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DIFFERENTIAL-DIFFERENCE OPERATORS ASSOCIATED 
TO REFLECTION GROUPS 

CHARLES F. DUNKL 

ABSTRACT. There is a theory of spherical harmonics for measures invariant 
under a finite reflection group. The measures are products of powers of lin-
ear functions, whose zero-sets are the mirrors of the reflections in the group, 
times the rotation-invariant measure on the unit sphere in Rn. A commuta-
tive set of differential-difference operators, each homogeneous of degree -I, 
is the analogue of the set of first-order partial derivatives in the ordinary the-
ory of spherical harmonics. In the case of R2 and dihedral groups there are 
analogues of the Cauchy-Riemann equations which apply to Gegenbauer and 
Jacobi polynomial expansions. 

The analysis of orthogonality structures for polynomials in several variables 
is a problem of vast dimensions. This paper is part of an ongoing program to 
establish a workable theory for one particular class. The underlying structure 
is based on finite Coxeter groups: these are finite groups acting on Euclidean 
space, generated by reflections in the zero sets of a collection of linear functions 
(the "roots"); the weight functions for the orthogonality are products of powers 
of these linear functions restricted to the surface of the unit sphere. In addition, 
the weight function is required to be invariant under the action of the group. 
The resulting theory has strong similarities to the theory of spherical harmonics; 
this was established in previous papers of the author [3, 4, 5]. Most notably, 
a homogeneous polynomial is orthogonal to all polynomials of lower degree 
if and only if it is annihilated by a certain second-order differential-difference 
operator. Ordinary partial differentiation acts as an endomorphism on ordi-
nary harmonic functions; the use of such operators and their adjoints leads to 
recurrence formulas and orthogonal decompositions for harmonic polynomials. 

In this paper we construct a commutative set of first-order differential-
difference operators associated to the second-order operator previously men-
tioned. 
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168 C. F. DUNKL 

The main topics are the definition and the commutativity proof, the determi-
nation of the adjoints (the multivariable analogue of the three-term recurrence 
for one-variable orthogonal polynomials), and a study of the Cauchy-Riemann 
equations associated to dihedral groups. The latter topic includes conjugate 
series of Gegenbauer or Jacobi polynomial types. 

Here is an outline of the contents of each section: 
1. background on reflection groups and orthogonal polynomials, definition 

of the operators, commutativity, the Laplacian as a sum of squares; 
2. determination of the adjoints, a fundamental selfadjoint operator, the rela-

tion of its eigenvalues to the character table of the reflection groups, degenerate 
parameter values; 

3. the Cauchy-Riemann equations for a dihedral group, polynomials of 
Gegenbauer and Jacobi type. 

Some of the results of this paper were announced in a talk at ICM 86-
Berkeley. 

1. BACKGROUND AND FUNDAMENTAL RESULTS 

We begin with basic facts about reflections and the groups they generate. For 
a nonzero vector VERN define the reflection (Jv E O(N) (the orthogonal 
group) by 

2 x(Jv:= x - (2(x ,v)/Ivl )v, N xER , 

where (x, v) := "£~=1 x}v}' the inner product, and Ivl2 := (v, v) . Thus, v(Jv = 
-v and x(Jv = x if and only if (x, v) = O. Any set of reflections generates 
a subgroup of O(N), which is finite under certain conditions, established by 
Coxeter [I]. In this case such a group is called a finite reflection or Coxeter 
group. 

Suppose now that G is a Coxeter group with the set {(Ji: 1 ~ i ~ m} of 
reflections (the list of all reflections in G). Choose a set of vectors {Vi: 1 ~ 
i ~ m} c RN such that (Ji = (Jv, for 1 ~ i ~ m, and IVil = Iv}1 whenever 
(Ji '" (J) ((Ji is conjugate to (J) in G; this implies Vi W = ±v j for some W E G, 
since w-1(JvW = (Jvw for vi- 0). Next we choose positive parameters Ct i , 1 ~ 
i ~ m such that Ct i = Ct j whenever (Ji '" (Jj' (In purely algebraic formulas the 
positivity restriction can be dropped, but there are still excluded "degenerate" 
values, to be discussed in §2.) 

Define h(x) = n:l I(x, v)I"; ; a G-invariant function (we will use" h" as 
a short-hand notation for the collection of particular values of v j , Ct j ). 

Let the sphere S := {x E RN : Ixl = I} with normalized rotation-invariant 
measure dw. Let V' denote the gradient vector, and .1 := "£~1 (8/8x/ ' the 
Laplacian. 
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DIFFERENTIAL-DIFFERENCE OPERATORS !69 

1.1 Definition [5]. The h-Laplacian I1h is given by 

A f( ).= Af() ~ [2(V f(x), v) _I 12f(X) - f(xa)] 
u h x. u X + ~ a j ( ) v j 2. 

j=! x, Vj (x, v) 

It was shown in [5, Proposition 1.3] that I1h is an endomorphism on the space 
of polynomials and is homogeneous of degree - 2. In analogy to harmonic 
polynomials the key result is 

1.2 Theorem [5]. If p is a homogeneous polynomial, then 

Is pqh 2 dw = 0 

for all polynomials q with degree (q) < degree (p) if and only if I1h P = o. 
Polynomials in ker I1h are called h-harmonic. Continuing the analogy to 

(a/ax)11 = l1(a/ax) we construct a commutative set of first-order differential-
difference operators {~: 1 :$ i :$ N} such that I1h = L: i ~2 and I1h Tj = Tj l1h . 
Thus, each Tj is an endomorphism on the h-harmonic polynomials. (The 
functions we use in the sequel are mostly polynomial; but the formulas hold in 
the presence of adequate differentiability.) 

1.3 Definition. The h-gradient V h is given by 

m f(x) - f(xa) 
Vhf(x):= Vf(x) + La j ( ) vi" x ,v. j=! } 

When f is polynomial, then so is (f(x) - f(xa))/(x, v); these operators 
have been used in the Schubert calculus (see Hiller [6]) of Coxeter groups. 
Without loss of generality, we will assume IVjl = 1 for all j in the rest of 
this section. 

The group G acts on functions on RN by the right regular representa-
tion R(w)f(x) := f(xw) , (x E RN , W E G). The action of R on V h is 
Vh(R(w)f)(x) = (Vhf(xw))w-! ; the straightforward proof of this uses the 
fact that ajw = wai implies a i = a j . 

1.4 Definition. For u E RN with u :j:. 0 let Tu f := (Vhf, u) ; for 1 :$ i :$ N let 
TJ := (Vhf, e i ) where e i is the standard unit vector of index i, (0 ... 1 ... 0) . 

Before we prove commutativity we derive some identities needed in the 
proof. We let iii denote the difference operator, 

associated to the reflection ai E G. 
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The following identities are straightforward (identity (1.6) uses the fact, u-
u(Jj = 2(u, v)Vj): 

( 1.5) - - f( ) f(x) f(x(J) 
(J/(Jj x = (x,v/)(x,v) - (x,v/)(x,v) 

f(x(J) f(x(J/(Jj) 
I + -,------,---:---"-~ 

(x, v/)(x ,vj(J/) (x, v/)(x, vp) , 

and fJ2 = o· 
I ' 

(1.6) ("VfJjf(x) , u) - fJj("V f(x), u) 

= (2(vj , "V f(x(J)) - fJjf(x))(u, v) / (x, v). 

1.7 Proposition. Suppose B(x, y) is a bilinear form on RN such that 
B(x(Jv ,Y(Jv) = B(y, x) whenever v E span(x, y), and let W be a plane ro-
tation in G (that is, W is a product of two reflections and W =f. e, the identity), 
then: 

(1) ~{B(v/ ,v)Qf~j(x ,v/)(x ,vj ): (J/(Jj = w} = 0 (as a rational function 
in x); 

(2) ~{a/ajB(v/, v)fJ/fJj : (J/(Jj = w} = 0 (as an operator). 

Proof. Let E be the plane of W (the orthogonal complement of the fixed 
point set). Thus (J/(Jj = W implies v/' Vj E E. Let G, be the subgroup of 
G generated by {(J/: v/ E E}, (note (Jj E G, implies (Jj w(Jj = W -, ), and let 
m, be the cardinality of the set of reflections in G,. Denote the sum in (1) by 
s(x). We will show S(X(Jl) = s(x) for (Jl E G, ' hence that s is invariant under 
G,. 

Fix (Jl E G, and define the functions e(i), n(i) by (Jl(J/(Jl = (In(i) and v/(Jl = 
e(i)vn(i); thus e(i) = ±l, n is an involutory permutation, and e(n(i)) = e(i), 
for each i, 1::; i ::; m . 

Then 

{ aaB(v, v) } 
S(x(Jl) = L ( I j )( I j ): (J/(Jj = W 

x(Jl ,v/ x(Jl' Vj 

"" { B(vn(i) ,vnU)). -} 
= ~ an(i) anU) (x v (J ) (x v (J ) . (J n(i) (J nU) - W 

, n(l) l 'n(J) l 

_ "" { B(e(i)v/(Jl ,e(j)vPl) . _} 
- ~ a/aj (x, v/)(x, v)e(i)e(j)' (Jl(J/(JPl - W 

""{ B(v,v) } = ~ a/aj ( )( ) : (J/(Jj = (Jlw(Jl . x,v/ x, Vj 

We first replaced indices (i ,j) by (n(i) , n(j)) , then used an(i) = a/ and the 
hypothesis on B. Because G, acts on a plane, (J/(Jj = (Jlw(Jl = W -, if and only 
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if (JPi = W , and so the last sum is s(x). Finally 

s(x) II{(x .v): Vj E E} 

'7' 

is a polynomial of degree :::; m, - 2 and is alternating for G" hence must be 
o (see Coxeter and Moser [1, Chapter 9]). 

For part (2), we begin with identity (1.5) and consider separately the coeffi-
cients of f(x) , f(x(J,) and f(xw). The coefficient of f(x) is precisely s(x) 
from part (1). For a fixed (J, E G, ' the coefficient of f(x(J,) is 

o-/x,B(vi . v,) + 0fXjB(v,. v) 
(x. vi)(x. v,) (x. v,)(x. vp,) . 

where (Ji(J, = w = (J,(Jj' In terms of e, n as above, j = n(i) and the second 
term becomes 

(vx1C(i)B( v, . e(i)v i(J,) / ((x. v,)e(i) (x. v i)) = 0-lxiB( Vi • v,(J,) /( (x . v,) (x. v i)) . 

But v,(J, = -v, ' and so the required coefficient is zero. 
The coefficient of f(xw) is 

L {O!iO!jB(v i . v)/( (x. vi)(x . VPi)): (Ji(Jj = w}. 

For a fixed (Ji E G, there is a unique (Jj E G, with (Ji(Jj = w . Let (Jk = (Ji(Jj(Ji 
and vk = evpi' The (i. j)-term in the sum equals 

B(Vj(Ji' Vi(J) _ _ B(Vk . Vi) 
O!iO!j (x. v)(x. evk) - O!iO!k (x. vk)(x. Vi) . 

Further (Jk(Ji = w; thus the sum equals -s(x) from part (1). 0 

1.8 Corollary. Let B(x. y) satisfy the hypothesis of Proposition 1.7. then 

as an operator. 

m 

L O!iO!jB(vi · v)a/Jj = O. 
i ,j=' 

Proof. The terms in the sum with i = j are zero because each ai2 = O. The 
other terms are grouped together by the value of (Ji(Jj (a plane rotation in G). 
Each group of terms sums to zero by 1.7, part (2). 0 

1.9 Theorem. For nonzero u. VERN, Tu Tv = Tv Tu . 
Proof· Expand (TuTv - Tv Tu)f(x) = E, + E2 + E 3 , where 

E, = (V'(v ,V' f(x)) , u) - (V'(u. V' f(x)) . v) = 0, 
(ordinary partial derivatives) , 

m 
E2 = LO!j(v ,v)((V'ajf(x) .u) - aj(V'f(x) ,u)) 

j=' 
m 

- L O!j(u, v)( (V'ajf(x) . v) - aj(V' f(x) • v)). 
j=' 
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and 
m 

E3 = L cxicxjB(vi . v)fI/ijf(x). 
i .j=1 

with the form B(x.y):= (u.x)(v.y) - (u.y)(v.x). Now B satisfies the 
hypothesis of Corollary 1.8, and thus E3 = O. 

By formula (1.6), 
m 

E2 = Lcx/(v .v)(u.v) - (u.v)(v .v)) 
j=1 

x (2(vj . "V f(x(J)) - fIjf(x))/ (x. v) = O. 0 

1.10 Theorem. Let u l • u2 • ...• UN be an orthonormal basis of R N , then 
N 

LT~J = I1h · 
j=1 

Proof. For u i- 0 , 
m 

T~ f(x) = ("V ("V f(x), u) . u) + 2 L cxi(u. vi)(u. "V f(x))/(x. Vi) 
i=1 

i=1 
m 

- 2 L cxi(u, v i)( (u. "V f(x(J)) - (u. V)(Vi . "V f(X(Ji)))/ (x, v) 
i=1 
m 

+ L cxicxj(u. vi)(u. V)fIifIjf(x). 
i ,j=1 

This expansion uses identity (1.6), and the fact U + U(Ji = 2u - 2(u . V)Vi' Now 
sum T~ and use the Parseval identity L-,(u,. u)(u, . v) = (u. v) to obtain 

N m 

L T~f(x) = I1f(x) + L cxJ2(vi . "V f(x)) / (x. Vi) 
'=1 i=1 

2 - (f(x) - f(X(Ji))/(X. v) ) 
m 

- 2 L CX i( (Vi' "V f(X(Ji)) - (Vi' "V f(X(Ji)))/ (X. Vi) 
i=1 

i ,j 

The last sum is zero by Corollary 1.8 applied to the form B(x. y) = (X. y). 0 

1.11 Corollary. If p is an h-harmonic polynomial, then so is Tup, for u i- 0, 
UERN. 

The operators Ti provide a method for establishing identities holding among 
h-harmonic polynomials. The following problem arises: given an N -tuple of 
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polynomials (Pj)~=1 with TiPj = TjPi for each i, j and 2::~1 TiPi = 0, can 
one find an h-harmonic polynomial P with Pi = TiP, each i? We leave this 
for later work. 

2. ADJOINTS AND RELA TED OPERATORS 

We will determine the effect of Tt on the h-harmonic polynomials with 
respect to the inner product structure of L 2(S, h2 dO)). We will also study the 
positive operator 2::~1 Ti* Ti and its eigenvalues. 

Let Pn denote the space of h-harmonic polynomials which are homogeneous 
of degree n. By Theorem 1.2, Pn 1. Pm for n 1= m. Since TiPn c Pn- I we see 
that Ti* Pn c Pn+ I . It turns out that Ti* is close to being multiplication by Xi' 

For the rest of this section, let y:= 2::;:1 Q i ' the degree of h. 

2.1 Theorem. If f E Pn , then 

Ti* f(x) = (N + 2n + 2y)(xJ(x) - (N + 2n + 2y - 2)-llxI2TJ(x)). 

We proceed in several stages to prove this result. In the form 

xJ(x) = (N + 2n + 2y)-1 Ti* f(x) + (N + 2n + 2y - 2)-llxI2TJ(x) , 

this is an analogue of the three-term recurrence for orthogonal polynomials of 
one variable. 

2.2 Proposition. L1h(xJ(x)) = xiL1hf(x) + 2TJ(x) , 1 ~ i ~ N. 
Proof. By the product rules for L1 and V' we obtain 

L1h(xJ(x)) = XiL1f(x) + 2a8f 
'Xi 

~ [2(Vj , V' f)xi 2f(x)(V)i 2XJ(X) - (xa)J(xa)] 
+~Q + -lv·1 2 

. J (VJ ' X) (vJ. ,x) J (V. X) 
J=I J ' 

= x iL1hf (x) + 2TJ(x); 

in the last term 

and 
2 

Xi - (xa)i = 2(x, v)(v)dlvjl . 0 

2.3 Proposition. If f E Pn then 
-I 2 

xJ - (N + 2n + 2y - 2) Ixl TJ E Pn+1 . 
Proof. By Lemma 1.9 of [5], 

L1h(lxI 2TJ) = 4(n + y - 1 + N/2)TJ + IXI2L1hTJ. 

Thus 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 C. F. DUNKL 

when C has the appropriate value; since 

I1h TJ=Tjl1h f=O. 0 

2.4 Lemma. If f is a homogeneous polynomial of degree k, then 

( 8~(x) dw(x) = (N + k - 1) ( xJ(x) dw(x). h ~j h 
Proof. By the use of polar coordinates 

I g(x) dx = CN t r N - I dr ( g(rx) dw(x). 
Ixl$;1 10 is 

for some constant cN ' and each continuous function g on the ball. Set g(x) = 
(8f(x)/8x j)(1 -lxI2) and use integration by parts to obtain 

( 8f dw = All 8f(x) (1 -lxI2) dx 
is 8xj Ixl$;1 8Xj 

= -All f(x) n8 (1 -lxI2) dx 
Ixl$;1 uX j 

= 2AII xJ(x) dx = (2AI/A2) ( xJ(x) dw(x) . 
Ixl$;1 is 

where 

and 

( t k+N )-1 
A2 = CN 10 r dr 

thus 
2AI/A2 = N + k - 1. 0 

Proof of Theorem 2.1. Let f E Pn+ I' g E Pn ; then 

Is (Pjg + gTJ)h 2 dw 

because 

= { (f:g +g:f +2 f a j f (x)g(X){(V)j)) h(x)2 dw(x) is Xl· Xl" "I X • V}. 
}= 

-f aj(v)j 1 ((f(x)g(xa) + f(xa)g(x))/{x. v))h(x)2 dw(x) 
j=1 S 

= ( n8 (f(x)g(x)h(x)2) dw(x). is uX j 
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and the second integral is zero; indeed 

! f(x)g(xa) h(x)2 dw(x) = ! f(xa)g(x) h(xa/ dw(x) 
s (x,v) s (xaj,v) } 

= _! f(xa)g(x) h(X)2 dw(x) 
s (x, v) 

175 

(since vjaj = -Vj and h(X)2 is G-invariant). It is assumed here that each 
(l j ;::: 1 ; analytic continuation will allow (l j ;::: 0 . 

By the lemma, the above expression equals 

(N + 2y + 2n) Is xJ(x)g(X)h(X)2 dw(x). 

Rearrange the resulting identity to obtain 

Is (TJ)gh 2 dw = Is f((N + 2n + 2y)xig)h 2 dw - Is f(Tig)h 2 dw. 

The last term is zero since Tig E Pn- I .1 Pn+1 • By Proposition 2.3, 
-I 2 gi(X) := (N + 2n + 2y)(xig(X) - (N + 2n + 2y - 2) Ixl Tig(X)) 

is in Pn+ 1 and satisfies 

Is fgih2 dw = Is (TJ)gh 2 dw, 

(note Is f(x)lxI2Tig(x)h(x)2 dw(x) = 0). 0 

We now have a collection of selfadjoint operators leaving each Pn invariant, 
namely, the span of Tj* Tj and Tj Tj*; 1 ~ j ~ N. The problem of determining 
explicit eigenvector decompositions of such operators will be left for further 
research. 

One particular linear combination is of fundamental importance. 

2.5 Proposition. 
N N 

LTi*TJ(x) = (N + 2n + 2y - 2) LXiTJ(x) , 
i=1 i=1 

and 
N m 
LxJJ(x) = nf(x) + L (lj(f(x) - f(xa)) , 
i=1 j=l 

for f E Pn , n = 0 , 1 , 2 , ... . 

Proof. For f E Pn ' 

N N N 

L Tt TJ(x) = (N + 2n + 2y - 2) L xJJ(x) - clxl2 L Ti2 f(x) , 
i=l i=l i=l 

for some constant c; but f is h-harmonic and so L:i Ti2 f = o. 
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Further 
N N 8 

LxiTJ(x) = LXi8x f (x) 
i=1 i=1 I 

m N 

+ LOj(f(x) - f(xa)) LXi(v))(x ,v). 
j=1 i=1 

From examples one suspects that explicit formulas for recurrences, specific 
polynomials, squares of norms, etc., are rational functions of (° 1 ' ••• ,om) . 
It appears that the singularities correspond to zero eigenvalues of 2:;: 1 Tt Ti 
on Pn , with n ::::: 1. Those values of (° 1 , ••• ,om) corresponding to such 
an eigenvalue will be called degenerate values. From the scalar factor we see 
immediately that 2:~1 OJ = -n - N/2, for some n = 0,1,2, ... , specifies a 
set of degenerate values. 

The other degenerate values are related to the eigenvalues of the operator 
m 

Ahf(x) := L 0j(f(x) - f(xa)). 
j=1 

The right regular representation R of G on polynomials extends to one of the 
group algebra CG, which can be decomposed into irreducible homogeneous 
components. Let V be such a component of dimension k , with a basis {fj} ~= 1 

of polynomials such that 
k 

R(w)fj(x) = LfJx)Tij(W) , 15,j5,k, 
i=1 

so that W 1--+ (Tij(w)) is an irreducible representation of G. The element 
2:wEG Cw W E CG acts on V by 

R (~CwW) fj(x) = ~~(X) (~CwTij(W)) . 

By the underlying hypothesis on (0 1 ' ... ,om)' qJ := 2:7= 1 (0 je - ° jaj ) is a 
central element of CG. By Schur's lemma Ah = R( qJ) acts on V by scalar 
multiplication, say by A. E C. To find A., consider the trace of R( qJ) , indeed 

where 

m 

kA. = L 0j(k - x(a)) , 
j=1 

j 

the character of T. Thus A. = 2:~1 0j(1 - x(a)/k). Since aJ = e, the 
eigenvalues of T(a) must be ±1 , hence x(a) is real, and OJ::::: 0 for each j 
implies A. ::::: 0 . 
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2.6 Example. For the hyperoctahedral group W N on RN, the Weyl group of 
type B N ' the weight function is 

There are two conjugacy classes of reflections, one class of size N containing the 
sign-changes, (for example (XI ,x2 ' ... ,xN)al = (-XI ,x2 ' '" ,xN)), the other 
of size N(N - 1) containing transpositions (for example: (XI"'" x N )al2 = 
(X2 ,XI ,x3 "" ,xN) and (Xl'''' ,xN)a;2 = (-X2' -XI 'X3 '''' ,xN))· 

Recall that the irreducible characters X). of the symmetric group Sk on k 
letters are determined by partitions A; where A = (AI' A2 ' ... ) with AI 2: A2 2: 
... 2: Ak 2: 0, )"j E Z+, and 1)"1 := EAi = k. 

For any ordered pair of partitions (A, Il) with 1)"1 + IIlI = N there corre-
sponds an irreducible character XI). ,Il) of W N ; it is induced from the character 
(WI' w2) 1--+ X).('lD l )X/lD2)y(W2) on WI).I x Willi c WN , (where W 1--+ ill is the 
"sign-forgetting" homomorphism of Wk onto Sk' considered as the group of 
k x k permutation matrices, and y( w) is the product of the (-1) entries in 
the matrix w). 

Lusztig [7] gives this description, as well as the Poincare series counting the 
appearances of XI). ,Il) on spaces of homogeneous polynomials on RN . Here we 
only state the eigenvalues of Ah on any subspace on which XI). ,Il) is realized. 
By a formula of Young [9, p. 282] 

X().,Il)(a)/X().,Il)(e) = 1 - 211l1/N, 
and 

XI' .,,( ",,) j XI' .,ie ) ~ (~A/AI + 1 - 2;) + '1l'j(1' j + 1 - 2j)) j(N(N - 1)). 

The latter formula involves x).(a I2 )/x).(e) for characters of SI).I' (and similarly 
for Il). There is another informative expression: for a partition A let A.' be 
the associated partition, with transposed Ferrers diagram, then 

2.7 Proposition. The eigenvalues of Ah on the space of polynomials on which 
W N acts according to XI). ,Il) is 

211lla + 2P ( ( ~) - ~ ( ~ ) + ~ ( ~ ) - ~ (ii ) + ~ (~ ) ) , 
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3. THE DIHEDRAL GROUPS 

For reflection groups on R2, namely the dihedral groups, we use the fac-
torization !l.h = TI2 + T22 = (TI + iT2)(TI - iT2) to produce the analogue of 
the Cauchy-Riemann equations. Muckenhoupt and Stein [8] proved some deep 
results about conjugate series for Gegenbauer expansions, and Gasper in an un-
published note (from 1970, private communication) discussed similar problems 
for Jacobi polynomial series. 

Just as ordinary harmonic polynomials on R2 ~ C are linear combinations 
of analytic polynomials (in the kernel of 8/8z := ~(8/8x + i(8/8y))) and their 
conjugates, the h-harmonic polynomials are in the span of the kernels of TI ± 
iT2 ' although these two kernels need not be orthogonal. 

We will list the dihedral groups and the associated homogeneous polynomials 
in the kernel of TI + iT2. We will also determine the generalization of the 
formula (8/8z)zn = nzn-I in each case. 

3.1 Definition. For a reflection (dihedral) group G on R2 ~ C and associated 
weight function h, let T:= ~(TI+iT2) and T:= ~(TI-iT2)' (further notation: 
z = XI + iX2' 8/8z = ~((8/8xl) + i(8/8x2)) , (8/8z) = ~((8/8xl) - i(8/8x2)))· 
Also let K h denote the kernel of T. (We decline to introduce the term "h-
analytic"!) 

In complex terms the divided-difference terms are expressed as follows: 

3.2 Lemma. Let WEe, Iwi = 1, let v := (- 1m w, Re w) E R2; then for a 
polynomial f in x, or (z, z), 

! f(x) - f(x(Jv) (_ I . R ) _ f(z) - f(zw2) ~ 
2 () m W + le e W - _ 2 '" , 

X ,v z - zw 

where ~ = 1 for e = -1 and ~ = _w2 for e = 1, (terms in T, T respectively). 

The dihedral group Dn ' the group of symmetries of a regular n-gon, has one 
conjugacy class of reflections when n is odd, and two classes when n is even. 
By rotation of axes we can assume the real axis (x2 = 0) is one of the mirrors 
for G. Then 

is associated to D2k if 0:, P > 0, and Dk if 0: > 0, p = 0 . 
Fix k = 1 ,2 , ... and let w:= e7ti /k • By use of Lemma 3.2 and the factor-

izations 

k-I k-I 
k _k II ( - 2)) and z - z = z - zw k _k II( - 2)+1) Z + Z = Z - zw . 

)=0 )=0 
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We obtain the following formulas: 

(3.3) 

(3.4) 
ai k-I i() i( - 2i) k-I i() i( - 2i +l) T i(z) = -=- _ a'"' z - zw w2i _ P '"' z - zw W 2i+ l . 
az ~ z - zw2J ~ Z _ ZW2J+1 

J=O }=o 

By the method of partial fractions we obtain the following identities, used in 
the sequel: 

(3.5) 

(3.6) (t E C). 

Most of the work in describing Kh (the kernel of T) reduces to the case 
k = 1. 

3.7 Proposition. Let i(z) = g(zk) and C := zk , then 

Ti(z) = kzk-l (ag + ag(O - g(() + pg(C) - g(-()) , 
~ C-C C+C 

Ti(z)=kl- ' (al!..._ag(O-g(() +pg(C)-g(-()). ac C - C C + C 
Proof. Substitute g in formulas (3.3) and (3.4), note 

and use (3.5) and (3.6) to evaluate the resulting sums, with t = zlz, and 
z/(zw) respectively. 0 

We will show that if i(z) = g(zk) and T i = 0 then T(zl i(z)) = 0 for 
o :::; I :::; k - 1 ; this will allow the complete listing of homogeneous polynomials 
in K h . 

3.8 Lemma. 
k-l k-I 

- - 2 2' 2' 2+1 T(zi(z)) = zT i(z) - a L w J i(zw J) - pw L w J i(zw J ), 
i=O i=O 

ior any polynomial i. 
Proof. A typical term in T(zj(z)) is of the form 

wi (zj(z) - zwi j(zwi))/(z - zwi ) 

= zwi (/(z) - j(zwi))/(z - zwi ) + wi j(zwi ). 0 
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3.9 Proposition. Suppose T g( zk) = 0 then T (zl g( zk)) = 0 for 0 ::; I ::; k - 1 . 

Proof. Proceed by induction. Let f(z) = zl g(zk) with 0 ::; I ::; k - 2 and 
assume T f = 0; then 

k-I 
T( 1+1 (k)) Tf() ( (_k) _I + P _I ( _k)) ~ 2j(l+I) Z g Z = Z Z - ag Z Z wz g -z ~ w . 

j=O 

The latter sum is zero if 1 ::; I + 1 ::; k - 1 since w2 is a primitive k th root of 
unity. 0 

3.10 The group DI = Z2' Set k = l, P = 0 to obtain h(x) = x;. In polar 
coordinates the measure is (sin2 ot dO, and the orthogonal polynomials of 
degree n are obviously rnC:(cosO) , rn(sinO)C:~:(cosO) (see paragraph 4.1 in 
[5] for a detailed presentation), where C: denotes the Gegenbauer polynomial 
of index a and degree n. 

Some linear combination of these two must be in Kh (the kernel of T); 
indeed it is 

n (n + 2a a . . a+ I 0 ) r ~Cn (cos 0) + 1 sm 0 Cn_1 (COS ) . 

There is a more elegant expression using the Heisenberg polynomials [2], which 
are given by the generating function 

00 L tnc~y·t5)(Z) = (1 - tz)-Y(l - tZ)-t5 
n=O 

for y, c5 > O. Thus 

C (y,t5)( ) = ~ (Y)j(c5)n_j _j n-j 
n Z ~ "( _ ')' z z , . }. n }. }=o 

ZEC; 

and 

3.11 Proposition. For 

h(x) = x;, TC~a ,a+I)(z) = 0, n ~ 0, 

and 

C~","+I)(reie) = rn((n + 2a)/(2a))C:(cosO) 

+ irn (sin O)C:~: (cos 0) , 

in terms of Gegenbauer polynomials. 
Proof. It suffices to show that 

00 

T L tnC~a ,a+l)(z) = 0 (0 < t < 1, Izl ::; 1), 
n=O 
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Indeed, from the generating function 

T(1 - a)-a(1 - tz)-a-I = o:t(1 - tz)-a-\1 _ tz)-a-I 
-a -0-1 -a -a-I - 0:((1 - tz) (1 - tz) - (1 - tz) (1 - tz) )/(z - z) 

-a-I -0-1 =o:(l-tz) (l-tz) (t-(I-tz-l+tz)/(z-z))=O. 

The other claim comes from identity (10) on p. 704 of [2]. 0 

Since TTda ,a+I)(z) = 0 Tda ,a+l) must be a multiple of d a ,o+I)(Z) n ' n n-I . 
The following are obtained by straightforward computation using well-known 
formulas. 

(3.12) n ? 1 , 

(3.13) i 7Cn IC~a,a+I)(eio)12(sin2 B)" dB 

_ (20: + 1) n ( 1 1 ) 
- n! 2B 0: + 2 ' 2 ' (the beta function). 

3.14 The group D2m+ l • Set k = 2m + 1 and P = O. By Propositions 3.9 and 
3.11 the homogeneous polynomial in K h of degree (2m + l)n + I, 0:::;: I :::;: 2m 
is / C~a ,a+l) (z2m+I). The degenerate values (see Proposition 2.5 and its sequel) 
are easily shown to be 0: = -j/(2m + 1) and 0: = -j/2 for j = 1,2,3, .... 
Note that / C~a ,a+ I) (z2m+ I) is orthogonal to its conjugate only when 1 :::;: I :::;: 
2m, with respect to the measure (sin2(2m+l)Bt dB, in contrast to the ordinary 
case (0: = 0) . 

3.15 The group D2 • Set k = 1 and 0:, P > 0 . 

In polar coordinates the corresponding measure on the circle is 

(sin2 B)"(cos2 Bl dB = 2-a-P(I-cos2B)"(1 +cos2Bl dB. 

Let 

f 2n (z) := r2n p~a-I/2 ,P-I/2)(cos2B) 

+ (i/2)r2n(sin2B)p~~~1/2,P+I/2\cos2B), n ? 0, 

f 2n+1 (z) := r2n ( (n + 0: + t) (r cos B)p~a-I/2 ,P+I/2) (cos 2B) 

+i (n + P + t) (rsinB)p~a+I/2'P-I/2)(cos2B)) , 

where z = re iO (and cos2B = (z2 + z2)/(2zz) , etc.), and P~y,t5) denotes the 
Jacobi polynomial of index (y, 0) and degree n. Then f2n and f 2n+1 are 
(real-) homogeneous polynomials in z, z; clearly the real and imaginary parts 
comprise an orthogonal basis of polynomials for the given measure. Gasper 
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defined a version of the Cauchy-Riemann equations satisfied by J2n . By some 
tedious calculations. 

(3.16) 
(3.17) 

(3.18) 

and 

where 

When 

and 

m = 0, 1, ... , 

TJ2n = 2J2n _1 and TJ2n+1 = 2 (n + a + !) (n + P + !) J2n ' 

f T[ If (e io)1 2 dtL (8) = (a + !)n (P + ~)n , 
-T[ 2n o;,p n!(a+p+l)n 

a=O=p, 

J2n+1 (z) = (0) n+1 In!) i n+1 . 

3.19 The group D2m • Set k = m and a, p > O. By Proposition 3.9 the 
homogeneous polynomials in Kh are (with 0:::; 1 :::; m - 1 ): 

zl J2n (zm) , of degree 2nm + I; 
zl J2n+1 (zm) , of degree (2n + l)m + I. 

The degenerate values for D2m are a+ P = - j, a+ P = -jim, a = -1/2- j, 
P = -1/2 - j, for j = 1,2,3, .... 

3.20 The action of T. An easy computation is possible by use of some identities. 
Let (in the notation of (3.3) and (3.4)) 

k-I k-I 
2' 2' I 

'l' J(z) := a L J(zw 1) + P L J(zw 1+ ). 
j=O j=O 

By Proposition 2.5, if J is (real) homogeneous then 

(zT + zT)J(z) = (XI TI + x2T2)J(z) = (degJ + k(a + P))J(z) - 'l' J(z). 

Further, by an argument similar to that of Lemma 3.8, 

T(zJ(z)) = J(z) + zTJ(z) + 'l' J(z). 

Adding the two identities we obtain 

(3.21) T(zJ(z)) = (1 + degJ + k(a + P))J(z) - zT J(z). 
- k Now suppose Tg(z ) = 0 (as in Proposition 3.9), then 

T(zl g(zk)) = 0 
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for 0::::: I ::::: k - 1 , and 

T(zl g(zk)) = (l + k(a. + f3 + degg))zl-I g(zk) 

for 1 ::::: I ::::: k - I. The calculation of Tg(zk) reduces to the case k = 1 by 
use of Proposition 3.7. For example, on the group D2m 

Tf2n+ 1 (zm) = 2m (n + a. + !) (n + f3 + !) zm-I f 2n (zm) 

(in the notation of 3.15 and 3.19). 

3.22 Concluding remarks. There is a maximum principle for h-harmonic poly-
nomials (Theorem 2.10 of [5]); however, this does not seem to directly imply 
a maximum modulus principle for K h' We also leave for further research the 
determination of explicit kernels of Cauchy or conjugate Poisson type. 
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