ertp (),
f=m 7
where e*p, (£) 1s the residue of e**H(3) p:{s) at s.. Here py(s) is defined
in Exercise 1. Discuss convergence of this limit.

4.8. Asymptotic Behavior of Sofutions of Neutral and Refarded Systems

We shall now derive several results on the asymptotic hehavior and
stability of solutions of systems of the form in (6.7.1). We have from the
equation in (6.7.3)

9(t) = f e I~1(s)p(s) ds, &> 0, (6.8.1)
{e)

for any ¢ which exceeds the least upper hound of the real parts of the
characteristic roots, Let 3 denote the set of all these real parts and of all
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accumulation points thercof. We now follow the procedure in §4.4 or §5.4,
and push the eontour in (G.8.1) to the left to a line Re(s) = ¢/, ¢’ ¢ M.
We obtain

y(t) = lim [

I+»oe

f CHAS () ds + L ern(d) ] (6.8.2)

{c¢h) srel’ i Refar) e

In this equation, the sum represents the sum of residues at characteristic
roots within € and to the right of the line Re(s) = ¢'. The integral is taken
over the portion of this line which lies within € Tor a system with only
retarded root chalng, the sum will contain at most a finite number of terms,
but for a system with neutral chains, it may be infinite.

The integral in (6.8.2) can be written as in (6.7.12)}, and its magnitude
cstimated with the aid of Theorems 12.18 or 12,19 and 12.20. It is found
that il 1s O{et't) ag t — <, where the implied constant is a function of the
magnitude of g(¢) and ¢'(¢) over the initial interval, Let us state this as a
theorem.

Theorem 6.7. Suppose thal g s of class C' on [0, w. ], and Ief y be the
continuous sofution of the nth order system

STTA(t— w) + Byt —wd] =0, det Ay, %0, (68.3)
{wd]

with thatial condition

y(t) = ¢t), 05t < wn (6.8.4)
Tet*
me = max [ g(&) [| + 1l ¢’ |3 {6.8.5)
Olt=ltim

et M denole the sel of real parts of the choracleristic rools together with oll
thetr accumulation points. Then if ¢ § M there is a posifive constant 1 such
that

Ly() — lim D e () || < eomge™,  t> nwm,  (8.8.6)

1=

where the sum is taken over all characteristic roots s, within the condour Cy and
to the right of the line Re(s) = .

*Ifd:=0fori =1, «+-, m we can define m,; by

my; = max [|g#) [},
0 e il

pinee we ean use py(s) instead of p(s) in Theorem 6.3,
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From this theorem we can deduce important corollaries concerning
conditions under which all solutions approacli zero or are bounded as
t — oo, In these, we restrict attention to the class 8 of continuous solutions
which are of class C* on an interval [0, w.], which we take to be the initial
interval,

Corollary 6.1. Consider the system in (6.8.3) and asswme that all rool
chaing are reforded. A mecessary and sufficient condifion in order tho! all
solutions of the cluss S approach zero as § — = 1s thai all characteristic rools
have negative real paris.

The gufliciency iz an immediate consequence of Theorem 6.7, since it
gives y(£) = O(e**) with ¢ < 0. The neeessity follows from the fact, proved
in §6.5, Exercize 1, that to each root s, there corresponds a nonzero vector
¢ such that et is a solution of the system.

Corollary 6.2, Consider the system in (6.8.3) and assume that oll root
chaing are refarded, A necessary and sufficient condition in order that all solu-
tions of the class S be bounded as t — « s that

(a) all characteristic rools have nonpositive real parts, and

(b) #f s, is a root with zero real part, the residue of et*H~'(s)} at s, 78 bounded
asi—» =,

A sufficient condition for (b) is that each root with zero real part be simple.

The necessity follows from the fact that the residue at any root s, of
e»H1(s) is itsel a solution of the system in {6.8.3). We leave the proof of
this ag an exercise. To prove the sufficiency, we use the following lemma.

Lemma. If s, i o characleristic root with zero real part, and if the residue
al 5. of e"H () 15 bounded as £ — oo, then s, is a stmple pole of H'(s).

The proof of this lemma is identical to that in §4.4.

From this lemma, it is clear that s, is also a simple pole of e*H-1(s) p(s),
and that the residue is a constant (vector) multiple of the residue of
e*H (s}, Since there can be at most a finite number of such s, this proves
Corollary 6.2,

Note that though s, is a simple pole of H1(s), it may be a multiple zero
of det H (s).

A discussion of the concepts of stability, uniforro stability, and asymp-
totic stability can be carried through much as in Chapter 4, but we shall
ornit this here.

In Corollaries 6.1 and 6.2, we have restricted attention to systems
having only retarded root chains. It seems intuitively elear, however, that
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Corollary 6.1 should also be valid for systems with neutral root chains,
If all roots s, satisfy Re(s.) =< ¢; for some fixed negative number ¢, this is
immediately apparent from Theorem 6.7. However, it is possible to have
ell roots satisfy Re(s,) < 0, and yet to have 0 ag an accumulation point of
the real parts. In such a case, Theorem 6.7 is of no aid.

The proof of Corollary 6.1 for neutral systems in this eritical case has to
date been given only for the special class of sealar equations of the form

_ﬁ) Caud () + buP(t — )] = 0, (6.8.7)

containing only one retardation. The proof which bas been given for this
equation depends on determining the asymptotic form of the characteristic
roots, and then proving uniform convergence as ¢ — « of the series of
residues. The method would secm to be difficult to apply in the general
case, since it depends on actual caleulation of the asymptotic forms of the
roots. Indecd, if there are several retardations w; these roots are not
“asymptotically determinate,” as noted in Chapter 12,

We shall be content to leave the matter here, with the remark that the
problem is not gerious in practical applications. For example, no engineer
would design a system in which stability was so delicate a matter,

EXERCISES

1. Prove that the residue at any root s of e“H-(s) is a solution of the
system in (6.8.3). Hint: The residue is

1
— f eBH-1(s) ds,
2ot e

where €' is any [inite closed eontour surrounding & but no other root.

2. Assume that det Ay = 0, that all root chains of det H(s) are retarded,
and that g is C*[0, w. ]. Let i be the continuous solution of the system in
(6.8.3). Tet

my = max [lg®) [ +[1¢'@ [ + 1g"”(#® 1.

D beim

Referring to Lxercises 1 and 4 of §6.7, show that if ¢ & M, there is a
positive constant ¢; such that
'@ — 20 erpld) || < comee™, 2> Nom,
Roleri>a

where the sum is over the finite number of characteristic roots in the
half-plane Re(s) > ¢, and where ¢**p, (£} is the residue of e[/ ~1(s) pa(a).
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6.9, Scalar Equations

The scalar cquation

33T et — wg) = F(8) (6.9.1)
=0 g=i
is of special interest. Recall that in §6.1 we started with this equaiion and
converted it to the vector-mairix form

i LA’ {t — wi) + Byt — wa) ] = F*{1). (6.9.2)

A re-examination of the transformations employed reveals the special form
of the matrices A;and B, that correspond to the sealar equation:

1 0 - 07 0 0+« 0]
0 1 « 0 00 «~o 0
Ag=1 - , A, = - ,T=1,2, «o0, m,
_0 0 e pn_| __0 0 =+ o
_ 1 NP
0 0 0
Bu = '
L Mon DT 11 ,1J
o o -0 ]
n 0 . 0
B;=| - . i = 1,2 - m

Qg g *rr Gia—1_]

We can therefore easily caleulate H (s), and its determinant

hs) = 303 qusiei, (8.9.3)

0 =t
Thus it iz possible to interpret our previous resulls and methods in terms
of the equation in (6.3.1},
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Let us assume that in the equation in (6.%.1) each retardation w; actually
appears, and that there is a term containing the nth derivative and a term
containing the zeroth derivaiive. This assumption ¢an be expressed in the
equalions

L

2 e >0, i=0,1,m, (6.9.4)
a=l
and m m
Z |@w| > 0, Z lag! > 0. {6.9.5)
=l =0

The equation is then of differential order # and of difference order m. If
n = 0, the cquation is a pure difference equation, and if m = 0 it iz a
differential equation. We exclude the trivial case in which m = = = 0.
An analysis of the distribution of the characleristic roots, by the method
of Chapter 12, reveals the following information.

Theorem 6.8. Consider the scalar equotion tn (6.9.1), and suppose thai
the conditions tn (6,9.4) and (6.9.5) are satisfied (n® + m? > 0). A necessary
and sufficient condition that all rools be of refarded fypeisthal ap, £ 0, a4, = 0
(i = 1, »--, m). A necessary and sufficient condition that all roois be of ed-
vanced type 18 thol Gmy < 0, 850 = 0 (2 = 0, -+, m — 1). A necessary and
sufficient condition that alf roots be of neutral type 4s that den # 0, G 0.
A neeessary and sufficient condition thal oll roots be of either retarded or
neutral type is that ag, 7= 0.

Our results on the system In (6.9.2) can of course be rephrased in terms
of the scalar equation. For example, Theorem 6.5 provides a series expan-
sionn of w(2), w'(t), v+, w0} for the equation with f{£} = 0. However,
the region of convergence of the serics is actually considerably larger than
that suggested by Theorem 6.5. This can be seen by 4 closer examination
of the order of magnitude of II-1{s) on the integration confours, as in
§12.13, or by applying the transform methods directly to the scalar equa-
tion. Lef us indicate the formulas ebtained by the latter procedure.

We assume that ag, 3 0. The root chains arve then all retarded or neutral,
the solution is exponentially bounded, and the Laplaee transform can be
applied. Since

=] J—
f uP(E — wetdl = —gums Z WM (dy, — @) §

tim =1

+ sff wlt — we st dt,  (6.9.6)

wm



194 6. DIFFERENTIAL-DIFFERENCE FQUATION S8YSTEMS
we obtain

R(s) fo Tt dt = pls) + o), (8.9.7)

where h{s} is given: in (6.9.3), where

m T i
p(s) = 20 20 2 aueengt N (u — wp)st!
=0 =0 k=i
F 33 agsewn f T e d,  (698)
=0 j=[
and where

o) = [ sy (6.9.9)
The inversion theorem at onece yields
w(t) = [ ewOp0) +a@1ds, >0 (69.10)
(e

As in our previous work, proof of the cxpansion theorem depends on
showing thati the integral

f e h(s)p(s) ds

Op—

1M=
M-

> 0 (on — ) [ exp [ — )P KG) ds
&

A=t —

Wy =iy

Gy exp [({ — wi}slsh1(s) glhje™" dh ds
[6‘1 f (6.9.11)

approaches zero as [ — . Ag usual, this depends on obtaining an estimate
of the order of magnitude of A-1(s) on C;_. In Chapier 12 we shall show
that on €7

+

IMs
1M

[h(s)’zc[aﬁ'siewish li:=O!...I"Vn'? -:';=0:|'-.?n)

for semc nonzero constant ¢; that is, that 2(s) has the order of magnitude
of its largest term. Hence, sinee 4. 5 0, we have in particular

[Bi(s) | = O(s|™), s€ Cp. (6.9.12)
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Indeed, if u is the largest value of ¢ for which ¢ # 0, the function h(s)
contains the term a..s% "+, and we can strengthen (6.9.12) {o

[A7i(s) | = O(] g7meve ), s € Ci. (6.9.13)

Therefore, for k. = 1, «+», jand 7 < n, we have
f exp [(§ — wm)s)o1h1(s) ds

= f Ol exp [({{ — on + @usls? ) ds. (8.9.14)

cr—

[1f n = 0, {erms of this kind do not appear in (6.9.11).7] Choose any positive
number ¢, and let 7; and I; denote the contributions to the above integral
from the parts of Co— on which Re{s) < —¢log s|and —clog|s| £
Re(s) < 0, respeetively. Then

Li=0fexp[— (! — om + welogl]l, (> om— o, (69.15)
L= O(tlogl), 1> wn— w (6.9.18)

Thus J1 and I converge boundedly to zero as I — o, for { > wn — a,
with uniform convergence for £ bounded away from w, — w,.

In order to discuss the other terms in (6.9.11), we use an inlegration by
parts, permissible if we assume that ¢ is of class C! on [0, w. ], which is
certainly true if #» > 1. Then

L
[T st d = s39(0) = s7ig(en — @) exp [ = (an — @i)s]
0 .
Ul —ay
+ 51 f g (b)esa diy
0

= O] s exp [— (&0 — wi)s1]}, s € C. (6.0.17)

From this the terms in (8.9.11) involving integrals of g are seen to tend to
zero as ] — « just as before. Consequently, we have

lim f eH U ()pls) ds = 0, > wm—w.  (69.18)

e 70—

In place of Theorem 6.5 we therefore have the following,

Theorem 6.9. Suppose that g is of class C' on [0, wn | and let u(t) be the
untgue solulion with (n — 1) continuous derivatives of the equaiion

m "

Dt~ w) =0,  aw =0, (6.9.19)

=0 §=0
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with nitial condition w(l) = g(£), 0 £ t < wn. Assume thal the conditions tn
(6.9.4) and {6.9.5) are satisfied. Define p(s) as in (6.9.8). Lef u be the largest
value of { for which aq, # 0, and let e'p, (L) denote the residue of e*h1(s)p(s)
af a zero s, of his). Then

w(t) = lm 2. e'p(l), > om— o (6.9.20)

len Op

The convergence is uniform in any fintle tnterval & <t < & (I > wm — ),
andtnty < ¢ < o {f all choracleristic roois lie in o half-plane Re(s) <o <0,

It is possible to obtain expansions of «', ---, «™ U as well, valid for
t > w, — w, provided g is sulficlently regular, and also to obtain expan-
sions for solutions of the nonhomogeneous equation in (6.9.1). A more
general theorem is proved in §6.10.

It may at first scem surprising that for the scalar cquation we obtain a
convergent expansion for ¢ > w., at least, whereas for the general system
of §6.0 the expansion s valid only for ¢ > nw,. This becomes less surprising
when we consider the equation

w(t) — ult — nw) =0, (6.9.21)

with a single retardation nw. According to the formula in {6.9.20), the
solution should have a series expansion valid for ¢ > new. This equation,
though, is equivalent to the system

yﬁ(t) - yl(t - w):

. (6.9.22)
Yult) = gl — ),

y'{t) = i — w),
which has the single retardation .

EXERCISES

1. The exponential shift theorem can be used to solve higher-order
gealar equations, For example, consider the equation

au' (1) + bu' () eu(® Al —w) =1, >,

which arises in the study of the econtrel of a system with retarded
derivative feedback. Take the initial condition as u(2) = 0,0 < { < w.
Show that the solution for which %) and w'(¢) are continuous satisfies

L u{f)et dt = S

e
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Let b5(t) denote the inverse transform of 72 (s)—7 (7 = 1,2, ---), where
g(s) = as® + bs 4 ¢. Obtain the formal expansion

[Tuwena =3 —am

[ =1 (?) J

and deduce that

g}—?e‘—f@s

u(f) = Z (—d)Fhi(t — wj),

=1
No <t < (N + Vo, N=12 -

If in parficular @ = 0 (which might occur iIn a physieal system with
negligible inertia), find the explicit form of «(!) for the intervuls with
N =1,2 and 3.

(L. A. Pipes, “The Analysis of Retarded Control Systems,” J. Appl. Phys., Vol
10, 1948, pp. 617-623.)

2. Assume that ap. = 0 and ., # 0. Suppose that %«{t) has » conlinuous
derivativeg and satisfies the cquation in (6.9.19) for —e < { < =,
Show that the expangion in (6.9.20) iz valid for all { and that the
convergence 1s uniform in any finite interval.

(H. M. Wright, “The Lincar Difference-differential Equation with Constant Co-
efficients,” Proe. Roy. Sec. Edinburgh, Sec. A, VoI, 62, 1949, pp. 387-393.}

6.10, The Finite Transform Method

The ptreeeding expansion theory, based on use of the Laplace transform,
has a serious shorteoming, the faet that it must be presupposed that the
solutions are exponcntially bounded. The theory is accordingly not ap-
plicable to equations having advaneed root chains. There is, however, an
interesting technigue for discussing such equations, using the finite Laplace
transform, which we shall present here. This technique is suitable for any
differential-difficrence equation, whatever the nature of the associated
root chains.

We shall restriet attention to the sealar equation

> 3 aut — w) = 50). (6.10.1)

The method can alse be uscd for systems of the form in (6.4.1), but for the
spplication which we shall make in §6.11 it is more convenient to begin
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with the equation in (6.10.1}. We shall diseuss the latter equation under
the general hypotheses of §6.9, that is, we assume that

Z la"'fl > OJ 7= 0) 1; R L (610.2)
0
and that
Ylan| >0,  Diaw|>0. (6.10.3)
=0 f]

We exclude the trivial case in whichm = n = 0.

Let {ag, b) be a given inlerval, in which i% is desired to obtain s series
expansion of a solution (¢} of the cquation in (6.10.1). Choose ¢ and b
such that

< Gy — Wm, b > by + wn. (6.10.4)

We assume that %{f) is a solution of the equation in (6.10.1) fora < ¢ < b,*
continuous and of bounded wvariation, with n continuous derivatives, and
that f() is continuous and of bounded variation on [, 7. We multiply
the equation in {6.10.1} by e~ and then integrate over (g, D). Using the
formulas

b i
f wA(t — whe st df = e Y, w9 N(h — )t

-3 =1

i
— gor Z uFN{g — w,)s!
A=l

[:]
+ sff ult — west di, j=1, - n (6105)

a

3
f w(t — wlet dt

L.

i3
= 6-“{8 f

a—uwy

h b
(e di +f w(t)e=rt dt —f wft) et dz], (6.10.6)

b—ai

we obtain

hie) fhu-(t)e"‘ dt = po(s) — pels), (6.10.7)

* The solution ©{) must be defined on {2 — wwm, §).
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where, forv = a or b,

pao(s) = f” flyeetdl — e Zm: i @i Zj: w0 — o)
0 o

=0 =0

¢

+ >0 3 asieee f u(tyer dt.  (6.10.8)
= =0

=iy

IHere A{s) has the usual meaning,

B(s) = 2. 2 agste s, (6.10.9)
=0 =D

Let {C;} (! = 1,2, --+) denote the usual set of contours. In order to
invert the equation in (6.10.7), we multiply both members by A1 () et/ 2xd,
and integrate along the line Re(s} = 0 from the point —4y:; where the
contour €'; cuts the negative imaginary axis, to the point 2y, where it cuts
the positive imaginary axis, with small segments replaced by semiecircles if

necessary to avoid any zeros of h—1(s). We obtaln

i 233 ] 1 W
— [ Teas [ umeman = — [ et pals) - pa(e)] s
2t iy, a 2ui

Ag iu §1.6, the expression on the left is equal to

1 rt sin yp{f — ¢
f u(t;) '—""Z!'!(_"L) dil,
T a - il
and converges uniformly to «{¢) as{ — « for @y < ¢ £ by Therefore

u(t) = lim {——1—, fm eh~1(s) [po(s) — pals}] ds}. {6.10.10)

{+m T —gu;

Our first step in passing from (6.10.10) to a series expansion is to show
that the value of the integral

f e th1(s) py(s) ds (6.10.11)

is independent of », for e < » £ b, i € is any closed contour, From the
equation in (6.10.8) we obtain

a wl n
T B(8) = fo)e — o 3 X au® = w) + e h(3)uld).

=0 =0

(6.10.12)
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If a < v < b, the double sum s simply f(»), by (6.10.1), and we are left
with

d

o pu(8) = e h(s)uly), {(6.10.13)
b

It follows that e*tA~1(s) dp,(s) /dv is an analytic function of s throughout the

s-plane, and therefore that

a
- f b () pa(s) ds = 0, a<wv<b, (6.10.14)
v

Hence the integral in (6.10.11) is independent of v, & < v < b.
Asusual, we let ' and € denote the right and lefl halves, respectively,
of €. Now

ity
f e h(8) pals) ds + f 1 (5) pals) ds
—iiy Cp—
is 27¢ times the swin of the residues of e (s} p. () in the region bounded
by - and the contour from —; to ¢, and

113
— [ e h (s) pols) ds f et (s) pols) ds
—itg it
is 2x¢ times the sum of the residues of e 1(8) ps(s) in the region hounded
by € and the contour from —4t; to it Since the integral in (6.10.11) is
independent of v, @ < v < b, each residue of e*h—1(s) p.(8) or e 1(s)ps(s)
is enual to a residue of ¢**h~1(s) p,(s). Therefore from (6.10.10} we find that

w{f) = lim [~ 3" residues within C; of e*th~'(s) pu{s)

l-+ca

+ —L—f eth~1(g) pals) de + ——l-—f e"h1(s)pu(s) ds] (6.10.15)
+ 2 . B

7t o WL Y
or

L
w(f) = — lim [f eth™1{s)pa(s) ds

21!'?. jca o—

+f ek (s)pe(s) ds —f e h1(s)po(s) dS} (6.10.16)

o+ cy

fora < v < bt <t < b
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We now turn to the problem of estimating the integrals which appear
here. For this, we need estimates on the magnitude of A1{s) on €. and
('71. One such estimate was given in (6.9.13):

| A=t(s) | = O smews [), s € Ch, (6.10.17)

where p is the largest value of ¢ for which a., ## 0. Since », may be zevo,
we can only be sure that

Phi(s) | = O(] s ], g€ U (6.10.18)
Henceforx <7 < n,

f

[If n = 0, terms of this kind do not appear in the expression for p.(s) in
{6.10.8).] Choose any positive number ¢, and let 7, and 7; denote the
contributions to the ahove integral from the parts of € on which Re(s) <
—clog }s|and —clog ]s| < Re(s) <0, respectively. Then since we have
i > ap > a, we obtain

| 11| = Ofexp [—c(t — @) log ]},
| I | = O(Itlog ).

et ()11 ds =f O st 1) ds.  (6.10.19)
crm

-

Thus integrals of the form in (6.10.19) are ¢(1). Next, we consider the
terms of p.(s) containing integrals of w(¢), which are of the form

f e“h—l(s)sfe—““f wlt)e™" diy ds. {6.10.20)

- a—wy

Beecause of our assumption that « is of bounded variation, we deduce that

f w(tyendy = O( e ]), s€ Cor. (B.10.21)

U—lby

Hence the integral in (6.10.20) has the form

f Of| s mexp [s(t — w; — a) ]|} ds.

Ci—
If¢t > ay, we have t — w; — @ > 0, and since § < n we can show that this
integral is o(1) by splitting it into integrals on which Re{s) £ —clog | s|
and —¢ log | 5| < Re(s) < 0, as before. Thus we have for ¢q < < bo,

limf e () p.{s) ds = Iimf e*th~1(s) f Fltye ™ diy ds.
R l+m Y Op— g (6.10.22)
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For any ¢ for which a4, = 0, the function & (s) contains the term a;.s%e—#,

and thercfore [A1(s) [ = O(| smew= 1) for s € (. Let v denote the
smallest such value of . Then
[A72(s) | = O(| sme=r ), s € Cipn {6.10.23)

Sincet — b 4+ w, < by — b + wn < 0, we conclude that

f eht{s) e gt ds = f Of| s exp [s(t — b + @) ]} ds = o).

O+ O

(6.10.24)
In analogy to the inequality in (6.10.21} we have

/ " ulendn = Ol sexp [—(b — wdslll, 5 € G (61025)

By

Sincet — b+ w, < by — b + w. <0, it follows that

b
limf e*th™1(s)py(s) ds = Iim[ e*h1(3) f Flh)en diy ds,
0

{=on Y 04+ w0+
@<t < (6.10.26)

Using the resulls in (6.10.22) and (6.10.26), the equation in (8.10.18)
takes the form

1
w{f) = — lim [f eth~ () q.(¢) ds

27t e LY gy

+ f e th1(s) f e dby ds
Or— v

' b
+ [ e [ swyes a!s], G < £ < by, (61027)

Ot

where

"

m F
Ggu(8) = e Z Z @45 Z 1M (p — wg)et

0 =0 r=1
— > 3 aystes f w{t)e—n dfy.  (6.10.28}
=0 j=q g

We note that g.(s) depends on values of u{#) over an interval of length
wm, and can be considered to represent the effect of an initial state. The
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effect of the foreing function f(¢) is indicated by the latter two integrals in
(6.10.27), which we shall now further simplify. First of all, since f(t) is
assumed to be of bounded vartation,

[ e et — ) = 0(s1),  s€ €, (61029)

and therefore, using algo (6.10.18),

/

O

erth1(s) f f(tyemn dty ds = f O(| s |) ds.  (6.10.30)
¢ £

Ifn > 1, thisis o(1). If = = 0, this argument fails. In this case, however,
there must be a nonzero ay with ¢ > 0, since we have excluded the case
m = n = (), Hence

Phl(s) | = Offes]), (6.10.31)

and we can replace the equation in (6.10.30) by the equaticn

J

{7~

eth{s) fu fltetdiy ds = f O(] s |} ds = o(1). (6.10.32)

-

On the other hand, in estimating the integral over C;; we use the
relation

| A2 (s} | = O(fs[™), s€ Cu, (6.10.33)
where 7 is an integer for which ay; # 0. In place of the bound in (6.10.29),
we have, since £ < 5,

b
f #t) exp [s(d — )] dh = O(|s|), s€ Cu. (61034

Therefore

J

T+

b
e Hh1(s) f FEy e dty ds = f O s |-1) ds. (6.10.35)
] M

=+

If 7 > 1, thisis o(1). If § = 0, we must proceed differently. We write the
left-hand member in {6.10.35) as the sum of

I = ano_lf

i
Iz = f
c

]
ot f Flt) et dh ds

and

b
et (hi(s) — Gﬂuhljf St e dt) ds.

rl
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Then b .
Sin t—t
n= 21'0«::0_1[ S(&) i—l) dty,
] t — 51
and by §1.8,
lim J; = wige I {2). (6.10.36)
IS

Now
Fi(s) — apt = —awthi(s) 2 D agsies,  (6.10.37)
i=1 =0

We now write J» = Iy + I, where Iy is the integral over the portion Cj of
€y, on which 0 < Re{s) < clog| s ], and I, is over the portion €', on which
Re(s) > elog | s Since ap = 0, and k(s) contains the term an, we huve

[Bs) | = O(), |RhYs) —ow| = O0Cse=|), s¢

Hence
I = Olrexp (—we log )]

This i8 o(1) if we take ¢ > nw™t On the other hand, since every nonzero
term in the double sum in (6.10.37) is also present in A(s), we have

R (s) — aw™] = O(), s€ Gy
Henee Iy = O(I ' log i} = (1), and
lim I, = 0. (6,10.38)

12

The equation in (6.10.27) now fakes the form {ay < ¢ < bo)

~ lim [ fc ) 0(6) ds + fc ) f e diy ds]

21” lwe
oo {2
u(t) — m2f() if ap =0, Go; =0, j=1,+2,n,
u{i) in all other cases. (6.10.39)

We can therefore state the following theorem.

Theoram 6.10. Consider the scalar equation in (6.10.1), Assume that m
and 1 are not Doth zero and thal the coefficients satisfy the relations in (6.10.2)
and (6.10.3). Lot ay, bo, &, b be any four numbers for which @ -+ ow < ap <
by < b — wn Assume that f(1) is continuous and of bounded variation on
[a, b], and that u(t) 4s a solution of the equation tn (6.10.1) for a < t < b,
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continuous, of bounded varialion, and with n conlinuous derivatives. Lel
e'p. (1) denole the residue of

() [qr(s) + f it een dtl] (6.10.40)

at a characleristic roof s, where ¢.(8) is defined in (8.10.28). Then for
a < v < b, the serics

> evip, (1), (6.10.41)
<

where the sum 13 iaken over gl characteristic roots within Ci, converges as
I — oo, uniformly for ap < t < Do The sum is w(t) — f{£) 2oy if am = 0,
ag; = 0 {4 =1, -+-, n), and stmply u(t) in all other cases.

In the next section, we shall apply this result to the problem of expand-
ing an arbitrary function in a Fourier-like series of a very general kind.

If there 1s a positive constant d such that the set of distances between
pairs of zeros of A(s) is bounded below by d, then the expression in (6.10.41)
can be replaced by an ordinary infinite series. S8ec Theorem 6.6.

EXERCISE
Let (&) be a solution of

D[4yt — @) + Byt — )] = f(O)

=0
fora < ¢t < b, of cluss C' for @ < ¢ < b, and let f{¢) be continuous for
& < ¢ < b Assume that ¢ 4+ nw. < a0 < b < b — nw,, where » is the
dimension of the system, and also that the expansion of det H(s) contains
ot least one term containing the ath power of s. Let

gols) = e 2, Agylv — w)
=0

¥

— Z (A,'S =+ Bg)@‘_”‘-sf y(tl)e—‘*“ (ﬂl, 41 _<_ i S b.
i=A

Tt

Show that

1
y{&) =~ lim U e tH™1(s)gu(s) +f

2ﬂ I+ O T

* o

fora < v < b, ag £t < by. Hint: Use the estimates in Theorem 12.14.

et H—1{s) f flie=n diy ds

eI (s) f fltyes diy dS]
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6.11. Fourier-type Expansions

We now wish to consider the problem of expanding a given funetion w(¢)
in a series of exponentials, e, where {8} is the sequence of zeros of a
given function of the form

Bi(s) = 2 > agsie ™, 0= <o <00 <am  (6.11.1)
i=0 =0
Az pointed out in §4.5 such serics are generalizations of ordinary Fourier
serics.

Let us assume that the numbers a;; satisfy the conditions in (6.10.2)
and (6.10.3) and that m and » are not hoth zere. Let «(f) be given o an
interval of length w.. Without loss of generality, we can assume this
interval to be 0 < ¢ < wp. Assume Lhat #{¢) iz continuous and of bounded
variation and has n derivatives which are continuous and of bounded
variation.* In order to obtain the desired expansion of % (£}, we shall con-
strucl a differential-difference equation, with A(s) as its chuaracteristic
function, of which %{¢) Is a solution, and shall then apply ihe results of
§6.10. Let us first complete the definition of «(#) for all real ¢ in any way
such that «(Z) ig continuous and of hounded variation and has n derivatives
that are continuous and of bounded variation for all {. Define a function
(1) by the equation m
) = 223 aqu?(t — wy). (6.11.2)

=0 =0
Then f{i) is continuous and of bounded variation for all ¢, and «{{} satis-
fies the equation in (6.11.2) for all &. We can therefore apply the considera-
tions of §6.10. Tt is most convenient to begin with the equation in (6.10.27),
and fo take ¥ = @, @y = 0, by = wp, @ < —whw, b > 2w,. We then have
wl®) = —— Tim [ f eth=1(s)g(s) ds + f eh1(s) f Flt)e=n diy ds
i O wm

27t e

i}
+[ e-"h—‘(s)f f(t;)e‘“ldtlds], 0<1<wn (6113)

e L

where

"

m i
gls) = e 3 3 ay 25wV (wn — wi)

=0 =0 =1

— 3 aysiees f w(t)et dly. (6.114)
i=f g W §

* This is & stronger hypothesis than that used in §6.10.
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We shall show that the latter two terms in the right-hand member
of (6.11.3) are zero. Tirst of all, by integration by parts,

[

| w) oxp [ — )1 = Of) s exp [s(¢ — w11},

s € Cy. (6.11.5)
From (6.10.33) we have

b is) | = O(1), s¢€ C. (6.11.6)
Write
f i) f Flt) e diy (6.11.7)
O W

ag the sum of Iy and I;, where 7, is the integral over the portion of €, on
which Re(s) > clog | s|, ¢ > 0, and where 7, is the integral over the
portion on which 0 < Re(s) < elog | s|. Then

fl=f0{'gs"1exp [s(t— wm)] |} ds = Olexp [t — wn)e log I}, ¢ < wm

I — f Of| st exp [s(t — wn) 1|} de = OQlog D), < oom.

Thus the integral in (6.11.7) tends to zero as I — = if { < wy, boundedly
for i < w, and uniformly for £ bounded away from w.,

Similarly, since ¢ <\ —wm,

f’ (1) exp [s(t — t) ] dt = Of| st exp [sCt — w) 1]}, 5 € Ci

(6.11.8)
Since there is a4 NONZEro G,
| B1(s) | = O e ), s € (' (6.11.9)
Therefore,

J

Ci

eni(s) [ e dn = [C Ol e ) ds.

I
Splitting this integral into two parts, as before, we readily see that it
tends boundedly to zerc if ¢ >> 0, uniformly for ¢ bounded from zero.

We have now proved the following,
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Theorem 8.11. Lef h{s) be a funciton af the form in (6.11.1) in which the
conslants a; satisfy the conditions in (6.10.2) and (6.10.3) and in which m
and n are not both zero. Let u(t) be continuous and of bounded varialion and
have n dertvalives that are continuous and of bounded variafion for < < wn.
Let 1Oy} denote the wsunl sequence of nearly circular contours, and let e57%¢, ()
denote the residue at a zero s, of k(s) of the function e*h~1(g)q(s), where g{s)
ts defined in (6.11.4). Then

w(t) = lim 2. e'g(f), 0 < i< wn (6.11.10)
e (O
The convergence is bounded for 0 < § < wm, and uniform in any closed sub-
interval,

This theorein proves the validity of the ordinary Fourier series expansion
i (4.6,17), provided g(t) is continuous and of bounded variation.
EXERCISES

1. Obtain the expansion of the function «{(8) = £, 0 < § < 1, related to
the second-order differcnce operator with characteristic function

h(s) = —1 + g2,

2. SBtudy the expansion of funelions defined over 0 € 2 € 2 in terms of
the particular solutions of 2¢f'(2) = flz 4+ 1} — f{x — 1).

{A. C. Dixon, “The Operator sinh D — el Proc, London Math. Sec., Vol. 21,
1922--1923, pp. 271-290}; sec alzo E. C. Titchmarsh, “Solutions of Some IFune-
tionul Equations,” J. London Math, Soc., Vol. 14, 1939, pp. 118-124)

3. Discuss expansions of the solutions of
w) = [ Bt — 0 o,

under the assumption that #(¢} = Ofexp (e2)] as | ] — co, whoere
0<e<i

{Titchmarsh, “S8olutions of Some Functional Equations,” op. ¢t}
Miscellaneous Exercises and Resaarch Problems

1. Consider the linecar functional equation
FOE)  Rad F (2 — Bae1) + Rama SO {2 — Fua)
+ st Mfle— k) =g(@), n2l,

where the A are real or complex constants and the A are real constants.
Assume that g(x) is a funetion of # defined for all real x of polynomial
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order, that is, {g{x}{ < er[x|* a8 |z, — . Suppose further that
flz) is 4 solution of the feregoing equation which is continuous, to-
gether with its fivst {n — 1) derivatives, for all #, and that none of
these functions incrcases faster than an arbitrary power of x as
| 2| — .

Show that if the eharacteristic equation

F(s) = (ds)* + "Z_l M(is)f exp (—ils) = 0
k=D

has no real solutions, then the funetional equation above has precisely
one solution of the {ype just degeribed.

. If F(s} = 0 has m real solutions, taking aceount of multiplicity, then

the equation has infinitely many solutions of the foregoing type.
These are ohtained by adding to a particular solution a linear com-
bination of m solutions, determinad by the real solutions of F(s) = 0.

. 1f F{s) = 0 has no real solutions, then if g{x) = 0 the only solution

within the family described above is f(z) = 0.
{For these results, and the results just above, see

E. Schmidt, “Uber eine Klasse linearer funktionaler Diferentialgleichungen,”
Maith, dnn., Vol. 70, 1011, pp. 409-524.)

. Digeuss from this point of view the equations

f{x) — W) = g(x),

Flx) — Mz — k) = gla),

J@) —2Milfe — B + 7@ + R 1)
Jiey = MiLf — &) + iz + 1)1

gz,
glz).

I

I

. Let B(z) = k{1)e — k(0) — [}e™dk(u), where k() is a funciion

of bounded variation on (0, 1) such that k(0) = &(0-}), (1} =
E(1—), and k(1}%k(0) ¢ 0. Show that given & > 0, there is a positive
number g = 7(8) such that, if each zero of B(z) is the center of a disk
of radius 4, then for all z outside the disks, | B(z) | > 5.

(Continuation of 5.) Let R, denote the rectangle
2] < C, 2mr <y < (Zm + 2)m, m=01,-,
2=z 1 1y

Show that the number of zeros of B{z) in B, (n = 0, &1, +--} is
bounded with respect to ».
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7. {Continuation of 6.) Let the zeros of the sealar function
1
4@ = [ ke du = #1B(2)
o

be denoted by A, and the notation so chosen that
0 < [ M) ] e,
Assume that the zeros are simple and that A{0) = 0. Let
$ou) = k(u),

@nlu) = fciun) 4 g f: E{v)em du,
i L
“= 70 [ 1wt a
1 1
Cn = A!(Rn) j; f(u)¢n(u) du-, n = ]_’ Z’ can,

Show that there is a positive number & with the property that if each

zero of B(z) is the center of a disk of radius 8, then theve is an un-

hounded increasing sequence of positive numbers », such that the

circle C'p: | 2| = r, has no points in common with the digks. Let n,
denote the greatest integer » such that | A, | < rp. Show that if f{u)} €
L(0, 1), then ag p — =

n I s i —
to+ 3 it — f ) sinrp(t —w)
T Y t — u

=1

converges to zero uniformly in any closed interval interior to (0, 1).

8. (Continuation of 7.} Let f{u) be infegrable in every finite interval

and satisfy the equation

flk(u)f(t +u) du =0

for all £, Let (e, b) be an assigned finite interval. Then ag p — @,
z 1 sin rp(f — %
i coctnt — _f flw) “_1’(_._.2_ du
1 m~a i —

converges to zero uniformly in any closed interval interior to (e, b).
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9. {Continuation of 8.) Oblain an expansion for solutions f(¢} of

/ B + 1) du = g(0),

where g{¢) is a given continuous funetion of bounded variation.
(For problems 5-9 refer to

8. Verblunsky, “On an Expanszion in Exponential Series, I, I Quart. J. Matk.,
Ber. 2, Vol. 7, 1936, pp. 231-240, and Vol. 10, 1959, pp. 99-109,

A similar problem was considered in

J. Delsarte, “Les fonctions ‘moyenne-périodiques’,” J. Math., Vol. 14, 1938, pp.
403-453.)

10, Let D{z}) = 1 — A(z), where A(z) is as in Lixercise 7. Assume that
E(0) = k(0-+), k(1) = k(1—), and k(1) =¢ 0. Prove the result of
Exercise 5 for D(2). Bhow also that if f(f) is of bounded variation in
{0, 1}, then as n —> o,

Zce—ﬂn —;ff()

t —
sin n( %) du

converges to zero boundedly in any open interval (x, 1}, 0 < z < 1;
here the g, are the zeros of D(z}, all supposed simple, and

Cn =

= ( . f Flu) () du,

1
da. (1) = e“n‘f k(u) e du.
1—¢

{8, Verblunsky, “On a Class of Integral Functions,” Quart. J. Meath., Ser. 2, Vol,
8, 1957, pp. 312-320.

For earlier work see
G. Herglotz, “Tber die Integralgleichungen der Elektroneutheoris,” Mash. Ann.,
Vol. 65, 1908, pp. 87-106.)
11. Show that the equation

n—1

w® () + 2 {au® () + bt — 1] = £(1)
Sl
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13,

14.

15.

16.
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can have at most n characteristic frequencies, but that the equation
> [awu® () + bau®({t — 7)) = f(8)
k=0

can have infinitely many.

(L. B. El'sgol’e, “Some Properties of Periodic Solutions of Linear and Quasilinear
Differential Equations with Deviating Arpuments,” Vestnik Moskor. Univ.,
Ser, Mat., Mech., Astron., Phys.,, Chem,, No. 5, 1959, pp. 229-234.}

. Consider the equation

2(8) + A(Hx() + A:(D2{t — ) + -0 F Adu(fz(l — ) = 0,

where z is an n~dimensional vector and each n X m matrix A,(f) is
periodic of period 7'

Is there & linear change of variable reducing this equation to an
equation with constant coefficients?

Are there vector functions y(t) and sealar functions u(t) of period T

such that ¢
z{{) = exp [f u(s) ds] ery (1)

0

is a solution of the foregoing equation?

(A, M. Zwerkin, “On the Theory of Linear Differential Equations with a Lagging
Argument and Periodic Cocfficients,” Dokledy Akad. Neuk S3SR, Vol. 128,
1959, pp. 882-885.)

Contrast the solution of u' — au'’ = —b, { > 0, with that of

w{t — a) = —bull).

{G. N. Plass, “Classical Elestrodynamic Equationg of Motion with Radiative
Reaction,"” Kev. Mod. Phys., Vol. 33, 1961, pp. 37-62.}

Let ('(z) be a function such that €™ (z) = x, where C™ denotes the

nth iterate. Then the most general solulion of

F(z) + F(C(2)) + -+ + F(C»L(x)) =0
is given by F(z) = G(z) — G{C(x}}, where (/(x) iz an arbitrary
funetion.

tJ. Aczel, M. Ghermanescu, and M. Hosszu, “On Cyelic Equations,” Hung. Adecad.
Sei., Vol. 5, 1960, pp. 215-220.}

If, for dy <t £ Ty, Aua(f) = 1, A;(2) and f(¢) are Lebesgue integrable,
and A ;.(f) and A,;(f) are bounded, then the equation

i Z AU+ w0 =), 0= < < <+ < wm

el fel]
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19.
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has a unique integrable solution w™ () for which w?(4) is given
(7=0,1,++v,n—1)and u™ (¢} isgiven on o < { < 5 + .

(E. M. Wright, “Lincar Difference-differential Equations,” Proc. Cambridge
Philos. Soc., Vol. 44, 1948, pp. 179-185.)

If the A(¢) and f(#) are continuous, or bounded, or of bounded
variation, or of infegrable square, for £, < ¢ < T4, and u™ (¢} is the

same for & < < & + ww, then the same is true of the solution 1™ (¢)
forfy £i £ Ty + wn.

If the cenditions of Excreise 16 are satisfied for every Ty > Ay, and
| 44;(#) ] is bounded for ¢ > £, then

]

[ 15 Lan = 0, ¢,

implies

|

[
[ rumwy s = 0@, £,
{o

and

I

FON
[ () |

O0(e), 1 =,
0(1), ®Ww=i<bh+ on

imply
[u™ () | = O(e™), t— w.

If Aw(t) = 1, all A;;(¢) are bounded, the integral

J7 14 @) e dn

£

converges for every %, and u(f} does not tend to infinity nor to any
nonzero limit ag § — 4, then ™ (¢) = 0 for almost all ¢ > ¢, and
w?(f) =0forj <m — Landalit > &,

Discuss the solution of the system
2[4yt — w) + Byt — w)] = )
0
subject to initial conditions of the form
¥ty =0, t <0,
y(0+) =

where yp is a given nonzero vector. Discuss eontinuity properties of the
soluiion.
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21. IHscuss the behavior of the golulion of

k3

Z (oat + bup)u®(t 4+ A} = 0,
0 k=0

Ji

uzing the Laplace transforni.

(M. A. Boldatov, “Solution of Differential-difference Equations with Lincar Co-
efficients,” faest. V. U. Z., Mat,, No. 4, 1959, pp. 150-160.)
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CHAPTER SEVEN

The Renewal Equation

7.1, Introduction

One of the most interesting equations in analysis is the linear functional
equation

w(t) = §(O) + f u(t — )8(s) ds = 71 + [ w(a(t ~ 9 ds. (7.8.3)
f (1]

It is commonly called the “‘renewal equation” for reasons we shall discuss
below.
In some applications, it arises in the form

wlt) = £() + f “ult — 5) d6(s), (7.1.2)
(1]

where the integral is that of Stieltjes. The discussion of this more general
equation ig much more delicate due to the possible presenee of singularities
of u(t).

Bince in the majority of applications G(s} is either absolutely continuocus,
or possesses simple step singularities, we shall use (7.1.1} fo illustrate
the methods which can be applied. The equation arising from step singu-
larities,

% t
W®) =50 + Loati— ) + [ult - Dol ds, 20,
{mml 0
(7.1.3)
w(t) =0, t<0; O<t<h< - <b

ean be trested in a similar fashion.

We shall begin with some rudimentary existence and uniqueness theorems
and then discuss some special properties of the solution, such as mone-
tonicity and bounded variation,

Following these basic results, which are obtained by elementary, if
long-winded, arguments, we ghall show how the Laplace transform ean be

216
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used to derive an explicit analytic representation for the solution of (7.1.1).
From this explieit representation, we can derive the asymptotic behavior
of the solution in various ways.

Finally, we shall briefly diseuss the application of Tauberian theorems
to this question.

7.2, Existence and Uniqueness

In this section we shall establish a simple existence and uniqueness
theorem which covers most cases of interest. Slightly more sophisticated
results will he given in the next sections,

Theorem 7.1. If
(a) [f(8) ]| < erin [0, &],

(7.2.1)
(b) max | 4(5) | < g0 with [ g(6) db < ,
0get 0
then the equalion
u(t) = f(t) + f ‘u(t — s)g(s) ds (7.2.2)
I}

Reas o unigque tnlegrable solution in [0, &,

We shall suppose that the integral in (7.2.2) is a Lebesgue integral in
order to avoid any discussions of continuity. The reader may fill in these
assumptions and consider the integral to be a Riemann integral if he
wishes,

Proof. From (7.2.2) we have

wh) = 50 + [ et - 9 as (7.23)
and thus, for 0 < £ < t,
W@ | < et [ 1u ot =9 las
(7.2.4)

<ot [ Jue) | ds
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It follows from Exercise 2 below that

[:l u(s) | ds < crexp [ f;g(s) ds] j: exp [— fu. o8} dsl] ds,

(7.2.5)
showing abolute integrability of . If g(¢) is bounded, so is w(f).
To show the existence of a solution, use successive approximations.
Write
wlt) = f(1),
H
W) = 10 + [ wlt ~ )e(s) ds
0

(7.2.6)

taa() = fO + [ wnlt — )9(s) d.
0
We have, preceeding in a familiar faghion,
]
Unpa(t) — Un(t) = f [1{-“(8) — tp.a(8) ]ﬁb(t - 3) ds, (7.2.7)
a

whenece £
L tns (1) — unl) | < 9(0) f la(s) — Una(s) | ds. (7.2.8)

Hence, inductively,

| w () — wolt) | < atg(t) < etog(l),

| ws(t) — wl®) | < eug(t) f §(s) ds,

s = ) | < etg(t) [ o0o) [ gta ds

(7.2.9)

1A

| #aa () — ua(f) | < C]te% {/; gis) ds]“.
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Congequently, the scrics

m

3 Lt () — uai®)] (7.2.10)

n=a

converges uniformly and absolutely in [, &, and the sequence {w,{f})
converges uniformly to a function «(t), which is uniformly bounded if
git) is

Returning to (7.2.6) and taking the limit as n— o, we see that u(f)
satisfies the equalion of (7.2.2).

To obtain uniqueness, let #(t) be another solution. Then

we — o) = [ ) — oI — ) ds,  (72.10)
whenee
|y v ] < o) Jul) — o) |ds. (7212)
Since this means that
6 =0 | <o+ o) [ Yuls) — o) [ds, (1.213)
for any positive quantity ¢, we have, as above,

— < e —_ v ’ 1 11 ds, -n
[uf(t) —o(H) | < ¢ exp[ fo gls) ds]fn exp [fu g(s1) ds] s {7.2.14)
Hence | u(t) — v(#) | = 0.

EXERCISES
1. If u(f), f(1), ¢ = 0, then

u(t) <f(H) +e ft u(s) ds

mnplies that
1
w(®) < 1) + ¢ f F(s)ectt= ds,

Hini: Consider

AT

]



220 7. THE RENEWAL EQUATION
2. Ifu(t) = 0, f{¢) = 0, then

wlt) <) + () f "u(s) ds

#

implies

f:u(s) ds < j;‘f(s) exp [f:g(r) dr} ds

and if in addition g(¢) > 0, then

u(t) <5 + g(t) [ 1(s) exp [ [ o) dr] ds.

7.3, Further Existence and Uniqueness Theorems
Let us now establish a result which requires a bit more effort.

Theorem 7.2, If there exists o constant ¢ > O such that
(&) Ef(t) | S €1 in [Os tﬂ]s

o (7.3.1)
) [ o) | ds < =,
0
then there exists ¢ unigue bounded solution to {7.2.2) for 0 < ¢ < &,
Proof. We employ the method of successive approximations. Define

'b‘.u=f,

taalt) = F8) + [ ualt — )oe) ds.

o

(7.3.2)

Let {0, #] be an interval such that
£y
[ et las<b <1,
(1]

and assume first that &§ < &. If & > t, the Liouville-Neumann solution
obtained by straightforward iteration is valid in the interval {0, 4] If
fi < t, we procecd as follows. In [0, ] we have, setting v, = sup.| us |,

0 <€ ¢ £ 1, the inequality

i
| ttnsr | < ex + lf l6(s)| ds < & + bon. (7.3.3)
1}
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Henee, if @upr = €1 + baa, @ = 1, we have | o1 < @uyin [0, 4], o is
easy to see that the sequence [a.} is monotone increasing and uniformly
bounded by ¢ = ¢/(1 — &), under our assumption that 0 < b < 1, It
followg then that each integral in (7.3.2) cxists and that the sequence
fua} is uniformly bounded in [0, &4]. To establish convergence, we write

tan(®) — wal) = [ Dl — &) — waalt — 9To(s) ds,  (7.3.4)

L}
snd obtain, forn > 1,

Wats = SUD | Unpr — Ua |
o<t (7.8.5}

151
< (sup |ua — Unc |} f | (s) | ds < Bron.
[t [

This shows that the series Y.< (a1 — %) is uniformly convergeat
in [0, #7, by comparison with the geometric series »,=, b~ Hence the
sequence |u,} converges to a funetion %(£), which is bounded. Employing
the Lebesgue convergence theorem, we may pass to the limit in (7.3.2)
and establish the faet that %(f) is a solution to (7.2.2}.

Having determired a solution over [0, {1, we now proceed to obtaln &
solution over the interval [, 2&] as follows. Define, for & < ¢t < 24,

Up = f!
=41

a1 {£) = F(E) +f un (8 — 8) (s} ds

{7.3.6)
i
+ [ wi - 960 ds,
where 1(2) 15 the function obtained above for 0 < ¢ < t,. Hence,
E—H
wan(®) = A0 + [ wli — )as) ds, (7.3.7)
Li]
where f
AW =16 + [ ult = e ds. (7.3.8)
et 31

This is a set of recurrence relations of precisely the same form as that
given above. Consequently, the sequence converges for & < §{ < 24 to a
solution of

[y '
ot — $)p(s) ds +f ult — s)e(s) ds.

o) =7 + [
0 =i (1.3.9)
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If we now consider «(2) and v(f) as defining one function, u{f), over
[0, 24,71, we have a solution over [0, 2¢]. Continuing in this way, we obtain
a solution over [0}, 3], and so on, until we have covercd the interval
[0, to.

To cstablish uniqueness of the solutien over [0, &, we first establish
uniquencss over the interval [0, 47 and then over [4, 24, and so on.
TFor example, let () be another bounded solution of (7.2.2} in [0, 1.
Then, int [0, &7,

e () — w(l) = j: [ua{t — 8) — o{t — &) (5} ds, (7.3.10)

whence

| tnsa(t) — 2(@) [ < Coup [ua(t —s) — v(t — 3) !]f | $(s) [ ds,
0

et
(7.3.11)
and conscquently,
sup | uap(®) — v | b sup [ua(t) — 0(0) |
vstsn fgtzh
(7.3.12)

< b sup |uo(t) — w(t) .
L 2]

¥From this it follows that supscicy | w(f) — v(t) | = 0. Having established
the identity of 4 and v in [0, 4,7, we proceed similarly in [, 267, and so on.
Interchanging the assumptions in (7.3.2) above, our second result is
Theorem 7.3. If for some ¢, = 0 and & > 0, we have
(a) 16(s) | < erin [0, 6],
(7.3.13)
]
m [ 15w < =,
a

there is a unigue solution to (7.2.2) which is absolutely integrable in [0, & .

Proof. We employ the same successive approximants as used above,
and consider now the interval {0, &), where # is chosen so that ety < b < 1.
Then if

51
f |us(t) |dt € o for 5 =0,1,2 -, n, (7.3.14)
0
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we have :
v | < 171+ [ Lt = 9 ) 003) | ds

4]
11
<|fl+a [ [uts)|ds (7.3.15)
{

S |fl +clam

which shows that ., is absolutely integrable in [0, £ ]. Furthermore,
] ]
f I (27w [ dt S f [f] dt 4= ey, (7‘3.]6)
0 0
Hence, if we set

]
Gppl = f |f| dt + elditty,
i}

" (7.2.17)
w=["lrla,
4]
we have
o o 1 f|di
[|mmms%ﬁsfi” : (7.3.18)
0 1] 1 — ab
To establish convergence, we write
+
mit) — w() = [ wlt - 9o(s) ds,
1]
(7.3.19)

() = wnlt) = | [wall = 8) = waslt — 9T6(s) ds,

" = l’ 2, LS
We then have

o —w® | <o [ |1ids,
1]
[mm—mmgwffumms (7.3.20)

E
< Cff (¢ — s | f] dsu
0
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and, inductively,

cln-H. 4

Lu—aruma

| uaia () — walt) | < r
n!

(7.3.21)

clu-Hl fn [
<= [ 1flas
0

nl

Hence the series = (#ap1 — ) converges uniformly in [0, ¢, and
thus u, (f) converges uniformly to u(#), a solution of (7,2.2). The extension
to the {ull interval and the unigueness proof proceed as given above.

7.4. Monotonicity and Bounded Variation

Having established the existence and uniqueness of the solutions, let us
now diseuss some further properties.

Theorem 7.4. Under the hypotheses of either Theorem 7.2 or Theorem 7.3,
we have

{a) wu(t) is continuous if f(t) ie confinuous;

{b) w(8) vs monotone increasing if f(t) is monolone tncreasing,
o{t) 2 0, and f(0) = 0; (7.4.1}

{c) u(f) is of bounded variation if f(¢} is of bounded variation,

Proaf. Let us consider the assertion in (a) first, Since in both cases we
have proved that w, () converges uniformly to w(f}, it follows that (¢
is continuous whenever u,(¢) is. This will be so if f{#) is econtinuous.

Bimilarly, «{f) will be monotone increasing if u.(¢) is monotone in-
creasing for each n, Since

Lfﬁﬁﬂﬂﬂ&

is monotone increasing whenever f possesses this property and whenever
(&) and f(0) are both nonnegative, we see that (b) is valid.

To prove the third statement simply, for a particular case of impertance,
we use the fact that a function of bounded variation may be written as the
differcnce of two monotone-increasing funciions. It follows from the
linearity of the equation, therefore, that % will be of bounded variation if
fis of bounded variation and, in addition, ¢ = 0.
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To derive the result in general, where ¢ is not necesearily nonnegative,
we may uge an inductive argument, based on the successive approximants.
Referring to (7.3.2), we have

I3
mMﬂ=ﬂ0+LmG—®Mﬂﬁ (7.4.2)

Thig yields, for any two quantities § and &, with & > 4 > 0,
Hnrr(lz) — Uap (b)) = fly) — f&)

1

+ [ualts — 8) — ually — 8)Jp(s) ds

i}

+ f ® il — 6(s) ds. (743)

£l

Tuking, for the sake of illustration, the case in which f(f) is bounded, we
have | 1, | < ¢, whence

| taalt) = tass(8) | < 176 ~ S [+ [ [ 90s) | do

[ = =t =) [0 [ ds. (744)
4]

Considering the points 0 < & < & < +++ < #y, we gee, hy the addition
of the inequalities corregponding to (7.4.4), that

N1 N1
kz_:l | Unpillert) — wap(li) | < El lf(tkn) — f (&) ]

to [ o) Lds

a

+ f;ﬂ [iél Ug (e — 8)

—u,{ty — 8) I] | ¢fs) ] ds, (7.4.5)

where %, (t) is to be interpreted ag 0 for ¢ < 0.
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TFrom this it follows readily that the variation of u,41 over [0, =], defined
by

Vitpn) = sup [2 [ Snga (rpr) — B (B) IJ: (7.4.6)

k1

where the supremum is taken first over all partitions of the interval [0, ]
into N parts, and then over § = 1, 2, - - -, satisfics the inequality

Vv SV +a [ lolds+ [ Vi) | o) ds 740)
0 a
Choosing r so that
€ r P lds < 1,
lﬁ ;

we sec that ¥{(w.) is bounded as before. This establishes the bounded
variation over [0, ] To obtain it over the entire interval of existence,
we usc the technique employed for existenece and uniqueness theorems
in §7.3.

EXERCISES

1. Bhow that if f{¢f} and ¢ () arc uniformly bounded for ¢ = 0, the solu-
tion of {7.2.2) may be oblained for all £ > O by direct iteration

M0=ﬂﬂ+ﬁfﬁ—ﬂﬂﬂﬁ+-m

2. Suppose that f{f) and ¢(¢) have power series in somc neighborhood of
¢t = 0. Bhow that the power series expansion for u({} in a neighborhood
of t = 0 may be obtained directly from the equation of (7.2.2) and give
a recurrence relation for 4% (0} in terms of the lower derivatives.

7.5. The Formal Laplace Transform Solution

The convelution term
2
f ult — 9)o(s) ds
i}

immediately suggests use of the Laplace transform since we know that
under suitable conditions

L(ftu(t — () ds) — L{u) L(¢). (7.5.1)

a
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Henee, taking the Laplace transform of the relation

w(t) = 160 + [ ult — (8 ds, (7.5.2)
(1]
we have
L(w) = L(f) + L) L($), (7.5.3)
or
L

Hence, we suspect that with appropriate conditions imposed upon f
and ¢, we will have the explicit solution

6’“[ me_“lf[tl) dtl:l ds
e

we= 1 [ . (7.5.5)
21'”, g ey
1— | engt) dt
[ fn [ ¢( 1) l]

I the next section, we shall derive some gimple conditions which permit
us to employ this approach,

7.6, Exponential Bounds for v(f}
Let us establish the {ollowing lemma.

Lemma 7.1. If for § = O and some a, we have

(a) [F(H) ] < e,
(7.6.1)

) [Tein@) |dt e <1,

then
6%
1 — e
The point of this result is that «(¢) is bounded by an exponential when-
ever f(£) and ¢{f} are. This condition is met in all important applications,

It follows that L{%) will be an analytic function of s for Re(s) sulficiently
large,

|u(t) | < (7.6.2)
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To estublish this lemma, we proceed as follows. We have

£
u] <t [ Lt = 5) 1l o6s) | de
1]
Hence

|uet| < e + f | u(t — syeet— || e (s) | ds.
1]

Write

»(f) = max |u{f)e=n|
. Qeiis

Then (7.6.4) yields

b | < at o [ e=] o) | as
{

<o+ u(l) f go | d(s) |d3 < e+ ew(l).
L]
From this we obtain (7.6.2).

7.7. Rigorous Solutien

Using the foregoing result, we readily establish

Theorem 7.5. If for some a we have

(a) If(i) ! S c;e“‘, 4 Z 0!

(b) f: e | o(t) | dt < 1,

then the Laplace transform of u, L{u), is given by

LD

b =

Jor Be(s) > a.

(7.6.3)

(7.6.4)

(7.6.5)

(7.6.6)

(7.7.1)

(7.7.2)
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At every point T where v 18 conlinuous and of bounded variation in some
tnterval containing t, we have

Ly
H = fm m et ds (773)

Jorb > a

In a previous section, §7.4, we gave simple conditions upon f and ¢
which permitted us to conclude that u is continuous and is of bounded
variation.

7.8. A Convalution Theorem

The solution of
o(t) = F(8) + ftﬂ(t — s)e(s) ds (7.8.1)
0

is & certain linear operation on f{t). It is of interest to determine the
precise form of this operation, and it turns out that this operation ia ¢b-
tained from the solution of the simpler cquation

w(®) =1 +f w(t — $)o(s) ds. (7.8.2)
(1]
This result ean be of serviee in connection with the study of the asymptotic

behavior of the solutions of (7.8.1}. In order to derive the formula, let us
use the Laplace transform in a heuristic fashion. We have

1
Liu)y = ———————
R N
(7.8.3)
L(f)
Lv) = 1= e @)
whenee
2O sy =@ + [ e @ (7.8.4)
L(u) ] . . 5,
From the convolution theorem it follows that
o) = F(0)ult) + f “ult — f(s) ds. (7.8.5)
(1]

It is this formuls which we wish to establish rigorously, under appropriate
assumptions concerning f and ¢.
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Theorem 7.6, If
1]
(a) £'(0) exists for 0 < ¢ < &, f 1700 | dt < o, and
1]

" (7.86)
(b)fu | 6() | ds < =,

then a solution to (7.8.1) 4s given by Equation (7.8.5) for 0 < & < 4.

Proof. Let « be the solution of the equation in (7.8.2) and let v be the
funetion defined in (7.8.5). Then we have

f o(t = sy (s) ds = (0) f w(t — e (s) ds
0 0 (7.87)

t t—3
+ f { f w(t — 5 — s (s1) dsl]q&(s) ds.
o LYo
Interchanging the orders of integration, a legitimate operation because of
the abgolute convergence of the double integral, we obtain for the second

term on the right-hand side in {7.8.7),

ft [sz uli — s — s;)qb(s) ds]f’(slj de = ft [uft — &) — 10 (%) dsy,

(7.8.8)
using (7.8.2). Combining the results, we obtain

f o(t — $)p(s) ds = F(O) f wl(t — $)4(s) ds
i} Q
+ f& [u(t —s) — L]f'(s) ds
1]
= J@ult) = 50 + [ wlt = 97(s) ds
— f ") ds (7.89)
i

= JOu® — 1@ + [ ult = )f'(s)

= o(t) — f(t),
which shows that v satisfies (7.8.1).
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An integration by parts in (7.8.5) yields
[3
o) = w(Of (1) + f 7t — u'(s) ds, (7.8.10)
1]

provided that '(s) exists. Sinee this formula has a meaning, even if f(1)
is not differentiable, it ig reasonable to suspect then that (7.8.10) yields
the solution of (7.8.1) under suitable conditions upon u(s). We shail nat
discuss this question in further detail here, sinee it is more properly a part
of the theory of renewal equations when Stieltjes, rather than Lebesgue,
integrals are employed. An expression for ¢ of wider validity would be

st = WO + f St - 8 duls). (7.8.11)

7.9. Asymptotic Behavior of Solutions

In many applications of the renewal equation, in mathematical analysis
itself, and to problems of physies, engineering, cconomics, and so on, the
question of greatest importance is that of the behavior of u(f) ag § — oo,
We shall present in what follows some of the techniques which can be used
to determine this behavior. Any detailed discussion of the many different
situations which can arise is much more involved than might be imagined.
References to some of the literature will be found-at the end of the chapter,

We shall first cxplore the ramifications of the ¢ontour integral representa~
tion, then discuss some elementary approaches, and finally present, without
proof, some application of Tauberian lechnigues.

7.10. Use of the Contour Integral Representation
Referring to the representation of (7.7.3),

w(d) =f L(f)er ds (7.10.1)

w1 — L{p)

let us employ some simple complex variable techniques. Buppose initially
that the function

Lify = j;m e~ (1) dt (7.10.2)

is a meromorphic funetion of s, that is, possessing only poles of finife order
in the s-plane, and that L{¢) is a function with similar propertics.
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Bince I — L{¢) is a meromorphic function of s, by assumption, its
singularities will play no role, except perhaps in eancelling those of L{ f).
The important contribution of the function 1 — L{¢) will he made by its

zeros. Let these be 2, 25, - -+, and suppose that they can be enumerated in
terms of decreasing real part,
b > Bﬂ(Zl) p- Rﬂ(zz) 2 e (7103)

If we shift the contour of integration from the line b + 4+ to the line
i =+ 4r where Re(#z1) > b > Re(z:), we pick up a residue term at 2, due to
the denominator 1 — L({¢), and possibly some residues from poles of L( f).
Suppose, as is often the case, that L{ f) has no singularities in this region.
Then (7.10.1) yields

w(t) = ke + [ L{f)er e (7.10.4)

on 1 — L{¢)

where I is a constant given, if # is simple, by

f " () dt
4]
= —. (7.10.5)

f te—= 1 {f) dt
1]
Under reagonable conditions, we would suspect that

w(®) = kent + O(en). (7.10.8)

Depending upon the assumptlions that are made, relations of this type
are relatively eagy or relatively difficult to establigh.

7.11. () a Positive Function

F In the important case where ¢(t) is a positive function, we can establish
the fact that z; is real and simple. Consider the equation

1= fm () di, (7.AL1)

0

and suppose, without loss of generality, that

fn (1) df = o,
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but that -
f e Ma(f) di < »
0

for some b > 0.

It follows that there is a root », real and positive, of the equation in
(7.11.1). Clearly this is the only real root. We assert that this root is the
root of (7.11.1) with largest real part. Let s = ¢ + ér. Then

1 =

f ) et (t) di | < f i e~ip(t) di. (7.11.2)
a 1]

Hence o < 1.

7.12, Shift of the Contour

In order to shift the contour from b o b;, as in §7.10, we tecall the
meaning of the expression in (7.10.1):

f lim —- fbm (7.12.1)

® Tam 2Tt Yp_ir

Let us then consider the rectangle in Fig. 7.1,

Wo must show that the contributions along (b, 4 7, b + ¢T) and
(b — ¢T, b — iT) approach zcro as T — <. In order to demonstrate this,
we must show that

@ |1 =Ly | > e >0
(7.12.2)
(b) L{H) —0

along thesc two routes. We shall examine both of these requirements in
some detail,

By +iT beiT

Y

b -iT »-iT
Fra. 7.1,
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Let ug investigate L{f) on the line 8 = o 4 <7, by < ¢ < b. We have

L) = f " e (1) e dr. (7.12.3)
L1}

Integrating by parts,

EEY i ) 1 oo
Lify = e4f(D) S-T—] — ;’f‘j; Ceotf(t) JetT df,  {7.12.4)

We suppose that by is such that e {¢) — 0 as t — » for ¢ > by, SBuppose
further that we can choose & so that

f ) | e=otf' () | dt < (7.12.5)
o
for ¢ > b Then
J0) (1 )
L = —— of— 7.12.6
N T + 7 ( )
as T — oo, Hence
h14 1T 1
f | L(f) | ds = 0(-- ) (7.12.7)
[ T
We obtain a similar result for F.(¢}. Thus
1
11— Lig) | > 1 — 0(51). (7.12.8)

Hence if f and ¢ possess derivatives with the property that
f et | 148 | df < o0, f et | ¢’ {6) | dt < o, (7.12.9)
] i}

we ean shift the contour and obfain an asymptotic estimate of the type
given in (7.10.6), provided the integral over b; can be shown to be O(en*),

7.13, Step Functions

As mentioned above, the renewal equation often occurs in a form in-
volving a Sticltjes integral

w(t) = f() + f‘u(t — ) d6(s). (7.13.1)
[1]
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A case of particular interest is that where G'(s) is a pure step function

with jumps at a finite number of points 0 < 4 < & < «++ < {. Then the
equation in (7.13.1) can be written

u(t) = 7(6) + X gault — 12, (7.13.2)

with u(£) = 0, ¢ < 0.
The Taplace transform solution

}J 461 d(
= f LQ_ (7.13.3)
o 1 — L{d()
may be written
L{fievds
w(t) = f ST L (7.13.4)
w1 — 2N, g

There are two subcases. Either the & are commensurable, or they are
incommensurable. If the & are commensurable, we see that to a real root,
s = r, will correspond a set of equally spaced roots s = r & T, k& =
1,2, --- {see §12.4). Hence, u({) will have the form

[ f “ ) exp [—(r + &To4] dt;} exp [(r + ikTo)t]
]

13

u(ﬂ = k;ﬁa (ZN—I gd_l_ﬂm—rs‘-)

(7.13.5)
assuming there is a single root r which is simple.
To shift the conlour we ean use & theorem of N. Wiener,

Lemma 7.2, If f{£) possesses an absolulely convergent Fourder serics expon-
sion, and f{t) = 0, 0 < t < Ty, where Ty is the period of f(£), then 1/(1)
possesses an absolutely convergenl serdes.

This result enables us to write

1 «©
= ¢ oxp (2mikt/ T 7.13.6
1 — 2%, giexp [~ (b + it)t.] kzzm pexp (Zrikt/To) )

for — w < ¢ < = along a line where the function

"
1— 2 gt = 0.

il

Using this we can justify the shift of contour.
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If the ¢; are incommensurable, we must use some deeper results due to
Bochner and Pitt. References to these results will be found at the end of
the chapter, Also see §6.9 and §12.15,

7.14. An Elementary Result

Congider the cquation

wlt) = 1 +f o(t — yuls) ds (7.14.1)

Li]

and assume that

(a) ¢(s) 20,

- (7.14.2)
(b f o(s) ds < L.

Then since u (t) is monotone inereasing and bounded, as shown in Theorems
7.2 und 7.4, w( =) = lim,,, »(t) exists. From (7.14.1) we see that

w( ) =1+ u{ =) fm &(s) ds = ——17 (7.14.3)
1-— fm o(8) ds

0

7.15. A Less Easily Obtained Result

As another example of the use of elementary methods, let us establizh
a result which we shall subsequently derive by means of Tauberian tech-
niques.

Theorem 7.7. If

(a) (s} 20,
(7.15.1)

{b) fm dls)ds =1, wy = sp(s) ds < e,
0

ck"""‘\

the solution of
]

alt) = 1 +f u(t — $)e(s) ds (7.15.2)
1]
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satisfies
U~ t/ml (7.15.3)

ast— o,

FProaf. In (7.15.2), set b = 1/m; and u = bt 4 v{?). Then,

p(t) + b =1+ ftv(.-: — s)ofs) ds + bfs i — s)p(8) ds
0

|3}

(7.15.4)

I3 3
1 wb'fo s6(5) ds+sz; #(s) ds

+ [ v{t — s)pis) ds,

or

v(t) = —bt [1 — j:da(s) ds] +1 =4 fbsd)(s) ds

+ f‘g(g — ¢(s) ds.  (7.15.5)

Since

;[1 — fu:qb(s) dsJ - tfmcﬁ(s) ds < [m so(s) ds,  (T.15.6)

we see that (7.15.5) may be written in the form

() = f(t) +f0 b(t — 8)o(s) ds, (7.15.7)

where f(f) — 0 ast — <.

We now wish to show that #(£) = o({) as ¢ — ». To do this, let us prove
that |v| < a -4 & as t — o, where ¢ is any preassigned positive constant
and ¢ = a(¢). Consider the solution to (7.15.7), as obtained by the method
of suceessive approximations

bp = f]
(7.15.8)

tapr = f + f ta{t — &) ¢(s) ds.

L]

Let us now choose # with the condition that |f| < ¢ for £ > 4 and
ty > 1. Let ay = max | f | in [0, #] if this maximum is nonzero; otherwise,
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it 1s equal to 1. Then elearly, for all ¢ > 0, we have | w | < @ + ¢f. Using

thig bound in #;, as given by (7.15.8), we obtain in [0, &]

Il <o+ [ oo+ et — 9Jp(s) ds
0

Sontar [ @(s)dsteto [ B(9)ds ~ ¢ [ so(s) ds
i) (13

L]

]
Sao+ a | o(s) ds + by,
Q

sinee o™ ¢(s) ds = 1 and ¢ > 0. For ¢ > &, we abtain

ol < et [ Lo+ elt = 9 Ib(s) ds

I3 t
Letoa syde et | ols) ds
‘ uft,qs() efou
< e+t oa + et
Let ug define

4
= ap - Gof ${s) ds.
L1}

(7.15.9)

(7.15.10)

I £ iz small enough and & is large enough, we have @, 2 a0 + £ We see

then that | o | < ai + st fort > 0.

All the requirements for an inductive proof are now at hand. If we have
|#a| < an + & for t > 0, the same argument as above yields | v, | <

@1 T &, where
)
Gat1 = Go + anf ¢{8) ds.
i}
If ¢ is not identically zero for ¢ > f, the conditions

o >0 and ¢ds =1

yield

(7.15.11)
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and thence a

tn €@y = (7.15.12)
f
1— f (s) ds

Q

If ¢ is identically zerc for ¢ > &, for seme &, there is no difficulty in
obtaining the asymptotic behavior of % by other means, since

w 31
1 — f detdl =1 — | ge dt (7.15.13)
1]

[

is now an entire function. Hence we may with impunity assume that

iy
f ol(8) ds < 1
1]
for any fixed finite #.
Since | v | < an + et < a,, + & for all » und for ¢ > 0, it follows that

the solution enjoys the same property, which means that v(f) = o(f) as
t — =, since ¢ is arbitrary, This completes the proof of Theorem 7.7,

7.16, Abelian and Tauberion Results

Frequently in analysiz, we have oceasion to study the asymptotic
behavior of integral expressions of the form

[ wts u a
]
as s — 0, or of infinite series of the form Y=, k.(s)u,. Both problems

may be subsumed under the problem of studying the behavior of Stieltjes
integrals of the form

f () dE (s, 0.
0
The problem of deducing the asymptotic behavior of
J(u) = f ult) dK (s, 1)
4]

as 8 — «, or cquivalently, s — 0, from the asymptotic behavior of u(t)
as £ — o=, or 0, i called an Abelian problem. For example, given that
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Uy ~ N° a8 1 — o, we may wish to determine the behavior of

fils) = iunehm (7.16.1)

a=1

as 8 — 0, or given that u{f) ~ ¢ we may wish to determine the behavior of

A = [ utedt (7.16.2)

as s — 0.

The converse problem is far more difficult. Given the behavior of fi{s)
or f:(s) a8 ¢ — 0, we may wish to determine the behavior of u. agn — «,
or of w(f} as { — . Problems of this type are called Tauberian.

7.17. A Tauberian Theorem of Hardy and LitHewood

One of the most interesting and important Tauberian theorems is the
foliowing due to Hardy and Littlewcod.

Theorem 7.8. If u(f) = 0, and

f u(t)e =t dt ~ g5k a, k>0, - (7.17.1)

1}
as 8 — 0, ihen

(4] A

T+ 1)

f ’ w(t) di ~ (7.17.2)

as T — o,

Observe thaf this is & weaker result than might be expeeted, since it
furnishes informaticn about the average of w(t) rather than about wu(t)
itself. It i3 easy to see that results of this nature sre the best that can be
obtained without stronger assumptions concerning u(?).

7.18. Asymptotic Behavior of Solution of Renewal Equation

~ Let us apply this theorem to the determination of the asymptotic
hehavior of the solution of

u{t) =1+ [E ull — 8)¢(s) ds. {7.18.1}

Using Theorem 7.8, we can establish:
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Theorem 7.9. If ¢({) > 0 and

@ [ @ a=1,

(7.18.2)
() f (1) dt = my < o,
(1]
then
r TE
f wdtm~——, (7.18.3)
o 2y
Proof. We have
1 1
L{u) = (7.18.4)

(= L)) mus
a8 5 — 0. Applying Theorem 7.8, we have (7.18.3),

To obtain a result for u{f}, we agsume that ¢(¢) is continuous. Then
{7.18.1) yields, upon differentiation,

W) = oll) + f Wt — $)o(s) ds, (7.18.5)
a
Since ¢ () = 0, by assumption, we also have «'(t) > 0.
From
L 1
@) — -2 1 (7.18.6)

i1—-L (Qﬁ) M8

as § — 0, we have, applying Theorem 7.8 once again,

r P
w(T) —w(® = [ W@ di~—, (7.18.7)
1}

My

the desired result,

7.19. Discussion

The important point about Tauberian techniques is that no contour
shifting is required, or, equivalently, only the behavior of L{u) for real s
i required.

In the following seclion, we will present a deeper Tauberian theorem
which yields a more refined result.
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7.20. A Tauberian Theorem of lkehara

fomti)dszou

requires some new fechniques. Let us assume that

f pe~tt df
0

hag a finite abseissa of convergence, and hence that there is a positive
number @ such that

The case in which

fm Gisle o ds = 1.
L1}

f Spe ds

]

Assume also that

is eonvergent. Then, considering the equatien
u(t) =1+ f; wi(t — 8)els) ds, (7.20.1)
we see that. the change of variable «(f) = e*w () converts (7.20.1} into
2(t) = eot 4 f Wt — sy (s) ds. (7.20.2)
(]

Applying the Laplace trunsform, we have
Lie =) 1
1 — L{eog) -
sa f te—=t ot
1]

Ly} = (7.20.3)

as s — (. Applying the Tauberian theorem of Hardy and Littlewood
{Theorem 7.8), we obtain

T T
f T R — (7.20.4)

1] oo
a f te—=4b di
0

To obtain information eoncerning v itsclf, rather than its average,
we require the following deeper result of Ikehara.



7.21 TAUBERIAN THEOREM: WIENER 243

Theorem 7.10. If u{{} is a nonnegafive, nondecreasing funclion in
0 < & < o, such that the integral

fls) = f et (l) df, 8§ =aq +ir,
o
converges for ¢ > 1, and if, for some constani A and for some function g(r),

. 4
lim [f(s} - —:’ = g(r) (7.20.5)
41 s —1

uniformly in every inferval [—a < 7 < a), then
lim w{t)e*t = 4, {7.20.68)

FRre]
Using this thcorem we may prove
Theorem 7.11. If
1
w=1 +f wlt — )6 (s) ds, (7.20.7)
0

and

(a) ¢(s) = 0, for s = 0,

(k) f e () ds = 1, for some a > 0,
(1]

(©) f " st+besg(s) ds < <o, for some b > 0, (7.20.8)
1]

then 1

By S — {7.20.9)
a[ te ot dit
0

as { — o0,

7.21. The Tauberion Theorem of Wiener

A number of interesting results can also be obtained by applying the
general Tauberian theorem of Wiener. For example, in this way we can
demonstrate
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Theorem 7.12. If
!
u{t) = f(0) +f u(t — $)p(s) ds, (7.21.1)
Q

where

() lim (1) = 4,

gam

(b) f(t) is bounded in every finite interval,

@ ["lee | ds <o, (7212)

(d) f@ ¢(s)e v ds = I for Re(w) 2 0,

then, as £ — o, we harve

w(t) ~-— — 1. (7.21.3)

1—f:¢(s) ds

Further results will be found in the references at the end of the chapter.

Miscellaneous Exercises and Research Problems

1. Congider the cquation
du =
222 = [T iute - v,
dx ]

given that ¢(x) = 0,3 < 0, u(x) = 1,0 < z < 1. Show that u{z) ~
at + basx — o,

{A. E. Fein, “Influence of a Variable Ejection Probability on the Displacement of
Atoms,” Phys, Rev,, Vol. 109, 1958, pp. 1076-1083.)

2, Let {2} be a sequence of complex numbers, n = 1, 2, ---, and let
{m.} be determined by the relation m, = (&1 + a2 + +++ + a.)/n.
Then [wm, <+ a.} is convergent if and only if {g.} is convergent, pro-
vided that Re(a) > —1. What happens if Re(a} < —17

3. Bhow that f(x) and « JIf{({)} di/z -+ f(x) converge simultaneously
a8 £ — o provided that Re(a) > —1.
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. Under what conditions on a and b do f(2) and o [ f(i} di/z + f(bx)

converge simultancously?

(H. R. Pitt, Tauberian Theorems, Oxford University Press, London, 1938,
G. H. Hardy, Divergent Series, Oxflord University Press, London, 1949.)

. Congider the equation

du . . = dr = 0) = h
oot @ [ wd=0, un0) = k.

Let

v(t) = fm uiz, &) dz,

o

i

femw@@,

—m

I

K@ =ia [ e de.

Show that
MQ=MQ+fK@—m®$.
4]

(R. Bellman and J. M, Richardson, “On the Stability of Solutions of the Linearized
Plasma Theory,” J. Math. Anel. Appl., Vol. 1, 1060, pp. 308-313.)

Show thut the boundedness of the solutions as § — <« Is determined
by the “dispersion relation’

> fa) do

1 =ia —.
—w 81T

Consider, in particular, the case where f(z} = exp {—bz?).

. Consider the equation

Mo=1+fﬁanﬂﬂg@
0

and the Liouville-Neumann solution

u(t) = 1+[‘¢(s) ds+ ---.
[1]

Under what conditions does the solution gonverge for all £ > 07
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8. What is the solution of
4
wlt) = f0) + [ uit — o(s) ds
0
when ¢(s) is un exponential polynomial of the form

¥
(s) = 2 me(a)e,

where the pp{s) are polynomials in s5?

9. Tf ¢
wl) = f(1) + f w(t — $)a(s) ds,

wlt) = 7O + [ wlt — uls) ds
I

where
max | ¢n(s) — éals) | < ¢,
D ein
obtain an estimate for
max | wm(t) — ue(f) |.

0 By

10. Examine the feasibility of obtaining an approximate solution to
t
w(t) = S0 + [ ult — )o(s) ds
0

by approximating to ¢ (s) by an exponential polynomial.

11. Suppose that we have a shipment of light bulbs all possessing a com-
mon life-length distribution F(z) = f7 dF(¢). These bulbs are to be
used in one lamp, with a new hulb replacing an old one whenever it
burns out. Let #(f} denote the expeeted number of bulbs required to
keep the lamp in service for a time interval of length ¢

Show that :

u(t) =1 +[ u(l — ) dF{x),

0

and examine the relation between the asymptotic behavior of w(f) as
t — = and the average life length

m = fwa:dF(:r) < .
0
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12, Buppose that we have a group of people at time ¢ = 0, at the same

13.

age, which we may eall zero. Let
p(£) = the probability of an individual surviving at least ¢ years.

Let us further assume that as soon as one individual dies, he iz re-
placed by an individual of age zero, who has the same survival proba-
bility. The effect of this replacement policy is to keep the total number
in the group constant.

With this policy in effect, let Nf(s) ds be the expected number of
people dying between times s and s + ds. This is the number of re-
placements required between times s and s + ds. Show that

0 +f0 fs)plt — ) ds = 1.

Congider the asymptotie behavior of f{s) as ¢ — o,
{This problem 1s of historical interest, 1{ was first treated in

A. J. Lotka, “A Contribution to the Theory of Scll-renewing Agpregates with
Special Reference to Tndustrial Replacement,” dnn. Math. Statistics, Vol. 10,
1939, pp. 1-25.

This article eontains an extensive bibliography of papers devoted to
applications of the rencewal equation.)

The foregoing problem is typical of the way in which the renewal
equation enters in the study of industrial replacement.

A particle existing at time 0 is assumed to have 4 life-length distribu-
tion whose cumulative probability distribution is given by G(1). At
time £, at the end of its life, it is transformed into n similar particles
with probability ¢., # = 0. These new particles are taken fo have the
same life-length distribution and transformation probabilities as the
original particle, and the process continues in this fashion.

Write

h(8) = 2. g,

A=l

F(s 1) = exp [«597],

where Z(t) is the random variable equal to the number of particles
existing at time ¢, Show that

Fis, 1) = f P (s, t — 3)]dGGy) + s[1 — GO,
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and examine the existence and uniqueness of solutions of this non-
linear equation for F(s, ¢},

(R. Bellman and T. E. Harris, “On the Theory of Age-dependent Stochastic
Branching Processes,’”’ Proc. Nal. Acod. Set. IF8A, Vol. 34, 1948, pp. 601-604.

R. Beliman and T. E. Harrs, “Binary Branching Processes,” Ann. Math., Vol
55, 1952, pp. 280-294.)

14. Denote the expected value of Z(£) by ¢(t). Then

oF
o(f) = exp [Z(0)] = P

=1

Show that
i
v(t) = k(1) f v(t —y) dG(y) + 1 — G{i).
0
Consider the asymptotic behavior of #(#) in the three cases where
R(1) > 1, (1) = 1,8 (1) < 1.
(See the papers mentioned above and
T. E. Harris, “Brunching Processes,’” fortheoming.)
15. Solve the equation
du{s)

g

Pty + [ k-9 ™ o - g
L i 3 s = q(f).

(E. Volterra, “On Elastic Continua with Herveditary Characteriztics,” J. dppl
Mechaniecs, Vol, 18, 1951, pp. 273-2749.

V. Volterra, “Sur la théoric mathématique des phénomenis héréditaires,” J. Math.
FPures dppl., Vol. 7, 1928.)

16. The problem of determining eflicient inventéry_ policies leads to an
equation of the form

f(z) = min [fc(y —a) o[ pls —pes) ds

o) [T o ds+o [ 1t = 990 ),

where g, p, and % are constants and ¢(s) is a given function,
Study the asymptotic behavior of f{(z) as £ — <« if the {ollowing
policies are used:

(a) ¥y = =,



i7.

18.

19,

20,
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(bY y = xsforz > ay,

(¢} y=afor 0 <z < o

(R. RBellman, Dynamic Programming, Princeton University Press, Princeton, N. J.,
1957, Chap. 5.

Many further results will be found in

K. J. Arrow, T. IL.. Harris, and J. Marachak, “Optimal Inventory Policy,” Feons-
mefrica, Vol, 19, 1951, pp. 250272,

K. J. Arrow, 8. Karlin, and H. Scarf, Studies #n the Mathemaiical Theory of Inven-
tory and Production, Stanford University Press, Stanford, Calif,, 1958.)

Holve

w(@) + o [ exp lale = 1) Jul) dy = ba),
and generally
T N
w@ + [T wow [l — ) & = b
0 k=1

It
u(@) +a [ epla@ - 5)du) dy~b
6
us z — oo, under what conditions on ¢ and a; does #(x) converge, and
to what?

Congider the similar problem for

2 N
ue) + [ {Zc,», exp [as(s — m} w(y) dy ~ b

a8 x — 0,

The problem of the behavior of a one-dimensional gas taken to be a
string of particles along a line can be made to depend upon the agymp-
totie evaluation as N — « of an integral of the form

e = [ exp [—b X gl — 2)]dzs -+ daw,

: i<
the partition function. The integration is over all z; zatisfying the
constraints

(a) 0 <o <22 € +or £ 2w,
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N
(b) Z e o= ¢,

Consider the special case where the rcpulsivé potential has the form
g{x) = 14, where x ig the distance between two particles. Write

vy(e) = f: J{f exp [—b 3 e-Gi-mJexp [—b 3. e izp]

1 1<
- dxg L d;i’l_\f} d:!:l,
where the xs, ««+, 1y integration is taken over the region
N
Y ewmo= e — g, n oS o o
=2
Show that
vx(e) = [ e exp [—b(ce® — 1} Jowa(ce® — 1) du
o

for ¥ = 2, where vx{c} = Ofore¢ < 0.

Using the generating function

oo

gle) = Zvn(c)r“:

n==1

obtain the equation
gle) = rf glee — 1) exp [ —bfee* — 1) Je* du,
]

and use the Laplace transform o solve for ¢(¢) (IR, P. Feynman).

21. Under what conditions upon the functions ¢(¢) and m(¢) do all solu-
tions of

Wt} + fc (¢ — shw{s) ds + [1 + m{) Tw(®) =0
)

approuch zero as { — »7
Consider, in particular, the case where ¢({) is such that

j: (s ds + f U a8 — )y (s)y(s) dsz] ds; > 0



22,

23.

24.

25,

26.
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for uny real function y (¢}, and where
m(l) = acos wt + b eos 2wi.

(E. 8. Weibel, Dynamic Stabilivation of a Plasmg Celumn, Space Technology
Laborutory, Los Angeles, Calif,, 1960.}

Solve the cquation
i
u(t) = 2exp (26/3) — (2r)— [ (t — s)Wu(s) exp [(t — 8)3/6] ds,

where the integration is along a straight line from —ae="%® to 1.

(J. A, Cullen, “Surface Currents Induced by Bhort-wavelength Radiution,” Phys.
Rev., Vol. 109, 1958, pp. 1863-1867.)

Solve the equation
i 1
w(t) -+ f su(t — &) ds + f u(s) ds = 1, L= 0
0 0
Solve the boundary value preblem

dzyk ‘
_dﬂ? + (2 — e — ) = 0, L >0 E=0,1,---,2n 41,

w(l) = yun(l) =0, i >0,

o
’yk(fH-) = O, &?ﬁ.—(()‘i‘) = O

(A, ¥. Heins, “On the Solution of Linear Difference Differential Equations,”
J. Muath. and Phys., Vol. 19, 1940, pp. 153-157.)

How would one solve an equation of the form
£
anft) — f Elt — slufs) ds = f(s)
1]

eomputationally? Consider the cases a = 0, ¢ = 0.

(1. G. Jones, Jr,, “On the Numerical Bolution of Convolution Integral Equations
and Systems of Such Equatiovs,” Math. Comp., Yol. 15, 1961, pp. 131-142.)

Show that the value of %(0, {) associated with the cquation
Uy = Uy, T > 0, [ - 0,
H(x, 0) = Uy u:(OJ t) = bf(”’(oj 'E) ):
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can be determined as the solution of
u(l) = uy — —f Flu(g))(t — ¢)~ 2 ds,

and dizeuss the solution of this equation.

(P. L. Chambre, “Nonlinear Heat Transfer Problem,” J, Appl. Phys, Vol. 30,
1059, pp. 1683-1688.)

27. Consider the equation

() = f‘u(m 1 — ) dF(s).

{D. V. Lindley, “The Theory of Queues with a Single SBerver,”’ Proc. Cantbridge
Philos. Soc., Vol. 48, 1952, pp. 277--289.)

28. Consider the nonlinear integral equation
]
w(t) — f w(e)u(t — 8) ds = g{s).
1]

For what class of functions ¢(s) do clementary solutions exist?

(2. A. Melzak, “Some Mathematical Problems in Retrograde Nerve Degeneratmn o
J. Math. Anal. Appl., Vol. 2, 1861, pp. 264-272.)

29. Consider the equation
2 tyn{s) ds
y() =1 —
Vir ‘\/ {—3s

Show that the set of successive approximations defined by g = 1,

tym(8) ds
Et—g’

converges uniformly to a solution of the equation in every finite
t-interval and that 0 < y{(f) = limu., y«(t) < 1. Show that this
approgch leads to a power serics in £ and determine the coefficients.

30. Show that

1
han() =1~ [
Yo

2v/1

Vi

as t— 0,

1 1w
N(—) ag i— o, n > 1,
i



31,

33.
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and that forn = 1

H
2et g
() == [ ew (=) ds
Yw d,
(3. 8. Abarbanel, “Time Dependent Temperature Thstribution in Radiating
Solids,” J. Math. and Phys., Yol. 38, 1960, pp. 246-257.)

Let f(¢) denote the proportion of an original quantity of goods re-
maining unsold a time ¢ after their purchase. Let ¢(t) denote the rate
of purchase of goods to replenish the stock. Assume that the original
gtock is one unit, and that ¢{{) is to be adjusted to maintain a constant
stock. Show that

1= f(& + fu f — Dol dr

Assuming that goods are sold at a constant rate, so that
1—¢yT, 1<T,
J) =
0, t > T,
show that the Laplace transform of ¢ is given by
{1 — e ) {Ts — 1 4 ¢37) L,

By cxpanding the second factor in Inverse powers of (Ts — 1)e'T,
deduce the solution ¢(f) in each inverval aT < ¢ < (n + 1}T,
n=201,- -

(H. Bateman, “An Integral Equation Occurring in a Mathematical Theory of
Retail Trade,” Messenger of Math., Vol. 49, 1920, pp. 134-137.)

. Solve the equation

aF(z, 1) (7 -
= = [ P@OPGe -y 0 d - 2P0 [ F 0 d

1] 1+
subject to an initial condition F(x, 0) = G(z), where G{x) is given,

(Z. A. Melzak, “The Effect of Coalescence in Certain Collision Processcs,” Quard.
Appl. Math., Yol. 11, 1853, pp. 231-234.)

Let ¢ (#) be real and suppose that
]
au(l) + bf wSult — ) dsn b, k>0,
a

as ¢ — <, Under what conditions does 1{f) have an asymptotic be-
havior of the form w(¢) - di'?
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34.

3a.

37.
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Counsider the existence and uniqueaess of the solution of

$() = s(t) — fm k(i — w)Flz(u)) du

under the assumption that | F(x) — F{y) | < bla — y| for all
z and ¥, and various assumptions concerning the function k(f).

(V. E. Bene$, “A Nonlinear Integral Equation from the Theory of Bervomecha-
nists,” Bell System Tech. J., Vol. XL, 1961, pp. 1309-1322.)

Discuss the existenee and unigueness of the solution of

a é i
5£'+a1£=a2+a3f i(«%@f@%i—s)d&

]

(G. M. Wing, “Analysis of a Problem of Neutron Transport in a Changing Me-
dium,” J. Math. Mech., Vol, 11, 1962, pp. 21-34.)

Equations of this iype cceur throughout the theory of invariant im-

hedding; sce

1. Bellman, R. Kalaba, and G, M. Wing, “Invariant Imbedding and Mathemati-
cal Physics—I: Particle Processes,” Jf. Matk. Phys., Yol. 1, 1960, pp. 280-308.

. Show that the equation

EyI

1
o) — ot + 1) =f Bt — $)a(s) ds =f ()b (t — ) ds

—

ig equivalent to the equation
W i3
fw — o (3) = [ Lo @,
b )

an equation studied by Giese. Discuss the appropriate boundary
conditions and asymptotic behavior. Sec

P. M. Anselone and H. F. Bueckner, “On a Difference-integral Equation,” J. Math.
Meck., Vol. 11, 1962, pp. 81-100.

Congider integral operators of the type

s

y(t) = —f Kis)z(t — &) ds,

L]
where K(f) is L-integrable on the interval [0, 277 and z(f) ranges
over continuous 2x-periodic functions. Prove that the neeessary and
suflicient conditions that this operaior generate only curves of non-
negative circulation, i.e., curves whose index relative to any point
not on them is nonnegative, are that



38.

39,

40.

41,

BIBLIOGRAPHY AND COMMENTS 255

{a} K(t) is analytic in (0, 7),

(b)Y K'(t) = f e dG (r}, where ((r) i¥ nondecreasing.

—cty

{C. Loewner, “A Topological Characterization of a Class of Integral Operators,”
Ann. Math., Vol. 49, 1848, pp. 316-332.

. C. Benson, “Fxtensions of a Theorem of Toewner on Integral Operators,”
Pacific J. Math., Vol. 9, 1959, pp. 365-377.

R. E. Lewkowicz, “A Characterization of the Analytic Operator among the Loewnor-
Benson Operator,”” Michigan Math. J., Vol. 8, 1961, pp. 117-128.)

Solve the integral equation of Abel,

wll) = f; (t = s)o(s) ds.

{F.. T. Whittaker and G N. Watson, A Course of Modern Analysis, The MucMillan
Co., New York, 1935, 4th od., p. 228.)

Henee solve the integral equation of Sehlomilch,

iz
flx) = Ef u{x sin 8) do.

]

Consider the linear differential equation of fractional order

i@ = [ @ - 2w dy

(E. C. Titchmarsh, Theory of Fourier Infegrals, Oxford University Press, London,
1987, p. 3568.)

Solve the Wiener-Hopf equation

@ = [ ke~ ity dv
]

(E. C. Titchmarsh, Theory of Fourier Integrals, op cif,, p. 339, and
B. Noble, Wiener-Hopf Technigues, Pergamon Press, New York, 1958.)
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CHAPTER EIGHT

Systems of Renewal Equations

8.1. Introduction

In this chapter, we wish to study the solutiong of systems of linear
integral equations of the form

4 N
ui(l) = fu(t) +f {Z u;(t — s)b‘:,-(s):l ds, i=12---,N. {811)
0

-1

Although the results concerning existence and uniquencss of solutions
extend in a routine fashion, new and powerful methods are required to
handle the questions of asymptotic behavior of the solutions as £ — =
In most investigations of cquations of this nature, in analysis and in
mathematical physies alike, this is the property of the solution of most
significance.

Since any detalled investigation requires complicated and sustained
analysis, we shall content oursclves here with a discussion of a typical
result that can be obtained and a sketch. of the general method that can be
employed.

8.2. Vector Renewal Equalion

lLetting u(?) represent the column vector whose components are u.{f)

(i =1,2, ---, N) and B() = (bs(t)), we can wrile {8.1.1) in the form
[
u(t) = f(£) +f B(u(t — 5) ds, (8.2.1)
]
Proceeding formally, use of the Laplace transform yields the equation
L{u) = L(f) + L(B)L(u), (8.2,2}
or
L{u) = (I — L{B)L(f}. (8.2.3)

257
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We see then that the asymptotic behbavier of the veetor w(i) as i — =
will depend upon the location and mulliplicity of the zeros of the deter-
minantal equation

I~ "B ar| =o. (8.2.4)
a

Any direct investigation of this equation appears to be very difficult.
We shall attack the problem by means of a basic result in the theory of
positive matrices.

8.3. Positive Matrices

A real matrix 4 = (a.) with the property that a;; > O forull 7 and j is
called a positive matriz. If merely a;; > 0, the matrix is called nonnegative,
The fundamental result concerning these matrices is due to Perron.

Theorem B.1. A positive matriz A has e unigue characieristic rool p(A)
which is larger in absolute value than any other chargclerisiic root. This root
is positive and stmple, and its associated characleristic vector may be loken
to be positive.

For the purpose of deriving propertics of p(A), the following variational
result is extremely useful.

Theorem 8.2. Let A be a posilive malriz, and let p(A) be defined as
above. Let S(N\) be the set of nonnegative \ for which there exist nonnegaiive
veclors « such that Ax > dp, Let T(X) be the set of positive N for which there
exist positive vectors x such that Ax < dr. Then

p(A) = max A, X £ SN},
(8.3.1)
= min X, NE TN

From this we sec thal p(A4) may be defined in the following way:

N
p(A) = max mig (2 aﬁxj/x{),

- i =1

{8.3.2)

i

i a,-_,—;t:_;/xg).

min max (
=1

4 i

Proofs of these resulis will he found in the refercnces at the ecnd of the
chapter.



8.5, EERO WITH LARGEST REAT PART 254
B.4. Some Consequences

It follows from the characterization of p{A) given in Theorem 8.2 and
(8.3.2) that ay; > by ford, j = 1,2, --+, N implies that A{4) > A(8).
Furthermore, it alzso follows that if B is any (N — 1) X (N — 1) matrix
obtained by deleting one row and one column from 4, a positive matrix,
then B is a positive matrix and A(A) > n(E).

8.5. Zero with Largest Real Part

Let us now show how the theory of positive matrices may be used to
study the characteristic roots of the determinanial equation

I - fm e~ B i | =0, (8.5.1)
4]
under ceriain assumplions concerning £3(¢),
Theorem 8.3, Let
(a} by(f) > 0, 5,7 =12« N,
(b) f; bis(l) di > 1 for some i, (8.5.2)

() f ba(etdl < @ forsomea >0, 4,5 =12 v, N,
0
Then there 18 a pusitive vector x and a posifive number sy such thal

[f e () dt] T = (8.5.3)
0
Furthermaore, sq 18 determined by the property that

p Um e~ B(t) dt] =1, (8.5.4)

[t}

and sq 28 the rool of

=0

I —f e tB(1) di
0

with lurgest real part, and & is o stmple root.
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Proof, We shall establish all of the above except for the very last state-
ment, which appears to require an invelved proof in the general case.
Consider the positive matrix

Pls) = fo B dt. (8.5.5)

As 5 inereases from 0 lo o, the elements of P(s) decrease monotonically.
For each positive value of s, we have the Perron root p(P(s)), a positive
quantity.

The monotone character of P(s) implies the monotone character of
p(P(s)). It is casy to see that p(F(s}) is a continuous function of s far
§ > a. It iy easily geen that p(P(=)) = 0, while s(P(0)} (which may be
infinite) is at least greater than 1, by virtue of (b) in {8.5.2). Consequently,
there exists exactly one value of s, § = 8, for which p{P(s)) = 1. This
equation is equivalent to

= 0. (8.5.6)

I —f B (1) dt
(1]

Let x be an associated characteristic vestor, that is,

[ fn " B dt] z =1 (8.5.7)

It remains to demonstrate the extremum property of 8. Assume that
there exists a root of the determinantal equation

I- f eB() dt| =0,
i}

8§ = g9 + ir, with o9 > s. Let y be an associated characteristic vector

lf:’ exp [ —{oo + #r)1]B () dt] ¥ =y (8.5.3)

Then writing | ¢ | as the veetor whose components are | y; |, we have

by | =

U: exp [— (o + #r)11B(1) df,} y

< { G0 dt] Lyl < { f 0 dt] Iyl (859)

2
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If 5y << o9, we have strict inequality, and a contradiction to the extremum
property of p{F(s)) given in Theorem 8.2. If 6y = 8, then we have strict
inequality in the second and third relations of (8.5.9), and once again a
contradiction.

The result concerning the simplicity of the root s is a bit more difficult
to prove. For N = 1, it is trivial, while ¥ = 2 oan be disposcd of as follows.

The second result cited in §8.4 cnsures that the positive roots of the
equations

[ ey dt - 1 =0, f et di — 1 =0 (8.5.10)
0 0
are less than the root of largest real part s, of
f (3_3"3)11 dt — 1 f 8—”512 ot
0 o
fls) = = 0. (85.11)

f (’J_“bgl df f 6_"”?322 di — 1
0 1]

From this we readily conclude that g; is a simple root. We have

Fs) = (— f ” teethy, dz)( f " ethyy df — 1)
o 0
+ (— f: te by dt)(fnm ety dt — 1)
+ ([: te*thyg dt)(/m 5 thyy dt)
o
4 (f: e "'hye dt)(fm te—5thy, d't)
1}

={+)+(+) +(+H) +(+) >0 (8.5.12)

at the point & = 8. Hence s; cannot be a multiple root.
A case of particular importance in applications is that in which

bﬁ:(s) = a&'kq}"'(s)! 1:! E= ]'J 21 Tty N: (8'5'13)

where 4 = (ay) is a positive matrix. In this case the characteristic equa-
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tion has the form

i
- Iz e fIinr
f ey dt
i
1
[223] oy — — - (4218
f £ 5ty dt =0
a .
1
adyl LA et Gyw —
f e~ by di
0 (8.5.14)

The foregoing results and techniques now readily yield the simplicity
of the root with largest real part. We leave the delails as an exercise for
the reader.

8.6. Asymptotic Behavior

Using the foregoing results, we can obtain asymptotic cstimates for the
solution of the vector equation

wl(t)y = f(1) + f; B{s)u(t — s) ds. (8.6.1}

We can use either the theory of residues or Tauberian theorems. In ap-
plications, we will be able to conclude that

u{t) ~ e, (8.6.2)

as { — <, where ¢ is a positive vector. References to results of this nature
will be found at the end of the chapter.

Miscellaneaus Exercises and Research Problems
I. Study the solutions of
R o
> [ -y an) = o).
=0 Y —co

{H. R. Ditt, “On a Class of Integro-differential Equations,” Proc. Cambridge Philos.
Soc., Vol. 40, 1944, pp. 199-211.)
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2. Consider the sct of equations

Mult) = o(t) + f o()g(t — ) ds,

L

v(?) f
DYy — f w(s)h{t — 3) ds.
M —s
{C. Lomnitz, “Linear Dissipation in Solids,” J. dppl. Phys., Vol. 28, 1957, pp. 201-

205.)
3. Use the Laplace transform to solve the matrix equation
adX ¢
" = X(+0)X (&) — f K(s})X(f — s} ds,
0
and to show that X (£) also satisfies the equation

X xwx(+0) —f‘xa— VE(s) d
P ({ . 3 g) ds.

{J. M. Richardson, “Quasi-differential Equations and (Generalized Semi-group
Relations,” J, Muath. Anal. Appl., Vol. 2, 1961, pp. 293-208.)

4, Listablish the generalized semigroup relation
i &
X+ =X{1)X(s) —f dh f XKt + 8 — & — 1) X (5) ds.
0 L)

{J. M. Richardson, op, cit.}
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The theory of positive matrices iz itself only a chapter of the theory
of positive operators, a theory with ramifications in the fields of mathe-
matical physics and mathematical economics, See

M. 3. Krein and M. A. Rutman, “Linear Operators Leaving Invariant a Cane in Banach
Space,”” Transl. Amer. Math. Soc., No. 26, 1950,

The result of Theorem 8.2 appears to have been discovered by a number
of mathematicians independently, The first published proof is due to
Collatz, The result given in the text, its proof and application, are all due
to H. Bohnenblust in regponse to a question put to him by R. Bellman and
T. E. Harris in connection with work in the theory of multidimensional
branching processes,

§8.5. An extensive discussion of results of this nature is contained
in an unpublished paper by R. N, Snow.



CHAPTER NINE

Asymptotic Behavior of Linear
Differential-Difference Equations

9.1. Introduction

In this chupter we wish to study the behavior of solutions of a linear
ifferential-difference equation of the form

SO Lo+ o) + e+ 0D —w) =0, w>0, (9.1.1)

18 { — o, under various assumptions concerning the asymptotie behavior
of the coeflicient functions a(¢) and b{f).

Since the problem is well known to be a complex one for linear differ-
ential equations of the nth order, we may safely expeet. the problem to be
at least as difficult for differential-difference equations. These equations,
after all, can be considered to be a special class of differential equations of
infinite order. In view of the crowded speetrum of possible results, we shall
conlent ourselves with explaining a few general methods which can be
used, and with deriving some particular resulis. Many further results can
be found in the references cited at the end of the chapter.

In order to make this aceount self-contained and partially motivated,
we shall present (in §9.12-9.18) the fundamentals of the theory of asymp-
totle series created by Poinearé, Then after a brief discussion of what is
known concerning the asymptotic behavior of particular equations of the
form

w' () + a(Bull) =0,
(9.1.2)
w’{t) + a{t)ul) =0,

we shall discuss the form of the asymptotic series expansions for the solu-
tions of cquation (9.1.1), granted asymptotic cxpansions for a(t) and
B(f) of the form
W~ %y by ~ 2+ 2 4 (9.0.3)
all) m~o— + — s ~—= = e .1
H o 1 4

265



266 9. ABYMPTOTIC BEHAVIOR
9.2. First Principal Result

1f a(¢) and b(l}, the cocfficient functions of (9.1.1), approach zero as

£ — 0, it is to be expeeted that there will be a close relation between the

agymptotic propertics of the solutions of (9.1.1) and of the solutions of
the equation

V() + oaw(t) + beplt — w) =0, (9.2.1)

In particular, corresponding to every particular solulion of (9.2.1) of
the form e*, where X is a root of the characteristic equation

At oag + b =), (9.2,2)

we hepe to find a solution of (9.1.1) of the same general asymptotic form.
The first result of this nature which we shall establish is:

Thecrem 9.1. Assume that there is a unique characteristic roof A with
largest real part, and that A 7s real and simple. Let a(t) satisfy one of the
following two sets of conditions:

(a) f°°|a(z) Lt < oo, (9.2.3)

or
(b) (1) alf}y > 0ast— o,
{2) a(t) =0, for t >

B3) &'()) =o[|a(t) |], ast — =,

(4) [ at{t) df < =0, f la' (8} | dt < o,
Then the eguation

w(t) + [ao + a(®) Ju(®) + boult — w) =0 (9.2.4)

has a solution of the form

ﬂ.”(l)
a(t)‘ 1 dt < o,

uf(t) = ¢[1 + o{1) ] exp [M - [e a(r) a’.r}, (9.2.5)

tg

ast— o, where ¢ and ¢; are conslants and

€1 = (1 — byue ), (9.2.6)
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SBubsequently, we shall take up the more complex case where b{t) = 0
in (9.1.1).

2.3. Preliminaries

Let us write the equation (9.2.4} in the inhomogencous form
w{f) + awll) + bou(t — @) = —a(D)u(f), (3.3.1)

As customary in such investigations, we use the device of converting a
differential-functional equation into an integral equation. A certain toueh
of ingenuity is often required to seleet an integral equation suitable for the
purpose at hand.

Regarding —a(t)(f) as a foreing term in the inhomogeneous equation
above, we may wrile a solution of (9.3.1) as a solution of the integral
equation

w(t) = wit)k{t — &) — ho fu E(C— 4 — o)u(ly) diy

n—uw

- f‘ k(ﬁ - t}_}ﬂ(tl)u(tl) dtl, £ > o (9‘3.2)

In order to oblain this cquation, we consider the function w(f) =
%(f — w + &), which is a solution for ¢ > « of an equation with forcing
term ~a{f — w + fH)w(?), and use the formula in (3.9.12) to obtain a
representation for w(t), and thus «(2).

As we know from the investigations of Chapter 3, the function k() is
given by the expression

1 et ds
k(t) = f — (9.3.3)
2w o8 '+' iy + bu(,’_‘m
where the integration is along a line b + ¢r, — = < » < o, with b suffi-
ciently large.
Our agsumptions concerning : {the root of s + ag + be~* = 0 with
largest real purt) permit us to conclude (see Txercise 1, §4.4) that

E(t) = aett + ki(8), (9.3.4)
where 1

6 = ————r (9.3.5)

1~ byweer
(the denominator is nonzero by virtue of the simplicity of A), and
Bt | < ee®, 20, (9.3.6)

where ¢, is some constant and &k < A.



268 9. ASYMPTOTIC BEHAVIOR

Since k(f) is a solution of the homogeneous part of (9.3.1}, as iz &, we
can assert that the solution of '

i
u(l) = et — [ al@)u@r( - 1) dy 9.3.7)
L]
is also a solution of (9.3.1).* It is this integral cquation which we shall
study.

9.4, Discussion

Since k(t) has the form indicated in (9.3.4), we can write (9.3.7) in the
form

ult) = M — g fi alli}u(h) exp (At — &) ] d4

— .[1 a(tl)u(il)kl(t - 51) dﬁl. (941)

Since the solution of

ult) = ee™t — oy [i alh)u(h) exp [Mi — 8)] dé {9.4.2)

£

is the solution of
W) =[N —as@®ul), ul) = e, (9.4.3)

we see the origin of the expression jn (9.2.5).
It remains to show that the neglect of the third term on the right-hand
side of (9.4.1) is legitimate.

2.5, [=|alt) | dh <
Asymptotic behavior is relatively casy Lo establish under the assumption
that [®{a(f) | dis < . The method we employ is quite gencral and can
be used in & number of similar circumstances.

Turning to (9.4.1), we have

lu®e™| < Jal+ el [ o) lu@e | d

TRy f’ la() [fu() || kit — &) |do. (9.5.0)

* Existence and uniquencss of the solution of (9.3.7} is easy to establish.
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Since
Por(t ~ &) | < caexp [k — )] < eczexp [N (¢ — )] fer tz4, (9.5.2)
we have, using (9.5.1) and (9.5.2),

lu(tye ™| < les| + e ] f |ah) || u()ea | di

£
T e f la() || w(h)e™a | da.  (9.5.3)

Employing the fundamental inequality (§3.6), we obtain the further
incquality

w0 < etesn Qe+ e [ Taw o]

ty

< lcslexp[(tc1|+ic2[) fmla(tl)ldtl].

t
Hence, ast — «,
| (t) | < et (9.5.5}

We now wish to refine this inequality to an asymptotic equality. Re-
furning to (9.4.1), let us investigate the behavior of the two integrals

RO = [ atute) esn Dne — 7 db,

(8.5.6)
1
10 = [ a@ulhl — b dt
in
Bince the integral

=~

alt)ut)eu di, (9.5.7)

ty

is absolutely convergent, as a consequence of (9.5.5) and the integrability
of | a(t} |, we see that

it

Tt e”[ / " alt)ult) e dty — f " et ulh) e dtlJ

21

(9.5.8)
= e + o(&),

asf— =,
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To estimate J:(¢), write

s = | Ty / " (9.5.9)

i 112
In the first integral, use the bound ! %.(£) | < exe*:, Then, since & < A,

&

]

12
< et [ aln) | ulh) e dn

{o

e
< cgr:m"‘f jalty) |exp [(h — k)] diy
ty
(9.5.10)
t 2
< o0y eXp [()\ -~ k) H} 6"‘[ | a(t) | dby
2 2
t
< cs exp [()\ + &) E] = o(eM)
88— w0,
In the second integral use the bound | 5(¢) | < ae*t. Then
i £
f < czf | afis) [| cae™s | exp DA(E — ) ] d
iz 2
L
< co f la(t) | & = o(e™). (9.5.11)
25
We see then that «(t) has the desired form,
u(t) = e 4+ o), (9.5.12)

which agrees with (9.2.5) in the present. case,*
We have gone through the details rather carefully so that we may
heneeforth merely refer to this type of argument,

9.6. The Difficult Part of Theorem 9.1

In order to handle the maore sophisticated problems of asymptotic be-
havior, arising, for example, when a(f) is a function such as 1/, we must
work a little harder,

* Here £7 = 63 — ¢16s. By slarling with a sufficiently large &, we can ensure that e is
small encugh that e; £ 0,
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Write :
() = = [ auwh( — 6) d, (9.6.1)

tn

50 that (9.4.1) has the form

u(t) = g™ — ¢ fta(tl)u(tl) exp [A(t — &) dty -+ »(2). (9.6.2)

i

Multiplying by ¢ and differentiating, we obtain
() = Mu(l) —p()) — aa(Qu{®) + p'(0). (9.6.3)
This may be written in the form
(w(t) —p())' = (2 — (@) (u(®) — p(t) — aa(p(®). (9.64)

Henee, infegrating this first-order linear differential cquation for w — p,
we obtain

I3
ull) = cae® + p(1) — cieo® f e e (i) plh) dh,  (9.6.5)

t

where

s(f) = f‘ » — aa{r)] dr. (9.6.6)

Let us now show that the asymptotic behavior of %{£) can be deduced
from this last equation, provided we impose sufficient conditions upon
a{t}. To begin with, let us demonstrate that w(£) e~ is bounded as f — o0,
From the expression for p({} in {9.6.1), and the estimate for £ {1}, we see
that

1901 < s [ ot e foe ©57)
Setting ”
mt) = max |u(t)e—u |, (9.6.8)
we have o
90| < e [ |acw) lexp [s(t) — k], (9.69)
i ;

|p(D) | < cxoMom(E)eb [ ) | exp [(x B -« f * o) dzg] d.

by 4]

(9.6.10)
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If J=|a(t) | dh < =, we scc that
| p(£) | < com(t)er, (9.6.11)

where ¢y can be made arbitrarily small by taking {4 sufficiently large.
Let us next consider the more interesting case where the integral diverges.

We require a simple but rather long-winded lemma which we shall discuss
in a separate section so as not to add undue confusion to the foregoing
proof,

9.7. Alemma
Let us establish

Lemma 9.1. Lef ¢ be a positive constand, and let f(1) and g(8) be fwo
real, twice differentiuble functions, satisfying the following conditions:

(a) f(t) and g(t) >0 ast — o,
(b) g(&) =0, jor i > 4,
(e) ¢'(t) = olg(B)Jast — o,

@ [T1rwa< -,

© [ 170 &<
f (0.7.1)

9" ()

git)

Jog' )
g{t)

df < o,

@ [

Then

[ ot exp [cmtl + [ 5t a’.th dt

= [ew™ + o(1)Jg(t) exp [clut +f Jt) dth (9.7.2)

ast— o,
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It will be clear from the proof that many similar sets of conditions can be
imposed to obtain the same result. In particular, if f and g are elementary
funetions such as %, o > 0, the result can be established guite casily.

Proof of Lemma. We shall suppose g(¢) > 0. We begin with the faci
that (¢) in (9.7.1) implies that logg(t) = ot) us { — =, Integrating the
left-hand side of (9.7.2) by parts, twice, we obtain

f‘ g(t) exp [Clnﬁl -+ j;tl flb) dtz] oty

tg

= cug (1) exp [cmt RO d@ +eu
— o o ) + SO0 Vexp [ent + [ 500 d

¢ 4
+ Cm—2f (9" + of' + 2¢'f + gf*) exp [01051 + f J(ts) dffz] dh.
L)

tn

(9.7.3)

Since ¢cip > 0, f{) — 0and g{f) = eV ast — =, we have

g(l) exp [Ciui + [ i) db] — ® (9.7.4)

as { — w. The assumption g'{§) = efg(t)] cnables us to write the first
three termsg of (9.7.3) as

cw g (1 + o1} ] exp [cmt + f Fta) dtg]. (9.7.5)

Consider now the last term in the right-hand member of (9.7.3), which
we denote by J {4, £}, We have

7 (6
0,2

¢ 142

< et JUXD [Cmé +

]
l Flts) dh]l

Eir

Tl a2+ 0 L

H]

0 Ig(t) exp [cmt + f;: flts) dtg]}.
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Tinally, since

g(t) exp [cmt + f fl&) dzg]

is increasing for large { (by virtue of the assumptions of (b) and (¢) in

(9.7.1)), N )
J (5, t)[ < g(t) exp {cwt + fm Fl&) dtg]

L

7 {g(i) exXp {cmt + ./;: Fli) dtg]}.

fr

— —f'F) dh
g

-:‘+rf’I+2
g

1

This completes the proof.

9.8, Continuation of Proof of Theorem 2.1

Let us now continue the discussion of §9.6. Take (8} = —eu(t),
g(t) = |a(#) |. Then, under the hypotheses (b) of Theorem 9.1, applica-
tion of Lerama 9.1 to Fquation (9.6.10) yiclds

[p(8) | < com(t)e@ | alt) | (9.8.1)
Using this result, we obtain

]
f et p () i

1]
The constant ey, can be made arbitrarily small by taking £ large encugh.
Returning to (9.6.5), we have, upon choosing ¢s = 1,

< cm(t) f‘” al(h) diy = com(t). (9.8.2)

|w(@ye~® ] <1 -+ o[m{()] + cuamtt). {9.8.3)
It follows that
m{t)y <14 o[m{t}] + cum{t), (9.8.4)
or m(t) S €14 (985)
as { — e, Thus,
[u(t) | < cuest, (9.8.6)
Returning to (9.6.3), we now deduce that actually the more precise
result lim () = i (9.8.7)
o

holds as £ — . Here ¢y is & nonzero constant.
This completes the proof of Theorem 9.1,
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9.9. The Case Where b{f) = 0

We now wish to follow essentially the same procedure to discuss the
cquation

W) + {a+ a) Jul®) + (b + 0 jult —w) = 0. (9.9.1)

The presence of the term b(¢) will foree us to be a bit devious.
As before, we assume that the principal roct of the characteristic equa-
tion
s 4 g + boe e = 0, (9.9.2)
which is to say the root with largest real part, is real and simple, Proceeding

ag before, we write

u(l) = cett — g8t ft erla(iyult) + btdu(th — w) ] dh -+ p(t),

to

t> &, (9.9.3)

where

1
p(t) = —- j Cehyulh) + bldulh — w) It — £) dh. (9.9.4)
i
Unfortunately, this time when we differentiiate (9.9.3), we obtain an
integro-difference-differential cquation
w'(t) = Nu(t) —pH)] — ala@u@) +bHuli —«)]+ (),
L > t, (9.95)

ruther than the integrodifferential equation of the previous sections.
Since it is reasonable to suppose that the asympiotic behavior of u (i)
a8 t — oo 13 a8 before, we introduce the function

() = uw(l) — u(t — w)e, (9.9.6)

which we expeet to be o[uff) ]} as + — . Using this funetion, we can
write (9.9.5) in the form

w(t) = Aul) —p)] — alal®) + () Jult)
+ e (D) + p'), > 6 (9.9.7)
Set w(t) = u(t) — p(f). Then
w'(@) = () — alalt) + b)) Jw(l) + e b ()e(l)
—ala(t) + e (8) Ip(l), t > (9.9.8)
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Solving for w(!), we obtain the equation

u(t) = p(t) + & — cle*“’f e lall) + eb{h) Jp(t) diy

tn

t
T e® j e Wb (h) dh, i > b, (9.9.9)

£y

where .
s() = f At dl, (9.9.10)

iy
A =X — ala(t} + ()] (9.9.11)
From this we chtain the equation

v(f) = p(t) — p(t — w)e* + g()

- agt) [ e la(w) + e o) d

!
- clen{l‘) f

ela(n) + e 0b(L) p(h) dh
—uw
+oa®) [ e bl)oln) d
e

i
4 ger® f e D (t)e(t) by, £ >t F o, (9.9.12)

i—w

where

I

et — exp [s(f — w) + wA]

3
eris) {1 — cXp [w)\ - f At dtlﬂA
E—w E

If we now impose conditions upon a(t} and &(4) (conditions we shall
present below), & reasoning analogous Lo that appearing above, but more
complex, permits us to conclude that

|u( | < ae®,  Ja@) | = ofev],
ast — o, We ghall omit the details since they can be found in the reference
given at the end of the chapter, and since they do not involve any new

ideas.
The final result is

q{t)
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Theorem 9.2. Suppose that the principel root of b{s) = s + G0 + b
Hes al s = \ and is reql and stmple, Let

1

/RO = (1 — bwe) ",

€1

At} = h — ala(t) + e ()],
£
s(t) = f Me) dh
H]
Suppose that a(t) and b(L) satisfy one of the following two sets of hypothesés:

@ [ lawla <, [ 0w]d<

(h) all), by — 0 as §-— o,
a{t) #= 0, b(t) Z 0, for 1=y,
a'(t) =ofa(t)], H() =o[b()] as t— =,

fmaz(t) di < o, fm]a,’(t) ldt < oo,
fm

fmbﬂ(t) a<w, [ VQ[d<a,

ai’.’(t)
all)

‘dt< =,

fm b dt < o,
b(2)
[ teapo | a < =,
Ul B e D P!
[N a(t) oo b(t)

Then the equalion
4 (8) + [oo + a(®) Ju(®) + [ho + &) Ju(t — «)
has a solution w (1) of the form
w(t) =e®[1 +o(l)]ast — =.

I
=]
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2.10. Further Resulis

Similar results can be obtained for any real root of the characteristic
polynomizal, for complex conjugate roots, and for multiple characteristic
roots, Finally, the results can be extended to cover the casze of systems of
differential-difference equations, and to systems of more general linear
funetional equations. The reader interested in these matters will find a
number of results in the references given at the end of the chapter.

2.11. More Precise Resulfs

If we wish to obtain more precise estimates for the behavior of the
solutions for large ¢, it is necessary to impose some further conditions on
the asymptotic behavior of a(¢) and b(¢). It turns out that the most useful
and illuminating condition is that the coefficient functions i (t) and b{¢)
possess asymptotic serics. Furthermore, this is the condition that is most
often met in applications in other parts of analysis and mathematical
physics.

Consequently, we shall begin with 5 discussion of the concept of asymp-
totic serics introduced by Poincaré. To motivate our further work, we shall
briefly derive some of the principal results for first- and second-order linear
differential equations.

Unfortunately, the methods applicable to differential cquations do not
carry over in lofo, and we shull have to use some of the foregoing deviees
in order to obtain asymptotic series for the solutions of linear differential-
difference equations.

9.12. Asymptotic Series

Consider a function such as

t

u(t) = ——, 9.12.1}

@ t+1 (
Ast— oo, we sec thal lim w(¢) exists, and is equal to 1. To obtain a more

detailed idea of the behavior of %(¢) as ¢ — o , We write
1

u(t) =1 — —— 0.12.2)

&) P (

Generally, we could expand (1) in a power series in 1/,

1 1
u(t) =1 — ;— + E — e, (9.12.3)
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This series is eonvergent for | ¢ > 1.
Consider, however, the function

oo 6—8
u(t) = f ——ds {9.12.4)
(8 13
defined for ¢ > 0, Let us examine the asymptotic behavior of this function
asl— =,

Integrating by parts, we have

) = - fm _eds (9.12.5)
w(l) = - — ' e
t o {s+1)°
Since
o2 o ]_ o= 1
f ——ds < —f e ds = -, {9.12.8)
o {58+ 1)? 2 £

we sce that 1/¢ represents a good approximation to w(f) as ¢ — . To
derive a better approximation, we integrate by parts again, obtaining

e ds

1 1 =
% (4 =—-~—+2f - (9.12.7)
@ =7 o (s + &7
The integral term is now bounded by 2/f as § — «.
Continuing in this way, we obtain the relation
) =22t ot = D= [T (9128)
wf) == —~ 4+ — — -+ no— 1} —1}— S — A2,
i £ ¢ o {8+ 0"
The temptation is to write
1 1 2 (n — 13 =1)"2
u{f) == = = = — e A e deoaen, (9129)
14 g v i

Observe that this is precizely the series that one would obtain from
(9.12.4}, were we to write

1
s—i—i_

and blithely integrate term-by-term.

Unfortunatcly for our immediate purposes (but fortunately for the
development. of mathematics), this simple procedure fails due to the fact
that the serics in (9.12.9) diverges!

1
S-St (9.12.10)
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The relevance of the foregoing Lo our investigations in the field of
differential equations lies in the fact that u(t) satisfies a simple linear
differential equation. By a change of variuble, we bring w(#) into the form

—
mn=§£—;¢ (9.12.11)
Ience,
d et .
Gleuwl= (9.12.12)
or
u'(f) — u()) = — 1. (0.12.12)
Thus
() — w0 + W) —uld) =0, (9.12.14)
or, finally,
w8y — (1 — El-) w'(t) — u(i_t) = (. (9.12.15)

If, then, we attempt to find a power serics solution for u(l) in the neigh-
borhood of { = e, say,

=242 18 (9.12.16)
B ET TR i ’ T

we find, upon setting ¢; = 1, the series of (9.12.9), o series which diverges
for afl {. Must we then abandon the whole procedurc? The theory of
asymptotic series shows us how to salvage something from this, and,
indced, to construct & theory which is far more powerful and ugeful than
the theory of convergent serics. Paradoxically, these divergent series are
very often more useful in computational work than convergent geries!

2.13. The Foundations of Asympfofic Series

Consider a formal series in 1/¢,

S =cn+%+---+;+---, (9.13.1)

where the coefficients, {¢,}, represent a given gcquence of constants, such
as {a*} or {n!}.
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Suppose that there exists a function %(2), defined for ¢ > ¢, and another
sequence of constants, {m,}, such that, for £ > 1,

Mn-1

no=01 . {9.132)

8] Cu
u(t) — (Co‘f-:“l‘ +;)

- 1’

TUnder these conditions the series 8(1) is sald to be the asympiotéic serics
expansion of «(f) in the neighborhood of { = oo, and we write

(8] [
U(i)~60+?+--'+—+-"- (9.13.3)

i

Tt is casy to sec that if S{f) converges for { > f, it represents the asymp-
totic series of its sum. The great merit of this new concept of equivalence
of a function and a series is that it allows us to treat divergent series in a
systematic fashion.

We leave it to the reader to satisfy himself that the following results are
valid:

(a) If
1153 Ty
W) ~ ok kT 9.13.4)
and
bl i)
2wy} ﬂubn-{*?—i- +;+ sy
then

e (8) + catea(l) ~ {owo + aby) + (e 4+ ebi) /b 4+ ---

for any two constants ¢ and es.

dr dy
{b} wa(F) ue(t) ~ dy |- ? + e+ ;‘ + - (9.13.5)

where
d-n = anu -+ a‘ﬂ-—lbl + b + a()bn-
In other words, as far as the clementary operations of addition and

multiplication are: concerned, asymptotic series can be manipulated like
convergent series.



282 9. ASYMPTOTIC BEHAVIOR
9.14. Alternative Formulation

The foregoing definition of an asymptotic series expansion is readily
scen to be equivalent to the following:

1 Cy
u(l}NCD+£—+"'+;+°", (9.14.1)

lim %(8) = ¢, (9.14.2)
oo

Hm ffu(t) — o] = o
3

-y

-l

. €1 Cn1
llmi"[u(t)—ﬂo—t——"'— :|=Cm

[T

It follows from this, or the foregoing definition, that a function has at
most one asymptotic series expansion, On the other hand, «(f) and
u(t) -+ ¢! possess the same asymptotic series expansion. Congequently,
the asymptotic series expansion determines the function only to a certain
extent,

2.15. Differential and Integral Properties

Supposc that
i Cn
u('ﬂwt—g-i- +g-f:+ {9.15.1)
Then
@ e €n ® M M
f u(s) — 2 — e — &g < f T gs = B (0.15.9)
R ] " | 8"+1 nin
whence
Juas~ 24 (9.15.3)
3 L8 e — LIRS —— ... . .
. e : (n— Ly |

Consequently, we sec that it is safe to integrale asymptotic expansions
of the form given in (9.15.1) term-by-term. Differentiation, however,
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cannot be carricd out without some further information. Thus,
. _ 0 0
u(t) =:,—‘sme”~0+;+---—E—E;+---, (9.15.4)
but the derivative
w(t) = —etsin ¢ + 2et cos e {9.15.5)
does not possess an asymptotie series expansion.
1i is easy, nonetheless, to show by means of iniegration that if
1 £n Cy
u(ﬁ)m(;0+—+—+ T ..
£ 1 it
(9.15.6)

bu

TOR R UL
“ £ F '

i

then
by = —a, by = —204, -+, be = —ngy, «»o. (9.15.7)

9.16. Extension of Definition

If the function u(2)e* has an agymptotic expansion, we will write

¢ €y

ut) ~ e [co+f+ et ] (9.16.1)

There is no difficulty in extending this idea to representations of the form
5] Cn

u(t) ~ () [ﬁo ot tat ] (9.16.2)

as long as ¢(£) # 0 for { > f.

One of the most important cases, however, is that where ¢(f) = cos ¢
or sin . We can circurmnvent this difficulty by using ¢ or ¢~%, a matter of
no impert in dealing with linear equations, or we can agree that the
notation

u(t)mcost[e:g—i—?—i—---+%+---} (9.16.3)
means that
2] Cn Mingl
£ — cost R s 0.16.4
w® —oositfat b+ 2 < @6

for ¢ = # for some sequence of constants {m.}.
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EXERCISES

1 If uf) — fm e~ ds/ (s -+ 1), show that
n

1 1 {~1)™n!
u(”"‘“;—;-l-'“ —T+'-'

2. Tind the asymptotic series for () = exp (#) [ exp ( —§*) ds.
3
3. Given that u(£} ~ ¢/t + /88 4 -+, show that exp [(¢)] has an
asymptotic series, and find ils first fow terms,

4. Find an asymptotic scries for

E

wt) = [ e as

assuming that f is suitably regular.

(J. J. Tiemann, “Asymptotic Expanston for High-energy Potential Scattering,”
Phys. Rev., Vol. 109, 1958, pp. 183-188.)

9.17. First-order Linear Differential Equations

Consider the equation

W (E) = a()ult), (9.17.1)

where .
251
a{t) ~ ay + 7 + .. (9.17.2)

From the representation

uft) = wu(fy) exp {[i (s} ds_—’

i

u(h) exp {f (an + ?) ds + f [a(SJ —ay — %] dSJ,

{0 n

we sec that

23 al'
#(t) = ¢ exp {acz + alogt — f [a(s) — gy — -—J d’s}. (0.17.4)
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1 pdid . a2 a’3
wt] ~ eif*e™ exp | — (7 + 2£;+ ) )

Henee,

and thus,
b
w(f) ~ t“le“”(bu + 7 + - -),
where the b; are determined by the a; and e
9.18. Second-order Linear Differential Equations

Consider the gecond-order linear differential equation

' — a{tje =0,
where

0y iz
alt) ~ oo+ —F =4

285

(9.17.5)

(9.17.6)

(9.18.1)

(9.18.2)

In order to sec whal io expect in this case where we no longer have an
explicit analytic sclution to guide us, let us use a very useful deviee, We
shall convert (9.18.1) into a nonlinear first-order differential equation,

the famous Riccati equation.
Let ¢ be determined by the relation

r

n t
o=, u=exp(fvds).
"

w =vu 4wy = (¢ + "l

Then

Hence, » salisfies the equation

w4t —a(t) =0
Let us write

c Ca
v~ - 4= e
t #

Substituting into (9.18.3), we have

o 2 Aln Zegey
——— — ——— === P 4 F —— T m—— k&Y Y
£ 0 gt te
hid Li5] ag
Foaes +(chcn_k)/t"+ _%_?_54_ e =0
k=0

(9.18.3)

(9.18.4)

(0.18.5)

(9.18.6)

{9.18.7)
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or, “equating coefficients,”
o = ayg,
2000 = @, (9.18.8)
—o + (2¢00 + o)

n

az,
and so on,

Let us assume first that @, = 0. Then, the set of cquations in (9.18.8)
yields the relations

o = aDU2’
(9.18.9)
[25] [45]

%0 gaﬂuz’

&1

and so on. Tach coefficient ¢, is determined by the preceding values,
€0, €1, ==, Co1, 300 @, Note that there are two possible choices for Co.
Using the relation in (9.18.3), we have

¢ a
u = exp ([ v ds) ~ gXp (au”?t + glﬁ logt + -- ) {9.18.10)
]

or
bl bg
u ~ exp {a! %o (ba -+ -;- + t; + ) (0.18.11)
(where ¢; = a1/2208?). If @ = 0, there is no power of ¢, and we have a
simple “solution”

b
u ~ exp (') (bg -+ —; + % + .- ) (9.18.12)

We have, of course, still not established the existence of a solution
possessing this asymptotic equation. This peint will be discussed below,

9.19. The Case Where a, = 0

Let us first investigute what can be expected when a; = 0. Referring to
(9.18.5), we look for a solution » of the order of maghitude of +/a(t).
If ap = 0, a; 5% 0, this yields

B~ g2/ {9.19.1)
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Writing
1 = @R 4w, (9.19.2)

we see that w is of the order of magnitude of 1/£.
We leave as an cxercise for the reader the task of determining the formal
expansion for w.

EXERCISE

What is the formal asymptotic expansion for # when @s = a1 = ++- =
Qr = 0, 47| = 07

©.20. A Rigorous Derivation of the Asymptotic Expansion

To establish the cxistence of such an expansion, we proceed as follows.
To simplify matters initially, let us suppose that a > 0, @y = 0. Then,

we write
w! — agt = [a(t) — aolu. (0.20.1)

We eonvert this into an integral equation

U = U + Catiy

S

ft [e¥F — g~*=Tla(s) — anJuls) ds, (9.20.2)
0

where
u = &, uy = ¢t b = a2 (9.20.3}

Write this in the form

bi

e 4
w = cry + crtte — .2—6-[ e la(s) — apju(s) ds
1]

[11

e ¢
+ _f eblals) — agJu{s) ds. (9.20.4)
26 o
Let us suppose that b > 0, and that we have cstablished the existence,
along previous lines, of a solution (2} satisfying the condition | u(f) | <
cz¢%. Then the integral
f etla(s) — anuls) ds {(9.20.5)
1]

is convergent, since | a(s) — a| = 0(1/8*) ag s — .
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Hence, we see that w(7) has the form

u = gyett 4 pfeb), (9.20.6)

where

e = — ﬁ%fom e¥lals) — auls) ds. (9.20.7)

One can cnsure that ¢ = 0 by starting the process at #, sufficiently
large, and choosing ¢ > 0, ¢, = 0,

Once having established (9.20.6), we return to the relation in (9.20.4),
and write

Bbe @

® = oty ) e“[a{s) — ao]lese® + o(e®) ] ds + ole®/t).  (9.20.8)

The term

ebs

7 sm e la(s) — agJlewe® + o(et) ] ds

=C—sebrfm[a(s) — @] ds + o(e¥) f”[a(s) ~ ao| ds

28 ¢
(9.20.9)
o3tz €% F o(e) fw ds bt i (e“)
=——+ o(e —=g—Fo{ -]
2 ¢ A t
We thus have established the more Precise asymptotic relation
abt eht
w = gt 4 ¢ —t- + s (T) (9.20.10)

"To obtain 2 still more precise result, we use this result in {9.20.4), and
proceed as above. Thusg, step-by-step, we obtain further terms in the
asymptotic expansion of 4. After n repetitions, we have a result of the form

ebt CﬂBM ebt
W= e e o (T) (9.20.11)

The term o(e%™) represents a term bounded by #aett/1H, where
My 18 independent of ¢ for £ 3> 1.
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9,21, Determination of the Constants

To obtain the constants ¢ ¢, ---, in the preceding expansion, the
simplest procedure is to substitute the cxpansion into the lincar equation

w' — a(t)u = 0, (9.21,1)

and equate coefficients, Since w and a(t) possess asymptotic developments,
u' also does, since 4/ = a(¢)u. Hence (his process is now valid,

It is also possible to obtain an asymptotic development for the second
linearly independent solution, of order e-*,

EXERCISES
1. Obtain the asymptotic development of the solutions of
w’ +[1+ (a/t)Ju =0,
w + [1+ (a/t)Ju =0,
and generally of
u’ 4+ [1 4+ {(a/t") Ju = 0, b > 0.

2. Obiain the asymptotic development of the solutions of

u' — atty =0, b>0.

9.22. A Basic Problem in the Theory of Differential Equations

Given a pelynomial equation of the form
Plu, ', «ov, ulw) =0, (9.22.1)

in a number of cases one can formally obtain power scries “solutions”
having the form

w = @O[L 4 (e/t) + e (/) 4 0], (922.2)
where (1) is a polynomial in ¢, say,
g(t) =g+ gt + - + gut™, (9.22.2)

or, more generally, & polynomial in ¢ and log £.
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If the series converges, say, for ¢t > &, or, in the complex plane for
11| > t there is no question about its being a =olution of the differential
equation. The interesting situation is that in which the series in (9.22.2)
diverges for all {. The fundamental problem is one of determining when
the series represents an asymptotic series of an actual solution of (9.22.1),
For the case where P is linear with coeflicients which are polynomials in ¢,
the probicm is complex, but resolved. For nonlinear equations, fur less is
known.

We wish to study a small part of this general problem for the case of
linear differential-difference equations.

9.23. Foermal Determination of Coefficiants

Given an equation of the form
wW(t) = [as + (a/t) + ««Ju(t) + [be + (b/t) 4 +++Ju(t — 1),
t>1, (9.25.1)

where the expansions need only be asymptotic expansions, let us see if we
ean obtain a formal solution of the type

w(t} ~ L + {(erft) L o+ ] (9.23.2)

It follows immediately, upon substituting in (9.23.1}, and equating
cocfficients of the highest order term, eMi", that A is a root of the trans-
cendental equation

A= ap + Doe™™. (9233)

Similarly, looking at the term ¢4t and equating its coefficient to zero,
we obtain a relation between r and ¢ The next term 42 vields a rela-
tion between ¢ and ¢, and so on.

Fortunately, a eloser examination shows that the term in e, drops ocut
of the relation hetween r and ¢, the term in ¢, drops out of the relation
between ¢; and ¢, and so on. Thus we can determine the quantities A, 7,
€1, €, »--, recursively, cach in terms of the preceding values. The basic
condition that must be satisfied in order to perform this process is that

1+ b = 0, (9.23.4)

We recognize this as the condition that X not be a double root of (9.23.3).

As mentioned above, this direct equating of coefficients is the easiest
way to obtain the values of the unknown parameters, X, r, ¢, ¢z, +++, once
the asymptotic expansion is known to exist. To establish its validity, we
must proceed differently.
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9.24. Asymptotic Expansion of Solution
Let us now establish the following result.

Theorem 9.3. Suppose that the principal root of
$+ a0+ b =0 (9.24.1)

lies al s = £, and that it is real and simple. Suppose that a(t) and b{t)
possess asymplotic series expansions

a(t) ~ 3 ant™,  b{t) ~ 3 byt (9.24.2)
nl nei
asf — oo,
Furthermore, suppose that &' (£), (£}, a”(£), and 6" (f) exist and POSeEsS
asymplolic power series expansions. Then there exists a solution u(i) of the
equaiion

w(t) +low+a®u® + [+t —w) =0 (9.24.3)

with an asymplolic expunsion of the form

ul(t) ~ M8 3wt (0.24.4)
=0
where N, r and the coefficients w, are determined gs above.
In particular,
a1 + e
po — Gt e (9.24.5)
{1 ~— bywe—>)

Proof. We follow the steps outlined in the treatment of the correspond-
ing problem for ordinary differential equations. To begin with, we must
obtain the leading term in the asymptotic expansion. This was the main
purpose of the preceding results. Applying Theorem 9.2, we readily find a
solution % (¢) with the asymptotic form

ul{f) = W1 + o(1)] (9.24.6)
as t — =, where

s(f) = f ‘ N —ala(t) + =) ]} dh, (9.24.7)

1}

and
1 = (I — bpoe—)2, (9.24.8)
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11 is easy to sce, using the asymptotic lorms of ¢(¢) and &(¢), thal

s(8) = M —rlogin~ 3 8/t (9.24.9)

a=0
Btarting with (9.24.6), we show next that
w(t) = e©L1 + 0], (9.24.10)

Since the details are rather tiresome, and the results readily available,
we shall not go through the steps. It suffices to gay that the integral
equation of (9.4.1) or (9.9.9) is used to refine {9.24.10) to the form

w(t) = eO[1 + i~ + 0], (9.24.11)

and =0 on.

Miscellaneous Exercises and Research Problems

1. Study the asymptotic behavior of the solutions of
mi(t) + 2kE(t) + cx(t) = p + gzt — 1).

(L. Collatz, “Uber Stabilitit von Regelungen mit Nachlaufzeit,” Z. Angew. Math.
Mech., Vols. 25-27, 1947, pp. 60-63.)

2. The Fermi-Dirae functions occur in the quantum mechanical Fermi-
Dirac statisiics, and are defined for Re(k) > —1 by

Falt) fw x* dx
R A
Show that the two-sided Laplace transform of Fi(£) is
rE+ 1 =«

ghtt sin s

Deduce that

rk 4+ 1) f et ds
2%
and from this show that

Fu(t) = 0<e <],

. - ?
ey 871 gin 7S

d
— ity = EF . (t).
7 (6 w1()
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3. Establish the asymptotic expansion

zk-i-l Z Cmﬂ_'
Full) ~ +EHT(k + 1 —
A~ E+D e oy
where
wa =,
- =1 4 z Cra82™.
SN ms =]

(J. L. B. Cooper, “The Fermi-Dirac Functions,” Phil. Mag., Tth Ser.,, Yol, 30, 1940,
pp. 187-189.)

. Determine the asymptolic behavior of the solulions of
w{t) = [ao + (a/t) Ju(®) + [be + (b/6) Ju(t — )
by obtaining a representation for the solution in the form of a contour

integral,

(B. G, Yates, ‘“The Linear iilference-differential Bquation with Linear Coefficicnts,
Trans. Amer. Math, Soc., Vol. 80, 1953, pp. 281-208.)

. Use the Mellin transform to find the asymptotic behavior as f — =
of solutions of

we A P A L) ( 50 | omsgm, 1)

(H. O. A, Wold and P. Whittle, “A Model Explaining the Pareto Distribution of
Wenlth,” Econometrica, Vol. 25, 1957, pp. A91-585.)

. Ddiscuss the solutions of

dp(z, t) aplzx, 1) @

L +mp(z, 1) + a4 ——=- = f glrpplz — 1) day,
at dx —m

where g(x) is given.

(J. D. Sargan, "“The Distribution of Wealth,” Ecorometrica, Vol. 25, 1057, pp.
568-500.)

. Let P{u) denote the number of solutions of
ho'i'hl?"f‘hz?'g"i‘ e S w

in nonnegative integers ho, Ay, ks, ---, where v is an arbitrary fixed
number greater than 1. Show that

P{u)y — Plu — 1) = Plu/r}, —w < u <o,
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Show that if r and % are integers, P(k} = p(rh), where p(h) is the
number of solutions of
b= ho 4 har 4 har? o eeo,
Show that as k — =
p(rh) = 20 f: o102 a1 i?f
n=0 '?'C-I

(See K. Mahler, “On a Spectal Functional Equation,” J. London Malh. Sec., Vol, 15,
1940, pp. 115-123.

N. G. de Bruijn, “On Mahler's Partition Problem,” Fadag Math., Vol. 10, 1948, pp.
210220}

8. For any function ¢(f} which is of integrable squarc on any finite
interval, define an order indicalor w(¢$) by the condition that ¢()e—**
is L2(ty, + ¢« ) (that is, of integrable square on the infinite interval) for
all ¢ > w{¢) but not for anv o < «(¢). H (L) et is L2(f, 4 =) forall
a, take w{¢) = — o ;if @p(t)e>tisnot L2{t, + =) for any a, take w{g) =
+ o, Let

walp) = max w(gt).

=01, ..., n
Discuss w, {u) il % is a solution of the equation
2 20 Aumu(E + b)) = f(b),
=0 j=0 '
wherem > L,n 2> 1,0 = by < b < -+ < by, and where

hm .4.,'3'(5) = {ij.
oo

(E. M. Wright, “The Lincar Difference-differential Equation with Asympiotically
Congtant Coefficients,” dmer. J. Math., Vol. 70, 1948, pp. 221-238,)

9. Consider the equation
Fiz) = e=2lF{x — 1), £ > B,
Show that the functions
F.lx) = f exp (auz — 3o 4+ 2xni2) ———
. : T(z + 1)
are solutions for n = 0, =£1, £2, ---, where

v =x+ a'l, ¢ce=4%a+b— loga.
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Show that
2rny
Folz) = Fg(:e: + -—)
a
and that
1
Folz) = —z‘(Zfra)—m[ exp [— (aw — w)? + e‘”J dha,

v 2(1

where V' consists of the segments (—wi + w, —wi), (—wi, w),
(i, 6 + o).

(N. G. de Bruijn, “The Difference-difierential Equation F'(z) = e=*8F(z — 1),
I, IL” Nederl. Aked. Wetensch. Proc, Ser. A., Vol 56, 1953, pp. 449-464.)

Let G(x) satisfy the adjoint equation
~@(2) — e=oH@(x + 1) = 0, r< C(B<().

Show that the functions
1 Iyim
Gu(z) = — exp (—auz + 3a2* — 2mniz) T(z) dz
211'3 1—im
are solutions. Bhow that
c—2rnd l
Galz) = (21ra}—”2f oxp [—2— (auw — w)? — ew] dw.
a,

—a—2rng

(N. G. de Bruijn, “The Difference-differential Equation ¥'{z) = ex=*PF(z - 1),
I, 1L,” op. it}

Bhow that
Fo(e) = e#@[1 + O], |z2|—> =,
where
H(z) = ja(z —alloga)?+ (1 + b+ da — log a)z
+ (—1+atlogz — o) logz — }loga + Lctat
— a2 log?x + a¥a + b — log a)x1 log 7,

and that

1 .
Fol2)Golz) = a—lx—’[l L o(;)J Lzl o,

ax
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Deduce asymptotic formulag for F,(2) and G.(x).
(N. (3. de Bruijn, “The Difference-differential Equation ¥/(z) = e=*H¥F(z — 1),
I 11" op. cit.)

12, Let z
(F, G} = F(z)G(z) +[ PP (G - 1) di.

z—l1

Show that {F, G} is independent of z if F and & arc solutions of the
difference-differeniial eqguations given above. Show also that
{F,, Go) = 6un, and that for any solution F(z)},

Fiz) = 3 Fu(x)(F, G}, x> B+ 1.

Define
o 2r*n®  2anic
vy = 3 (F, G oxp (—25 4 5 i),
= a

Then ¢{{) has period one, and as 5 — - o with % real,
F(z) = Folx)[y{x — atlogz + a v log x) + O{x )]

(N. (+. de Bruijn, “The Difference-differential Equalion F/(x) = e ¥F(x — 1),
I, IL,"” op. cil.)

13. Let &(z, ¥) denote the number of positive integers less than or equal
to z which have no prime factors less than y. Let

() +oult) = ult — 1), > 2,
w(ty = t7, 1 £¢8<€2

Then
lim ®(y, iyt logy = (), > L

Yo

{A. Buchstab, “Asymptotic Fstimates of a General Number-theoretic Function,”
Mat. Sb., N.S. 2, Vol. 44, 1937, pp. 1239-1246.)

14. If «(¢) is defined as in the preceding exercise,

Lim u{t) = e,
[ ad==l

where + is Fluler’s constant.

{N. G. de Bruijn, “On the Kumber of Uncancelled Elements in the Sieve of Eratos-
thenes,”” Nederl. Akad. Welensch. Proe. Ser. 4, Vol. 53, 1930, pp. 247-256.)
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15. Let ¥(z, ) denote the number of positive integers less than or equal

16.

17.

to z which have no prime factors greater than y. Iet »(f) denote the
solution, eontinuous for ¢ > 0, of

W) + olt — 1)

fl

0, t>1,

v(f) =1, 0<t<1.
Then

lim ¥(yt, )y = v(8).
e
Also
p{t) = exp[—tlog¢{ — tloglogt + O(8)], &> 3.

{N. G. de Bruijn, “On the Number of Positive Integers < z and Free of Prime
TFactors > y,” Nedert, Akad. Wetensch. Proe. Ser. A, Yol. 54, 1951, pp. 50-60.)

Any solution of
1
tw(t) = f wit — ) dy, 1> 1,
it

has the form

w(d} = [C + O (),

where »{#) is defined in the preceding problem,

{N. (i, de Bruijn, “On $ome Volterra Integral Kgunations of Which All Solutions
Are Convergent,” Nederl. Akad. Welensch. Proc. Ser. 4, Vol 53, 1950, pp.
957-265.)

Consider an equation of the form
2 X a(Du 4+ by = 0.
= -t
Assume that, for all t > ¢,
(3.) afm(t) = 1)

(b) | amalt) | < e, all m. n,

{e) u(f) is a solution,
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18,

19.

20.

21.

22,

9. ASYMPTrOTIC BEIAVIOR

{d) f | (1) | ¥ df converges for every real k.

Show that u({) either tends to a nonzero limit as ¢ — 4+, or else
w™ (1) = Oforalmostalit > Hand w@ (@) = 0forj=0,1, 4+, n— 1
and all { > 4,

(E. M. Wright, “Linear Dilference-differential HEquations,” Pree. Cambridye
FPhilos. Soc., Vol. 44, 1948, pp. 179-185.)

Suppose, in the previous problem, that all a¢(f) arc constanis, Under
what conditious can a solution satisfy (d)?

Show that the function

alf) = 1 + ft exp (—s?) ds

0

satisfes an equation of form
wit+ 1) — ' {8) + a@u() =0,

in which a({} is bounded as { —» 4 e, and that
f | (6) | e dt

converges for every rcal k.

Modify the definition of «(¢) in the previous problem so that %(f)
still approaches a nonzere limit, but has the additional property that
#"(t) does not approach zero as { — + .

Let dz/df = Az 4 p{{) be a vector-matrix differentinl cquation
where p({) is a veetor whose components arc polynomials, If A is
nonsingular show that every solution whose compoenents are poly-
nomials has the form

& = = Ap(l) — AP(E) — oo,
What happens if 4 is gingular?
Establish corresponding results for the equation

(1) = Az{f — 1) + p{t).
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CHAPTER TEN

Stability of Solutions of Linear
Differential-Difference Equations

10.1. Intreduction

Iu this chapter we shall study the relation between the solutions of a
lincar differential-diffcrence equation, and those of 4 perfurbed equation,
Specifically, we wish to examine the problem of relating the asymptotic
hehavior of the solutions of the equation

3 LA + Cal) T+ he) + 3 [Bal) + Du®) Telt + ) = 0

(10.1.1)
to the asymptotic behavior of the solutions of

S AT+ R + 3 BaBet + h) =0 (10.12)
7o) =g

under various assumptions concerning the coefficient matrices Co(f) and
D.(t). The most important case is that where A.(t} and B,{#) are con-
stant malrices.

In order for the reader to anticipate some of the results we shall derive,
we shall begin with & bricf sketch of some of the elassical results known for
ordinary differential equations. As will be seen, the principal technique of
the theory of linear differential equations, essentially variation of puaram-
eters, must be replaced by the more sophisticated coneept of the adjoing
equation,

10.2. Stability Theory for Ordinary Differential Equations

Suppose that we wish to obtain some results connecting the asymptotic
behavior of the solutions of

defdt = At)z, (10.2.1)
300
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and of the perturbed equation
dyfdi = [A(E) + B() Iy (10.2.2)

The first step is to write the solution of the linear inhomogeneous equa-
tion
dy/dt = Ay +w, y(0) =g {10.2.3)

in terms of the selutions of the homogeneous equation. let X (¢} he the
solution of the matrix equation

dX/di = A(BX, X0 = 1. (10.2.4)

We now use the technique of variation of parameters. Set y = X (t)z,
where z remains to be determined, Substituting in (10.2.3)}, we obtain the
cquation

X'tz + X@2 = AOX Dz + w, (10.2.5)

from which we immediately derive

2= X (), z2=c¢—+ fz Xs}~lw(s) ds,
(10.2.6)
y = X(De + f X)X (8)w(s) ds.

In Chapter 2 we have indicated vurious ways in which it may be estab-
lished that the matrix X' (i) is nonsingular for ¢ > 0.
Turning to (10.2,2), let us write it in the form

dy/dt = Aty + B(yy,  y(0) =g, {(10.2.7)
and regard the term B(f)y as a forcing term. We can then express y as the
golution of the linear integral equation,

y = X{e + f XWX (5)B()y(s) ds. (10.2.8)
[i]

Using this representation, we readily cstablish the following basic result
concerning the stability of solutions of linear dilferential equations

Theorem 10.1. If
{a) all solutions of dz/di = A(t)x are bounded as{ — =,

(B) XX € e < o0,
{10.2.9)

© [T1B® |lds <=,
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then all solutions of

dy/di = [A{t} + B{f) Jy (10.2.10}
are bounded as t — o,
The mest important case of this theorem is the result of Dini-Hukuhara:

Theorem 10.2. 7f A is ¢ conslani mairiz and all solutions of dx/dl = Az
are bounded as t — w0, then all solutions of

dy/di = [A 4+ B(Y) Iy {10.2.11)
are bounded, provided that

fm (| B || dt < . (10.2.12)

The proof of Theorem 10.1 is obtained in the following fashion. Using
(10.2.8), we see that

uyusuxwaw%fnxwxwrmnﬂmnnman@

(10.2.13)
<ato [ B Iy lds
Applying the fundamental inequality (see §2.5), we see that
Nyl < e exp [f.-., fo Il Bis) || ds], (10.2.14)

which establishes the desired result.
Theorem 10.2 is derived from the fact that if A is constant, X (£) X (s)—1 =
X — s).

10.3. The Adjoint Equation

We shall attempt to find a representation, similar to that in (10.2.8),
for the unigue solution # of the nonhomogeneous system

de/dt = A(D)z +w(t), 2(0) =0, ¢>0, (10.3.1)

without using the inverse matrix explicitly. If we multiply (10.3.1) by a
matrix ¥, as yet unspecified, and integrate, we obtain the relation

f Y(s)7(s) ds = f Y(s)A()e(s) ds + fc Y{s)w(s) ds,
1] ] i3

£> 0, (10.3.2)
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After an integration by parts, this takes the form
H 4
Yt)e(t) = f [Y'(8) + Y(s)As) Te(s) de +f Y (s)w(s) ds.
1] (1]

(10.3.3)

In order to simplify this equation, we now ask that ¥ () satisfy the equa-
tion

Yis) + V(s)A(s) =0, 0<s <. (10.3.4)
The equation for z(f) in (10.3.3) can now readily be solved for z(#). In

order to avoid the use of the inverse matrix Y (£)-1, let us impose the fur-
ther condition

Y{t) =1 (10.3.5)

Provided that A() is continuous, (10.3.4) possesses a unique sohution
Y (s) satisfving (10.3.5) and defined for { > & > 0. With this choice of Y,
we obtain from {10.3.3),

L
20 = [ Yisyuls) ds (10.3.6)
0
which is the degired relation.
The system in (10.3.4) and the original system
Yy = A(©yY() (10.3.7)

are said to be adjoint to onc anovther, It is important to note that the
function ¥ defined by (10.3.4) and (10.3.5) actually depends on fwe
variables, & and £ In fact, it will be eonvenient for us to indicate this
explicitly by adopting the notation ¥ (s, £) for ¥. The relations ( 10.3.4),
(10.3.5), and (10.3.6) then take the forms

aY (s, 1)/9s = ~T (s 1} A(s), 0 <5< {10.3.8)
Y, =1 {10.3.0)
and
3
o) = f Y(s, Duw(s) ds, ¢>0. (10.3.10)
0
It is casy to verify that if X (2} is the unique solution of the cquations in
(10.2.4}), then the function
Vis, &) = X(0)X(s) {10.3.11)
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is the unique solution of the equations in (10.3.8) and (10.3.9). Therefore,
{10.3.10) and (10.2.8) are equivalent results.

10.4. The Scalar Linear Differential-Difference Equation

In order to illustrate the application of the foregoing procedure to
differential-difference equations, let us first examine the simple class of
scalar equations of the form

W+ B FbOult) +e(u R =wle), t>6, (1041

where b{t}, c(f), and w(¢) are given real scalar functions and & is given
positive number.

We begin by recalling that an initial condition appropriate to the func-
tional equation in (10.4.1) has the form

u(l) = o(t), L<t<t+h (10.4.2)

where ¢{{) is a prescribed real function, Let us suppose that b(g}, e(t),
and w(f) are continuous for ¢ > {4 and that #{t) is continuous for ¢ <
¢ < & + k. Then it is easy to sec by the method used in Chapter 3 that
there ¥s a unique continuous solution of the equations in (104.1) and (10.4.2).
Note that %' (¢) is necessarily also continuous for ¢ > & 4 h.

We shall now find a representation, analogous to that in {1.3.10),
for the particular solution of the cquation in (10.4.1) for which $(f) is
identically zero. Imitating the procedure of §10.3, we multiply the equa-
tion in (10.4.1} by a function a(s, {) (we shall indicate the dependence of
v on ¢ as well as on s from the start this time), as yet unspecified, and
integrate with respect to s from # to ¢. Provided that (s, t) is differentiable
with respeet to s for 4 < s < ¢, we can then integrate by parts as above,
deriving in this way the relation

v(t, Dul(t + k) — f‘cj{-'(s, £

to 5

u(s + A) ds
+ f‘v(s, b(s)u(s) ds
-+ [' v(s, De(Ruls + k) ds

= ft v(s, w(s) ds {10.4.3)



10.4 SCALAK DIFFERENTIAT-DIFFERENCE EQUATION 305
Bince u(s) = 0for 4 < 5 < & + &, we have

ft (s, b(s)uls) ds = fﬂ v(s -+ A, Db(s + hluls + h) ds,

t Hil
£ (104.4)
‘Therefore,

p(t, Gult + h)

=k 6

+ f [— 5;1)(8, 8 Fe(s-+ A b(s 4+ k) + (s, t)r:(s)]u(s-—l—h) ds
z 3 - .

+ f [— Y vis, &) + v(s, t)c(s)J w{s + h) ds

- f‘y(s, Dw(s)ds, &> L. (10.4.5)

i

We now agk that » satisfy the adjoint eguation

—du(s, 1) /82 +v{s + h, Db(s + k) + v{s, )e(s) = 0,
{2 h+h h<s<i—h (1046)

as well as the relations®
—av(s, 1) /as + vis, the(s) = 0, b—h <8< (1047
plg, ) =1 at s =4, {10.4.8)

With thiz choice of », we al ovce ohtain

I
w(l + h) =f o(s, Dwls) ds, &> L. (10.4.9)
£
Equations (10.4.7) and (10.4.8} can be combined into the single equa-
tion

#
v(s, £) = exp [— f e(s1) dsl], I—h <sg <t (104.10)
If 6{s) and c(s} are continuous for s > #, we ean show hy the continuation
method {see Chapter 3) that there is a unique function »(s, ¢} defined and
continuous for £ > &, fp < s < {, which satisfles equations {10.4.6) and
(10,4.10). Moreover, since dn(s, ¢)/0s ig continuous for s < £ — A and
t —h < s <1, and v(s, ¢) Is continuous for s < ¢, the manipulations used
above are justified, and the conclugion in (10.4.9} is valid.

*IE & <<t <ty 4+ h, the equation in (10.4.6) is (o be deleted, and the rclation in
(10.4.7) is to hold for &y < & < &,
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In the next section, we shall show how to extend the method given above
to a general system of linear differential-difference equations with retarded
argument. The results will be cmbodied there in a formal theorem, In
§10.11-§10.15 we shall extend the method to equations of neutral type.

10.5. The Matrix Equation with Retarded Argument

The most general linear, nonhomogeneous system of differential-differ-
ence equations can be put in the form

3 AL+ R + 3 Ba(a(t + h)

=0 =0

w(t),  (10.5.1)

where A.,(¢) and B.(t) are given N by N mairices (n = 0, 1, +++, m} and
w(t) is a given column veetor of N dimensions. We shall suppose that

0=l <t < v < b (10.5.2)

If A,.(¢) ismonsingular for ¢ > &, whereas Aq(1), -+, An_s(f) ave identically
zero, the system in (10.5.1) takes the simpler form

P+ ) + 3 B2t 4+ h) = w(D),  t> 4 (1053)

an equation with retarded argument. We shall now show that the method
of §101.4 can be applicd without essential change to the equation in (10.5.3).

We first obgerve that if 2,(2) (n = 0,1, «++, m) and w(t) are continuous
for £ > 1o, and if ¢{£) is continuous for &y < ¢ < &y 4 A, then there is a
unigque continuous solulion of Equation (10.5.3) satisfying the initial
condition

2(f) =¢(), H<tZLtAt b (10.5.4)

The proof of this statement is obtained in the usual way (see Chapter 6),
by continuing the solution from interval to interval. Note that z’'(f) is
continuous for £ > & + A

The adjoint equation and kernel ¥ (s, £) arc in this case defined as
follows:

Definition. Lot Y (s, t) denole the unique matriz function, defined for
£ > o, b < 8 £t A+ R, which is continuous for iy < s < f, which solisfies
the inttial condition

Yis, 1) =0, <8 S+ b,
(10.5.5)
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and the adjoint equation
a it
oy Y(,8) + 2 Y(5 + bn — by ) Ba(s + bm — ha) =0,
3 =l

i > &y h <8 <L {10.5.6)

Atpoints sin ity < s < toftheforms = ¢ — b, + A (R =0, ---, m),
this equation is to hold in the sense of one-sided derivaiives. By & con-
tinuation argument, we can show that the stated conditions actually
define a unique Y (s, £). It should be noted that we have defined Y (s, ¢}
not only for fp < ¢ < ¢, but also for t < s < t + Am, in contrast to our
procedure for the scalar equation in (10.4.1). This is actually not nee-
essary, bubt scrves to simplify the mechanics of the argument. For ex-
ample, it makes it unnecessary to state explicitly the initial values of
¥is t) fort — hn < s < ¢, which are more complicated than the relations
in (10.4.7) or (10.4.10) for the scalar equaiion. We also observe thay
8Y (s, 1) /08 Is continuous for & < 8 < ¢ — Ay and plecewise continuous
fort — hm < 5 < L

The basic iheorem ou the representation of solutions of Mguation
{10.5.3) is as follows.

Theorem 1G.3. Suppose that w(i) 18 o continuous vector funciion and
B, (1) o continuous matriz function (n =0, 1, v+, m) for & > . Lol Y(s, §)
denole the kernel matriz defined above. Then the unique continuous solution of
Equation (10,5.3) for t >y which satisfies the inilial condilion

2) =0,  fo <t <ty A b,

is given by the formula
t
2t 4 he) = f Yis, Dw(s) ds, ¢t (10.5.7)
[ 17)

Progf. We multiply {10.5.3) by ¥ (s, £} and integrate. Since 9Y/3s
is piecewise continuous and Y is continuous, integration by parts is allow-
able and the result is

ta¥y
Y (L, D2t + hm) —f — (s els + ha) ds

i

+ Z f Vs, ) B.(8)2(s + hg) ds

n=0 * iy

- f Vs, Duls) ds. (10.5.8)

tg
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Since z(s) = O0for#y < s < 4y + ha, the following relation holds:

f Y (s, £) Bualsye(s -+ hu) ds

_ f Y (s, ) Ba(s)2(s + ha) ds
to b Ak

t—hpy kg
= f Y(s + b — ha, )Bu(s + b — hodz(s + hu) ds,

L]
n=01,-.

Irom the definition in (10.5.5), it follows that

o {10.5.9)

[‘ Y (s, OBa(s)2(s + k) ds

Y
I
- f Y (s + b — oy )Buls + hn — h)2(s + ) ds,
i
n=20,1,2 e ,m (10,510
Therefore,
‘T a¥(s, 1)
! b -
2+ k) + '/;D [ a8
+ 20 V(s + bim — by 8)Bufs + b — hn)J 2(8 + hy) ds
n=ll

2
- f Y (s, Dw(s) ds.  (10.5.11)
[
Referring to (10.5.6), we obtain the required relation (1.5.7}.

10.6. A Stability Theorem for Equations with Retarded Argument
We shall now prove results similur to those in Theorems 10.1 and 10.2
for systems of linear differential-difference equations with retarded argu-

ment,

Theorem 10,4, Let B.({) and D,(t) be continuous for £ > & {(n =0,
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1, -, m), Then a sufficient condition for all continuous solutions of
A4 ) + 2 [Balt) + Dty et + ko) =0, >4, {(10.6.1)
=0

to be bounded as { — 4+ = 43 that

(1) all continuous solutions of the unperturbed equation

W+ b) + 3 Byl + k) = 0

w—il

be bounded as { — 4 o0, (10.6.2)

(b) f || D‘ﬂ(t) i| dh < =y = 07 IJ 2} R

(C) ” Y(‘?) t) I.| < €1,

where ¢y is o constond, for t > o, fy < & < t. Here Y (s, {) denvles the
kernel funciion defined in §10.5,

Proof. From Theorem 10.3, we know that every continuons solution of
the nonhomogencous system in (10.5.3}, with continuous w, has the form

2t + hu) =y + ba) + fg Yis, tyw(s) ds, {10.6.3}

where y{{} is a solution of the corresponding homogencous system in
(1006.2). Equation (10.6.1} has the form of (10.5.3), where

w(t) = —ij D.(8)z(t + k). (10.6.4)

e}

For a continuous solution 2 of (10.6.1), this w is continuous, and therefore
e 3
20+ h) = gl 4 hn) — Zf Y (s, )Du(8)2(s + ) ds,
n=fl ¥ g

{> fo (10.6.5)

From this integral equation, we can deduec the boundedness of z. Using
hypothescs (a) and (c), we have

wn i
2+t [ < e+ e 2 [ 1Dl 11 2s + ) || s
n=ll ¥ g

m Hh,—Rg,

Sctad [ NP+ bn = ha) | ]as + ) (15

neclt Y 30 +Rn Fom

(10.8.6}
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1% follows, using the fundamental lemma to which we referred in proving
Theorem 10.1, that

e it Byt
| 2(t + hn) || < cexp (81 > f | Du(s + hn — ka) || ds],

=l ¥ lgthp—iipy
(10.6.7)

and hence, by (b}, that z is bounded as ¢t — + . If ¢ and the bounds in
(a) and (b} are independent of &, the solutions of (10.6.1) are uniformly
(in &} bounded.

10.7. Equations with Constant Coefficients

It is important to examine the speeial case of constant coefficients in
(10.6.2). Suppose that B.() = B, (n = 0, 1, «+-, m), where B, is con-
stant. We see from the adjoint equation (10.5.6) that ¥(s, ¢} can be
continued indefinitely in the negative s direction, and henee can be ro-
garded as defined for — o < § < ¢ + A, and continuous for — & < s < !
By making the substitutions

T=48—=354fy + hn,
(10.7.1)

X(r t) =Y(s, ),

we can bring the adjoint equation into a simpler form. In fact, we see that
X (7, 1) is defined for { > #, 4 < v < + =, and that Xz, £} is continuous
foréy + b <5 < 40, Furthermore, X satisfies the initial conditions

X(T:t)=0: iDST<to+hvm,
(10.7.2}

=1, =i+ hn

.and the differential-difference equation
ax m
5, md > X(r ~ b + ke B, = 0,
T =l

t > 1, by + b < 7 < &, (10.7.3)

At points rin ({4 + hu, f + 2h.,) of the form r = ¢ 4 2k, — Fin, this
equation is to hold in the sense of onc-sided derivatives. From {10.7.2)
and (10.7.3), moreover, it is clear that X(r, ¢) is actually independent
of {; we shall henceforth write X(r) rather than X(r, ). It is now clear
that condition (c) of Theorem 10.4 can be replaced by the requirement
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that [| X () || € aifor iy + by < 7 £ 1 4 hy or simply for + > . Hence
we have proved:

Theorem 10.5, Let D, (!} be continuous for £t > & (n =0, 1, ---, m),
Then ¢ sufficient condition in order thal all conlinuous solutions of

P ) & B A D) Rt + h) =0 (107.4)

be bounded as § — - o s that

{a) all conftnuous solutions of
Vit+h + X Byl ) =0 (10.7.5
be bounded as t — 4~ ;
(b) fm I D) | <o, =01, m;and
&
{c) the unigque solution of

X =0, b <8< o F by,
(10.7.6)
, t =1o + hum,

and
X'+ bn) + 22 X+ ha)B. =0,
n=0
fh << £, (10.7.7)
which is continuous for £ 2 &y + hn, be bounded ast — + <.

In {10.7.6) and (10.7.7), we have written { in place of +. If the bounds in
{a), (b}, and (e) are independent of #, the solutions of (10,7.4) arc uni-
formly (in %) bounded.

10.8, A Lemma

Theorem 10.5 can be replaced by a simpler theorem in which hypothesis
(e) is suppressed, as was truc for systems of ordinary differential equu-
tions. Let us first establish the following lemma.
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Lemma 10.1. Lot X (¢) be the undque continuous solution of the equations in
(10.7.6) end (10.7.7). Then X (1) is also the unigue confrnuous solution of
the equation

X't ) + 2 B.X(+R) =0 § < t, (10.8.1)
=0

and the indtial condition in (10.7.6).

Proof. Application of the Laplace transform to (10.8.1) and {10.7.6)
vields
f X(t)eot dt = H1(s)en, (10.8.2)
il
Application of the Laplace transform to (10.7.7) and (10.7.6) yields the

same result. By the uniquencss of the Laplace inverse, it follows that the
two pairs of equations define the same funciion X (f}.

10.2. A Stability Theorem for Equations with Constant Coefficients
Let us now prove the following theorem.

Theorem 10.6. Let 1,.(t) be continuous for t > t, (n = 0, 1, =«e,m).
Thon a sufficient condition in order that all continuous solutions of

A h) + 32 [Bat DD+ h) =0, 1> t, (10.9.1)

n=l
be bounded ax | — = 45 that

(a} all solutions of
Y+ ) + éBﬂy{t + k) =0, (10.9.2)
continuous for £ > ly + hw, be bounded as ¢ — + = ; and
® [TIDwd < .
%

Proof. We shall show that condition (c) of Theorem 10.5 follows from
condition (a) in Theorem 10.6. If X (¢) is the solution of Equations {10.7.8)
and (10.7.7}, continuous for ¢ > & + hm, and if ¢ is a constant vector, then
X {t)c is a vector solution of Equation (10.9.2), continuous for ¢ > ¢, + A,
By hypothesis (a) in Theorem 10.6, therefore, X () must be hounded as
¢ — + . If the bounds in (a) and (b) are independent of &, the solutions
of (10.9.1) are uniformly bounded.



10.11 SCALAR EQUATION: SOLUTION 313
10.10. Boundedness of Solutions of the Unperturbed System

Tt iz well known that a necessary and sufficient condition for the bound-
edness of all solutions of the unperturbed system of differential equations

dy/dl = Ay {10.10.1}
is that the roots of the associated algebraic equation
det (A —sl) =0 (10.10.2)

either have negative real parts, or have xero real parts and be “of simple
type.” Theorem 10.2 can therefore be given an alternative form in which
hypothesis (a) in Theorem 10.1 is replaced by the above assertion con-
cerning the roots of (10,10.2),

In the same way, hypothesis (a} of Theorem 10.6 can be replaced by an
assertion conecerning the roots of the transcendental equation

det (se*"m}’ + > B,,esf*n) =0 (10.10.3)
=0

Here, however, the problem is considerably more eomplicated, since the

equation in (10.10.3} has infinitely many roots. In Chapter 6, we found a

necessary and sufficient condition for the boundedness of all solutions of

the equation in (10.9.2), in terms of the roots of the above transcendental

equation. This condition is stated in Corollary 6.2.

10.11. The Scalar Equation of Neutral Type: Integral Representation for a
Solution

We shall now turn fo the mere difficult problem of analyzing equations
of neutral type, such as the gealar equation

w4 R +al@uw' () 0wl +e(@ult + h) = w(@)., (W0.111)

We shall first recall how the continuation procedure can be used in proving
the existence of solutions, An appropriate initial condition for (10.11,1)
is again of the form

u(t) = ¢(t), L<I<b+4h (10.11.2)

where ¢() is a given real function. Let us suppose that a(£), b(1), and
¢(t) are conlinuous for ¢ > f, that ¢'(¢) is continuous for &y < ¢ < # + A,
and that w(t) is continuous for £ > { except for possible jump discon-
tinuities at the points &y + #h (n =0, 1, 2, 3, «++). Then from (10.11.1},
it follows that there is just one way to define w(f) overty + 2 < ¢ < & + 24
so that u(f) is continucus at & 4 &, equal to ¢{f) for & < ¢ < & + A, and



314 10. STABILITY OF SOLUTIONS

o that (10.11.1) is satisfied for t, < ¢ < & + k. The derivative w'(t) will
be defined and continuous for & + b < t < & + 2k, but will, in gencral,
have a finite jump discontinuity at £, + #. By repeating this argument, we
can continue %(¢) from one interval of length & to another, the continua-
tion being made unique by requiring continuity of «. In contrast to the
situation for equations with retarded argument, the discontinuity in the
derivative of  at & + % can be propagated; that is, %'(¢) may have jumps
at the points & + nh (n = 1,2, 3, ---), even If w(1) is everywhere con-
tinuous, If () happens to be continuous at #, + h, then it will be con-
tinuous for all ¢ > 4 if u(?) is everywhere continuous.

Definition. Any confinuous function u (L), determined in the above way by
an wndtial function ¢ (1) with o continuous derivative, will be called a con-
fnuous solutton of (10.11.1),

Note that (10.11.1) actually need be satisfied only for ¢ > by, t # by + nh
(n = 1,23, ---). With this definition, we see that there is a unique con-
tinuous sofution of (10.11.1) and (10.11.2).

The adjoint equation and kerncl »(s, £} are defined as follows, assuming
continuous differentiahility of a(s).

Definition. Let (s, ) denote the unique function which satisfies the adjoint
equation

_ du(s, ) _ f_?_ [v(s + A, t)als + R)]
as a8

T o(s + A Hb(s +h) + (s, the(s) =0 (10.11.3)
Jorbo <s<ts#=t—nh(n=012 .-, which satisfies the initial con-
dition
vis, &) =0, t<s<t+h
(10.11.4)

=1, 8§ ={

and which further satisfies the condition that

vis, ) + vis + b Ola(s + &) {10.11.5)

be a continuous function of s for &) < s < &

If we regard (10.11.3) as an equation for ¢ < # we sec that it is of
neutral type. The continuation process can be applied to extend the
function v(s, &) from the interval { < & < { 4+ A back to the jnterval
t — h < & < t, and so forth, until finally it is defined over £ < s < ¢. The
continuation is made unique by the continuity condition (10.11.5). At
the points &, ¢ — A, ¢ — 2R, -++, v(s, ) can have finite jumps determined
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by the conditions (10.11.4) and (10.11.5), and, of course, dv(s, t}/ds will
also have jumps at these points. Elscwhere v and dv/ds will be continuous,
Onece again, it iy not essential to define v(s, ¢) for? < ¢ < ¢ + A, but it is
more convenicnt to do so.

From Equation (10.11.1} we now obtain

fI o(s, [ (s + k) + a()w(s)] ds + fu(g, Db(s)uls) ds

]

I3 [4
+ f o(s, De(s)uls + h) ds = f o(s, Dw(s) ds, (10.11.6)
& to

since each integrand is piecewise continuocus, Now, since w(s) and v (s, &) +
als + hiv(s + &, t) have derivatives with only finite jump diseontinuitics,
they are of hounded variation for & < ¢ < £ Since hoth funetions are con-
tinuous, this permits the integration by parts below. We make the as-
sumption that «({) = Oforly < t < & + A, and use the fact thato(e, i) = 0
fort < s <t + h

/

‘-; [v€s, &) + a(s + RYv(s + A, &) Ju(s + ) ds
L

)

uw(t -+ k) — ft [v{s, t) + als + Ae(s + h, 1) Ju'(s + k) ds

iy

— wlt + k) — f o(s, D[ (s + 1) + a()w ()] ds. (10.11.7)

Since, moreover,
[3 I

f u(s, )b(s)uls) ds = f o(s + b, Db(s + Wu(s + k) ds,  (10.11.8)
in ip

Equation (10.11.6) can be put in the form

w(t + ) + f‘ [— 56; Le(s, &)+ als + Rv(s + &, ) ]
+ v(s 4+ h, L)b{s + A) + v(s, t)c{s)} u(s + h) ds

:fv(s,s)-w(s) ds, 1>h  (10.119)

]
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Using (10.11.3), we finally obtain the representation

[
ult + ) =f o(s, Hw(s) ds, L> b (10.11.10)
[41]
EXERCISE
Show that if a(t) = —1, if b(t) = e(d), and if b(t) and e(r) are periodic

functions with period &, then the adjoint operator in (10.11.3) has the
same form ag the operator in (10.11.1).

10.12. The Scalar Equation of Neutral Type: Representalion for the
Derivative of a Solution

As we shall see in §10.14, we also nced a representation for w'(t + h).
In accordance with our assumptions, w(s) is continuous for # = s =<
s # b+ nh(n=1223 .-) and v(s, £) is continuous for §, < s < f
s#El—nh{n=2012 ..., Provided { — # iz not a multiple of Ak, the
sets {& + nh} and {f — nh} interlace, and

u(l + h) = IHN v(s, Hwls) ds + f‘ﬁhv(s, tyw(s) ds
=Nk

fo

-1
—}—f v(s, wls) ds + ++-

ok

- NA ¢
+[ v{s, w(s) ds + f v(s, t)w(s) ds, (10.12.1)
t=h ot Nh
where N is a suitably chosen integer. Each integrand is now continuous,
and differentiation yields

t oy
Wt 4+ k) = wll) + f 52 {s, thw(s) ds
Ly

- i w(t — nh)[w(t — nbH, 1) — ot — nh—, £,

P>k, LA ft kR, k=12 -, (10.122)

Existence and continuity of dv(s, t)/at, needed in the preceding demon-
stration, can be established by the following device, For any v = &, let
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w{{, r) denote the unique function which satisfies the equation
, ou du
(a) Tuft, r) = E.‘: (¢t 4+ hry +all) B_L {4, 7) + bltiult, v
+ eftyuli -k, r) =0, i >, i #r + nh,
no=012 -, (10.12.3)
and the conditions

(b} u(t, ry =0, r <<y R
= 1, t=r-4h

and

{e) ult + h, r) + a(®)ulf, r) iz a continuous function of ¢ for ¢ > »,
The continuation process shows that the w (¢ r) exists, is unique, and that
u(f, r) and du(l, r) /6t are continuous for ¢ > » excepi for possible jumps at
t=r+nh(n =123 ). Moteover, for any z > r, 2 # v + nh,
let v(¢, 2) have the meaning previously defined:

ar I
() Tt 2) = — = (5,2) — = [o(t + b, Dat + 1)
o at
+ vt + h 2)b(t + R} + v(§, 2)e(l) =0,
<t <z t = 2 — nh, =012 - (10124}
M) v{t,2) =0, z<t<z+h,
=1, b=z
and

(e} v(8, 2) + (i + A, ©)a(f + k) is a continuous function of ¢ for

The functions v(t, 2) and do (3, 2) /9t are continuousforfy < ¢ < 2, 2z — nh
(n =0,1,2, +-4).
Now consider the expression

fz [v(s, 2)Fuls, r) — uls + k, ¥)T*(s, 2) ] ds, (10.12.5)

which is seen to be zero, under the feregoing conditions. From (b} In
(10.12.3) and (b) in (10.12.4), we get

f wls + by )ols + b, 2)b(s + k) ds = f uls, )o(s, 2)b(s) ds,

s T

(10.12.6)
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and similarly

[1 u(s + k, r)[v(s + &, 2)a(s + )Y ds

+

- f “uls, )l(s, 2)als) T ds. (10.12.7)

Combining these results, we obtain

f;? {v(s, 2}[u(s + b, r) + a(s)uls, #) ]} ds = 0. (10.12.8}
s

T

From (c) in (10.12.3) and (¢) in (10.12.4) we see that the integrand is
continuous except at 8 = z, 2 — &, +++, 2 — Mk, where M is the largest
integer for which r < ¢ — Mh. Hence we get

vz 2)[u(e + ) +al@ulz )] —or, )l + k) + a(Pulr, r)]
+ 2 Mol —jh—, 2) = o(z — jh+, 2)])
c[ule —Jh + h vy + alz — jh)u(z — jh, )] = 0. (10.12.9)
Using (b) in (10.12.3) and (b) in (10.12.4}, this takes the form
vir,2) = ulz + k1) + a(e)ule r)
= 2 [oz = b, 2) — vz = jh=, )]

=1
s [u(z — g+ b 1) + alz — jh)ulz — R, )] (10.12.10)
A slight variation of this argument yields the reciproeal relation
wl(z+hr) =vir,z) +e(r +k Dalr + R
+ f:, Lo(r + gk, 2) + o(r + jh + h, 2)a{ jh + h)]
Julr + gk + ht,r) —u(r +7h+ 02—, ] (10.12.11)
From (b} and (c} in (10.12.4) we readily find that
v(z — ht,2) — (e — h—,2) = a(e),
v{z — jhd,2) — (e — jh—, 2)
= —a{z —jh + R)[v(z —jh + h+,2) —w(z —jh + h—, 2)],
=23« M (10.12.12)
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Thus
v(z —jht, 2} — (e —jh—,2) = (—1)7a{s)a(z — k) ---
saf{z — jh + ), F=12 s, M. (10.12.13)

Bince a(f) has a continuous derivative for { > &, it follows that
v(z — jh+, z2) — v(z — jhA—, 2z} has a continuous derivative, with respect
oz, forz>rzsr+nhn=2012 4 =12 --. M Morcover,
du(z, r}/dz exists und is continuousforz > r,z = r +rh (n = 0,1,2, ++.),
It is therefore clear from (10.12.10) that du(r, 2} /92 exists and is continuous
forz>r>d,27#r+nh(n=201,2 «..). Thisis just the result needed
in establishing (10.12.2).

The results of §10.11 and §10.12 are sutnmarized in the following theorem.

Theorem 10.7. Suppose that b{t) and c(t) are continuous and that a(f)
has a conlinuous derivalive for £ > iy, and suppose that w(t) is conlinuous
for t = iy except for possible jump discontinuilics at the poinds & + nh
(n = 1,2 3, ---). Let v{s, t} denote the solution of the adjoint equation
defined above, Then the unigue continuous solution u (L) of

W+ k) + a®w' () 4+ b(Oult) + cWult + ) = wit),
t > by, i # &y + nh, n=1,2 voo,

subgect o the fnitial condition w(t) = 0 for tp < & < g + h, 45 given by the
Formula

wlt + k) = f‘u(s, Hw(s) ds. (10.12.14)

]

Moreover, dv(s, 1)/9t exists and is continuous for t > s > f, t = s + nh
(n=01,2 s}, and

t dv
W+ R = w(t) +f = (& Duls) ds

- Zv wl(t — wh)[v(i — nh4+,{) —v({ — nh—, 1) ],

=1
{>t, tEf+kh, k=12 -, (10.12.15)
where N i3 the greatest inieger such that £ — Nk > f.

In the next scetion, we shall state and prove the corresponding result
for the general matrix system of equations of neutral type.
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10.13. Systems of Equations of Neutral Type

As we have already remarked, the most general linear nonhomogenecus
system of differential-differcnce squations has the form (10.5.1). 1If An{t)
is nonsingular, fort > &, the equation is said to be of retarded-neutral type.
In this case, we can multiply by A,~'(£), and therefore we may as well
censider the system

2+ he) + ”i A (D28 + ha) + Zm: Bi(f)a(t + k) = w(?),

t > b (10.13.1)
The initial condition is again of the form

2(t) = ¢(), K <t<ty+ bm, (10.13.2)

where ¢(t) is a given veetor. In order to facilitate the discussion of the
continyation method, let us define the sct S to be the set of points of the
form

bt e — b — G — -0 — By, (10.13.3)

where j, 41, e+, ¢y are integers (§ = 1, 2, 3, eedyand 0 < 4 45 +
"+ + %1 < 4. Let 8 denote the subset of S consisting of points (10.13.3)
for which 0 < & + s 4 ++0 + iy < 7 — 1. The sets § and 8 have no
finite limit points, sinee

Tl — Bh — vor — G A 2 e — (G e + 1) s
> jlhm — fn), (10.13.4)

and the latter expression tends to infinity with 7. It follows that the points
of § divide the interval {(#, + «) into a countable set of open intervals.
Let the points of S be lincarly ordered and labeled fy, &, +-+, where
by <ty <y < ovn,

Now let us suppose that each A,() and each B,(t) is continuous for
t 2 %o, that ¢'(f) is continuous for ¢ < ¢ < # -+ A, and that w(t) is con-
tinuous for ¢ > & except for possible jump discontinuities on the sct S.
Then the continuation method of Chapter 6 shows thaf there is wntgue
continuous vector 2(t) which satisfies Equation (10,13.1) for ¢ > byt £ 8,
and which satisfies Equation (10.13.2). 2/ (1) is continuous for { > bt § 8,

The adjoint sysiem for (10,13.1) is

w—1

ayY &
e (S, t) - Z—EY(S'I'hm —hn’ t)fln(s—{'hm - hu)]
ds ds

a=0

+ i Y(s 4 hn — hny ) Baf8 + b — ha) =0, (10.13.5)
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assuming that each 4, has a continuous derivative. This equation is itself
of neutral type, and associated with it are sets, similar to S and &, which
we shall call " and T'. T is defined as the set of points of the form

t+ b — jhe + 0 4 o T deihm, (10.13.6)

wherej = 1,28, «+, 0 <4+ 2+ -+ + dm < 4. T is the subset of
T for which® < 4 + 4 + -+ + 4uy < 7 — 1. It is not difficult te show
that there is & unique continuous matrix ¥ (s, £) which satisfics the equa-
tion in {10.13.5) for & < s < ¢, ¢ & 7, and which has prescribed con-
tinuously differentiable initial values for ¢t < & < t + hyn Indeed, the
coniinuation argument ean be used to prove the existence and uniqueness of
the kernel function defined as follows.

Definition. Let Y (s, t) denole the unique matriz function which satisfies
the adjoint system (10.13.5) for &y < & < t, 3 § T, which satisfies the initial
condition

Y(s,8) =0, (<8<t b
(10.18.7)
=TI

H

and which sofisfies the requirement that

m—1
V{6, 8) + 2 Y(s+ hn — bny D A0(6 + b — he)  (10.13.8)
o=l
be a continuous Junclion® of sfor tp < s < &

Moreover, the argument shows that 8Y (s, £)/8s iz continnous for
< s <t+ hms & T Y{s ¢t) itself is continuous for &y < 5 < { + A,
s ¢ I

We can now obtain the desired representation formula for the solution
of the mhomogeneous cquation just as before. From Fquation (10.13.1)
we get

f Y (s, D¢ (s 4 hu) ds+ 3 f Y (s, ) Au(s)2'(s + ha) ds

to

+ f: f Y(s, ©)Bn(a)2{s 4 hy} ds

a=0 ¥ty

= f‘ Yis, Duw(s) ds. (10.13.9}

i

* Continucus on the right at 2; and on the left at 2.
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Since z(s + An) and the function in (10.13.8) are continuous for f, < g < L,
and have derivatives with only finite jump discontinuitics, we can inte-
grate by parts in the integral

i a m—1
f Py [Y(s, 8+ V(s b — b, D An(s + A — hﬁ)] 2(s5 + h.) ds.
B A=l

in
(10.13.10)
Assuming that 2(t) = 0 for & < { < & + hm, and recalling (10.13.7), we

obtain in this way

20 + ko) — f I:Y(s, D4 3 V(s e — b £) (s 4 b — hﬂ}}

11 n=l)

-2'(8 + ha) ds. (10.13.11)

Using a translation of the variable in the terms of the summation in this
expression, and also in the seccond summation in (10.13.9), we can write
Equation (10.13.9) in the form

3 6 m—1
2 + hu) +f [~£[Y(s,t) + X V(s A b — hay )
=

i

*An(8 + hm — thJ

+ i Y($ + b — by ) Buis + b — h,,)} 2(s + hw) ds

L]

i
- f Y(s, Hw(s) ds, ¢ > f. (10.13.12)
t
Using (10.13.5}, we [inally obtain the formula
¢
2(t + hm) =f Y(s, Dw(s) ds, ¢>t.  (10.13.13)
41]

We can also obtain a representation formula for 2'(f + k). We know
that w(s) is continuous for 4 < s < £, s ¢ S, and that ¥ (s, ¢) is continuous
for fs < ¢ < ¢, 5 € T, Suppose that £ ¢ 8, so that the points of 77 are
never points of 8, The set of points § U 77 then divides the interval (4, )
into a finite number of subintervals within each of which the integrand in
{10.13.13) is continuous, Write the integral in (10.13.13) as the sum
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of integrals over these subintervals. Each of the points of 7' is dependent,
on i, and appears as the upper limit of one integral and the lower limit of
another {except ¢ itself, which appears only as an upper limit), The points
of 8, which appear as limits on the integrals, are not dependent on &
Therefors differentiation of {10.13,13) yields

t g
2+ k) = w(t) +f = ¥ (5, Du(s) ds

— 2 LY+, 6 — Y(s—, O Jw(s),

g0 (1)

E> &, 148 (1013.14)

where 77 — (¢} denotes the set 77 with the point ¢ removed. Existence and
continuily of 4¥ (s, 1)/9¢ can be proved by an argument similar to that
used in the sealar case. We have thus proved the following:

Theorem 10.8. Suppose that cach B,(i) is conbinuous and each A.(f)
has a continuous derivative for £ 2> {y, and thal w(l) is continuous for t > &
except for possible jump disconiinuilies on the sel S consisting of all poinis

lo + jhm — tihy — o+ — tutftmy,
j = 17 21 3) Tty 0 < i + -+ Tt S j' (10-13.15)

Lel Y (s, t) denote the kernel motriz defined above. Then the unigue conlinuous
vector function z(1), which satisfies (10.13.1) for ¢ > &, L § 8, and the tnitiol
condition 2(1) = 0 for fy <t < fy 4 Rm, 75 given by the formula

2(t + ko) =f Vs, Quw(s) ds, >t  (10.13.16)

M oreover,

‘g
20+ b = w(D) +f = ¥(s, Ouis) ds

ty

- X ¥+, 0 — Yis— ),

5 ¢ Tl
£> 0, tE 8, (10.13.17)
where T denotes the set of points
4 b — Jhm F dhy + oo+ o tAm,
=123 04+ - +ina<ji—1  (10.13.18)
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10.14. Stebility Theorems for Equations of Neutral Type

We shall now eslublish stability theorems, analogous te Theorcms 10.4,
16.5, and 10.6, for equations of neutral type. In order to keep to a minimum
the lengthy calculations required, we shall do this in detail only for the
sealar equation in (10.11.1), and merely state the principal results for the
general system in (10.18.1), Let us first introduce the following definition.

Definition, 4 conlinuous solution of {10.11.1} 4s said to be bounded as
L= o, provided there is a constant ¢, such that

() [+ [6'(8) | e, t>t; &5t + nh; ne=1,2-

We shall now prove the following:

Thearem 10.9. Let a(t), a1 (2), b(t), b:i(2), ¢(t), and ei(t) be continuous
Jor & = to, and let a(t) have a continuous derivative Jor t = ty. Then a sufficient
condition in order thal all continuous solutions* af

w'lt -+ k) + [a(t) + a() ] (@) + [B(8) + ba(t) Tu(t)
+ e +a®Iuit+ k) =0 (1014.1)
be bounded as i — + o s that the following four requirements be mef:
{a) all continuous solutions of
W+ R a(t)’ () + b@ulE) + eDult +h) =0
are bounded as { — + w0 ;
(b) a:(t}, (1), ea{t) — O a5t — {10.14.2)

(c)fw[al{t)fdé, fm'lbl(tjldd, fm|cl(z)|dt<oo;and

() [o(s,8) | < e 1(—}; (8, 8) | < e,

JFort >, g < s <8t — & % nh (n =0, 1,2, ««-3. Herevis, ) 4s
the kernel function for Eguation (10.14.2), as defined in §10.11,
Proof. From Equation ( 10.11.1¢), we know that every continuous soln-

tion of the nouhomogencous equation in (10.11.1), with (¢} continuous
except for jumps at &y 4- nh (n = 1,2, 3, -+ +), has the form

w4 Ry = vt + ) + fu(s, Duw(s) ds,  (10.14.3)

iy

* Ag defined in §10.11.
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where #(!) is a confinuous solution of the corresponding homogeneous
equation in (10.14.2). Equation (10.14.1) has the form of (10.11.1) if we
write

w(l} = —m{u'{f) — hlHu(d) — altyut + h). (10.14.4)
For a continuous solution u of {10.14.1), we know from §10.11 that «'(2) is
continuous except at { = f, -+ nh (n = 1, 2, 3, «--}; hence w{f) is con-
Linious except at these points. Consequently a eontinuous solution w of
(10.14.1} must satisfy the integral equation

w{i + &) =r(t +4)
- f e Oas)u' (s) + bu(s)uls) + cl(s)uls + ) Jds.  (10.14.5)

Furthermore, lrom Equation {10.12.2), we have

Wt +h) = —a(uw'(t) —aDull) ~a@ult+8) +70E+R)

- f éa_é (s, [ a(s)u'(s) b blsjuls) + alshuls + A) Jds

N
+ 3 Laalt — nh)u'(t — nh) + byt — nh)ult — nh)

n=]
+ et — nh)u(t — nh 4+ )] [v{t — nh+,t) — o(t — nh—, 1)},
t > 1y, {5ty + kh, E=1,2 -, (10.14.8)

where & is the greatest infeger such that { — N& > f.
By hypothesis (d} in Theorem 10.9,

[ult +h) | < |r(E+R)]

+ f:zf |ar(s)u'(s) + tlshuls) + alshuls + k) | ds,

w4+ By | < et h)|
+ o)’ () + B(Qu(t) + e(t)ult + h) | (10.14.7}

+ czf lar(s)u'{(s) + bi(s)uls) + erfs)uls + h) [ ds

£

.
2 3 [ aylt — nh)u'(t — ak) + byt — nh)u(t — nk)

n—=1

+ o(t — nh)u(t — nh + k) |,
1>t EEldkh; k=12 -
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By hypothesis, there exists a funetion g(¢), which decreases monotonicall,
to gero as ! — - o, which satisfies the condition

g(t) 2 max (jax(®) [, [ B8} | Tl — R} 1, () [} (10.14.8)

for all § > &, and for which [7, g(s) ds < =. Then, taking into account the
boundedness of r and v (hypothesis (a) in Theorem 10.9), we have

lutt + B [ S o +a [ o6 u) | +iwi ) ds

t+h
+ sz g{(s) | u(s) | ds, t >t

L1

'@+ 8 <a+g@(u@ ]|+ @®D +gl)ult+h)]

+ {:2f () (| uls) | + | w'(s) |) ds (10.14.9)

t+h
+ czf g(s) lu(s) | ds

£

+ de i glt — mh)[1u'(t — nh) | + [u(t — k) |],

=0

_ t>t; tEHYER E=1,2 .-
Let
Mw@ tl = |w ()| +[u] {10.14.10)

and take {y sufficiently large.* Then the expressions given above yield

28]
Ju@+B) | £ o+t o g{s) || u(s) {| ds

41}

b S gt — nh) [t — nh) [l (1014.11)

Let
wi(f) = max || u(s) || (10.14.12)

ipzast

* It i permizsible to supposze {y as Targe as required. For, given lo, we can regard « as
determined from (10.14.1) by its values over any interval (£ + ph, {0 -+ ph + &) where
p is any positive infeger.
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Then 4, (¢} is monotone increasing. It follows that

N N
Dot — nh) [|ult —nk) || < X g(t — nk)w(t — nh)
n=t ne-b {10.14.13)

N a1}
Z[ glr — R)w(r) dr.

1
h n={ * t—ni

Hence
ELR
Tu(t + Ay || < o5+ ¢ g{s)ui(s) de
i
€3 Ltk
+ 7 glr — Bw(r) dr. (10,14.14)
LI
Thus

t+h
wlt + k) < oo+ c4f g(s — R)us(s) ds,  (10.14.15)

1]

which viclds

trk
w(t + h) < csexp (&;[ g(s — R) ds]. (10.14.16)

b

Thus w1 {#) is bounded, and the preof of Theorem 10.9 is complele,

10.15. Stability Theorems for Equations of Neutral Type with Constany
Coeflicients

We shall conclude this chapter with several theorems concerning sia-
bility of equations of neutral type with constant coeflicients.

Theorem 10.10. Let o, b, and ¢ be constants, let a(t), b{t), and c{) be
confinuous Jor t > f, and let a(t) have a confinuous derivative for ¢t > 1,
Then a sufficient condition in order thai all continuous solutions of

W+ k) +[a+ e ') + [+ () Tult)
+le+c@u(t+ - =0 {10.15.1}
be bounded as § — -+ oo 48 that the following three requirements be met:
(a) afl solulions of
w4 R+ oan' () + i) Feult +h =0, (10.15.2)

for which w(t + k) + au(l) 7s continucus, are bounded as t — 4 = ;
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(b) a(t), b(), and c(¥) approach zero as i — -+ o} and

@ [Tlewia,  [Trewia, [ e @<,

Proof. We see from the adjoint equation in (10.11.3) that v(s, t) can be
continued indefinitely in the negative s direction, and hence can be regarded
as defined for — e < ¢ < £ Make the substitutions

r=1t—s-+tH+h glr, t) = v(s, ). {10.15.3)
We see that q{r, £) is defined for ¢ > i, &y < v < + =, and satishes

3 d
a— g{r, &) +a Pe glr — h, ¢} + bgle — b t) +eglr, i) =0 (10.15.4)
T T

forts +h<rr=h+nhn=1223 ++3. Also
q(r, t) =0, <t <th+h

{10.15.5)
=1, r =1+ b

it iz eclear that ¢ is actually independent of ¢; we shall henceforth write
g(+) rather than ¢(r, ¢). Condition (d} of Theorem 10.9 can evidently he
replaced by the condition that | g(7) || < e for r > & However, g(£) is a
solution of Equation (10.15.2), and |} q(£) |} < ¢ is implied by condition
{a) of Theorem 10.10. SBince (a) of Theorem 10.10 also implies (a) of
Theorem 10.9, we see now that Theorem 10.10 follows from Theorem 10.9,

Bimilar theorems can be proved for systems of equations of neutral type.
As we have already remarked, we shall omit the proofs of these theorems,

and g{r, ) + ag(r — h, t) is a continuous function of = for r > & + A

Thearem 1011, Let A.(¢), B.(t), C.(8), and D.{t}) be continuous for
i > iy, and let A.(t) and C,(1) have continvous first derivalives for £ > 1.
Then o sufficient condition tn order that all conttnuous solutions of the system

wi—1

2t 4 hn) + g [AL() + Ca() T+ ha)

4 S B + Du(O Tt £ By = 0,

E>t, 48 (10.15.6)
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be bounded™ as t — + = 13 that the following four requirements be met:

{a) all continuous solutions of

m-=1 T

P+ by DL Au(B)Z (b)) + X Balf)e(t 4 ha) = 0,
=0 A=l
i > b, t4 5, (10.15.7)
are bounded as t — 4 = ;

(by C.(t), Dt} tend fo zero as { — + = ;
@ [Tawha [ 1Dl d<wo; o

(d) ¥(s, &) isbounded for t > &y, ts < s < §, & § 8. Here Y (s, 1) denotes
the kernel funclion for Fguation (10.15.7), as defined in §10.13.

Theorem ¥, 12. Lei A, and B, be constanis, let C.(t) and D.() be con-
tinuous for t > &, and let C.{t) have a continuous derivative for ¢ 2> . Then
a sufficient condition, in order that oll confinuous sofutions of

-1

20+ ha) + 2 [Au + Ca() T + ha)

=0

+ > [B. + Du(t)Je(t 4 ha) =0,

>y, t g 8, (10.138)
be bounded as i — -+ =, is that the following three requirements be met;

fa) all selutions of

m—I

2+ he) + 2 AL+ B + 2 Ba(t + k) =0,
=0

wi==l]
E>f, L¢8, (10159)

For which z(t + hw) + 2.4 Awz(t + k) is continuous, are bounded
ast-— 4w

(b)Y | Cult) |l and || Dy (&) |; tend to zero as £ — + = ; and

@ [N, 1Dl <=,

* A solution of {10.15.8) is said to be bounded ast— -+ = if thero is a constant ¢; such
that |le@ | Hlz@ UL e 45, 1> 6
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1.

Miscelloneous Exercises and Research Problems

Consider the scalar equation
dufdt + z(t — a{f)) = v(f), 0 <t <,
wlt) = o(t), i <0, a(t) = 0.
If a(t) — o > 0 as ! — o, under what conditions are all solutions of
the equation bounded as £ — 0 ?

{#. 1. Rekhlitskii, “Criteria for the Boundedness of Solutions of Linear Differential
Equations with Vuriable Retarded Argument,” Dokl Adkad. Neuk S388E,
Vol. 118, 1958, pp. 147—149.)

. Consider the equation

w' () = pu(l) + qu(t — 7}, r =

If p + ¢ < 0, there exists a number A = Al(p, g), such that the trivial
golution is stable if 0 < 7 < A. The number A can be taken to be

A=ax/8(pl+ gl

If p + ¢ > 0, then the trivial solution iz unstable for any = > 0. If
p + ¢ = 0, there exists a positive number A such that the trivial solution
lsstable if 0 < 7 < A,

{(Yuan-shun Chin, “On the Equivalence Problem of Differential Lquations and

Difference-differential Equations in the Theory of Stability,” Sci. Record, New
Ber., Vol. 1, 1957, pp. 287-289.)

. Consider the vector systems

(a) du(t)/dt = (4 + B)z(t),
(b) de(t)/dt = Az(t) + Bzlt — 7).

If the trivial solulion # = 0 is a stable solution of (&), then it is also &
stable solution of (b) for 0 < 7 < A(A4, B).

(Yuan-xun (}in, Iong-qing Liot, and Lisn Wang, “Effect of Timedags on Btability
of Dynamical Svstems,’” Set. Sinica, Vol. 9, 1960, pp. 719-747.)

. Study the existence, unigqueness, and asymptotic behavior of the solu-
tions of
du e
= - f_‘m a(z) T(z, ) da,
ar 1
a-b}-=bé—-;+n(x)u, 0L¢<Com,
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where
w(0) = uy, Tz, 0) = f(=), —o < x Lo,

. Consider also the degenerate system

Y [ a0t o e, 05t<
—_— = — X &y Ly a— = X ), ] *y
e e a

with the same initial conditions,

. J. Levin and J. A, Nohel, ““On a System of Integro-differential Equations Qecur-
ring in Reactor Dynamics,” J. Wath. Mech., Vaol. 9, 1960, pp. 347-368.)

Consider the linear pariial differential equation
Uy = Uea + pl@)all)u, 0<a <1, t> 0,

with the boundary conditions « (0, ¢} = »(1,2) = 0, { > 0. Suppose that
alt) = 1/{t+ 1)2, and that ¢{z) is a continuous function for 0 < 2 < 1,
Show that for cach positive integer » there is a solution of the form

w(ae, £y = exp (—n%r%) sin nxx + O [exp (—w*r™)t — 1]

agi—voo,

DI alty = (U 1) et ew = Ji @(z) sin? nay day, forn = 1, 2, -+« Tf

¢x = 0 for a particular n, there is a solution of the form
w(x, 1} = exp (—n®n?) sin nrx + O [exp (—nixit) ]
ast — o if ¢, > 0, there is 4 solution of the form
u{r, t} = cxp (—nix%) £ sin nrx + olexp (—n®%)it),

(. Bellman and K. L. Cooke, dsymptotic Behavior of Selufions of Linear Parabolic
Equations, The RAND Corporation, Paper P-1870, Junuary 6, 1960.)

. Consider the functional equation

Ay
W (1) =f w(t —8) dr (8, 5), Al >0,

where 7(#, 8} is a monotone increasing function of s for fixed £ The
trivial solution iz stable if and only if the integral

[t a1 - r6 00} a

exists.

{A. M. Zwerkin, “The Dependence of the Stability of Solutions of Lincsr Differential
Equations with Lagging Argument on the Choice of the Initial Moment,”
Vestnik. Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him., No. 5§, 1959, pp. 15-20.)
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9. Discuss the boundedness or unboundedness of solutions of
w'{t) = u(f) — u(le™t).
(L. E. El'sgol’c; see R. D. Driver, Existence and Stability of Solutions of & Delay-

Differential System, Universily of Wisconsin, MRCO Technieal Sumimary Report
Na. 800, Madison, Wis., Apuil, 1962.)

10. Consider the system
(1) = A{t)z() + B)a(t — «) + f(1),

where A(2), B{(t), f{{} are periodic functions of the same period T > w.
Show that the system admits a periodic solution of period T, whatever
be the function f, if and only if the corresponding homogeneous system
has ne periodie solution of period T other than the trivial solution. Show
also that if the system has a bounded solution, then it has a periodic
solution.

{A. Halanay, “Solutions périodiques des systémes linéaires i argument retardé’;
“Bur les systémes d'équations différentielles lindaires & argument retardé’;
€. R, Acad. Sei. Pards, Vol. 249, 1939, pp. 2708-2709, and VoI, 250, 1860, pn.
TO7-798.)

11, Digeuss the boundedness of solutions of
I3 ]

B = X [ sl dgslh ) + 00,  i=1,2n

=1 " —m

{A. Halanay, ‘“The Perron Condition in the Theory of Geveral Systems with Re-
tardation,” Mathematica, Vol. 2, No. 25, 1960, pp. 257-267.)

12. Lot u{x) satisfy

alhulz) = @) + [ kla/peyruty) dy

whore a(%) = Y e, Obtain an asymptotic development of the form
) d”

ufz) ~ 3

nail

xan-{-b’
uging the Mellin transform,

(T. L. Perel'man, ““Ob Asimptotichekikh Raglozheniiakh Reshenti Odnogo Klassa
Integral'nykh Uravnenii,” Priki. Mat. Mek., Vol. 25, No. 6, 1961, pp. 1145-
1147; also published as 3 translation, "On Asymptotic Expansions of Solutions
of a Class of [ntegral Equations,” J. Appl. Math. Mech., Vol. 25, No. 6, 1961.)

13. Obtain an integral representation for the solution of
dulz, t)  Pulx, { — 1)
a aa?

using Green’s functions.

?

(L. E, El'sgol'c; see Driver, Ezistence and Stability of Solutions of a Delay-Differential
System, op. cit.)
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CHAPTER ELEVEN

Stability Theory and Asymptotic
Behavior for Nonlinear Differential-
Difference Equations

11.1, Introduction

In the chapter on stability theory for linear equations, Chapter 10, we
began by discussing in general terms the notion of stability of solutions of
differential equations and of differenijal-dilflerence equationg, and we
then developed this notion to a considerable extent for linear equations.
In this chapter, we shall investigate similar questions for nonlinear equa-
tions. We shall first illustrate the concepts by reference to systems of
differcntial equations of the form

u‘l'!(t) = Z a;,—(i)u,- + f‘f(ul} sty Un, t)) i = 1: Yo, Ry (11'1'1)
-1
where the g;(¢) are known functions, and the f. are known nonlinear
funetions of ¢ and the w; In the vector-matrix notation, this system ap-
pears ag

2ty = Az + (4 2). (11,1.2)

The most important case is that in which f iz independent of ¢, so that the
system becomes

2(l) = Alt)z + f(z). (11.1.3)
In applications, the components of f are usually supposed to be poly-
nomisals or power series In the components of z with no zero- or first-order
terms, but we shall impose on f much less restrictive nonlinearity condi-
tions such as
L) |l
21l

—0 as [|z]l—0 (11.1.4)

334
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The nonlinear system in {11.1.3) can be regarded as a perturbation of
the linear system

yit) = Ay (). (11.1.5)

We define the general stability problem as the problem of determining to
whal extent certain properties of solutions of the unperturbed system in
(11.1.5) arc retained by solutions of the perturbed sysiem in {11.1.3).

The particular property with which we shall be mostly concerned is ap-
proach of solutions to zere as t — <, From the physical point of view, we
can regard ihe systems in (11.1.3} and (11.1.5) as providing two models
or theories for the description of some process. Both models are ordinarily
ohtained by approximations of some sort, and ordinarily leave much out of
seeount, but that in (11.1.3) may be regarded as more precise or realistic
than that in (11.1.5). Thus, the nonlinecar model may be expeeted to yield
a closer correspondence with observed phenomena than the linear model,
On the other hand, ihe mathematical theory of the linear system is simpler
and more complete than that of the nonlinear system, From this point of
view, the stability theory may be considered to be the study of the extent
to which the simpler theory can be utilized without saerificing too much
predictive power,

11.2. The Poincare-Linpunoy Thearem

In order to obtain significant resulis on the stability problem discussed
above, we shall consider even more special forms than In (11.1.3) and
(11.1.5). Importani theorems are known if A{{} is (1) a constant matrix,
(2) a periodic matrix, (3} an almost-periodic matrix, or {4) asymptotic
to one of thesc. The principal theorem for constant A is the following famous
result of Poincaré and Tiapunov.

Theorem 11,1, If

(o) every solulion of the linear system ¥y’ = Ay approaches zero as b — oo
{where A is a constant maitriz),

{(b) f(£) iz conlinuous in some region about 2 = 0, and

o 1 O

|1z |0 ||z|| ,

then every solution of the nonlinear system ' = Az + f{z) for which || 2(0) ||
is sufficiently small approaches zero ast — =,

The following heuristic argument suggests the truth of this theorem.
If || 2(0) || is small, then, by virtue of the condition (¢}, || Az + f(z) || is
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very nearly || Azi| at ¢ = 0. Henee 2(¢) should closely approximate the
golution of ¥’ = Ay, y(0) = 2(0), for small ¢. If all solutions of the linear
cqualion approach zerc as ¢ — s, 2{f} should have no opportunity ever to
become large. Hence 2(Z) should act like »{{} lor all £. Rigorous proofs can
be found in the references given at the end of the chapter.

The Poincaré-Liapunov theorem has an immediate generalization to
differential-difference equations. For the sake of clarity, we state the vesult
here for a scalar equation of retarded type.

Theorem 11.2. Suppose that
(a) every continuous solution of the linear equation
ag’ (8] + bou(f) + bu(l — @) =0, ao70, (11.2.1)
where aq, by, by are constants, approaches zero® as { —w
(b} flu, v) is a continuous funciion of u and v in a neighborhood of the

origin | u | + |v| < a; and

(e) lim M -

- (11.2.2)
lebtie-0 | % | 4|2}

Then, provided maxocico | 9(£} | 12 sufficiently small (depending on 1, ao, by,
and In), any solution of the nonlinear equation
ape' (8} + b (£) + bt — @) = flult), ult —w)), {>w, (11.2.3)

with inttial condition

wit) = g(i), 0 £t £ e (11.2.4)
ean be confinued over the tnferval 0 £ 8 < w0, and each such solution satisfies
lim | u{t) | = 0. (11.2.5)

leo

We shall give the proof of this theorem later, with indications as to
extensions.

There are extensive theories for systems of differential cquations in
which A{t) satisfies the conditions of (2) or (3) in the firsi paragraph of
this section, rather than (1}, and a fow results of this type are known for
differential-difierence equations. As it would take o great deal of space
to do justice to these very intoresting questions, we shall not attempt a
discussion in this volume.

* This iz true, as we have shown, if and only if all roots of the characteristic equation
tw® |- by - e ®* = O have negative real parts.
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11.3. Small Perfurbations for General Systems

In §11.1 we viewed the systems

y = Ay (11.3.1)
and

2= A+ f(z D {11.3.2)

as representing mathematical models, of different preeision, of a process,
and were led to inguire info the extent to which these models give equiva-
lent descriptions. There is another point of view from which we are led te
these systems, Let us consider a process described by any system of the
form

¥ = hixz, t), (11.3.3)

where A is considered known and z is to be determined. Let us further
imagine that one solution, corresponding to a certain inilial condition
x2(0) = =z, is known, and is given by the equation x = w(f). Suppose now
that the initial condition is slightly changed. To what exient will the
golution be changed?

Such problems are of great importance in various applicalions. Ior ex-
ample, it may be postulated that a certain process is deseribed by a non-
linear ot lincar equation of the form in (11.3.3), and it may he desired to
maintain the solution in & certain desired stute given by @ = w(t). Often
w(t) is a periodie function. However, because of physical errors, the actual
initial state of the process may deviate somewhat from xo. What effect has
thig on the solution 2(t)? How large may the deviations be without affect-
ing in a eritical way the desired properties of the solution?

In attempling 1o answer questions such as these, we can introduce a
new variable, z, to represent the deviation of x from the desired state w.
That is, let

2(8) = x(t) — w(f), {11.3.4}
Then

() =2'() —w(t) = h{z), 1) — Alw(}, 1)

A(w{t) +2(t), t) — k{w(t), 1),

Assume that each component of the vector h(xz, £) has contifiuous first-
order partial derivatives with respeet to the components 2, (£ = 1, «++, n)
of x, in a region of {z, {) space which contains the solution curve (w(t), #),
0 <t < =, Let J{z, £) denote the Jacobian matrix of A with respeet to
x, that is, the matrix

Jiz, t) = [dhiz, 1)/3x;]. (11.3.5)
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Then by the theorem of the mean,

Z(t) = Jw(t}, hz(t) + f(z 1), (11.3.6)
where f depends on ¢, 2, end w(t), and satisfies
lirn ot _ 0 (11.3.7)
Het=a || 21|

for each ¢, uniformly in { over any finite interval. The system in (11.3.6)
ig of the form in (11,3.2); that is, the problem of small deviations from a
known solution of a general system (11.3.3) leads to the gtudy of small
solutions of special systems of the form in (11.3.2). As we have seen before,
the linear system

y' () = J(w(t), hy(), (11.3.8)

ealled the first variafion of the system in (11.3.3) with respect to the solu-
tion # = w({), may in some eases yicld a sufficiently good approximation to
the system in (11.3.6). In particular this is true, according to the Poincaré-
Liapunov theorem, if J{w(i), t) iz constant. This happens in a very im-
portant cage. Let us suppose that the function k in (11.3.3) is independent
of ¢, and that the equation admits & constant solution x = ¢. Then (e} = 0.
The equations in (11.3.8) and (11.3.8) now take the forms

2 = J{e)z + f(z) (11.3.9)

and
y = J{)y, f11.3.10)

respectively, Since these are of the form in Theorem 11.1, we know that
every deviation z{¢} which is sufficiently small initially will approach zero
as £ — oo, provided all characteristic roots of J{c) have negative real
parts.* In physical terms, a constant solution x = ¢ represents an egui-
Ibrium slate of the process deseribed by the equation z' = A(z). The
Poincaré-Liapunoyv theorem asseris that all small disturbances from the
equilibrium state dic out as t — =, if all characteristic roots of J(c) have
negative rcal parts.

A similar discussion is valid for differential-differenee equations. Con-
sider an equation of the form

o’ (1) = h(p(D), v(t — W), 1), (11.3.11)

wherc @y and o are constants and v and k are scalar funciions, Lef w(t)
be a partieular solution for ¢ > . Let u = v — w. Then

ant' (£) = aw' (1) — ape'({)
= Rhz(t), ot — w), 1) — R{w(t), w(t — w), ).

* It remaing, of course, to determine whether this is true for any particular function A.
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By the theorem of the mean,
ane’ (8} = m{w(t), wit — ), Dull)
+ Ae(20{t), w(t — w), Duli — w)
+ ), u(t — @), &), >« (13.3.12)

where 2y and h; represent the partial derivatives of A with respect to the
first and second variables, respectively. Here f depends on w, and

Uy, s, §
W wd] (11.3.13)
furl+luatsa | 2 | 4+ | v |

uniformly in ¢ over any finite interval. The equation
age’ () = hifw(), w(t — o), ull)

4 R (wlt), w(t — w), Dult — w) (11.3.14)
is the first variation of (11.3.11} with respect to w(¢). If & does not depend
directly on ¢, the equation in (11.3.11) has the form

o' (1) = h((t), v{t — «)). (11.3.15)

If h{e, ¢) = Ofor a constant ¢, then w({) = ¢, ¢ > 0, iz a constant solution
of the cquation in {11.3.15) for { > w. Then the variational equation be-
comes

agu’ (£} = hyle, e}u(l) + hale, ult — w), 1> w (11.3.16)

Ifweputby = —hi(e, ¢) and by = —hae(c, ¢), this takes the form in (11.2.1).
Thos Theorem 11.2 plays the same role here that Theorem 11.1 plays for
differential equations.

11.4, Types of Stability

In §11.3, we examined the problem of discussing the deviation of solu-
tions from a known solution. Thig leads us naturally to define the concept
of stability of a solution of a given equation. As in §4.5, various types of
atahility can be defined. let us illustrate these for the sealar differential-
difference equation

aw’ (1) = h{v(t), v{f ~ ), ©). {11.4.1)
Definition. Let w(!) be o funelion, continuous for t > 0, which satisfies

the equation tn (11.4.1) for £ > w. This solution is said to be siable as L — o
if, given lwo positive numbers & and &, there exisis a corresponding positive
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number & such thal every continuous solution v (£} of the equation in (11.4.1)
which salisfies

max | we(f) —w(t) | <8 (11.4.2)
tps ittt w
will alse satisfy
max | 2{t) —w(i) | < = (11.4.3)
fo

The solution is said to be uniformiy slable <f, given ¢, there exists a § such that
for any &y > 0 and eny soldion v(f) which satigfies (11.4.2)}, ¢(8) also satisfies
(11.4.3}.

Deflnition. The solution wit}) is said to be asymptoficntly stable {f
{a) 4t is stable;

(b) for each to > O there ix @ 8 such thal every solulion v(1) which satisfies

{11.4.2) will also safisfy
Lm [#{f) —w ()] =0 (11.4.4)

==

It s said to be asymplotically stable in the large if 4t 4s stable and if every
solution v(1) satisfies the relation in (11.4.4),

In view of these definitions, Theorem 11.2, the analogue of the Poincaré-
Liapunov theorem, can be restated in the following terminology: Tf the
zero solution of

agte’ (8) + bou(l) + bu(i —w) =0 (11.4.5)

is asymptotically stable in the large, if f{m, ») is continuous near the
origin, and if
flm, o) !
i (o, 22} =0, (11.4.6)
lml+vat=0 | 01|+ |22 |
then the zero solution of
' (D) + b (f) + bw(t — @) = f(0(e), ot — @) (11.47)

is asymptotically stable. Or, referring to §11.3, we can state it as follows:
A sufficient condition for the asymptotie stability of the equilibrium solu-
tion v{t) = ¢ of

a’ {(t} = h{p(L), v(t — w)), (11.4.8)
where h(r, ¢) = 0, is that the zero solution of the equation of first variation,
a’ (1) — hale, eju(t) — haole, yult — w} =0, (11.4.9)

be asymptotically stable in the large,
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We shall carry this discussion of stability concepts no further, but rather
shall turn to the proof of Theorem 11.2. By now we hope that the reader
will be satistied as to the significance of this theorem.

11.5. Existence Theorem for Nonlinear Differential-Difference Equations

Before pregenting a prooi of the Poinecaré-Liapunov theorem for differ-
ential-difference equations, we shall consider a fundamental existence-
uniqueness theorem for such equaiions, We take lhe equation in the form

w'(t) = flu(l), n(l — w)), i > o, (11.5.1)
with initial condition
u(t) =g, O0=i<aw (11.5.2)

We shall establish the existence of a solution of this problem, under suitable
conditions on f and g, by the famous and important method of successive
approximations.* In this method, we define a suitably chosen sequence of
functions {u.(t)} and show that the limit of this sequence is a function
which satisfles the equations in {11,5.1) and {11.5.2).

The functions . (f) may be defined as follows:

uﬂ(t) = g(t): 0 S ¢ S @,
(11.5.3}
=glw), t>w
andforsn =90,1,2, «++,

U (£) = g}, 0 <1t <o, {11.5.4)
= 9o} + [ Flunlt), vl — o)) dn, >

The definition given in (11.5.4) is inductive, and therefore it is not at onee
clear that the function w,n(t) actually exists for n > 0, since flun{f),
un{ti — «)) might fail to be defined for some n and 4. We shall show,
however, that by restricting { to a sufficlently small interval, we can ensure
the existence of every u..1(¢), under mild conditions on f and g,

We assume that g(¢) iz continuous for 0 < ¢t < w, and we let

m, = max | g(t) |. 11.5.5)

0w
We also assume that f(w; ¥) is a continuous function of % and ¢ in some
*If we assume as known the corresponding existence theorems for differential equa-

tions, we can rely here on a method of continustion to treat the equation in {11.5.1).
We prefer to give u direct proof using suecessive approximations.
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neighborhood of the origin, say, for [« | -+ [#| < e Let N denote this
neighborhood, let ¢; be the maximum of |f(u, ») | for (u, ¥) in ¥, and
assume that ¢; > 2m; We shall now show by induction that the paing
(), ¥n{t — )} 8in N (n =0,1,2, »--) if {15 restrictcd t¢ a suitable
interval, This is true for n = 0, as we see from (11.5.3). If it i3 true for =,
then by (11.5.4),

o < Hg) |+ [ 17(8), it — @) | i

Ly F+ et —w) Smgdcty, w<tiZw+o

Sinee this inequality is evidently true also for ¢ < ¢ < w, we conclude that
if e3 << (&1 — 2m,} /20, then we have

| 401 (8) | 4 [ttaia (8 — w) | < ey w<i<e+w (1L58)

This completes the induction, ginee it shows that the polut (g (f),
Uyl —w)}ismNfore <! < ¢+

We shall now prove that the sequence {u,(¢)} is convergent for 0 < ¢ <
w + €3, provided f =atisfles the additional condition

|f(u1: 1"1) - f(uz; ?)2) ] < C-l([ W — %2! -+ l'Ul - ¥z l) (1157)

for (us, vs) and (uz, vz} in N, where ¢ is a conslant depending cnly on f
and &N and not on w1, us, ¥, ve. A condition of this kind is called a Lipschitz
condition, It aufomatically implies continuity of f at each point in ¥,
gince the right member in (11.5.7) approaches zero if we let w; — w4 and
8 — B, We also note that if f{u, #) has bounded first partial derivatives
within &, then the Lipschitz condition is satisfled, since, by the mean
value theorem,

Flug, ) — Flug, v) = (wy — uz) (af/au) + (i — v (8f/ar),

where the derivatives are evaluated at some point on the segment joining
(uy, v2) and (ug, v,).*

TFrom the relations in (11.5.4} we have for = > 1, using the Lipschitz
condition,

Juasal®) — (@) | < s [ [ unlt) — wa() |

+ | un(tl - &J) - un-—l(tl - w) |] dtl’
o<t <o+

* This point is in N, since the region ¥ under considerstion is convex.
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Bince #a(f) — w1 {f) = 0for0 <t € w, it follows that
£
| tensn() = (D) | < 204 f [tn () — wner(i) | ity
]

<t < wt ey n> 1. (11.58)
Bince for w < ¢ < o 4+ g,

() = w® [ < [ fw(s), wl — o)) | dy

S (:2(5 - w);
we have
| () — we(f) | < o, 0 <t < w e (11.5.9)
Using this inequality in (11.5.8), and iterating, we obtain
Cz(2Cq)ni"+1
| 2nga () — 2.(2) | = m, 0 << wHt e,
n=>0,12 . (11.510)
Congequently the series
> Dt () — ua(8)] {11.5.11)

n=l
is dominated by the serics
e =, (2e4) 7
23 LL, (11.5.12)
201 nio (ﬂ; + l)! ’

which is uniformly convergent for 0 < ¢{ < & -+ ¢; Ilence the series in
(11.5.11) is also uniformly convergent. Since the (m — 1)st partizl sum
of the series in (11.5.11) is ua{{} — wo(f), the sequence {u.(1)} converges
unifermly for ) £ ¢ < w - ¢; to a function (i),

w() = lim un(f), 0<ti<w+es (11.5.13)

By letting » — = in {11.5.4}, we obtain
u(t) =g(f), 0=<i<uq,

= glw) + fcf(u(tx), wlh —w))dh, w=<it<wte (11514)

since uniform convergence permits interchange of the operations of taking
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the limit and integrating, From this result it is clear that u(¢) satisfies the
equations in (11.5.1) and (11.5.2), the former forw < ¢t < @ + c.

11.6. Uniqueness

We wish now to prove that the solution found by the method of sue-
cessive approximations is the only possible solution. Let us assume that
#(¢} is a function, equal to g{¢) for 0 < ¢ < w, which satisfles (11.5.1) in
some interval to the right of { = @, which we may as well suppose to be the
dnterval {w, w + ;). We wish to show that (1) = #(8) in [0, @ + 5]
Suppese that (1) = v(¢) in [0, @] for some w; satisfyingw < wy < w + 6.
At least one such number @ certainly exists, since w(f) = »{f) = g(f) on
[0, @]. Since (2(), v(t — «)) isin ¥ at ¢t = w,, and ¢(¢) is continuous, it is
in & for some inferval to the right of { = w. Let w: be chosen so that
w < wr S wFepand (00,2 — w)) isin N for o < ¢ < . Since

mo=gm»+fﬂwm»m—wnﬁh w<t<a, (1161)
we deduce from (11.5.4) and (11.5.7) that
st = o) [ S ea [ [wnl) — o0 |

+ |u,,(t1 — w) - U(tl - w) .!:[ di

or

[anal) = () | < 200 [ Lunlt) — v(t0) |

0 << w (11.6.2)
From the fact that

) = o®) [ < [ 15600, vt — ) dt < oo

for @ £ 1 <y, we obtain by iteration in (11.6.2),

eo( ey g2
| 2 (t) — v(t) | £ ~——, 0 <¢< wa
(n +2)!
Since the right-hand member in the preceding inequality approaches
7er0 as n — o, we sec that #(8) — #{f) = 0for 0 £ § < w.. Thus there
cannot be a largest interval [0, @, ] with w1 < @ 4 ¢; within which «(f) and
#{t) are equal. That is, they are equal over the whole interval [0, & + &].
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11.7. Statement of Existence and Uniqueness Theorems

In summary, we have proved the following result.

Thearem 11.3. Suppose that g{t) is continuous for 0 < ¢ < w, with
My = MaXecica | g0 [, and thal f(u, v} satisfies o Lipschitz condition

[P ) — Flug, 22) | < el — we |+ 1n — 0 l) (117.1)
for (wy, v1) and (ua, vs) in o region
Nilul+|e] € e

Let v denote the mazimum of the (conlinuous) function ] f(w, v) | for (u, »)
n N, Then f 2m, < o, there exisls o unique continuous solution w(f) of

wi{t) = flult), ult — w)), >« (11.7.2)
u(®) =g(0), 0<i<aw, (11.7.8)

Jor 0 €t < o+ 3 where es << (61 — 2m,) /2.

Az in the theory of ordinary differentlal eguations, thiz existence-
uniqueness theorem can be extended in many ways, and there are several
other approaches to the problem of existence, ag, for example, the method
of fixed points in function space. We wish, however, to cmphasize the
stability theory, and accordingly shall refer the reader interested in exist-
ence theorems to the pertinent articles in the literature. See the biblio-
graphic notes at the end of the chapter.

Theorem 11.3 is an example of a local or in the small existence theorem.
That s, it asserts the existence of 3 solution over a certain small interval
near the initial interval. In contrast, Theorem 11.2 is a nonlocal or global
theorem, since it asserts the existence of a solution over an infinile interval.

EXERCISES

1. Tet the function g{f) be extended from the interval [0, w7 to the interval
[0, =), and let the sequence {u.(f)} be deflined as before except that
the equations in (11.5.3) are replaced by

w{l) = g(1), 0 <t < oo,

Find conditions on the extended function g(f) suflicient to cnsure
convergence of the sequence to a solution of (11.5.1) and (11.52),
assuming the same conditions on f(x, #) as before.
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2. Prove the following extension of Theorem 11.3.

Theorem, SBuppose that g{f) is continuous for& < ¢ <& 4+ w, with
My = MK sycictyiw | §{E) |- Suppose that f(i, v, v) is continuous and satis-
fies a uniform Lipschitz condition

[, 01) — flt un v} | < el — ue | + o — 2 ])
for (4, w1, v1) and (¢, us, 2.) in a region
Nithst<tatot>t), Jujt+lv]<a
Let

e = mux | f{i, u, v) |
N

Assume that 2m; < ¢ and let ¢; be so chosen that 2665 < ¢ — 2m,.
Then there exists a unigue continuous solation w(t), for &y < & < & +
w = min {cs, & — lo}, of

u’(i) = f(tj u(t)r u(t - w)):
for which u(t} = g(f), lo < ¢t < &) + w.

3. Cauchy-Peano Ezxistence Theorem. The existence {buf not uniguencss)
of a contituous golution w(f) of the problem in the preceding exercise
can ba proved without the assumption that f(¢, «, ») satisfies a Lipschitz
condition. We shall sketch the proof in this and the next [ew exercizses.
Let all other assumptions and notations be as in Exercise 2. Choose any
positive number A less than w, and let # = n(h) be the integer such that
nh < ey < (0 + 1)h where ¢s = min (63, & — #). Define a funetion w(#)
for which w(t) = g(t) on & < ¢ < & + w, for which the values at
t=h+w+trh{r=12 ---, 84 1) are recursively defined by

w(t + k) — w(i)

P =f(£,u(t),u(t-w)),

=6 +wbh+e+hk 1, & + w4+ nhand for which #(Z) is defined
linearly hetween these corner points, To show that this definition is
valid, prove by induction that

|ty 4+ @ 4 rh) | < my 4+ ook, r=1,2 o, n+1,
| 2(t) | < e1/2, b<t<th+owta

and henee that the point (£, w{f), #{f — w)) lies in the region ¥ defined
in ¥xercise 2, forty -+ o St L b+ w +
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4, Continuing the discussion in Excrcise 3, prove that for any s and ¢
in the interval [, & + @ + ¢4,

[w() —uls) | et — sl
To do this, observe that there are integers r and ¢ for which
f—s=[— (h+e+m)]+[hto+rh) - (h+ot (r—1}4)]
F oo+ [+ o+ gh) — 5],

and that the maximum change in % over any one subinterval of Jength

k is hes.

5. Choose a monotone decreasing sequence {A;} of positive numbers which
approaches zero as & — o, To each & there corresponds a polygonal
function w,{¢} defined in the above manner over [, ty + & + ¢4]. Show
that the scquence {wi()] Is equiconfinuous on this interval, that is,
that to € > 0 there corresponds a & > 0, independent of &, such that

[ 28] ~ w8} | < ¢ whenever |t — | <4

6. The so-called Arzela selcetion theorcim states that a uniformly bounded,
equicontinuous sequence of continuous funetions on a bounded interval
has a subsequence which eonverges uniformly on the interval. Hence
{2:{t)} has a convergent subsequence, which for notational simplicity
we shall again call {u.(2)}. Let the limit function be denoted by %(¢).
Tor any { on the interval [4 + «, & + @ -+ ¢5] choose Ly such that
b+ w + Lz > tas k — o and fi — 0. Show that

wlly + o + (L + k) — wll + o)
L
= z Ref(lo -+ o0 + Iha, we(lo 4 0 + Ihe}, (o + The)).
I=[
Deduce that

i
u(®) =gl +o) + [ flt ult), ult = @) di
{04
and therefore that «(¢) I1s a solution of the equations in (11.5.1) and
(11.5.2). Thus we have proved the following theorem.

Thecrem. Supposet hat g(t) is continuous for { < ¢ < £ + o, with
my = MAXegero | §(E) |- Suppose that (£, 4, v) is continuous in a region

N:olul+ 2] <oy hEZi<hH+ o, th > .
Let,

e; = max | f{t u, ) |
X
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Assume that 2m,; < ¢yandlet ¢; < (o0 — 2m,) /2c;. Then there exists a
continuous salution w(¢) of w' (1) = flf, w(f), w{t — ) for tp €t < 6 +
w 4+ min {ey, fi — &), satisfying u(t) = g() for & < ¢ <t + w.

11.8. Stability Theorem

We shall now give a proof of Theorem 11.2, the Poinearé-Liapunov
theorem for differential-difference equations. A second proof will he pre-
sented in the next section. Note that in the statement of the theorem,
nothing is gaid about the uniquencss of the solution, and indeed we cannot
expect unigqueness under the stated eonditions. The interesting poini is
that the theorem asserts that every solution with sufficiently small initial
values can be contimied Lo infinity, and that every such continuation
must approach zero.

Tet

m, = max | g(¢) | (11.8.1}
Nbees

Let N be the region u ! 4+ |2 ] < ¢, The function flw, ») is continuous
in N, by hypothesis. By the Cauchy-Peano existence theorem, Fxercise 6
of §11.7, the equations

ant' (1) + bou(t) + bu(t — o) = flu(@), u(t — @), ¢>w (11.82)
w(t) = g(t), 0<t<aw (11.8.3}

possess a continuous solution u({f} on some interval to the right of w, We
wish to show that any such solution, for which m, is sufficlently small,
can be continied over the eniire interval 0 < ¢ < ¢,

By hypothesig, every solution of the linear homogenecus eguation

ag’ () + boult) 4 bu(t — w) =0 {11.84)
approaches zero as { — 0. That is, all roots of the characieristic equation
ot + by -+ g = 0 (11.8.5)

have negative real parts. Since the equation is of retarded type, there is a
positive number X, such that every characteristic root s satisfies
Re(s) < —A. By Theorem 3.7, every solution (¢} of the equation in
(11.8.4) ean be represented in the form

wo(t) = aglalk(t — ) — by [ k(=6 ~ ) dh, 1> w

(11.8.6)
From Exercise 1, §4.4, we find that

{R(l) | € ™, >0 (11.8.7)
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Using this incquality in (11.8.6), we get
[ua(t) | S camge™, L3>, (11.8.8)

where ¢; Iy independenut of g{t). If we choose ¢ s0 thal ge™ > 1, this
inequality is valid for ¢ = 0.

We shall now prove that a solution of Fquations (11.8.2) and (11.8.3)
with m, sufficiently small can be extended over the infinite interval, and
satisfies the inequality

| u(f) | < Zesmge ™, £ >0, (11.8.9)

where A; I8 any number for which 0 < Ay < Ay If the inequality in (11.8.9)
holds for 0 < ¢ < & 4 w(fs > ), then for w < ¢ < 8 4+ o,

[u(t) | + | ult — «) | < desmy,

and this is less than ¢/2 provided m, < ¢/8c. Therefore, the peint
fu(t), u(t —w)) licsin Nfore <t <8 + w, and

max | w{l) |, < a2
fpatealE o

It follows from the Cauchy-Peano cxistence theorem that the solution
u{4) can be extended beyond the point & +F w.

Let ug supposa that %1} is a solution for whieh m, < ¢/8¢;, but which
cannot be extended to «. Then the mequality in (11.8.9) must at some
point fail {o be satisfied. We shall deduce from this & contradiction. Let &
be the first point (& > w)} for which u(&) fails to satisfy (11.8.9). By
coniinuity of », we have

wll) = 2egmy exp( —Nks). (11.8.10)

On the other hand, f{u(f), u{i — w)) is conlinuous for ¢ < {fz since
{ult), u{f — w}) iz in N. From Theorem 3.7 we therefore have the repre-
sentation

w(l) = w(t) + ff(u(.cl), wlh — @)kt — ) dty, @ << b
(11.8.11)
By hypothesis (¢) of Theorem 11.2 and the inequality in (11.8.9}, we have
fut), u(ts — @) | < elJul@) | + [ult — ) |]
< Zegmge(l + ) exp (—hafa),
@ <4 <1, (1L8.12)
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where £ can be taken as small as desired by choosing m, sufficiently smull.
Using (11.8.7), (11.8.8), and (11.8.12) in (11.8.11), we get

Beacgmge( 1l + et
e
M — M

For m, small enough, ¢ is sufficiently small that

| (8} | < eamgeet L

et <t < b

| u{t) | < Zegmge, w << &

This, however, contradicts the relation in (11.8.10). This contradiction
shows that u({) can be extended over the infinite interval, and establishes
(11.8.9). It is clear that u(t) approaches zero as { — «. Thus Theorem
11.2 has been proved.

EXERCISE
Show that Theorem 11,2 iz valid also for the equation

aor' (1) + bou(l) + bt — ) = f(§, u(t), ult — w}},

provided f{i, , »} is continuous in & region

[u] + o] < ey (=}
and satisfies

| f w0 |
lut+1a1+0 m B

uniformly in ¢ for £ > 0.

¥

11.9. Stability Theorem: Second Proof

In this section we should like to present a somewhat different proof of
the Poincaré-Lispunov theorem. This proof utilizes the method of suc-
cessive approximations, and thus provides a method for the construction of
each siable solution of the nonlinear equation. The stability proof is direct,
rather than by a methoed of contradiction. On the other hand, the hy-
potheses nceded are somewhat sironger than those used in §11.8. The
theorem to be proved is:

Theorem 13.4, Suppose that
(a) every continuous solution of the linear equation
ag’ (£} + b (8) + bhu(t — @) =0, ag # 0, (11.9.1)

where a, b, by are constants, approackes zero as { — «
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(b} fu, v) s ¢ continuous funciion of u and v in a neighborhood of the
origin, |ul + [v] < e, and f(0, 0) = 0

{(e) flu, v) salisfies a Lipschitz condition in [u| + |v] < e, and more-
over for any €3 < e there is a ¢g such that

[ Fluy, ) — Flatg, wa) | € eof s — we| + |0 — 2])  (11.9.2)

provided
[ul — ‘uz: + |1’1 - 1-'2| S €3, (11'9'3}

where c2 — 0 as ¢; — 0; and
(d) g(t) is continuous for 0 < { < o, with

my = max [ g(f) L
0 b

Then, provided m, is sufficiently small, there s a unique conlinuous solution
u(t) of
at’ () + boul) + bult — o) = flu(d), u{f — w)), > e, (11.94)

with inittal condition

u(t) =gt), 0<t<w {11.9.5)
This solution can be continued over the interval 0 < 1 < w0, and saligfies
lim fuft) | = 0. (11.9.6)
[l

The solution can be computed by the successive approximation scheme given
beloe.

Proof. As in §11.8, we start from the integral equation
i
wlt) = woll) + f Fult), ult — o)k — &) dby,  (11.97)

where us(#) is the solution of the homogensous equation in (11.9.1) having
initial condition g{t). Thus

ul) = ag{VE{t — @) — b f@g(tl)k(t —h—w)dh, > o
1]

(11.9.8)
As before we have

VEQ) | < ce™, >0, (11.9.9)
where M > 0, and conseguently
| us(d) | < egmge™t, &> 0. (11.9.10)
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We now define a sequence [w.(t)] of successive approximations by
means of the formulas {(n =0, 1,2, -}

ungt{f) = plt), 0 <<, (11.9.11)

i

w(t) + [‘f(u.,a(al), Unlly — W))h{ — L) dts, £ > o

Our first step is 10 demonsirate that these formulas define the funclions
{1} for ull ¢ > w, provided m, is sufliciently small. We do this by cstab-
lishing a sufficient!y small uniform bound on these functions, namely,

| . {4} | < Zegmy, t =0, n=01,2 - (11912

This is evident for n = 0, and for all = on the Interval 0 € ¢ < w if we sup-
pose rp > §. Now we assume that w,.(t) is defined for all ¢ > 0 and satisfies
the bound in (11.9.12). If we take e; = 8Scm, und supposé m, s0 small that
¢ % ¢, we have

|?.{-u(t1) | + {up(tl - w) | < 4C5m,—; < C;sl,a’“ s b > e,

Thercfore, f{u.(t), w.{fi — w}) is defined for § > w. From (11.9.2) we
deduce that it is bounded by dewngm,,.
Henee

t
| 20102} T < esmpe ™t 4 Acaesesmy ] exp [—h(f — t) ] dhy

w

A

esm, + descacsmm, f exp (—htz) dis
[H

= ety + descicsmg/ M.

Sinee ¢ — 0 ag m, — 0, we can choose m, o small that 1¢e A < 1, and
therefore | w.ei(t) | < 2e9m, for ¢ = 0. This esiablishes that the sequence
fa. (1)} 18 well defined for ¢ > 0 and uniformly bounded.

Next we prove convergence of the sequence, For nn 2 1 wo have

(@) = wa®) | < [ 70t snlts = )

= Fltta(la), uaa(ts — @)) | (0 — &) | dha,
From (11.9.12) we see that

| #a () — taca(8) | + | walts — @) — wna{ty — w) | < 8Begmy, = 6
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Therefore we can use (11.9.2) to obtain
L
() — () | S e [ Tnl®) = wa(t) |

+ Jun(tl - w) — un_1(£1 -_ m) 1] oxXD E—h1(t — tl)] l"ﬂ,i.
Let

Ma(t) = max |{Us(t) — Unr(h) |, n>1, {11.9.13)
it

Then we see that foré > w, n > 1,
[
Dt (6) = un () | < Zescema(t) f exp [—M(t — 1) ] dts

Bince tap (£} = w2} for 0 € ¢ < w, we deduce that
a1 (t) < cema (i), t >0, {11.9.14)

where, sinee ¢; — 0 as ¢a — 0, the constant, ¢ is less than 1 for sufficiently
small m,.
It follows that the series

>0 max | unalt) — walt) | (11.9.15)

= BBt

converges, since it is dominated by the series

mt) 3 e

==l
Since

[mid) | < max |wm(®) | 4+ max | w(t) | < degm,,

0=nat byt
the convergence of the series in (11.9.15) is uniform in ¢ for ¢ > 0. Thus
fu, ()} converges uniformly to a limit function u{f), which by virtue of
{11.9.11} satisfies the initial condition w(f) = g(&), 0 < ¢ < w, and the
integral equation in (11.9.7). Thus it is a solution of the equations in
{11,9.4) and {11.9.3)}, defined for all ¢ > 0.
From the integral equation itself we obtain

[ut) | < esmpe™t + oty f [t | + V(i — @) |]

+ XD [—Al(i — tg)] 1.
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Hence

() | 86 < oony + cxea(l + ) [ | u(s) [ exp (ut) dis
L]

Using the fundamental lemma, §2.3, we deduce that
| u(t) | < comy exp [—Ns + caea(1 + 64e) ],

Since ez — 0 as m, — 0, it follows that | w() | approaches zero with cx-
ponential order as { — o, provided m, is small enough,

EXERCISE
Show that Theorem 11.4 is valid also for the equation
ag’ (£) + bou(t) + bt — @) = F{§, w(8), u(t — w}),
provided the hypotheses in (b) and {c) are replaced by the following:
(b') f{¢, u, v) is continuous in the region IV defined by
lul + ] <e, 120
and f(?, 0, 0) = Oforf = 0.

{c) f(}, u, v) salisfies a Lipschitx condition in &, and moreover for any
¢3 < &1, there is a ¢ sueh that

ftn — ] +{on— 2| £ and £20
imply
[FO wy, v1) ~ Fl ug, e} <ol — ]+ o0 — 02 ),

where ¢, is independent of { and ¢ — 0 as ¢; — 0.

11.10. Asymptotic Behavior of the Solutions
Tnder the hypotheses of Theorem 11.2 or Theorem 11.4, a solution of
ag’ (1) + bou () + bt — w) = f{ull), ult — @)}, { > w, an # 0,
(11.10.1)
w(t) = g(t), 0 << a, (11.10.2)

for which maxpc.. | g({} | is sufficiently small, approaches zero as{ — =.
In fact, such a selution lLas an exponential bound of the form

fu(f) | < e, (11.10.3)
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where Ay > 0. It is possible, as we shall now show, to improve this bound
Lo an asymptotic formula. In order to illustrate the procedure, we shall
consider the special equation

w'(8) + bult — w) + bu(t — )u(l) =0, (11.10.4)

which arises in certain growth processes. It will be clear that cur tech-
niques apply to the general equation in (11.10.1) if, for example, f(xu, v)
represents & convergent power series in u and ¢ lacking terma of degree zero
or one, Incidentally, the equation

P 4 Bt — @) + et — w)p(f) =0 (11.10.5)

is reducible to the form in (11.10.4) by the substitution #(¢) = b ().
The equation in (11.10.4) can be written in the form

wt) + [b 4+ bu(t) Jut — w) = 0. (11.10.6)

Given a solution of the class under consideration, bu(f) is a known funec-
tion which approaches zero with exponential order as { — =, and the
equation in (11.10.6) can be regarded as a linear equation with almost
constant coefficients of the form

W) + b4+ b) Tt —w) =0, b)) = bu(f). (11.10.7)

Since

fw 1B(t) | dt = fm | bult) | di < oo, (11.10.8)

the methods and results of Chapter 9 can be applied to prove that to each
characteristic root h there corresponds a solution with asymptotic form

w(t) = W[l 4 o(1)], (11.10.9)

where 8{£) i defined as in Chapter 9. However, because of the exponentially
small bound on b(t), we can prove a result stronger in some respects than
that in (11.10.9), as follows:

Theorem 11.5. Let s, be the sequence of zeros, assumed to have negaiive
real parts, of the characieristic function s + be*°, arranged in order of non-
tnereastng real parls. Let u(t) be a continuous solution of the equation in
(11.10.4) which for some ey > 048 Ofe™v) as t = =, Form all finite Linear
combinalions,

o= D TS, {11.10.10)

with nonnegalive integral coefficients n,, and . n, > 2, of the roofs s,.

Let oz} denole the sequence of these combinalions, arranged tn order of
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nontnereasing real paris. Then u(l) has an asymplotic expansion
w(l) ~ Y. petrt 3 qrit)erwt, (11.10.11)
=1 BE=1

where the p, are constants {execept in the case in which there s a double root of
h(s) = Q) and the g (¢} are polynomials in t. The gt} associoted with o
cga be defermined from those p, for which the assoctated s, appears in op =
Ty
In (11.10.11), the asymptotie equality iz to be interpreted as meaning
that the error in inecluding on the right only those s and ez for which
Re(s,) > —cand Re{or) > —cis Ofe).

11.11. Proof of Theorem 11.5

To prove this theorem, we write the eguation in (11.10.4) as
W) +bull —w) = —bu(t — w)ult), (11.11.1)
and regard the right-hand member as a foreing function. It follows from

the results in Chapter 3 that w(#) satisfies the integral equation

wl®) = ulo)k(l = f) — bftu Bt — b~ w)ulh) dis

t—ow

I
—bf w(t)ulty — k(i — &) dy, ¢ >t (11.11.2)

]

From §4.3, Exercise 1, we know that
k() = 2 ket  t2>0, (11.11.3)
r=1
where the k, are constants {cxeept that if bew = 1, there is one double

root, s = w3, and &y ig a linear function of ). The series in (11.11.3} is
uniformly convergent for ¢ > #; > 0. First we use {11,11.3) in the form

() = ket + ki(¥), (11.11.4)
where
B(f) = Oem), Re(s:) < Refsy); (11.11.5)
or if s; and s are conjugate imaginary roots,
k(D = kent 4 ket + k(D) (LL.11.6)

with ki(¢}) = O{e*t). For the sake of simplicity, we shall only treat the
ease in which k(¢) hag the form in (11,11.4), with % a constant. Using the
series in (11.11.3), we see that the first integral i (11.11.2) is a sum of
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exponentials e~ and therefore the equation in {11.11.2) ean be rewritten
in the form

w(t) = 3 ket — bftfe(z — t)u(tiults — o) diy, (L1.1L.7)

=1
where the k.’ are constants.
We wish to show that #(¢), which we assumed to be Q(e~v), also
salisfies
u(f) = O(fert|) as t— o, (11.11.8)

This is, of course, clear if —e¢ < Reds). Tf not, we have

f B — (b ull — o) db

4
< ¢lest| f |exp [— (51 + 2e)ts] | dir. (11.11.9)
i

If Rels) + 2e > 0, this is 0| ¢t [}, and from (11.11.7) it iz clear that
(11.11.8) is satisfied. U Re(s,) + 2¢ < 0, the expression in (11.11.9) is
O(e =), and from (11.11.7) we =sec that u{t} = O(e 2%, In the latter
cage, we ean use this new hound on % in the integral in {(11.11.9}, obtaining
an improved estimate. After a finite number of iterations, we obtain
(11.1L.8).

Using the bound in (11.11.8), we can now deduce a first asymptotic
formnla for «{t) from the inlegral equation in (11.11.7}. Choose the
positive integer m o that

Re(smi) < 2 Re(s) < Redsa). (11.11.10)
Then, since 2 Re(s) — Refs,) <0 (r =1, ---, m}, we have
f lexp (—sd)u(tyu(t — @) | dh < o, 7=1, -+, m
tg

Consequently the equation in (11.11.7) ean be put in the form

w(t) = Z bt 2 ket
=t

r=m+1

3, f” exp [t — ) Tult)ult — @) di

- b[ Il — t)u(t)ulty — ) db, (11.11.11)

where
En(t) = O[] exp (8m+af) 1] (11.11.12)
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Using the estimate of k,({), and that in (11,11.8), we find that the last
integreal in (11.11.11) is

9] {i exp (Smpat) | f Fexp [{2s1 — smar)ti] | dﬁl} = O] o)),
1}

Also
vt fm exp (—sdu(f)ully — w) dy = O(| e?¢|), r=1, -, m

H
Therefore from (11.11.11) we deduce

w(t) = 3o ket 4 0 et ), (11.11.13)
=1

Further terms in the expansion of %#({) can be obtained by use of
(11.11.13) in the integral equation in (11.11.11). Since the product of
w(t) and #{t — «) will have the form

u(Bhu(t = w) = 2 eqoexp [(s + 5] + O( et ]),
1=, fgm
it is clear that the expansion of w(!) may contain terms with exponents
o, ag stated In Thecrem E1.5. Thus, for example,

fw exp (&0 — &) Jultdu(h — o) dh

1

= Yeaer [ (exp [(se + o5 — s)u] + Ol exp [(3 — 8611 }) db.

Since s; + 8, — s = forl €4, 7 <mandr = 1, »+-, m, this has the
form

2 ei exp [(s: + s)t] + O(| ),
i
and thus contributes terms in the op.
Nonconstant polynomials gr(f) can well arise in the asyvmptotic de-
velopment in (11.10.11). For example, the last integral in (11.11.11} can
be written as

ft {ompr €Xp [Snpt(t — &) ] + kma(E — 8) Ju{t)u(l — w) dis

o

[}
= Fpgcar eXp (Smpaf) f exp [(2s1 — Sppa)ta] dly + v ee.

i
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If sny = 28, we thus obtain a term {exp {(sagf) = ¢ exp (2sg). If all
zeros of A(s) are simple and if no ez is an s, (that is, the sequences {s,}
and {sx} have no element in common}), then it can be shown that every gz
is independent of . In any cage, every p. (r = 2} is independent of £.*

If nothing is known about the solution % (¢} beyond what 13 stated in the
theorem, namely, that it is G(e—%), then it is not possible to determine
the coeflicients p.. However, if the numbers p, are known, then the func-
tiong gr{f) can be found by substituling the expression in (11.10.11) into
(11.10.6} and equating coefficients. To illustrate, let us suppose that
m = 1, and that

w(t) = pes* + qe 4 ofe?), (11.11.14)
1t is not hard to see that

u:(r’) — plslesn + 2q\.‘a‘1€28“ + O(e‘za;t)_
Substituting into {11.10.6) we get
pih{s)er + [qh(2s) + bplferen]et 4 o(e?) = 0,

Binee h{s) = 0, we get ¢ = —bpPe—1/h(2s), provided k(2s) = 0,
that is, provided 2s; is not a characteristie root. J{ A(2s) = 0, we must
replace g in (11.11.14) by a polynomial. More careful and detailed dis-
cussions of the statements in this paragraph can be found in the references
cited at the end of the chapter. It is also proved in these references that
any solution %{¢} of (11.10.8) which is o(1) as ¢ — ® is in fact O{e—1),
provided dw — /2 is not of the form 2&x for nonnegative integral k.

EXERCISES

1. (a) Ifbw > e, the zeros {s,} oceur in conjugate pairs (cf. Chapter 12),
and in particular s = &, p: = pr. Deduce that if py 5 0, the
distance beiweon successive zeros of «(f) tends to =/Im(s).

{(b) If 0 < bw < ¢7%, the zeros s} occur in conjugate pairs, except
that & and s; are real and negative. Deduce that if 5, = 0, the
#zeros of u(l) are bounded.

() I bw =¢1 & = —1/wis a double root, and the other roots oceur
in conjugate pairs with smaller real parts, Deduce that if ¢ = 0,
the zeros of w(£) are bounded.

(E. M. Wright, “A Non-linear Difference-differential Equation,” J. Reine Angew.
Math., Vol. 194, 1935, pp. B6-57. Also see the references in Chapler 12.)

* The torm £ exp (2af) obtained sbove would of course be regarded as ¢ exp (o)
rather than as part of pug exp (8npd).
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Consider the equation of (11.10.6) in the form
() = —ay{ez — D +ym] a>0 x>0,

with y(x) preseribed in —1 < x < 0. Show that (a) y{x) 2 —1 for
all x > O according as y(0) £ —1; (b) if y(0) < —1, then y{z) > —
as x — o, and y decreages steadily for x > 1; (¢) if 4(0) > —1, then
y(x} is bounded as £ — <, (This equation arose in an attempt by
Lord Cherwell to establish the prime number theorem by probahbilistic
means, The results given here are due to F. M. Wright, “A Non-lincar
Difference-dilferential Hauation, op. eil.)

Let 0 @ < x/2 There is o positive € such that if | y{z) | < & for

—1 <2 L0, theny—0asz — =,

e < 37724, 4 (0} > —1,theny - 0asx — o,
. M @ > =/2, there are sclutions with ¥(0) > —1 for which y does not

tend to zeroas x — a0,

. I y(z) is a solution of the nonlinear equation for aff real =, then y(x)

is an analytic function of #, regular in a strip of finite width enelosing
the real uxis in the complex z-plane.

If @ > 0 and y(0) > =1, then either y(x) and %' () are monotone
for large = and approach 0, or else y(z) osecillates about ¥ = 0 (in the
sense that y{x) assumes both positive and negative values for arbi-
trarily large ).

(3. Kakutani and L. Muarkus, “On the Nonlinear Difierence-dificrential Equation
yit) = |A — Byit — r)ly®),” Contributions fo the Theory of Nonlinear Oscitle-
fions, Vol. IV, Princeton University Press, Princeton, N. J., 1958, pp. 1-18.)

. Assume that y(z) oscillates, and that its zeros form a diserete set on

¢ < x < =. Then, for z sufliciently large, cach zero is simple. (Kaku-
tani and Markus, op. ¢it.)

Tet @ > 1/e and y(0) > —1. Then no solution y(x) approaches zero
monotonically a8  — =, (Kakutani and Markus, op. cif.)

{0 < a < l/eand y{0) > -1}, there are no oscillatory solutions for
which the interval between zeros of y(z) is af least one for all large =,
{Kakutani and Muarkus, op. cit.)

There exist noncenstant periodie solutions for all @ > =/2.

(. 3. Jones, Jr.,, “Asymptotic Bebavior and Periodic Solutionz of a Nonlinear
Differcntial-difference Eguaiion,” Proc. Nat. dead. Set. USA, Vol 47, 1981,
pp. B79-882.)
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12. Discuss the relation between the foregeing equation and the equation
w'(z) = 1 — exp [au(z — 1} ].
13. Discuss ihe equation

y'(z) = —ay(zx — Dlay()* + bylz) + 11
(G. 8. Jones, Jr., Contributions lo Nonlinear Differentinl Equations, forthcoming.)
14. Discuss the equation
Wt =kul) —ut — DIV —wl®)], >1,
under the condition
W't} = ku(t)(N — u(t)], 0<i <1,

(A, Shimbel, “Contributions to the Mathematiesl Biophysics of the Central

Nervous System with Special Reference to Tearning,” Bull. Math. Biophys.,

Vol. 12, 1950, pp. 241-275.)

15. Discuss the cquations
() = bx()[b: — ()] — bax(Dy (D),
y'(t) =ba(t — rhylt — r) — bay(8),
in the neighhorhood of the equilibrium points.
(P. J. Wangersky and W. J. Cunningham, “Time Lag in Prey-predation Popula-

tion Models,”” Feology, Val. 38, 1957, pp. 136-139.}

11.12. Another Stability Theorem

In this section, we shall prove the following stability theorem, which
may be considered ag an extension to nonlinear equations of theorems of
the Dini-Hukuhara type {(ef. §10.2).

Theorem 11.6. Suppose thai:
(a) every conttnuous solution of the Uinegr equation
age' (£) + b (£) 4+ biu(t — w) = 0, a # 0, (11.12.1)
18 bounded as t — w |
(b) f(i, w, v) is continuous in a region

N.t20, [l + o] <e; and (11.12.2)
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(c) ¢n the region N, the funclion f salisfies
w0 | <o {(ul + vy,

where $(¢) is ¢ continuous funclion saitsfying

f é(t) dt < . (11.12.3)
Then, provided
m, = max | g{t} | {11.12.4)
0gi<e

is sufficiently small, any continuous solution of the equalion
agt' (£ + bou () + bt —w) =fL,u(®), u{t — ), > w, (11.12.5)
with tndlial condition

u®) =g(t), 0<1<e, (11.12.6)

can be confinued over the tnterval 0 < t < «, and is bounded on this interval.
In fact, there are constanis ¢, ¢y such thot every solution w(t) for whichm, < ¢,
will satisfy

Fufty | < eamy, t > 0. (11.12.7)
Furthermore, suppose thot

(d) every continuous solution of the Wnear equation 4n (11.12.1) fends fo
2rOas i — >,

Then there are constants ey and M (& > 0) such that any continuous solution
w{d) of (11.12.5) and (11.12.6), for which m, < ¢, will safisfy

|3 (8) | < eamge™, t >0 {11.12.8)

Proof. Asnoted in §11.8, every solution uy(t) of the equation in (11.12.1)
can he represented in the form

wo(l) = aog(whh(t — @) — By fwg(tl)k(t — b ) dhy t> w, (11129)

where 1 (1) 