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Abstract Hybrid systems are models for complex physical systems and are defined

as dynamical systems with interacting discrete transitions and continuous evolutions

along differential equations. With the goal of developing a theoretical and practical

foundation for deductive verification of hybrid systems, we introduce a dynamic logic

for hybrid programs, which is a program notation for hybrid systems. As a verification

technique that is suitable for automation, we introduce a free variable proof calculus

with a novel combination of real-valued free variables and Skolemisation for lifting

quantifier elimination for real arithmetic to dynamic logic. The calculus is composi-

tional, i.e., it reduces properties of hybrid programs to properties of their parts. Our

main result proves that this calculus axiomatises the transition behaviour of hybrid

systems completely relative to differential equations. In a case study with cooperating

traffic agents of the European Train Control System, we further show that our calculus

is well-suited for verifying realistic hybrid systems with parametric system dynamics.

Keywords dynamic logic · differential equations · sequent calculus · axiomatisation ·
automated theorem proving · verification of hybrid systems

1 Introduction

Ensuring correct functioning of complex physical systems is among the most challenging

and most important problems in computer science, mathematics, and engineering. In

addition to the underlying physical system dynamics, the behaviour of complex systems

is determined increasingly by computerised control and automatic analog or digital

decision-making, e.g., in aviation, railway, or automotive applications.

Hybrid Systems. As a common mathematical model for complex physical systems,

hybrid systems are dynamical systems [46] where the system state evolves over time

according to interacting laws of discrete and continuous dynamics [56,3,9,36,11,21].

Continuous dynamics is specified by differential equations. It results, e.g., from the
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accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v ≥ 0

z ≥ s

a :=−b

v ≤ 1

a := a+ 5

Fig. 1 Hybrid automaton for an (overly) simplified train control system

continuous movement of a train along the track (train position z evolves with velocity v

along the differential equation z′ = v where z′ is the time-derivative of z) or from

the continuous variation of its velocity over time (v′ = a with acceleration a). Other

behaviour can be modelled more naturally by discrete dynamics, for example, the

instantaneous change of control variables like the acceleration (e.g., the changing of a

by setting a :=−b with braking force b > 0) or change of status information in discrete

controllers. Both kinds of dynamics interact, e.g., when measurements of the continuous

state affect decisions of discrete controllers (the train switches to braking mode when v

is too high). Likewise, they interact when the resulting control choices take effect

by changing the control variables of the continuous dynamics (e.g., changing control

variable a in z′′ = a). The superposition of continuous dynamics with analog or discrete

control causes complex system behaviour, which can neither be verified by purely

continuous reasoning (because of the discontinuities caused by discrete transitions)

nor by considering discrete change in isolation (because safety depends on continuous

states).

Among several other models for hybrid systems [11], hybrid automata [36,3] are the

most widely used notation. They specify discrete and continuous dynamics in a graph,

see Fig. 1 for a (much too) simple train control example. Each node corresponds to

a continuous dynamical system and is decorated by its differential equation and an

invariant region specifying the maximum domain of evolution. In node brake of Fig. 1,

the differential equations z′ = v, v′ = a only apply within the invariant region v ≥ 0

(the train does not move backwards by braking). Edges specify the discrete switching

behaviour between the respective modes of continuous evolution. They can be decorated

with conditions (guards) that need to hold and with discrete state transformations

(jumps) that take instantaneous effect when the system follows the edge. For example,

the automaton in Fig. 1 can take an edge to leave node accel when train z passed

point s, set the acceleration to braking by a :=−b, and enter mode brake.

Model Checking. As a standard verification technique, model checking [24,15] has been

used successfully for verifying temporal logic properties [51,24,25,2] of finite-state ab-

stractions of automata-based transition structures by exhaustive state space explo-

ration [3,37,36,45]. The continuous state spaces of hybrid automata, however, do not

admit equivalent finite-state abstractions [36]. Because of this, model checkers for hy-

brid automata use various approximations [37,3,36,13,28,4,14,5,58,45] and are still

more successful in falsification than in verification. Furthermore, for hybrid systems

with symbolic parameters in the dynamics, correctness crucially depends on the free

parameters (e.g., b and s in Fig. 1). It is, however, quite difficult to determine cor-

responding symbolic parameter constraints from concrete values of a counterexample

trace produced by a model checker, especially if they rely on nonstructural state split-

ting [13,14,5,29]. Finally, in hybrid systems with nontrivial interaction of discrete and
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continuous dynamics, parameters also have a nontrivial impact on the system be-

haviour, leading to nonlinear parameter constraints and nonlinearities in the discrete

and continuous dynamics. Thus, standard model checking approaches [36,3,13,29] can-

not be used, as they require at most linear discrete dynamics.

Deductive Verification. Deductive approaches [7,8,38,35,34,60,20,21] have been used

for verifying systems by proofs instead of by state space exploration and, thus, do not

require finite-state abstractions. Davoren and Nerode [21] further argue that deductive

methods support formulas with free parameters. First-order logic, for instance, has

widely proven its power and flexibility in handling symbolic parameters as free or

quantified logical variables. However, first-order logic has no built-in means for referring

to state transitions, which are crucial for verifying dynamical systems where states

change over time.

In temporal logics [51,24,25,2], state transitions can be referred to using modal

operators. In deductive approaches, temporal logics have been used to prove validity

of formulas in calculi [21,60]. Valid formulas of temporal logic, however, only express

generic facts that are true for all systems, regardless of their actual behaviour. Hence,

the behaviour of a specific hybrid system would need to be characterised declaratively

with temporal formulas to obtain meaningful results. Then, however, equivalence of

declarative temporal representations and actual system operations needs to be proven

separately using other techniques.

Dynamic logic (DL) [52,34,35] is a successful approach for verifying infinite-state

discrete systems deductively [7,8,38,35,34]. Like model checking, DL does not need

declarative characterisations of system behaviour but can analyse the transition be-

haviour of actual operational system models directly. Yet, operational models are fully

internalised within DL-formulas, and DL is closed under logical operators. Within a

single specification and verification language, it combines operational system models

with means to talk about the states that are reachable by following system transitions.

DL provides parameterised modal operators [α] and 〈α〉 that refer to the states reach-

able by system α and can be placed in front of any formula. The formula [α]φ expresses

that all states reachable by system α satisfy formula φ. Likewise, 〈α〉φ expresses that

there is at least one state reachable by α for which φ holds. These modalities can be

used to express necessary or possible properties of the transition behaviour of α in a

natural way. They can be nested or combined propositionally. In first-order dynamic

logic with quantifiers, ∃p [α]〈β〉φ says that there is a choice of parameter p such that for

all possible behaviour of system α there is a reaction of system β that ensures φ. Like-

wise, ∃p ([α]φ ∧ [β]ψ) says that there is a choice of parameter p that makes both [α]φ

and [β]ψ true, simultaneously.

On the basis of first-order logic over the reals, which we use to describe safe regions

of hybrid systems and to quantify over parameter choices, we introduce a first-order

dynamic logic over the reals with modalities that directly quantify over the possi-

ble transition behaviour of hybrid systems. Since hybrid systems are subject to both

continuous evolution and discrete state change, we generalise dynamic logic so that

operational models α of hybrid systems can be used in modal formulas like [α]φ.

Compositional Verification. As a verification technology for our logic, we devise a com-

positional proof calculus for verifying properties of a hybrid system by proving proper-

ties of its parts. The calculus decomposes [α]φ symbolically into an equivalent formula,

e.g., [α1]φ1 ∧ [α2]φ2 about subsystems αi of α and subproperties φi of φ. With this, [α]φ
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can simply be verified by proving the [αi]φi separately and combining the results con-

junctively. In particular, synthesised parameter constraints carry over from the latter

to the former just by conjunction.

Unfortunately, hybrid automata are not suitably compositional for this purpose.

Their graph structures cannot be decomposed into subgraphs αi so that [α1]φ1 ∧ [α2]φ2

is equivalent to [α]φ, because of the dangling edges between the subgraphs αi. For in-

stance, the automaton in Fig. 1 cannot simply be verified by proving [accel]φ ∧ [brake]φ,

because the effects of edges between the nodes need to be taken into account.

Consequently, we do not impose an automaton structure on the system. Instead,

we introduce hybrid programs as a textual program notation for hybrid systems that

allows for flexible programmatic combinations of elementary discrete or continuous

transitions by structured control programs with a perfectly compositional semantics:

The semantics of a compound hybrid program is a simple function of the semantics of

its parts and does not further depend on automata graph structures. The resulting first-

order dynamic logic for hybrid programs is called differential dynamic logic (dL) and

constitutes a natural specification and verification logic for hybrid systems. With the

goal of developing a solid theoretical, practical, and applicable foundation for deductive

verification of hybrid systems by automated theorem proving, the focus of this paper

is a thorough analysis of the logic dL and its calculus.

Lifting Quantifier Elimination. When proving dL formulas, interacting hybrid dynam-

ics causes interactions of arithmetic quantifiers and dynamic modalities, which both

affect the values of symbols. For continuous evolutions, we have to prove formulas

like ∀t [α]x≥0 expressing that, for all durations t of some evolution in α, x ≥ 0 holds

after all executions of system α. Standard first-order quantifier rules [33,26,27] are

incomplete for handling these situations, because they are based on instantiation or

unification, which is already insufficient for proving the tautology ∀z (z2 ≥ 0). Unfor-

tunately, decision procedures for real arithmetic like real quantifier elimination [55,16]

cannot handle ∀t either, because of the modality [α]. The actual algebraic constraints

on t still depend on how the system variables evolve along the dynamics of α. This

effect inherently results from the interacting dynamics of hybrid systems, where the

duration t of a continuous evolution determines the resulting state and, hence, affects

all subsequent discrete or continuous evolutions in α. Thus, the effect of α first needs

to be analysed with respect to the arithmetical constraints it imposes on t for x ≥ 0

to hold, before the quantifier ∀t can be handled.

In our previous work [48], we used separate side deductions for reducing the un-

quantified kernel [α]x ≥ 0 to some arithmetic formula ψ before returning to ∀t ψ in the

main proof. This is easy to understand and can be performed without much change in

interactive theorem provers. It is, however, not necessarily well-suited for automation.

In this paper, we present an improved calculus that is suitable for automation and

combines deductive and arithmetical quantifier reasoning within a single proof. It in-

troduces real-valued free variables and Skolem terms to postpone quantifier elimination

and continue reasoning beyond the occurrence of a real quantifier in front of a modal-

ity. Later, however, our calculus reintroduces a corresponding quantifier into the proof

when its algebraic constraints have been discovered completely. For ∀t [α]x ≥ 0, our

calculus will, for instance, continue with the unquantified kernel [α]x ≥ 0 after replac-

ing t by a Skolem term s(x). Once all arithmetical constraints on s(x) are known, a

quantifier for s(x) is reintroduced and handled by real quantifier elimination [55,16].
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In a similar manner, our calculus combines quantifier elimination with deduction for

handling existential real quantifiers using real-valued free variables.

We introduce a calculus that makes this intuition formally precise. Crucially, we

exploit the relationship of Skolem terms and free variables in order to keep track of the

lost quantifier nesting to prohibit unsound rearrangements of quantifiers when they are

reintroduced. The corresponding calculus rules are perfectly natural and comply with

the prerequisites of quantifier elimination over the reals. Further, the dL semantics and

calculus are fully compositional so that properties of a hybrid program can be proven

by reduction to properties of its parts following a structural symbolic decomposition

within the dL calculus.

Related Work. Model checking approaches work by state space exploration and re-

quire [36] various abstractions or approximations [37,3,36,28,4,14,58,45] for hybrid

automata, including numerical approximations [13,5].

Beyond standard approaches [3,36,29] for linear systems with constant dynamics,

Lafferriere et al. [41] presented a decision procedure for o-minimal hybrid automata

and classes of linear dynamics with a homogeneous eigenstructure. They analyse the

discrete and continuous dynamics independently, which requires completely decoupled

dynamics with forgetful jumps, i.e., where the outcome of a jump is completely inde-

pendent of the continuous state.

Chutinan and Krogh [13] presented polyhedral approximations of hybrid automata

with polyhedral discrete dynamics, invariants, and initial state sets.

Fränzle [28] showed that reachability is decidable for specific classes of robust poly-

nomial hybrid automata, where the safe and unsafe states are sufficiently separate and

the safe region is bounded.

Asarin et al. [5] used piecewise linear numerical approximations in an approximate

reachability algorithm for continuous systems with known Lipschitz bounds.

Mysore et al. [45] showed decidability of bounded-time and bounded switching

reachability prefixes of semi-algebraic hybrid automata.

Because hybrid systems do not admit equivalent finite-state abstractions [36] and

due to general limits of numerical approximation [50], model checkers are still more

successful in falsification than in verification. To obtain a sound verification approach

and for improved handling of free parameters [21], we follow a symbolic logic-based

approach and support dL as a significantly more expressive specification language.

Finally, we introduce hybrid programs as a more uniform model for hybrid systems

that is amenable to compositional symbolic verification.

Zhou et al. [60] extended duration calculus with mathematical expressions in deriva-

tives of state variables. They use a multitude of calculus rules and a non-constructive

oracle that requires external mathematical reasoning about the notions of derivatives

and continuity.

Davoren and Nerode [20,21] presented a semantics of modal µ-calculus in hybrid

systems and examine topological aspects. They provided Hilbert-style calculi to prove

formulas that are valid for all hybrid systems simultaneously. With this, however, only

limited information can be obtained about a particular system: In propositional modal

logics, system behaviour needs to be axiomatised declaratively in terms of abstract

actions a, b, c of unknown effect.

Inspired by He [39], Zhou et al. [12] presented a hybrid variant of CSP as a language

for describing hybrid systems. They gave a semantics in extended duration calculus [60]

but no verification technique.
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Rönkkö et al. [53] extended guarded command programs with differential rela-

tions and gave a weakest-precondition semantics in higher-order logic with built-in

derivatives. Without providing a means for verification of this higher-order logic, this

approach is still limited to providing a notational variant of classical mathematics.

The strength of our logic primarily is that it is an expressive first-order dynamic

logic: It handles actual operational models of hybrid systems like a := a+ 5; z′′ = a in-

stead of abstract propositional actions of unknown effect. The advantage of our calculus

in comparison to others [60,20,21] is that it provides a constructive modular combi-

nation of arithmetic reasoning with reasoning about hybrid transitions and works by

structural decomposition. With this, our calculus can be used easily for verifying actual

operational hybrid system models, which is of considerable practical interest [36,11,13,

14,45,18,50,19]. It supports free parameters and first-order definable flows, which are

well-suited for verifying the coordination of train dynamics. First-order approximations

of more general flows can be used according to [4,50,46].

Manna et al. [43,40] and Ábrahám et al. [1] used theorem provers for checking

invariants of hybrid automata in STeP [43] or PVS [1], respectively. Their working

principle is, however, quite different from ours. Given a hybrid automaton and given a

global system invariant, they compile, in a single step, a verification condition express-

ing that the invariant is preserved under all transitions of the hybrid automaton. Hence,

hybrid aspects and transition structure vanish completely before the proof starts. All

that remains is a flat quantified mathematical formula. Which hybrid systems can be

verified with this approach in practice strongly depends on the general mathematical

proving capabilities of STeP and PVS, which typically require user interaction.

In contrast, we follow a fully symbolic approach using a genuine specification and

verification logic for hybrid systems. Our dynamic logic works deductively by symbolic

decomposition and preserves the transition structure during the proof, which simplifies

traceability of results considerably. Further, the structure in this symbolic decomposi-

tion can be exploited for deriving invariants or parametric constraints. Consequently,

in dL, invariants do not necessarily need to be given beforehand. Moreover, in prac-

tice, guiding quantifier elimination procedures along natural splitting possibilities of

the structural decomposition performed by the dL calculus turns out to be important

for successful automatic proof strategies [47].

Contributions. Our main conceptual contribution is the differential dynamic logic dL
for hybrid programs, which captures the logical quintessence of the dynamics of hybrid

systems succinctly. Our main practical contribution is a concise free variable calculus

for dL that axiomatises the transition behaviour of hybrid systems relative to differ-

ential equation solving. It is suitable for automated theorem proving and for verifying

hybrid interacting discrete and continuous dynamics compositionally. Our main the-

oretical contribution is that we prove the dL calculus to be complete relative to the

handling of differential equations. To the best of our knowledge, this is the first relative

completeness proof for a logic of hybrid systems, and even the first formal notion of

hybrid completeness. Our results fully align hybrid and continuous reasoning proof-

theoretically and show that hybrid systems with interacting repetitive discrete and

continuous evolutions can be verified whenever differential equations can. As an ap-

plied contribution, we further demonstrate that our logic and calculus can be used

successfully for verifying collision avoidance in realistic train control applications.

This paper extends our previous results [48] in various aspects. We generalise the

logic to support systems of differential equations instead of one-dimensional change.



7

We introduce a generalised free variable calculus that is significantly more suitable for

automated theorem proving than previous calculi, and we prove our augmented calculus

to be relatively complete. Finally, we extend our train case study to the general case

with free acceleration and derive parameter constraints that are required for safety.

Structure of this Paper. After introducing syntax and semantics of the differential

dynamic logic dL in Section 2, we introduce a free variable sequent calculus for dL in

Section 4 and prove soundness and relative completeness in Section 5. In Section 6,

we use our calculus to prove an inductive safety property of a train control system

presented in Section 3. We draw conclusions and discuss future work in Section 7.

2 Syntax and Semantics of Differential Dynamic Logic

In this section, we introduce the differential dynamic logic dL in which operational

models of hybrid systems are internalised as first-class citizens, so that correctness

statements about the transition behaviour of hybrid systems can be expressed as for-

mulas. As a basis, dL includes (nonlinear) real arithmetic for describing concepts like

safe regions of the state space. Further, dL supports real-valued quantifiers for quantify-

ing over the possible values of system parameters or durations of continuous evolutions.

For talking about the transition behaviour of hybrid systems, dL provides modal op-

erators like [α] or 〈α〉 that refer to the states reachable by following the transitions of

hybrid system α.

The logic dL is a first-order dynamic logic over the reals for hybrid programs, which

is a compositional program notation for hybrid systems. Hybrid programs provide:

Discrete jump sets. Discrete transitions are represented as instantaneous assignments

of values to state variables, which are, essentially, difference equations. They can

express resets a :=−b or adjustments of control variables like a := a+ 5, as occur-

ring in the discrete transformations attached to edges in hybrid automata, see

Fig. 1. Likewise, implicit discrete state changes like the changing of evolution

modes from one node of an automaton to the other can be expressed uniformly

as, e.g., q := brake, where variable q remembers the current node. To handle simul-

taneous changes of multiple variables, discrete jumps can be combined to sets of

jumps with simultaneous effect following corresponding techniques in the discrete

case [8]. For instance, the discrete jump set a := a+ 5, A := 2a2 expresses that a

is increased by 5 and, simultaneously, variable A is set to 2a2, which is evaluated

before a receives its new value.

Differential equation systems. Continuous variation in system dynamics is represented

using differential equation systems as evolution constraints. For example the dif-

ferential equation z′′ = −b describes deceleration and z′ = v, v′ = −b& v ≥ 0 ex-

presses that the evolution only applies as long as the speed is v ≥ 0, which rep-

resents mode brake of Fig. 1. This is an evolution along the differential equation

system z′ = v, v′ = −b that is restricted to remain within the region v ≥ 0, i.e., to

stop braking before v < 0. Such an evolution can stop at any time within v ≥ 0, it

could even continue with transient grazing along the border v = 0, but it is never

allowed to enter v < 0.

Control structure. Discrete and continuous transitions—represented as difference or

differential equations, respectively—can be combined to form a hybrid program
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with interacting hybrid dynamics using regular expression operators (∪, ∗, ;) of reg-

ular programs [35] as control structure. For example, q := accel ∪ z′′ = −b describes

a train controller that can either choose to switch to acceleration mode or brake by

the differential equation z′′ = −b, by a nondeterministic choice (∪). In conjunction

with other regular combinations, control constraints can be expressed using tests

like ?z ≥ s as guards for the system state.

With these operations, hybrid systems can be represented naturally as hybrid programs.

For example, Fig. 2 depicts a hybrid program rendition of the hybrid automaton in

Fig. 1. We represent each discrete and continuous transition of the automaton as a

sequence of statements with a nondeterministic choice between these transitions. Line 4

represents a continuous transition. It tests if the current node q is brake, and then

follows a differential equation system restricted to the invariant region v ≥ 0. Line 3

characterises a discrete transition of the automaton. It tests the guard z ≥ s when in

node accel, resets a :=−b, and then switches q to node brake. By the semantics of hybrid

automata [3,36], an automaton in node accel is only allowed to make a transition to

node brake if the invariant of brake is true when entering the node, which is expressed

by the additional test ?v ≥ 0. In order to obtain a fully compositional model, hybrid

programs make these implicit side-conditions explicit. Finally, the ∗-operator at the end

of Fig. 2 expresses that the transitions of a hybrid automaton can repeat indefinitely.

q := accel; /* initial mode is node accel */`
(?q = accel; z′ = v, v′ = a)

∪ (?q = accel ∧ z ≥ s; a :=−b; q := brake; ?v ≥ 0)
∪ (?q = brake; z′ = v, v′ = a& v ≥ 0)
∪ (?q = brake ∧ v ≤ 1; a := a+ 5; q := accel)

´∗
Fig. 2 Hybrid program rendition of hybrid automaton from Fig. 1

2.1 Syntax of Differential Dynamic Logic

The formulas of dL are built over a set V of real-valued logical variables and a (finite)

signature Σ of real-valued function and predicate symbols, with the usual function and

predicate symbols for real arithmetic, such as 0, 1,+,−, ·, /,=,≤, <,≥, >. System state

variables are represented as real-valued constant symbols of Σ. Unlike fixed symbols

like 1, state variables are flexible [8], i.e., their interpretation can change from state

to state during the execution of a hybrid program. Flexibility of symbols will be used

to represent the progression of system values along states over time during a hybrid

evolution. Rigid symbols like 1, instead, have the same value at all states.

There is no need to distinguish between discrete and continuous variables in dL. The

distinction between logical variables in V , which can be quantified, and state variables

in Σ, which can change their value by discrete jumps and differential equations in

modalities, is not strictly required. For instance, quantification of state variables is

definable using auxiliary logical variables. The distinction makes the semantics less

subtle, though. Our calculus assumes that V contains sufficiently many variables and Σ

contains additional Skolem function symbols, which are reserved for use by the calculus.

The set Trm(Σ,V ) of terms is defined as in classical first-order logic yielding poly-

nomial (or rational) expressions over V and over additional Skolem terms s(t1, . . . , tn)
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with terms ti. Our calculus only uses Skolem terms s(X1, . . . , Xn) with logical vari-

ables Xi ∈ V . The set of formulas of first-order logic is defined as usual, giving first-

order real arithmetic [55] augmented with Skolem terms. We will show the relation-

ship to standard first-order real arithmetic without Skolem terms in Lemma 2 of Sec-

tion 4.2.2.

2.1.1 Hybrid Programs

As uniform compositional models for hybrid systems, discrete and continuous transi-

tions can be combined by structured control programs.

Definition 1 (Hybrid programs) The set HP(Σ,V ) of hybrid programs, with typ-

ical elements α, β, is defined inductively as the smallest set such that

1. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ,V ) for 1 ≤ i ≤ n, then the discrete

jump set (x1 := θ1, . . . , xn := θn) ∈ HP(Σ,V ) is a hybrid program.

2. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ,V ) for 1 ≤ i ≤ n, then, x′i = θi is a

differential equation in which x′i represents the time-derivative of variable xi. If,

further, χ is a first-order formula, then (x′1 = θ1, . . . , x
′
n = θn &χ) ∈ HP(Σ,V ).

3. If χ is a first-order formula, then (?χ) ∈ HP(Σ,V ).

4. If α, β ∈ HP(Σ,V ), then (α ∪ β) ∈ HP(Σ,V ).

5. If α, β ∈ HP(Σ,V ), then (α;β) ∈ HP(Σ,V ).

6. If α ∈ HP(Σ,V ), then (α∗) ∈ HP(Σ,V ).

The effect of jump set x1 := θ1, . . . , xn := θn is to simultaneously change the interpre-

tations of the xi to the respective θi by performing a discrete jump in the state space.

In particular, the θi are evaluated before changing the value of any xj . The effect

of x′1 = θ1, . . . , x
′
n = θn &χ is an ongoing continuous evolution respecting the differ-

ential equation system x′1 = θ1, . . . , x
′
n = θn while remaining within the region χ. The

evolution is allowed to stop at any point in χ. It is, however, required to stop before

it leaves χ. For unconstrained evolutions, we write x′ = θ in place of x′ = θ& true.

For structural reasons, we expect both difference equations (discrete jump sets) and

differential equations to be given in explicit form, i.e., with the affected variable on

the left. The dL semantics allows arbitrary differential equations. To retain feasible

arithmetic, some of our calculus rules assume that, like in [3,28,45,36], the differential

equations have first-order definable flows or approximations. We assume that standard

techniques are used to determine corresponding solutions or approximations, e.g., [4,

41,50,46,59].

The test action ?χ is used to define conditions. Its semantics is that of a no-

op if χ is true in the current state; otherwise, like abort, it allows no transitions.

Note that, according to Def. 1, we only allow first-order formulas as tests. Instead, we

could allow rich tests, i.e., arbitrary dL formulas χ with nested modalities as tests ?χ

inside hybrid programs (and even in invariant regions χ of differential equations).

The calculus and our meta-results directly carry over to rich test dL. To simplify the

presentation, however, we refrain from allowing arbitrary dL formulas as tests, because

that requires simultaneous inductive handling of hybrid programs and dL formulas in

syntax, semantics, and completeness proofs, because dL formulas would then be allowed

to occur in hybrid programs and vice versa.

The non-deterministic choice α ∪ β, sequential composition α;β, and non-deterministic

repetition α∗ of programs are as usual but generalised to a semantics in hybrid systems.
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Choices α ∪ β are used to express behavioural alternatives between the transitions of α

and β. The sequential composition α;β says that the hybrid program β starts execut-

ing after α has finished (β never starts if α does not terminate). Observe that, like

repetitions, continuous evolutions within α can take longer or shorter, which already

causes uncountable nondeterminism. This nondeterminism is inherent in hybrid sys-

tems and as such reflected in hybrid programs. Repetition α∗ is used to express that the

hybrid process α repeats any number of times, including zero times. The control flow

operations of choice, sequential composition, and repetition can be combined with ?χ

to form all other control structures [35]. For instance, (?χ;α)∗; ?¬χ corresponds to a

while loop that repeats α while χ holds and only stops when χ ceases to hold.

Hybrid programs are designed as a minimal extension of conventional discrete pro-

grams. They characterise hybrid systems succinctly by adding continuous evolution

along differential equations as the only additional primitive operation to a regular ba-

sis of conventional discrete programs. To yield hybrid systems, their operations are

interpreted over the domain of real numbers. This gives rise to an elegant syntac-

tic hierarchy of discrete, continuous, and hybrid systems. Hybrid automata [36] can

be represented as hybrid programs using a straightforward generalisation of standard

program encodings of automata. The fragment of hybrid programs without differential

equations corresponds to conventional discrete programs generalised over the reals or to

discrete-time dynamical systems [9]. The fragment without discrete jumps corresponds

to switched continuous systems [9,11], whereas the fragment of differential equations

gives purely continuous dynamical systems [54]. Only the composition of mixed discrete

jumps and continuous evolutions gives rise to truly hybrid behaviour.

2.1.2 Formulas of Differential Dynamic Logic

The formulas of dL are defined as in first-order dynamic logic [35]. That is, they are built

using propositional connectives ¬,∧,∨,→,↔ and quantifiers ∀, ∃ (first-order part). In

addition, if φ is a dL formula and α a hybrid program, then [α]φ, 〈α〉φ are formulas

(dynamic part).

Definition 2 (Formulas) The set Fml(Σ,V ) of formulas, with typical elements φ, ψ,

is the smallest set such that

1. If p is a predicate symbol of arity n ≥ 0 and θi ∈ Trm(Σ,V ) for 1 ≤ i ≤ n, then

p(θ1, . . . , θn) ∈ Fml(Σ,V ).

2. If φ, ψ ∈ Fml(Σ,V ), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(Σ,V ).

3. If φ ∈ Fml(Σ,V ) and x ∈ V , then ∀xφ, ∃xφ ∈ Fml(Σ,V ).

4. If φ ∈ Fml(Σ,V ) and α ∈ HP(Σ,V ), then [α]φ, 〈α〉φ ∈ Fml(Σ,V ).

We consider φ↔ ψ as an abbreviation for (φ→ ψ) ∧ (ψ → φ) to simplify the calculus.

When train denotes the hybrid program in Fig. 2, the following dL formula states that

the train is able to leave region z < m when it starts in the same region:

z < m→ 〈train〉z ≥ m .

Note that, according to Def. 2, hybrid programs are fully internalised in dL and the

logic is closed. That is, modalities can be combined propositionally, by quantifiers, or

nested. For instance, [α]〈β〉x ≤ c says that, whatever α is doing, β can react in some way

to reach a controlled state where x is less than some critical value c. Dually, 〈β〉[α]x ≤ c
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expresses that β can stabilise x ≤ c, i.e., behave in such a way that x ≤ c remains

true no matter how α reacts. Accordingly, ∃p [α]x ≤ c says that there is a choice of

parameter p such that α remains in x ≤ c.
During our analysis, we assume differential equations and discrete transitions to be

well-defined. In particular, we assume that all divisions p/q are guarded by conditions

that ensure q 6= 0 as, otherwise, the system behaviour is not well-defined due to an un-

defined value at a singularity. It is simple but tedious to augment the semantics and the

calculus with corresponding side conditions to show that this is respected. For instance,

we assume that x := p/q is guarded by ?q 6= 0 and that continuous evolutions are re-

stricted such that the differential equations are well-defined as, e.g., x′ = p/q& q 6= 0.

Also see [8] for techniques how such exceptional behaviour can be handled by program

transformation while avoiding partial valuations in the semantics. In logical formulas,

partiality can be avoided by writing, e.g., p = c · q ∧ q 6= 0 rather than p/q = c.

2.2 Semantics of Differential Dynamic Logic

We define the semantics of dL as a Kripke semantics with worlds representing the

possible system states and with reachability along the hybrid transitions of the system

as accessibility relation. The interpretations of dL consist of states (worlds) that are

essentially first-order structures over the reals. In particular, real values are assigned

to state variables, possibly different values in each state. A potential behaviour of a

hybrid system corresponds to a succession of states that contain the observable values

of system variables during its hybrid evolution.

An interpretation I assigns functions and relations over the reals to the respective

(rigid) symbols in Σ. The function and predicate symbols of real arithmetic are inter-

preted as usual by I. A state is a map ν :Σfl → R; the set of all states is denoted by

Sta(Σ). Here, Σfl denotes the set of (flexible) state variables in Σ (they have arity 0).

Finally, an assignment of logical variables is a map η :V → R. It contains the values for

logical variables, which are not subject to change by modalities but only by quantifi-

cation. Observe that flexible symbols (which represent state variables), are allowed to

assume different interpretations in different states. Logical variable symbols, however,

are rigid in the sense that their value is determined by η alone and does not depend

on the state.

We will use ν[x 7→ d] to denote the modification of a state ν that agrees with ν

except for the interpretation of the symbol x ∈ Σfl, which is changed to d ∈ R. Similarly,

η[x 7→ d] agrees with the assignment η except on x ∈ V , which is assigned d ∈ R.

For terms and formulas, the valuation valI,η(ν, ·) is defined as usual for first-order

modal logic [27,35] with a distinction of rigid and flexible functions [8]. Modalities

parameterised by a hybrid program α follow the accessibility relation spanned by the

respective hybrid state transition relation ρI,η(α), which is simultaneously inductively

defined in Def. 5.

Definition 3 (Valuation of terms) The valuation of terms with respect to inter-

pretation I, assignment η, and state ν is defined by

1. valI,η(ν, x) = η(x) if x ∈ V is a logical variable.

2. valI,η(ν, a) = ν(a) if a ∈ Σ is a state variable (flexible function symbol of arity 0).

3. valI,η(ν, f(θ1, . . . , θn)) = I(f)
`
valI,η(ν, θ1), . . . , valI,η(ν, θn)

´
when f ∈ Σ is a rigid

function symbol of arity n ≥ 0.
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Definition 4 (Valuation of formulas) The valuation, valI,η(ν, ·), of formulas with

respect to interpretation I, assignment η, and state ν is defined as

1. valI,η(ν, p(θ1, . . . , θn)) = I(p)
`
valI,η(ν, θ1), . . . , valI,η(ν, θn)

´
2. valI,η(ν, φ ∧ ψ) = true iff valI,η(ν, φ) = true and valI,η(ν, ψ) = true. Accordingly

for ¬,∨,→
3. valI,η(ν, ∀xφ) = true iff valI,η[x 7→d](ν, φ) = true for all d ∈ R
4. valI,η(ν, ∃xφ) = true iff valI,η[x 7→d](ν, φ) = true for some d ∈ R
5. valI,η(ν, [α]φ) = true iff valI,η(ω, φ) = true for all states ω with (ν, ω) ∈ ρI,η(α)

6. valI,η(ν, 〈α〉φ) = true iff valI,η(ω, φ) = true for some state ω with (ν, ω) ∈ ρI,η(α)

Now we can define the transition semantics, ρI,η(α), of a hybrid program α. The

semantics of a hybrid program is captured by its hybrid state transition relation. For

discrete jumps this transition relation holds for pairs of states that respect the discrete

jump set. For continuous evolutions, the transition relation holds for pairs of states

that can be interconnected by a continuous flow respecting the differential equations

and invariant throughout the evolution.

Definition 5 (Transition semantics of hybrid programs) The valuation, ρI,η(α),

of a hybrid program α, is a transition relation on states. It specifies which state ω is

reachable from a state ν by operations of the hybrid program α and is defined as follows

1. (ν, ω) ∈ ρI,η(x1 := θ1, . . . , xn := θn) iff ν[x1 7→ valI,η(ν, θ1)] . . . [xn 7→ valI,η(ν, θn)]

equals state ω. Particularly, the value of other variables z 6∈ {x1, . . . , xn} remains

constant, i.e., valI,η(ν, z) = valI,η(ω, z).

2. (ν, ω) ∈ ρI,η(x′1 = θ1, . . . , x
′
n = θn &χ) iff there is a flow f of some duration r ≥ 0

from ν to ω along x′1 = θ1, . . . , x
′
n = θn &χ, i.e., a function f : [0, r]→ Sta(Σ) with

f(0) = ν, f(r) = ω respecting the differential equations: for each xi, valI,η(f(ζ), xi)

is continuous in ζ on [0, r] and has a derivative of value valI,η(f(ζ), θi) at each

time ζ ∈ (0, r). The value of other variables z 6∈ {x1, . . . , xn} remains constant, i.e.,

valI,η(f(ζ), z) = valI,η(ν, z) for all ζ ∈ [0, r]. Further, the invariant is respected,

i.e., valI,η(f(ζ), χ) = true for each ζ ∈ [0, r].

3. ρI,η(?χ) = {(ν, ν) : valI,η(ν, χ) = true}
4. ρI,η(α ∪ β) = ρI,η(α) ∪ ρI,η(β)

5. ρI,η(α;β) = {(ν, ω) : (ν, z) ∈ ρI,η(α), (z, ω) ∈ ρI,η(β) for a state z}
6. (ν, ω) ∈ ρI,η(α∗) iff there are an n ∈ N and states ν = ν0, . . . , νn = ω such that

(νi, νi+1) ∈ ρI,η(α) for all 0 ≤ i < n.

Note that the modifications of a discrete jump set are executed simultaneously in the

sense that all terms θi are evaluated in the initial state ν. For simplicity, we assume

the xi to be different, and refer to previous work [8] for a compatible semantics and

calculus handling concurrent modifications of the same xi.

For differential equations like x′ = θ, Def. 5 characterises transitions along a contin-

uous evolution respecting the differential equation, see Fig. 3a. A continuous transition

along x′ = θ is possible from ν to ω whenever there is a continuous flow f of some

duration r ≥ 0 connecting state ν with ω such that f gives a solution of the differential

equation x′ = θ. That is, its value is continuous on [0, r] and differentiable with the

value of θ as derivative on the open interval (0, r). Further, only variables subject to a

differential equation change during such a continuous transition. Similarly, the contin-

uous transitions of x′ = θ&χ with invariant region χ are those where f always resides

within χ during the whole evolution, see Fig. 3b.
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a.

t
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f(t)
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x′ = θ

b.

t

x
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f(t)

0 r

x′ = θ&χ

Fig. 3 Continuous flow along differential equation x′ = θ over time t

For the semantics of differential equations, derivatives are well-defined on the open

interval (0, r) as Sta(Σ) is isomorphic to some finite-dimensional real space spanned

by the variables of the differential equations (derivatives are not defined on the closed

interval [0, r] if r = 0). For the purpose of a differential equation system, states are

fully determined by an assignment of a real value to each occurring variable, which are

finitely many. Furthermore, the terms of dL are continuously differentiable on the open

domain where divisors are non-zero, because the zero set of divisors is closed. Hence,

solutions in dL are unique:

Lemma 1 (Uniqueness) Differential equations of dL have unique solutions, i.e., for

each differential equation system, each state ν and each duration r ≥ 0, there is at

most one flow f : [0, r]→ Sta(Σ) satisfying the conditions of Case 2 of Def. 5.

Proof Let x′1 = θ1, . . . , x
′
n = θn &χ be a differential equation system with invariant re-

gion χ. Using simple computations in the field of rational fractions, we can assume the

right-hand sides θi of the differential equations to be of the form pi/qi for polynomi-

als pi, qi. The set of points in real space where qi = 0 holds is closed. As a finite union

of closed sets, the set where q1 = 0 ∨ · · · ∨ qn = 0 holds is closed. Hence, the valuations

of the θi are continuously differentiable on the complement of the latter set, which

is open. Thus, as a consequence of Picard-Lindelöf’s theorem [59, Theorem 10.VI],

which is also known as the Cauchy-Lipschitz theorem, the solutions are unique on each

connected component of this open domain. Consequently, solutions are unique when

restricted to χ, which, by assumption, entails q1 6= 0 ∧ · · · ∧ qn 6= 0. ut

For control-feedback loops α with a discrete controller regulating a continuous plant,

transition structures involve all safety-critical states, hence, ψ → [α]φ is a natural ren-

dition of the safety property that φ holds at all states reachable by α from initial states

that satisfy ψ. Otherwise, dL can be augmented with temporal operators to refer to

intermediate states or nonterminating traces. The corresponding calculus is compatible

and reduces temporal properties to non-temporal properties at intermediate states of

the hybrid program [49].

3 Safety in the European Train Control System

As a case study to illustrate how dL can be used for specifying and verifying hybrid sys-

tems, we examine a scenario of cooperating traffic agents in the European Train Control

System (ETCS) [19]. The purpose of ETCS is to ensure that trains cannot crash into

other trains or pass open gates. Its secondary objective is to maximise throughput and

velocity without endangering safety. To achieve these objectives, ETCS discards the
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static partitioning of the track into fixed segments of mutually exclusive and physically

separated access by trains, which has been used traditionally. Instead, permission to

move is granted dynamically by decentralised Radio Block Controllers (RBC) depend-

ing on the current track situation and movement of other traffic agents within the

region of responsibility of the RBC, see Fig. 4.

Fig. 4 ETCS train coordination protocol using dynamic movement authorities

This moving block principle is achieved by dynamically giving a movement author-

ity (MA) to each traffic agent, within which it is obliged to remain. Before a train

moves into a part of the track for which it does not have MA, it asks the RBC for an

MA-extension (negotiation phase neg of Fig. 4). Depending on the MA that the RBC

has currently given to other traffic agents or gates, the RBC will grant this extension

and the train can move on. If the newly requested MA is still in possession of another

train which could occupy the track, or if the MA is still consumed by an open gate, the

RBC will deny the MA-extension such that the requesting train needs to reduce speed

or start braking in order to safely remain within its old MA. As the negotiation process

with the RBC can take time because of possibly unreliable wireless communication and

negotiation of the RBC with other agents, the train initiates negotiation well before

reaching the end of its MA. When the rear end of a train has safely left a part of a

track, the train can give that part of its MA back to RBC control such that it can be

used by other traffic agents.

In addition to increased flexibility and throughput of this moving block principle,

the underlying technical concept of movement authorities can be exploited for verifying

ETCS. It can be shown that a system of arbitrarily many trains, gates, and RBCs,

which communicate in the aforementioned manner, safely avoids collisions if each traffic

agent always resides within its MA under all circumstances, provided that the RBCs

grant MA mutually exclusive so that the MAs dynamically partition the track [18].

This way, verification of a system of unboundedly many traffic agents can be reduced

to an analysis of individual agents with respect to their specific MA.

For trains, speed supervision and automatic train protection are responsible for

locally controlling the movement of a train such that it always respects its MA [18].

Depending on the current driving situation, the train controller determines a point

SB (for start braking) upto which driving is safe, and adjusts its acceleration a in

accordance with SB. Before SB, speed can be regulated freely (to keep the desired

speed and throughput of a track profile). Beyond SB (correcting phase cor in Fig. 4),

the train starts braking in order to make sure it remains within its MA if the RBC

does not grant an extension in time.

We assume that an MA has been granted up to some track position, which we

call m, and the train is located at position z, heading with initial speed v towards m.
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We represent the point SB as the safety distance s relative to the end m of the MA (i.e.,

m− s = SB). In this situation, dL can analyse the following crucial safety property of

ETCS:

ψ → [(ctrl ; drive)∗] z ≤ m (1)

where ctrl ≡ (?m− z ≤ s; a :=−b) ∪ (?m− z ≥ s; a :=A)

drive ≡ τ := 0; (z′ = v, v′ = a, τ ′ = 1 & v ≥ 0 ∧ τ ≤ ε) .

It expresses that a train always remains within its MA, assuming some constraint ψ for

its parameters. The operational system model is a control-feedback loop of the digital

controller ctrl and the plant drive. In ctrl , the train controller corrects its acceleration

or brakes on the basis of the remaining distance (m−z). As a failsafe recovery manoeu-

vre [18], it applies brakes with force b if the remaining MA is less than s. Otherwise,

speed is regulated freely. For simplicity, we assume the train uses a fixed accelera-

tion A before having passed s. The verification is quite similar when the controller can

dynamically choose any acceleration a ≤ A instead.

After acceleration a has been set in ctrl , the train continues moving in drive. There,

the position z of the train evolves according to the system z′ = v, v′ = a (i.e., z′′ = a).

The evolution in drive stops when the speed v drops below zero (or earlier). Simulta-

neously, clock τ measures the duration of the current drive phase before the controllers

react to situation changes again. Clock τ is reset to zero when entering drive, con-

stantly evolves along τ ′ = 1, and is bound by the invariant region τ ≤ ε. The effect is

that a drive phase is interrupted for reassessing the driving situation after at most ε

seconds, and the ctrl ; drive feedback loop repeats. The corresponding transition struc-

ture ρI,η((ctrl ; drive)∗) is depicted in Fig. 5a. Figure 5b shows a possible run of the

train where speed regulation successively decreases velocity v because MA has not

been extended in time. Finally, observe that the invariant region v ≥ 0 ∧ τ ≤ ε needs

to be true at all times during continuous evolutions of drive, otherwise there is no

corresponding transition in ρI,η(drive). This not only restricts the maximum dura-

tion of drive, but also imposes a constraint on permitted initial states: The arithmetic

constraint v ≥ 0 expresses that the differential equation only applies for non-negative

speed. Hence, like in a test ?v ≥ 0, program drive allows no transitions when v is

initially less than 0. In that case, ρI,η((ctrl ; drive)∗) collapses to the trivial identity

transition with zero repetitions.

a.

∪

?m−z≤s

?m−z≥s

a :=−b

a :=
A

τ := 0 z′′ = a

τ ′ = 1
& τ≤ε

b.

t

z

v

Fig. 5 ETCS transition structure and speed regulation of train speed control

Here, we explicitly take into account possibly delayed controller reactions to bridge

the gap of continuous-time models and discrete-time control design. To get meaningful

results, we need to assume a maximum reaction delay ε as safety cannot otherwise be
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guaranteed. Polling cycles of sensors and digital controllers as well as latencies of actu-

ators like brakes contribute to ε. Instead of using specific estimates for ε for a particular

train, we accept ε as a fully symbolic parameter. Further, instead of manually choosing

specific values for the free parameters of (1) as in model checking approaches [19], we

will use our calculus to synthesise constraints on the relationship of parameters that are

required for a safe operation of train control. As they are of subordinate importance to

the cooperation layer of train control [18], we do not model weather conditions, slope

of track, or train mass.

Because of its nonlinear behaviour and nontrivial reset relations, system (1) is

beyond the modelling capabilities of linear hybrid automata [3,36,29] and beyond o-

minimal automata [41]. Previous approaches need linear flows [3,36], do not support the

coupled dynamics caused by nontrivial resets [41], require polyhedral initial sets and

discrete dynamics [13], only handle robust systems with bounded regions [28], although

parametric systems are not robust uniformly for all parameter choices, or they handle

only bounded-time safety for systems with bounded switching [45]. Finally, in addition

to general numerical limits [50], numerical approaches [13,5] quickly become intractable

due to the exponential impact of the number of variables.

4 Free Variable Calculus for Differential Dynamic Logic

In this section, we introduce a sequent calculus for verifying hybrid systems by prov-

ing corresponding dL formulas. The basic idea is to symbolically compute the effects

of hybrid programs and successively transform them into logical formulas describing

these effects by structural decomposition. The calculus consists of standard propo-

sitional rules, rules for dynamic modalities that are generalised to hybrid programs,

and novel quantifier rules that integrate real quantifier elimination (or, in fact, any

other quantifier elimination procedure) into the modal calculus using free variables

and Skolemisation.

4.1 Rules of the Calculus for Differential Dynamic Logic

A sequent is of the form Γ ` ∆, where the antecedent Γ and succedent ∆ are finite sets

of formulas. The semantics of Γ ` ∆ is that of the formula
V
φ∈Γ φ →

W
ψ∈∆ ψ. For

quantifier elimination rules, we make use of this fact by considering sequent Γ ` ∆ as

an abbreviation for the latter formula.

The dL calculus uses substitutions that take effect within formulas and programs.

The result of applying to φ the substitution that simultaneously replaces xi by θi
(for 1 ≤ i ≤ n) is defined as usual; it is denoted by φθ1x1 . . .

θn
xn . We assume α-conversion

for renaming as needed. In the dL calculus, only admissible substitutions are applicable,

which is crucial for soundness.

Definition 6 (Admissible substitution) An application of a substitution σ is ad-

missible if no replaced term t occurs in the scope of a quantifier or modality binding

a (logical or state) variable of t or of the replacement σ(t). A modality binds a state

variable x iff it contains a discrete jump set assigning to x (like x := θ) or a differential

equation containing x′ (like x′ = θ).
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Observe that, for soundness, the notion of bound variables can be any overapproxima-

tion of the set of variables that possibly change their value during a hybrid program.

In vacuous identity changes like x := x or x′ = 0, variable x will not really change its

value, but we still consider x as a bound variable for simplicity. For a hybrid program α,

we denote by ∀αφ the universal closure of formula φ with respect to all state variables

bound in α. Quantification over state variable x is definable as ∀X [x :=X]Φ using an

auxiliary logical variable X.

For handling quantifiers, we cannot use the standard rules [33,26,27], because these

are for uninterpreted first-order logic and (ultimately) work by instantiating quanti-

fiers, either eagerly as in ground tableaux or lazily by unification as in free variable

tableaux [33,26,27]. The basis of dL, instead, is first-order logic interpreted over the

reals or in the theory of real-closed fields [55]. A formula like ∃a∀x (x2 + a > 0) cannot

be proven by instantiation-based quantifier rules but is valid in the theory of real-closed

fields. Unfortunately, quantifier elimination (QE) over the reals [16,55], which is the

standard decision procedure for real arithmetic, cannot be applied to formulas with

modalities either. Hence, we introduce novel quantifier rules that integrate quantifier

elimination in a way that is compatible with dynamic modalities (as we illustrate in

Section 4.2).

Definition 7 (Quantifier elimination) A first-order theory admits quantifier elim-

ination if, to each formula φ, a quantifier-free formula QE(φ) can be associated effec-

tively that is equivalent (i.e., φ↔ QE(φ) is valid) and has no additional free variables

or function symbols. The operation QE is further assumed to evaluate ground formulas

(i.e., without variables), yielding a decision procedure for closed formulas of this theory.

As usual in sequent calculus rules—although the direction of entailment is from pre-

misses (above rule bar) to conclusion (below)—the order of reasoning is goal-directed :

Rules are applied in tableau-style, i.e., starting from the desired conclusion at the bot-

tom (goal) to the resulting premisses (sub-goals). To highlight the logical essence of the

dL calculus, Fig. 6 provides rule schemata to which the following definition associates

the calculus rules that are applicable in dL proofs. The calculus consists of proposi-

tional rules (P-rules: P1–P10), first-order quantifier rules (F-rules: F1–F6), rules for

dynamic modalities (D-rules: D1–D12), and global rules (G-rules: G1–G4).

Definition 8 (Rules) The rule schemata in Fig. 6 induce calculus rules by:

1. If
Φ1 ` Ψ1 . . . Φn ` Ψn

Φ0 ` Ψ0

is an instance of a P, G, or F1–F5 rule schema in Fig. 6, then

Γ, 〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ, 〈J 〉Φn ` 〈J 〉Ψn,∆
Γ, 〈J 〉Φ0 ` 〈J 〉Ψ0,∆

can be applied as a proof rule of the dL calculus, where Γ,∆ are arbitrary finite

sets of additional context formulas (including empty sets) and J is a discrete jump

set (including the empty set). Hence, the rule context Γ,∆ and prefix 〈J 〉 remain

unchanged during rule applications.

2. Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0
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(P1)
φ `
` ¬φ

(P2)
` φ
¬φ `

(P3)
` φ, ψ
` φ ∨ ψ

(P4)
φ ` ψ `
φ ∨ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
φ, ψ `
φ ∧ ψ `

(P7)
φ ` ψ
` φ→ ψ

(P8)
` φ ψ `
φ→ ψ `

(P9)
φ ` φ

(P10)
` φ φ `
`

(D1)
〈α〉〈β〉φ
〈α;β〉φ

(D2)
[α][β]φ

[α;β]φ

(D3)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D4)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D5)
φ ∨ 〈α〉〈α∗〉φ
〈α∗〉φ

(D6)
φ ∧ [α][α∗]φ

[α∗]φ

(D7)
χ ∧ ψ
〈?χ〉ψ

(D8)
χ→ ψ

[?χ]ψ

(D9)
φθ1x1 . . .

θn
xn

〈x1 := θ1, . . , xn := θn〉φ

(D10)
〈x1 := θ1, . . , xn := θn〉φ
[x1 := θ1, . . , xn := θn]φ

(D11)
∃t≥0

`
(∀0≤t̃≤t 〈St̃〉χ) ∧ 〈St〉φ

´
〈x′1 = θ1, . . , x′n = θn &χ〉φ

(D12)
∀t≥0

`
(∀0≤t̃≤t 〈St̃〉χ)→ 〈St〉φ

´
[x′1 = θ1, . . , x′n = θn &χ]φ

(F1)
` φ(s(X1, . . , Xn))

` ∀xφ(x)

(F2)
φ(s(X1, . . , Xn)) `
∃xφ(x) `

(F3)
` QE(∀X (Φ(X) ` Ψ(X)))

Φ(s(X1, . . , Xn)) ` Ψ(s(X1, . . , Xn))

(F4)
` φ(X)

` ∃xφ(x)

(F5)
φ(X) `
∀xφ(x) `

(F6)
` QE(∃X

V
i(Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

(G1)
` ∀α(φ→ ψ)

[α]φ ` [α]ψ
(G2)

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ
(G3)

` ∀α(φ→ [α]φ)

φ ` [α∗]φ

(G4)
` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

All substitutions need to be admissible, including the substitution that inserts s(X1, . . , Xn)
into φ(s(X1, . . , Xn)). In D11–D12, t and t̃ are fresh logical variables and 〈St〉 is the jump set
〈x1 := y1(t), . . , xn := yn(t)〉 with simultaneous solutions y1, . . , yn of the respective differential
equations with constant symbols xi as symbolic initial values. In G4, logical variable v does
not occur in α. In F1 and F2, s is a new Skolem function and X1, . . , Xn are all free logical
variables of ∀xφ(x). In F3–F5, X is a new logical variable. In F6, among all open branches,
the free logical variable X only occurs in the branches Φi ` Ψi. Finally, QE needs to be defined
for the formulas in F3 and F6. Especially, no Skolem dependencies on X occur in F6.

Fig. 6 Rule schemata of the free variable calculus for differential dynamic logic

is an instance of one of the symmetric rule schemata (D-rules) in Fig. 6, then

Γ ` 〈J 〉φ1,∆

Γ ` 〈J 〉φ0,∆
and

Γ, 〈J 〉φ1 ` ∆
Γ, 〈J 〉φ0 ` ∆

can both be applied as proof rules of the dL calculus, where Γ,∆ are arbitrary

finite sets of context formulas and J is a discrete jump set (including empty sets).

In particular, symmetric schemata yield equivalence transformations, because the

same rule applies in the antecedent as in the succedent.

3. Schema F6 applies to all goals containing X: If Φ1 ` Ψ1, . . , Φn ` Ψn is the list of

all open goals of the proof that contain free variable X, then an instance

` QE(∃X
V
i(Φi ` Ψi))

Φ1 ` Ψ1 . . . Φn ` Ψn

of rule schema F6 can be applied as a proof rule of the dL calculus.
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P-Rules. For propositional logic, standard rules P1–P9 with cut P10 are listed in Fig. 6.

They decompose the propositional structure of formulas. Rules P1 and P2 use simple

dualities caused by the implicative semantics of sequents. P3 uses that formulas are

combined disjunctively in succedents, P6 that they are conjunctive in antecedents. P4

and P5 split the proof into two cases, because conjuncts in the succedent can be proven

separately (P5) and, dually, disjuncts of the antecedent can be assumed separately

(P4). P7 and P8 can be derived from the equivalence of φ→ ψ and ¬φ ∨ ψ. The axiom

rule P9 closes a goal (there are no further sub-goals), because assumption φ in the

antecedent trivially entails φ in the succedent. Rule P10 is the cut rule that can be

used for case distinctions: The right sub-goal assumes any additional formula φ in the

antecedent that the left sub-goal shows in the succedent. We only use cuts in an orderly

fashion to derive simple rule dualities and to simplify metaproofs.

F-Rules. The quantifier rules F1 and F2 correspond to the liberalised δ+-rule of Hähnle

and Schmitt [33]. F4 and F5 resemble the usual γ-rule but, unlike in [26,27,33,30],

they cannot be applied twice because the original formula is removed (∃xφ(x) in F4).

The calculus still has a complete handling of quantifiers due to F3 and F6, which can

reconstruct and eliminate quantifiers once QE is applicable as the remaining constraints

are first-order in the respective variables. In the premiss of F3 and F6, we again consider

sequents Φ ` Ψ as abbreviations for formulas. For closed formulas, we do not need other

arithmetic rules. We defer illustrations and further discussion of F-rules to Section 4.2.

D-Rules. The rules for dynamic modalities transform a hybrid program into simpler

logical formulas. Rules D1–D8 are as in discrete dynamic logic [35,8]. Sequential com-

positions are proven using nested modalities (D1–D2), and nondeterministic choices

split into their alternatives (D3–D4). D5 and D6 are the usual iteration rules, which

partially unwind loops. Tests are proven by showing (D7) or assuming (D8) that the

test succeeds, because ?χ can only make a transition when χ holds true (Def. 5).

D9 uses simultaneous substitutions for handling discrete jump sets. To show that φ

is true after a discrete jump, D9 shows that φ has already been true before, when

replacing the xi by their new values θi in φ by an admissible substitution. Instead,

the discrete jump set can remain an unchanged prefix (J in Def. 8) for other dL rules

applied to φ, until the substitution for D9 is admissible. D10 uses that discrete jump

sets characterise a unique deterministic transition, hence, its premiss and conclusion

are equivalent. Assuming the presence of vacuous identity jumps a := a for variables a

that do not otherwise change (vacuous identity jumps can be added as they do not

change state), we can further use D9 to merge subsequent discrete jumps into a single

discrete jump set (see previous results [8] for a compatible calculus detailing jump set

merging, which works without the need to add vacuous identity jumps a := a):

` 〈z :=− b2 t
2 + V t, v := V + 1, a :=−b〉[β]φ

D9 ` 〈a :=−b, v := V 〉〈z := a
2 t

2 + vt, v := v + 1, a := a〉[β]φ
D10 ` 〈a :=−b, v := V 〉[z := a

2 t
2 + vt, v := v + 1, a := a][β]φ

D2 ` 〈a :=−b, v := V 〉[z := a
2 t

2 + vt, v := v + 1, a := a;β]φ

More generally, 〈x1 := θ1, . . . , xn := θn〉〈x1 := ϑ1, . . . , xn := ϑn〉φ can be merged by D9

to 〈x1 := ϑ1
θ1
x1 . . .

θn
xn , . . . , xn := ϑn

θ1
x1 . . .

θn
xn〉φ.

Given first-order definable flows for their differential equations, D11–D12 handle

continuous evolutions (see [4,41,50] for flow approximation and solution techniques).
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These flows are combined in the jump set St. Given a solution for the differential equa-

tion system with symbolic initial values x1, . . . , xn, continuous evolution along differ-

ential equations can be replaced by a discrete jump 〈St〉 with an additional quantifier

for the evolution time t. The effect of the constraint on χ is to restrict the continuous

evolution such that its solution St̃ remains in the invariant region χ at all intermediate

times t̃ ≤ t. This constraint simplifies to true if χ is true. Similar simplifications can

be made for convex invariant conditions (Section 6).

G-Rules. The G-rules are global rules. They depend on the truth of their premisses in

all states reachable by α, which is ensured by the universal closure ∀α with respect to

all bound state variables (Def. 6) of the respective hybrid program α. This universal

closure is required for soundness in the presence of contexts Γ,∆ (Def. 8) or of free

variables. The G-rules are given in a form that best displays their underlying logical

principles. The general pattern for applying G-rules to prove that the succedent of

their conclusion holds is to prove that both the antecedent of their conclusion and

their premiss holds.

G1–G2 are generalisation rules and can be used to strengthen postconditions: An-

tecedent [α]φ is sufficient for proving succedent [α]ψ when postcondition φ entails ψ

in all relevant states reachable by α, which are overapproximated by the universal

closure ∀α with respect to the bound variables of α. G3 is an induction schema with

inductive invariant φ. Similarly, G4 is a generalisation of Harel’s convergence rule [35]

to the hybrid case with decreasing variant ϕ. Both rules are given in a form that best

displays their underlying logical principles and similarity. G3 says that φ holds after

any number of repetitions of α, if it holds initially (antecedent) and, for all reachable

states (as overapproximated by ∀α), invariant φ remains true after one iteration of α

(premiss). G4 expresses that the variant ϕ(v) holds for some real number v ≤ 0 after

repeating α sufficiently often, if ϕ(v) holds for some real number at all (antecedent)

and, by premiss, decreases after every execution of α by 1 (or at least any other positive

real constant).

For practical verification, rules G3 or G4 can be combined with generalisation (G1–

G2) to prove a postcondition ψ of a loop α∗ by showing that (a) the antecedent of

the respective goals of G3 and G4 holds initially, that (b) their sub-goals hold, which

represent the induction step, and that (c) finally, the postcondition of the succedent

in their goals entails ψ. The corresponding variants of G3 and G4 are derived rules:

(G3’)
` φ ` ∀α(φ→ [α]φ) ` ∀α(φ→ ψ)

` [α∗]ψ

(G4’)
` ∃v ϕ(v) ` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1)) ` ∀α(∃v≤0ϕ(v)→ ψ)

` 〈α∗〉ψ

For instance, using a cut with φ→ [α∗]φ, rule G3’ can be derived from G3 and G1:

` ∀α(φ→ [α]φ)
G3φ ` [α∗]φ
P7 ` φ→ [α∗]φ

` φ
` ∀α(φ→ ψ)

G1[α∗]φ ` [α∗]ψ
P8φ→ [α∗]φ ` [α∗]ψ

P10 ` [α∗]ψ

The notions of derivations and proofs are standard, except that F6 produces mul-

tiple conclusions. Hence, we define derivations as finite acyclic graphs instead of trees:
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Definition 9 (Provability) A derivation is a finite acyclic graph labelled with se-

quents such that, for every node, the (set of) labels of its children must be the (set of)

premisses of an instance of one of the calculus rules (Def. 8) and the (set of) labels of

the parents of these children must be the (set of) conclusions of that rule instance. A

formula ψ is provable from a set Φ of formulas, denoted by Φ `dL ψ, iff there is a finite

subset Φ0 ⊆ Φ for which the sequent Φ0 ` ψ is derivable, i.e., there is a derivation with

a single root (i.e., node without parents) labelled Φ0 ` ψ.

4.2 Deduction Modulo with Invertible Quantifiers and Real Quantifier Elimination

The F-rules lift quantifier elimination to dL by following a generalised deduction modulo

approach. They integrate decision procedures, e.g., for real quantifier elimination as a

background prover [6] into the deductive proof system. Yet, unlike in the approaches

of Dowek et al. [23] and Tinelli [57], the information given to the background prover is

not restricted to ground formulas [57] or atomic formulas [23]. Further, real quantifier

elimination is quite different from uninterpreted logic [33,26,30] in that the resulting

formulas are not obtained by instantiation but by intricate arithmetic recombination.

The F-rules can use any theory that admits quantifier elimination (see Def. 7) and has

a decidable ground theory, for instance, the first-order theory of real arithmetic (i.e.,

the theory of real-closed fields [55,16]). A formula of real arithmetic is a first-order

formula with +,−, ·, /,=,≤, <,≥, > as the only function or predicate symbols besides

constant symbols of Σ and logical variables of V .

Integrating quantifier elimination to deal with statements about real quantities

is quite challenging in the presence of modalities that influence the value of flexible

symbols. In principle, quantifier elimination can be used to handle quantified con-

straints as arising for continuous evolutions. In dL, however, real quantifiers interact

with modalities containing further discrete or continuous transitions, which is an ef-

fect that is inherent in the interacting nature of hybrid systems. A hybrid formula

like ∃z 〈z′′ = −b; ?m− z ≥ s; z′′ = 0〉m− z < s is not first-order, hence quantifier elim-

ination cannot be applied. Even more so, the effect of a modality depends on the solu-

tions of the differential equations contained therein. For instance, it is hard to know in

advance, which first-order constraints need to be solved by QE for the above formula.

To find out, how z evolves from ∃z to m−z < s, the system dynamics needs to be taken

into account (similar for repetitions). Hence, our calculus first unwraps the first-order

structure before applying QE to the resulting arithmetic formulas.

4.2.1 Lifting Quantifier Elimination by Invertible Quantifier Rules

The purpose of the F-rules is to postpone QE until the actual arithmetic constraints

become apparent. The idea is that F1,F2,F4, and F5 temporarily remove quantifiers

by introducing new auxiliary symbols for quantified variables such that the proof can

be continued beyond the occurrence of the quantifier to further analyse the modalities

contained therein. Later, when the actual first-order constraints for the auxiliary sym-

bol have been discovered, the corresponding quantifier can be reintroduced (F3, F6)

and quantifier elimination QE is applied to reduce the sequents equivalently to a sim-

pler formula with less (distinct) symbols. In F4–F6, the respective auxiliary symbols

are free logical variables. In F1–F3, Skolem function terms are used instead for reasons

that are crucial for soundness and will be illustrated in the sequel. In this context,
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v ≥ 0, z < m ` v2 > 2b(m− z)
P7,P6 ` v ≥ 0 ∧ z < m→ v2 > 2b(m− z)

F6 v ≥ 0, z < m ` T ≥ 0

v ≥ 0, z < m ` − b
2
T 2 + vT + z > m

D9v ≥ 0, z < m ` 〈z :=− b
2
T 2 + vT + z〉z > m

P5 v ≥ 0, z < m ` T ≥ 0 ∧ 〈z :=− b
2
T 2 + vT + z〉z > m

F4 v ≥ 0, z < m ` ∃t≥0 〈z :=− b
2
t2 + vt+ z〉z > m

D11 v ≥ 0, z < m ` 〈z′ = v, v′ = −b〉z > m
P7,P6 ` v ≥ 0 ∧ z < m→ 〈z′ = v, v′ = −b〉z > m

Fig. 7 Deduction modulo for analysis of MA-violation in braking mode

we think of free logical variables as being introduced by γ-rules (F4 and F5), hence

implicitly existentially quantified.

To illustrate how quantifier and dynamic rules of dL interact to combine arithmetic

with dynamic reasoning in hybrid systems, we analyse the braking behaviour in train

control. The proof in Fig. 7 can be used to analyse whether a train can violate its MA

although it is braking. As the proof reveals, the answer depends on the initial velocity v.

For notational convenience, we use the simplified D11 rule, as the differential equation

is not restricted to an invariant region. Rule F4 introduces a new free variable T for

the quantified variable t to postpone QE. Later, when F6 is applied in Fig. 7, the

conjunction of its two goals can be handled by QE and simplification, yielding the

resulting sub-goal:

QE
`
∃T ((v ≥ 0 ∧ z < m→ T ≥ 0) ∧ (v ≥ 0 ∧ z < m→ − b

2
T 2 + vT + z > m))

´
≡ v ≥ 0 ∧ z < m → v2 > 2b(m− z) .

The open branch with this formula reveals the speed limit and can be used to synthe-

sise a corresponding parameter constraint. When v2 > 2b(m− z) holds initially, m can

be violated even in braking mode, as the velocity exceeds the braking power. Similarly,

v2 ≤ 2b(m− z) guarantees that m can be respected by appropriate braking. The con-

straint so discovered thus forms a controllability constraint of ETCS, i.e., a constraint

that characterises from which states control choices exist that guarantee safety. It is

essentially equivalent to [z′′ = −b]z ≤ m and to ∃a (−b ≤ a ≤ A ∧ [z′′ = a]z ≤ m).

4.2.2 Admissibility in Invertible Quantifier Rules

The requirement that substitutions in F3 are admissible implies that no occurrence

of s(X1, . . . , Xn) is within the scope of a quantifier for any of these Xi. This prevents

F3 from rearranging the order of quantifiers from ∃Xi ∀s to the weaker ∀s∃Xi , which

would be unsound, because it is not sufficient to show the weak sub-goal ∀s∃Xi in

order to prove the strong statement ∃Xi ∀s saying that the same Xi works for all s.

For the moment, suppose the rules did not contain QE. The requirement for

admissible substitutions (Def. 6) ensures that the proof attempt of an invalid for-

mula in Fig. 8a cannot close in the dL calculus. At the indicated position, F3, which

would unsoundly invert the quantifier order to ∀S ∃X , cannot be applied: In F3,

the substitution inserting s(X) gives ∃Y (2Y + 1 < s(X)) by α-renaming, instead of

∃X (2X + 1 < s(X)). Thus, F3 is not applicable, because the quantified formula is not

of the form Ψ(s(X))
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F3 is not applicable
` QE(∃X (2X + 1 < s(X)))

F6 ` 2X + 1 < s(X)
D9 ` 〈x := 2X + 1〉(x < s(X))
F1 ` ∀y 〈x := 2X + 1〉(x < y)
F4 ` ∃x∀y 〈x := 2x+ 1〉(x < y)

`

falsez }| {
QE (∃X QE(∀s (2X + 1 < s)))

F6 ` QE(∀s (2X + 1 < s))
F3 ` 2X + 1 < s(X)
D9 ` 〈x := 2X + 1〉(x < s(X))
F1 ` ∀y 〈x := 2X + 1〉(x < y)
F4 ` ∃x∀y 〈x := 2x+ 1〉(x < y)

a. Wrong rearrangement attempt b. Correct reintroduction order

Fig. 8 Deduction modulo with invertible quantifiers

Now, we consider what happens in the presence of QE. The purpose of QE is to

(equivalently) remove quantifiers like ∃X . Thus it is no longer obvious that the ad-

missibility argument applies, because the blocking variable X would have disappeared

after successful quantifier elimination. However, quantifier elimination over the reals is

defined in the first-order theory of real arithmetic [55,16]. Yet, when eliminating X in

Fig. 8a, the Skolem term s(X) is no term of real arithmetic, as, unlike that of +, the

interpretation of s is arbitrary. The truth value of ∃X (2X + 1 < s(X)) depends on the

interpretation of s. If I(s) is a constant function, the formula is true, if I(s)(a) = 2a,

it is false. In general, such cases cannot be distinguished without quantifiers. Thus, in

the presence of uninterpreted function terms, real arithmetic does not generally admit

quantifier elimination. Consequently, F6 and F3 are only applicable if QE is defined.

Yet, QE can be lifted to formulas with Skolem functions when these are instances of

real arithmetic formulas:

Lemma 2 (Quantifier elimination lifting) Quantifier elimination can be lifted to

instances of formulas of first-order theories that admit quantifier elimination, i.e., to

formulas that result from the base theory by substitution.

Proof Let formula φ be an instance of ψ, with ψ being a formula of the base the-

ory, i.e., φ is ψθ1z1 . . .
θn
zn for some variables zi and arbitrary terms θi. As QE is defined

for the base theory, let QE(ψ) be the quantifier-free formula belonging to ψ accord-

ing to Def. 7. Then QE (ψ)θ1z1 . . .
θn
zn satisfies the requirements of Def. 7 for φ, because

� ψθ1z1 . . .
θn
zn ↔ QE (ψ)θ1z1 . . .

θn
zn : For F defined as ψ ↔ QE(ψ), we have that � F implies

� F θ1z1 . . .
θn
zn by a standard consequence of the substitution lemma. ut

By Lemma 2, QE is defined in the presence of Skolem terms that do not depend

on quantified variables, e.g., for ∃X (2X + 1 < t(Y,Z)) which is an instance of the

form (∃X (2X + 1 < z))t(Y,Z)
z . However, QE is not defined in the premiss of F6 when

Skolem-dependencies on X occur. In Fig. 8a, ∃X (2X + 1 < s(X)) is no instance of

first-order real arithmetic, because, by α-renaming, (∃X (2X + 1 < z))s(X)
z yields a

different formula ∃Y (2Y + 1 < s(X)). An occurrence of s(X), which corresponds to

a quantifier nesting of ∃X ∀s , thus requires s(X) to be eliminated by F3 before F6

can eliminate X, see Fig. 8b. Hence, inner universal quantifiers are handled first and

unsound quantifier rearrangements are prevented even in the presence of QE.

Finally observe that F3 and F6 do not require quantifiers to be eliminated in the

same order in which they occurred in the original formula. The elimination order within

homogeneous quantifier blocks like ∀x1 ∀x2 is not restricted as there are no Skolem

dependencies among the corresponding auxiliary Skolem terms. Yet, eliminating such
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a quantifier block is sound in any order (accordingly for ∃x1 ∃x2 ). Similarly, F6 and

F3 could interchange the order of ∀x ∃y to the stronger ∃y ∀x, because the resulting

Skolem term s for x in the former formula does not depend on y. In this direction,

however, the interchange is sound, as it amounts to proving a stronger statement.

4.2.3 Quantifier Elimination and Modalities

Quantifier elimination over the first-order theory of reals cannot handle modal formulas.

Hence, the dL calculus first reduces modalities to first-order constraints before applying

QE. Yet, this is not necessary for all modalities. The modal subformula in the following

example does not any impose constraints on X but its truth value only determines

which first-order constraints are imposed on X:

QE(∃X
`
X < 0 ∧

`
(〈y := 2y + 1〉y > 0)→ X > y

´´
) ≡ (〈y := 2y + 1〉y > 0)→ y < 0 .

Modal formulas not containing elimination variable X can be handled by propositional

abstraction in QE and remain unchanged. Syntactically, the reason for this is that dL
rule applications on modal formulas that do not contain X will never produce formulas

which do. The semantical reason for the same fact is a generalisation of the coincidence

lemma to dL, which says that values of variables that do not occur will neither affect

the transition structure of a hybrid program nor the truth value of formulas.

Lemma 3 (Coincidence) If the interpretations (and assignments and states, respec-

tively) I, η, ν and J, ε, ω agree on all symbols that occur free in the formula φ, then

valI,η(ν, φ) = valJ,ε(ω, φ).

Proof The proof is by a simple structural induction using the definition of valI,η(ν, ·)
and ρI,η(·) in Def. 3–5. ut

4.2.4 Global Invertible Quantifier Rules

Rules F3 and F6 display an asymmetry. While F3 works locally on a branch, F6 needs to

respect all branches that contain X. The reason for this is that branches are implicitly

combined conjunctively in sequent calculus, as all branches have to close simultaneously

for a proof to succeed (Def. 9). Universal quantifiers can be handled separately for

conjunctions by ∀x (φ ∧ ψ) ≡ ∀xφ ∧ ∀xψ. Existential quantifiers, however, can only

be dealt with separately for disjunctions but not for conjunctions. In calculi with a

disjunctive proof structure, the roles of F3 and F6 would be interchanged but the

phenomenon remains.

Rule F6 can be applied to the full proof (i.e., all open goals) like a global closing

substitution in the tableau calculus [26]. By Lemma 3 it only needs to consider the set

of all open goals Φi ` Ψi that actually contain X. F6 resembles global closing substi-

tutions in uninterpreted free variable tableaux [30]. Both avoid the backtracking over

closing substitutions that local closing substitutions require. Unlike closing substitu-

tions, however, F6 uses the fixed semantics of function and predicate symbols of real

arithmetic such that variables can already be eliminated equivalently by QE before the

proof completes. Applying F3 or F6 early does not necessarily close the proof. Instead,

equivalent constraints on the remaining variables will be revealed, which can simplify

the proof or help deriving parametric constraints or invariants.
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5 Soundness and Completeness

In this section, we prove that the dL calculus is a sound and complete axiomatisation

of the transition behaviour of hybrid systems relative to differential equations.

5.1 Soundness

We prove that a successful deduction in the dL calculus always produces correct verifi-

cation results about hybrid systems: The dL calculus is sound, i.e., all provable (closed)

formulas are valid in all states of all interpretations. To reflect the interaction of free

variables and Skolem terms, we adapt the notion of soundness for the liberalised δ+-rule

in free variable tableau calculi [33] to sequent calculus.

A formula φ is satisfiable [33] (or has a model) if there is an interpretation I and

a state ν such that for all variable assignments η we have I, η, ν |= φ. Closed tableaux

prove the unsatisfiability of the negated goal. Sequent calculi work dually and show

validity of the proof obligation. Consequently, we use the dual notion and say that ψ

is a consequence of φ iff, for every I, ν there is an assignment η such that I, η, ν |= ψ,

provided that, for every I, ν there is an assignment η such that I, η, ν |= φ. A calculus

rule that concludes Ψ from the premisses Φ is sound if Ψ is a consequence of Φ. As

usual, multiple branches in Ψ or Φ are combined conjunctively.

In this context, we think of free logical variables as being introduced by γ-rules, i.e.,

F4 and F5 (hence the implicit existential quantification of free logical variables by η).

For closed formulas (without free logical variables), validity corresponds to being a

consequence from an empty set of open goals. Hence, closed formulas that are provable

with a sound deduction are valid (true in all states of all interpretations).

Theorem 1 (Soundness) The dL calculus is sound.

Proof The calculus is sound if each rule instance is sound. All rules of the dL calculus

except F1,F2 and F6 are even locally sound, i.e., their conclusion is true at I, η, ν if all

its premisses are true in I, η, ν, which implies soundness. It is also easy to show that

locally sound rules remain sound when adding contexts Γ,∆, 〈J 〉 as in Def. 8, since a

discrete jump set 〈J 〉 characterises a unique state transition. Local soundness proofs

of D1–D8 and propositional rules are as usual.

D9 Rule D9 is locally sound. Assume the premiss holds in I, η, ν, i.e., I, η, ν |= φθ1x1 . . .
θn
xn .

We have to show that I, η, ν |= 〈x1 := θ1, . . , xn := θn〉φ, i.e., I, η, ω |= φ for a state ω

with (ν, ω) ∈ ρI,η(x1 := θ1, . . , xn := θn). This follows directly from the substitution

lemma, which generalises to dynamic logic for admissible substitutions (Def. 6).

Rule D10 uses that discrete jumps are deterministic.

D11 The rule D11 is locally sound. Let y1, . . . , yn be a solution for the differential equa-

tion system x′1 = θ1, . . . , x
′
n = θn with symbolic initial values x1, . . . , xn. Let fur-

ther 〈St〉 be the jump set 〈x1 := y1(t), . . . , xn := yn(t)〉. Assume that I, η, ν are such

that the premiss is true: I, η, ν |= ∃t≥0 (χ̄ ∧ 〈St〉φ) with ∀0≤t̃≤t 〈St̃〉χ abbreviated

as χ̄. For any ζ ∈ R, we denote by ηζ the assignment that agrees with η except

that it assigns ζ to t. Then, by assumption, there is a real value r ≥ 0 such that

I, ηr, ν |= χ̄ ∧ 〈St〉φ. Let D abbreviate x′1 = θ1, . . . , x
′
n = θn &χ. We have to show

that I, η, ν |= 〈D〉φ. Equivalently, by Lemma 3, we show I, ηr, ν |= 〈D〉φ, because t

is a fresh variable that does not occur in D or φ. Let function f : [0, r]→ Sta(Σ)
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be defined such that (ν, f(ζ)) ∈ ρI,ηζ (St) for all ζ ∈ [0, r]. By premiss, f(0) is

identical to ν and φ holds at f(r). Thus it only remains to show that f respects

the constraints of Def. 5 for D. In fact, f obeys the continuity and differentia-

bility properties of Def. 5 by the corresponding properties of the yi. Moreover,

valI,ηr (f(ζ), xi) = valI,ηr (ν, yi(t)) has a derivative of value valI,ηr (f(ζ), θi), be-

cause yi is a solution of the differential equation x′i = θi with corresponding initial

value ν(xi). Further, it can be shown that the evolution invariant region χ is re-

spected along f as follows: By premiss, I, ηr, ν |= χ̄ holds for the initial state ν,

thus valI,ηr (f(ζ), χ) = true for all ζ ∈ [0, r]. Combining these results, we can con-

clude that f is a witness for I, η, ν |= 〈D〉φ. The converse direction can be shown

accordingly to prove the dual rule D12 using Lemma 1.

F1 The proof is a sequent calculus adaptation of that in [33]. By contraposition, assume

that there are I, ν such that for all η it is the case that I, η, ν 6|= ∀xφ(x), hence

I, η, ν |= ∃x¬φ(x). Then we construct an interpretation I ′ that agrees with I ex-

cept for the new function symbol s. Let b1, . . . , bn ∈ R be arbitrary elements and

let ηb assign bi to the respective Xi for 1 ≤ i ≤ n. As I, η, ν |= ∃x¬φ(x) holds for

all η, we pick a witness d for I, ηb, ν |= ∃x¬φ(x) and choose I ′(s)(b1, . . . , bn) = d.

For this interpretation I ′ and state ν we have I ′, η, ν 6|= φ(s(X1, . . . , Xn)) for all

assignments η by Lemma 3, as X1, . . . , Xn are all free variables determining the

truth value of φ(s(X1, . . . , Xn)). To see that the contexts Γ,∆ of Def. 8 can be

added to instantiate this rule, consider the following. Since s is new and does not

occur in the context Γ,∆, the latter do not change their truth value by passing

from I to I ′. Likewise, s is rigid so that it does not change its value by adding jump

prefix 〈J 〉 which concludes the proof. The proof of F2 is dual.

F3 F3 is locally sound. Assume that I, η, ν |= QE(∀X (Φ(X) ` Ψ(X))). Since quantifier

elimination yields an equivalence, we can conclude I, η, ν |= ∀X (Φ(X) ` Ψ(X)).

Then if the antecedent of the conclusion is true, i.e., I, η, ν |= Φ(s(X1, . . . , Xn)), we

can conclude that I, η, ν |= Ψ(s(X1, . . . , Xn)) by choosing valI,η(ν, s(X1, . . . , Xn))

for X in the premiss. By admissibility of substitutions, variables X1, . . . , Xn are free

at all occurrences of s(X1, . . . , Xn), hence their value is the same in all occurrences.

F4 F4 is locally sound by a simplified version of the proof in [33]. For any I, η, ν with

I, η, ν |= φ(X) we can conclude I, η, ν |= ∃xφ(x) according to the witness η(X).

The proof of F5 is dual.

F6 For any I, ν let η be such that I, η, ν |= QE(∃X
V
i(Φi ` Ψi)). Again, this implies

I, η, ν |= ∃X
V
i(Φi ` Ψi), because quantifier elimination yields an equivalence. We

pick a witness d ∈ R for this existential quantifier. As X does not occur anywhere

else in the proof, it disappears from all open premisses of the proof by applying F6.

Hence, by the coincidence lemma 3, the value of X does not change the truth

value of the premise of F6. Consequently, η can be extended to η′ by changing

the interpretation of X to the witness d such that I, η′, ν |=
V
i(Φi ` Ψi). Thus, η′

extends I, η, ν to a simultaneous model of all conclusions.

G2 Rules G1–G4 are locally sound by a variation of the usual proofs [35] using uni-

versal closures for local soundness. G1–G2 are simple refinements of Lemma 3

using that ∀α comprises all variables that change in α. Let I, η, ν |= 〈α〉φ, i.e.,

let (ν, ν′) ∈ ρI,η(α) with I, η, ν′ |= φ. As α can only change its bound variables,

which are quantified universally in ∀α, the premiss implies I, η, ν′ |= φ→ ψ, hence

I, η, ν′ |= ψ and I, η, ν |= 〈α〉ψ. The proof of G1 is accordingly.

G3 For any I, η, ν with I, η, ν |= ∀α(φ→ [α]φ), we conclude that I, η, ν′ |= φ→ [α]φ

for all ν′ with (ν, ν′) ∈ ρI,η(α). As these share the same η, we can further conclude
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I, η, ν |= φ→ [α∗]φ by induction along the series of states ν′ reached from ν by

repeating α. The universal closure is necessary as, otherwise, the premiss may

yield different η in different states ν′.
G4 Assume that the antecedent and premiss hold in I, η, ν. By premiss, we have

I, η[v 7→ d], ν′ |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1) for all d ∈ R and all states ν′ that

are reachable by α∗ from ν, because ∀α comprises all variables that are bound

by α, which are the same as those bound by α∗. By antecedent, there is a d ∈ R
such that I, η[v 7→ d], ν |= ϕ(v). Now, the proof is a well-founded induction on d.

If d ≤ 0, we directly have I, η, ν |= 〈α∗〉∃v≤0ϕ(v) for zero repetitions. Otherwise,

if d > 0, we have, by premiss, that I, η[v 7→ d], ν |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1).

As v > 0 ∧ ϕ(v) holds true, we have for some ν′ with (ν, ν′) ∈ ρI,η[v 7→d](α) that

I, η[v 7→ d], ν′ |= ϕ(v − 1). Thus, I, η[v 7→ d− 1], ν′ |= ϕ(v) satisfies the induction

hypothesis for a smaller d and a reachable ν′, because (ν, ν′) ∈ ρI,η(α) as v does

not occur in α. The induction is well-founded, because d decreases by 1 up to the

base case d ≤ 0. ut

5.2 Completeness

Theorem 1 shows that all provable closed dL formulas are valid. The converse question is

whether the dL calculus is complete, i.e., all valid dL formulas are provable. Combining

completeness for first-order logic [33] and decidability of real-arithmetic [16], it is easy

to see that our calculus is complete for closed formulas of first-order real arithmetic by

chaining the quantifier rules F1,F2,F4,F5 with the respective inverse rules F3,F6, using

P-rules as needed to unfold the propositional structure. In the presence of modalities,

however, dL is not axiomatisable and, unlike its basis of first-order real arithmetic, dL
is undecidable. Both unbounded repetition in the discrete fragment and unbounded

evolution in the continuous fragment cause incompleteness. Beyond hybrid dynamics,

where reachability is known to be undecidable [36], we show that even the purely

discrete and purely continuous parts of dL are not effectively axiomatisable. Hence,

valid dL formulas are not always provable.

Theorem 2 (Incompleteness) Both the discrete fragment and the continuous frag-

ment of dL are not effectively axiomatisable, i.e., they have no sound and complete

effective calculus, because natural numbers are definable in both fragments.

Proof We prove that natural numbers are definable among the real numbers of dL in-

terpretations in both fragments. Then these fragments extend first-order integer arith-

metic such that the incompleteness theorem of Gödel [31] applies. Natural numbers

are definable in the discrete fragment without continuous evolutions using repetitive

additions:

nat(n) ↔ 〈x := 0; (x := x+ 1)∗〉 x = n .

In the continuous fragment, an isomorphic copy of the natural numbers is definable

using linear differential equations:

nat(n) ↔ ∃s∃c ∃τ (s = 0 ∧ c = 1 ∧ τ = 0 ∧ 〈s′ = c, c′ = −s, τ ′ = 1〉(s = 0 ∧ τ = n)) .

These differential equations characterise sin and cos as unique solutions for s and c,

respectively. Their zeros, as detected by τ , correspond to an isomorphic copy of natural

numbers, scaled by π, i.e., nat(n) holds iff n is of the form kπ for a k ∈ N. The nonzero

initial values for s and c prevent the trivial solution identical to 0. ut
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The standard approach for showing adequacy of a calculus when its logic is not

effectively axiomatisable is to analyse the deductive power of the calculus relative to a

base logic or relative to an ineffective oracle rule for the base logic [17,34,35]. In calculi

for discrete programs, completeness is proven relative to the handling of data [17,34,

35]. For hybrid systems, this is inadequate: By Theorem 2, no sound calculus for dL can

be complete relative to its data (the reals), because its basis, first-order real arithmetic,

is a perfectly decidable and axiomatisable theory [55].

According to Theorem 2, continuous evolutions, repetitive discrete transitions, and

their interaction cause non-axiomatisability of dL. Discrete transitions and repetition

do not supersede the complexity of continuous transitions. Even relative to an oracle for

handling properties of discrete jumps and repetition, the dL calculus is not complete,

simply because not all differential equations have solutions that are definable in first-

order arithmetic so that D12 can be used. For instance, the solutions of s′ = c, c′ = −s
are trigonometric functions (like sin and cos), which are not first-order definable. The

question is whether the converse is true, i.e., whether hybrid programs can be verified

given that all required differential equations can be handled.

To calibrate the deductive power of the dL calculus in light of its inherent incom-

pleteness, we analyse the quotient of reasoning about hybrid systems modulo differen-

tial equation handling. Using generalisations of the usual notions of relative complete-

ness for discrete systems [17,34,35] to the hybrid case, we show that the dL calculus

completely axiomatises dL relative to one single additional axiom about valid first-order

properties of differential equations. Essentially, we drop the effectiveness requirement

for one oracle axiom and show that the resulting dL calculus is sound and complete.

As a basis, we define FOD as the first-order logic of differential equations, i.e.,

first-order real arithmetic augmented with formulas expressing properties of differential

equations, that is, dL formulas of the form [x′1 = θ1, . . . , x
′
n = θn]F with a first-order

formula F . Dually, 〈x′1 = θ1, . . . , x
′
n = θn〉F is expressible as ¬[x′1 = θ1, . . . , x

′
n = θn]¬F .

Theorem 3 (Relative completeness) The dL calculus is complete relative to FOD,

i.e., every valid dL formula can be derived from FOD-tautologies.

Proof (Outline) The (constructive) proof, which, in full, is contained in Appendix A,

adapts the techniques of Cook [17] and Harel [34,35] to the hybrid case. The decisive

step is to show that every valid property of a repetition α∗ can be proven by G3 or

G4, respectively, with a sufficiently strong invariant or variant that is expressible in

dL. For this, we show that dL formulas can be expressed equivalently in FOD, and that

valid dL formulas can be derived from corresponding FOD axioms in the dL calculus.

In turn, the crucial step is to construct a finite FOD formula that characterises the

effect of unboundedly many repetitive hybrid transitions and just uses finitely many

real variables. ut

This main result completely aligns hybrid and continuous verification proof-theo-

retically. It gives a formal justification that reasoning about hybrid systems is possible

to exactly the same extent to which it is possible to show properties of solutions of

differential equations. Theorem 3 shows that superpositions of discrete jumps, continu-

ous evolutions, and repetitions of hybrid processes, can be verified when corresponding

(intermediate) properties of differential equations are provable. Moreover, in a proof-

theoretical sense, our calculus completely lifts all verification techniques for dynamical

systems to hybrid systems.

Summarising Theorem 1 and 3, the dL calculus axiomatises the transition behaviour

of hybrid systems completely relative to the handling of differential equations!
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5.3 Relatively Semidecidable Fragments

To strengthen the completeness result from Theorem 3, we consider fragments of dL
where the required FOD tautologies are sufficiently simple as differential equations have

first-order definable flows and the required loop invariants (or variants) are expressible

in first-order logic over the reals. In these fragments, the only difficulty is to find the

required invariants and variants for the proof. Relative to an (ineffective) oracle that

provides first-order invariants and variants for repetitions, the dL calculus can be used

as a semidecision procedure. That is, when we assume the oracle to provide suitable

(in)variants, validity of formulas can be proven in the dL calculus. If an imperfect oracle

chooses inadequate (in)variants, applying the dL calculus rules results in goals that are

not valid, which is again decidable by quantifier elimination in the dL calculus.

Theorem 4 (Relatively semidecidable fragment) Relative to an oracle generat-

ing first-order invariants and variants, the dL calculus gives a backtracking-free semide-

cision procedure for (closed) dL formulas with differential equations having first-order

definable flows.

Proof (Outline) The (constructive) proof, which, in full, is contained in Appendix B,

shows that there are always applicable dL rules that transform the formulas equivalently

and that formulas in this dL proof descend along a well-founded order. For loops, we

assume that suitable (in)variants are obtained from the oracle and we can guarantee

termination when these (in)variants are first-order (or contain less loops). ut

As a consequence, enumerating first-order invariants or variants gives a semidecision

procedure for the fragment of Theorem 4. As a corollary to Theorem 2 and Theorem 4,

there are valid dL formulas that need proper dL (or FOD) invariants to be provable and

cannot be proven just using (in)variants of first-order real arithmetic. Similarly, the

fragment with first-order definable flows and bounded loops is decidable: When loops α∗

are decorated with natural numbers indicating the maximum number of repetitions

of α, an effective oracle for Theorem 4 can be obtained by unrolling, e.g., by D5.

6 Verifying Safety in the European Train Control System

Finding Inductive Candidates. We want to prove safety statement (1) of the Euro-

pean Train Control System from Section 3. Using parametric extraction techniques,

we identify both the requirement ψ for safe driving and the induction hypothesis φ

that is required for the proof. Dually to the proof in Fig. 7, an unwinding of the loop

in (1) by D6 can be used to extract a candidate for a parametric inductive hypothesis.

It expresses that there is sufficient braking distance at current speed v, which basically

corresponds to the controllability constraint for ETCS:

φ ≡ v2 ≤ 2b(m− z) ∧ b > 0 ∧A ≥ 0 . (2)

Inductive Verification. Using G3 to prove (1) by induction, we show that (a) invariant φ

holds initially, i.e., ψ ` φ (implying antecedent of the conclusion of G3), that (b) the

invariant is sustained after each execution of ctrl ; drive, and that (c) invariant φ implies

postcondition z ≤ m. Case (c) holds by QE, as 0 ≤ v2 ≤ 2b(m− z) and b > 0. The

induction start (a) will be examined after the full proof has been given, since we want
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to identify the prerequisite ψ for safe driving by proof analysis. In the proof of the

induction step φ→ [ctrl ; drive]φ, we omit condition m− z ≤ s from ctrl , because it is

not used in the proof (braking remains safe with respect to z ≤ m). The induction can

be proven in dL as follows (for notational convenience, we assume F1 to call the Skolem

constant for m again m etc., as there are no free logical variables):

. . .

φ ` 〈a :=−b〉[drive]φ

. . .

φ,m− z ≥ s ` 〈a :=A〉[drive]φ
D8,P7 φ ` [?m− z ≥ s; a :=A][drive]φ

D4,P5 φ ` [ctrl][drive]φ
D2 φ ` [ctrl ; drive]φ
P7 ` φ→ [ctrl ; drive]φ
F1 ` ∀α(φ→ [ctrl ; drive]φ)
G3 φ ` [(ctrl ; drive)∗]φ

The differential equation system in drive is linear with a constant coefficient matrix M .

Its solution can be obtained by symbolically computing the exponential series eMtη

with symbolic initial value η = (z, v) and similar symbolic integration of the inhomoge-

neous part [59, §18.VI]. We abbreviate the solution 〈z :=− b2 t
2 + vt+ z, v :=−bt+ v〉

thus obtained by 〈St〉. In this example, the invariant evolution conditions are convex,

hence the constraint ∀0≤t̃≤t 〈St̃〉χ of D12 can be simplified to 〈St〉χ to save space.

Further, we leave out conditions which are unnecessary for closing the above proof. In

the left branch, the constrained evolution of τ is irrelevant and will be left out. The

left branch closes (marked as ∗):

∗
D9,F3 φ, t ≥ 0,−bt+ v ≥ 0 ` 〈St〉φ

D9 φ, t ≥ 0, 〈v :=−bt+ v〉v ≥ 0 ` 〈St〉φ
P7,P7 φ ` t ≥ 0→ (〈v :=−bt+ v〉v ≥ 0→ 〈St〉φ)

F1 φ ` ∀t≥0 (〈v :=−bt+ v〉v ≥ 0→ 〈St〉φ)
D12 φ ` [z′ = v, v′ = −b& v ≥ 0]φ
D9 φ ` 〈a :=−b〉[drive]φ
D10 φ ` [a :=−b][drive]φ

The right branch does not need v ≥ 0, because v does not decrease. To abbreviate

solution 〈z := A
2 t

2 + vt+ z, v :=At+ v〉, we again use 〈St〉.

. . .

φ,m− z ≥ s ` s ≥ v2

2b +
“
A
b + 1

”“
A
2 ε

2 + εv
”

D9,F3φ,m− z ≥ s, 0 ≤ t ≤ ε ` 〈St〉φ
P7,D9 φ,m− z ≥ s ` t ≥ 0→ (〈τ := t〉τ ≤ ε→ 〈St〉φ)

F1 φ,m− z ≥ s ` ∀t≥0 (〈τ := t〉τ ≤ ε→ 〈St〉φ)
D9 φ,m− z ≥ s ` 〈τ := 0〉∀t≥0 (〈τ := t+ τ〉τ ≤ ε→ 〈St〉φ)
D12 φ,m− z ≥ s ` 〈τ := 0〉[z′ = v, v′ = A, τ ′ = 1 & τ ≤ ε]φ
D10 φ,m− z ≥ s ` [τ := 0][z′ = v, v′ = A, τ ′ = 1 & τ ≤ ε]φ
D9 φ,m− z ≥ s ` 〈a :=A〉[τ := 0][z′ = v, v′ = a, τ ′ = 1 & τ ≤ ε]φ
D2 φ,m− z ≥ s ` 〈a :=A〉[drive]φ
D10 φ,m− z ≥ s ` [a :=A][drive]φ
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Parameter Constraint Discovery. The right branch only closes when the succedent of

its open goal is guaranteed. That formula expresses that there will still be sufficient

braking distance even after accelerating by ≤A for up to ε seconds:

s ≥ v2

2b
+

„
A

b
+ 1

«„
A

2
ε2 + εv

«
. (3)

This constraint can be discovered automatically in the above proof by the indicated

application of F3 using quantifier elimination with some simplifications. Constraint (3)

is required to make sure invariant (2) still holds after accelerating. In fact, augmenting

the case study with (3) makes the argument inductive, and the whole proof of the

safety statement (1) closes when ψ is chosen identical to φ. Here, the conditions of ψ

cannot be removed without leaving the proof open due to a counterexample, as the

invariant (2) is a controllability constraint, see Section 4.2.1.

Quite unlike in the acceleration-free case [48], constraint (3) needs to be enforced

dynamically as the affected variables change over time. That is, at the beginning of

each ctrl-cycle, s needs to be updated in accordance with (3), which admits complex

behaviour like in Fig. 5b. Further, this constraint can be used to find out how dense

a track can be packed with trains in order to maximise ETCS throughput without

endangering safety. Using the dL calculus, similar constraints can be derived [49] to

find out how early a train needs to start negotiation in order to minimise the risk

of having to reduce speed when the MA is not extendable in time, which is the ST

parameter of Fig. 4.

For the resulting ETCS system, liveness can be proven in the dL calculus by showing

that the train can pass every point p by an appropriate choice of m by the RBC:

v = v0 > 0 ∧ ε > 0 ∧ b > 0 ∧A ≥ 0→ ∀p ∃m 〈(ctrl ; drive)∗〉 z ≥ p (4)

The proof of property (4) uses the variant ϕ(n) ≡ z + nεv0 ≥ p ∧ v ≥ v0 for G4, which

expresses that the speed does not decrease (until n < 0) and that the remaining distance

from z to target p can be covered after at most n iteration cycles.

In this example, we can see the effect of the dL calculus. It takes a specification

of a hybrid system and successively identifies constraints on the parameters which are

needed for correctness. These constraints can then be handled in a purely modular

way by F3 and F6. As a typical characteristics of hybrid systems, further observe that

intermediate formulas are significantly more complex than the original proof obliga-

tion, which can be expressed succinctly in dL. This reflects the fact that the actual

complexity of hybrid systems originates from hybrid interaction, not from a single

transition. Still, using appropriate proof strategies [47] for the dL calculus, the safety

statement (1) with invariant (2) can be verified automatically in a theorem prover that

invokes Mathematica for D11–D12, F3, and F6.

7 Conclusions and Future Work

We have introduced a first-order dynamic logic for hybrid programs, which are uniform

operational models for hybrid systems with interacting discrete jumps and continuous

evolutions along differential equations. For this differential dynamic logic, dL, we have

presented a concise generalised free variable proof calculus over the reals.

Our sequent calculus for dL is a generalisation of classical calculi for discrete dy-

namic logic [7,8,35,34] to the hybrid case. It is a compositional verification calculus for
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verifying properties of hybrid programs by decomposing them into properties of their

parts. In order to handle interacting hybrid dynamics, we lift real quantifier elimination

to the deductive calculus in a new modular way that is suitable for automation, using

real-valued free variables, Skolem terms, and invertible quantifier rules over the reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-

ically, we have proven our calculus to axiomatise the transition behaviour of hybrid

systems completely relative to the handling of differential equations. Moreover, we have

demonstrated that our calculus is well-suited for practical automatic verification in a

realistic case study of a fully parametric version of the European Train Control System.

Dynamic logic can be augmented [8] to support reasoning about dynamically recon-

figuring system structures, which we want to extend to hybrid systems in future work.

Further, we will develop Lyapunov-like techniques to handle differential equations in

dL without solving them. While the dL calculus is complete relative to the continuous

fragment, it is a subtle open problem whether a converse calculus can exist that is

complete relative to various discrete fragments.
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J. Posegga (eds.) Handbook of Tableau Methods. Kluwer (1999)
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A Relative Completeness Proof

In this section, we present a fully constructive proof of Theorem 3, which generalises the
techniques of Harel [34,35] and Cook [17] to the hybrid case. It shows that for every valid dL
formula, there is a finite set of valid FOD-formulas from which it can be derived in the dL
calculus. See the proof outline in Section 5.2 for a road map of the proof.

Natural numbers are definable in FOD by Theorem 2. In this section, we abbreviate quan-
tifiers over natural numbers, e.g., ∀x (nat(x)→ φ) by ∀x : N φ and ∃x (nat(x) ∧ φ) by ∃x : N φ.
Likewise, we abbreviate quantifiers over integers, e.g., ∀x ((nat(x) ∨ nat(−x))→ φ) by ∀x : Z φ.

A.1 Characterising Real Gödel Encodings

As the central device for constructing a FOD formula that captures the effect of unboundedly
many repetitive hybrid transitions and just uses finitely many real variables, we prove that
a real version of Gödel encoding is definable in FOD. That is, we give a FOD formula that
reversibly packs finite sequences of real values into a single real number.

Observe that a single differential equation system is not sufficient for defining these pairing
functions as their solutions are differentiable, yet, as a consequence of Morayne’s theorem [44],
there is no differentiable surjection R → R2, nor to any part of R2 of positive measure. We
show that real sequences can be encoded nevertheless by chaining the effects of solutions of
multiple differential equations and quantifiers.

Lemma 4 (R-Gödel encoding) The formula at(Z, n, j, z), which holds iff Z is a real num-
ber that represents a Gödel encoding of a sequence of n real numbers with real value z at
position j (for a position j with 1 ≤ j ≤ n), is definable in FOD. For a formula φ(z) we

abbreviate ∃z (at(Z, n, j, z) ∧ φ(z)) by φ(Z
(n)
j ).

Proof The basic idea of the R-Gödel encoding is to interleave the bits of real numbers as
depicted in Fig. 9a (for a pairing of n = 2 numbers a and b). For defining at(Z, n, j, z), we use
several auxiliary functions to improve readability, see Fig. 9b. Note that these definitions need

∞X
i=0

ai

2i
= a0.a1a2 . . .

∞X
i=0

bi

2i
= b0.b1b2 . . .

∞X
i=0

„
ai

22i−1
+

bi

22i

«
= a0b0.a1b1a2b2 . . .

a. Fractional encoding principle by bit interleaving

at(Z, n, j, z) ↔ ∀i : Z bit(z, i) = bit(Z, n(i− 1) + j) ∧ nat(n) ∧ nat(j) ∧ n > 0

bit(a, i) = intpart(2 frac(2i−1a))

intpart(a) = a− frac(a)

frac(a) = z ↔ ∃i : Z z = a− i ∧ −1 < z ∧ z < 1 ∧ az ≥ 0

2i = z ↔ i ≥ 0 ∧ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x ln 2, t′ = 1〉(t = i ∧ x = z))

∨ i < 0 ∧ ∃x∃t (x = 1 ∧ t = 0 ∧ 〈x′ = −x ln 2, t′ = −1〉(t = i ∧ x = z))

ln 2 = z ↔ ∃x∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x, t′ = 1〉(x = 2 ∧ t = z))

b. Definition of R-Gödel encoding in FOD

Fig. 9 Characterising Gödel encoding of R-sequences in one real number
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no recursion, hence, like in the notation φ(Z
(n)
j ), we can consider occurrences of the function

symbols as syntactic abbreviations for quantified variables satisfying the respective definitions.
The function symbol bit(a, i) gives the i-th bit of a ∈ R when represented with basis 2.

For i > 0, bit(a, i) yields fractional bits, and, for i ≤ 0, it yields bits of the integer part. For
instance, bit(a, 1) yields the first fractional bit, bit(a, 0) is the least-significant bit of the integer
part of a. The function intpart(a) represents the integer part of a ∈ R. The function frac(a)
represents the fractional part of a ∈ R, which drops all integer bits. The last constraint in its
definition implies that frac(a) keeps the sign of a (or 0). Consequently, intpart(a) and bit(a, i)
also keep the sign of a (or 0). Exponentiation 2i is definable using differential equations, using
an auxiliary characterisation of the natural logarithm ln 2. The definition of 2i splits into the
case of exponential growth when i ≥ 0 and a symmetric case of exponential decay when i < 0.

ut

A.2 Expressibility and Rendition of Hybrid Program Semantics

In order to show that dL is sufficiently expressive to state the invariants and variants that are
needed for proving valid statements about loops with G3 and G4, we prove an expressibility
result. We give a constructive proof that the state transition relation of hybrid programs is
definable in FOD, i.e., there is a FOD-formula Sα(x,v) characterising the state transitions
of hybrid program α from the state characterised by the vector x of variables to the state
characterised by vector v.

For this, we need to characterise hybrid processes equivalently by differential equations in
FOD. Observe that the existence of such characterisations does not follow from results em-
bedding Turing machines into differential equations [10,32], because, unlike Turing machines,
hybrid processes are not restricted to discrete values on a grid (like Nk) but work with con-
tinuous real values. Furthermore, Turing machines only have repetitions of discrete transitions
on discrete data (e.g., N). For hybrid programs, instead, we have to characterise repetitive
interactions of discrete and continuous transitions in continuous space (some Rk).

Lemma 5 (Program rendition) For every hybrid program α with variables x = x1, . . . , xk
there is a FOD-formula Sα(x,v) with variables among the 2k distinct variables x = x1, . . . , xk
and v = v1, . . . , vk such that

� Sα(x,v)↔ 〈α〉x = v

or, equivalently, for every I, η, ν,

I, η, ν |= Sα(x,v) iff (ν, ν[x 7→ valI,η(ν,v)]) ∈ ρI,η(α) .

Sx1:=θ1,..,xk:=θk (x,v) ≡
k̂

i=1

(vi = θi)

Sx′1=θ1,..,x
′
k
=θk

(x,v) ≡ 〈x′1 = θ1, . . , x
′
k = θk〉v = x

Sx′1=θ1,..,x
′
k
=θk &χ(x,v) ≡ ∃t

`
t = 0 ∧ 〈x′1 = θ1, . . , x

′
k = θk, t

′ = 1〉
`
v = x

∧ [x′1 = −θ1, . . , x′k = −θk, t′ = −1](t ≥ 0→ χ)
´´

S?χ(x,v) ≡ v = x ∧ χ
Sβ∪γ(x,v) ≡ Sβ(x,v) ∨ Sγ(x,v)

Sβ; γ(x,v) ≡ ∃z (Sβ(x, z) ∧ Sγ(z,v))

Sβ∗ (x,v) ≡ ∃Z ∃n : N
`
Z

(n)
1 = x ∧ Z(n)

n = v

∧ ∀i : N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))

´
Fig. 10 Explicit rendition of hybrid program transition semantics in FOD
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Proof By Lemma 3, interpretations of the vectors x and v characterises the input and output
states, respectively, as far as α is concerned. These vectors are finite because α is finite.
Vectorial equalities like x = v or quantifiers ∃v are to be understood component-wise. The
program rendition is defined inductively in Fig. 10. To simplify the notation, we assume that
all variables x1, . . . , xk are affected in discrete jumps and differential equations by adding
vacuous xi := xi or x′i = 0 if xi does not change in the respective statement, otherwise.

Differential equations give FOD-formulas hence no further reduction is necessary. Evolu-
tion along differential equations with invariant regions is definable by following the unique
flow (Lemma 1) backwards. Continuous evolution is reversible, i.e., the transitions of x′i = −θ
are inverse to those of x′i = θ. Consequently, when using auxiliary variable t, all evolutions
of [x′1 = −θ1, . . , x′k = −θk, t′ = −1] follow the same flow as 〈x′1 = θ1, . . , x′k = θk, t

′ = 1〉 but
backwards. By also reverting clock t, we ensure that, along the reverse flow, χ has been true
at all times (because of the box modality) until starting time t = 0, see Fig. 11.

t

x

χ

v revert flow and time
and check χ backwards

x′ = θ

0 r

x′ = −θ

Fig. 11 Invariant region checks along backwards flow over time t

To show reversibility, let (ν, ω) ∈ ρI,η(x′1 = θ1, . . , x′k = θk), that is, let f : [0, r]→ Sta(Σ)
be a solution of x′1 = θ1, . . , x′k = θk starting in ν and ending in ω. Then g : [0, r]→ Sta(Σ),
defined as g(ζ) = f(r − ζ), starts in ω and ends in ν. Thus, it only remains to show that g is
a solution of x′1 = −θ1, . . , x′k = −θk, which can be seen for 1 ≤ i ≤ k as follows:

dg(t)(xi)

dt
(ζ) =

df(r−t)(xi)
dt

(ζ) =
df(u)(xi)

du

d(r−t)
dt

(ζ) = −
df(u)(xi)

du
(ζ)

=− valI,η(f(ζ), θi) = valI,η(f(ζ),−θi) .

Unlike all other cases, case Sx′1=θ1,..,x
′
k
=θk &χ(x,v) in Fig. 10 uses nested FOD modalities.

Yet nested modalities can be avoided in Sα(x,v) using an equivalent FOD formula without
them, see Fig. 11:

∃t∃r
`
t = 0 ∧ 〈x′1 = θ1, . . , x

′
k = θk, t

′ = 1〉(v = x ∧ r = t)∧
∀x∀t (x = v ∧ t = r → [x′1 = −θ1, . . , x′k = −θk, t′ = −1](t ≥ 0→ χ))

´
.

With a finite formula, the characterisation of repetition Sβ∗ (x,v) in FOD needs to capture
arbitrarily long sequences of intermediate real-valued states and the correct transition between
successive states of such a sequence. To achieve this with first-order quantifiers, we use the real
Gödel encoding from Lemma 4 in Fig. 10 to map unbounded sequences of real-valued states
reversibly to a single real number Z, which can be quantified over in first-order logic. ut

Using the program rendition from Lemma 5 to characterise modalities, we prove that every
dL formula can be expressed equivalently in FOD by structural induction.

Lemma 6 (Expressibility) dL is expressible in FOD: for all dL formulas φ ∈ Fml(Σ, V )
there is a FOD-formula φ# ∈ FmlFOD(Σ, V ) that is equivalent, i.e., � φ↔ φ#. The converse
holds trivially.

Proof The proof follows an induction on the structure of formula φ for which it is imperative
to find an equivalent φ# in FOD. Observe that the construction of φ# from φ is effective.

0. If φ is a first-order formula, then φ# := φ already is a FOD-formula such that nothing has
to be shown.
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1. If φ is of the form ϕ ∨ ψ, then by induction hypothesis there are FOD-formulas ϕ#, ψ#

such that � ϕ↔ ϕ# and � ψ ↔ ψ#, from which we can conclude by congruence that
� (ϕ ∨ ψ)↔ (ϕ# ∨ ψ#) giving � φ↔ φ# by choosing ϕ# ∨ ψ# for φ#. Likewise reasoning
concludes the other propositional connectives or quantifiers.

2. The case where φ is of the form 〈α〉ψ is a consequence of the characterisation of the
semantics of hybrid programs in FOD. The expressibility conjecture holds by induction
hypothesis using the equivalence of explicit hybrid program renditions from Lemma 5:

� 〈α〉ψ ↔ ∃v (Sα(x,v) ∧ ψ#v
x) .

3. The case where φ is [α]ψ is again a consequence of Lemma 5:

� [α]ψ ↔ ∀v (Sα(x,v)→ ψ#v
x) .

ut

The above proofs directly carry over to rich test dL, i.e., the logic where dL formulas are
allowed in tests ?χ of hybrid programs and invariant regions χ of differential equations, when
using χ# in place of χ in Fig. 10. Accordingly, nested modalities can be avoided in FOD by
using the following formula for Sx′1=θ1,..,x

′
k
=θk &χ(x,v):

∃t∃r
`
t = 0 ∧ 〈x′1 = θ1, . . , x

′
k = θk, t

′ = 1〉(v = x ∧ r = t)∧

∀z
`
∃x ∃t (x = v ∧ t = r ∧ 〈x′1 = −θ1, . . , x′k = −θk, t′ = −1〉(t ≥ 0 ∧ z = x))→ χ#z

x

´´
.

A.3 Relative Completeness of First-order Assertions

As special cases of Theorem 3, we first prove relative completeness for first-order assertions
about hybrid programs. These first-order cases constitute the basis for the general completeness
proof for arbitrary formulas of differential dynamic logic.

In the sequel, we use the notation `D φ to indicate that a dL formula φ is derivable
(Def. 9) from a set of FOD-tautologies, which is equivalent to saying that φ is derivable in
the dL calculus augmented with a single oracle axiom D, that gives all valid FOD-instances.
Likewise, we use the notation Γ `D ∆ to indicate that the sequent Γ ` ∆ is derivable from D.

For the completeness proof, we use several simplifications. For uniform proofs, we assume
formulas to use a simplified vocabulary. A formula φ is valid iff it is true in all I, η, ν. In par-
ticular, we can assume valid φ to use Skolem constants (or state variables) instead of free logical
variables. Existential quantifiers can be represented as modalities: ∃xφ ≡ 〈x′ = 1〉φ ∨ 〈x′ = −1〉φ.
For simplicity, we use cut (P10) and weakening to glue together subproofs propositionally.
Weakening (i.e., from φ ` ψ infer φ1, φ ` ψ,ψ1) can be emulated using contexts Γ,∆ from
Def. 8, and we use it implicitly together with P10 in the following. Derivability of sequents
and corresponding formulas is equivalent by the following lemma.

Lemma 7 (Derivability of sequents) `D φ→ ψ iff φ `D ψ.

Proof When we consider sequents as abbreviations for formulas, both sides are identical. Oth-
erwise, let `D φ→ ψ be derivable from D. Using P10 (and weakening) with φ→ ψ, this deriva-
tion can be extended to one of φ `D ψ:

∗
φ ` φ→ ψ,ψ

∗
P9φ ` φ, ψ

∗
P9ψ, φ ` ψ

P8 φ, φ→ ψ ` ψ
P10 φ ` ψ

The converse direction is by an application of P7. ut

Lemma 8 (Generalisation) If `D φ is provable without free logical variables, then so
are `D ∀xφ and `D 〈x1 := θ1, . . . xn := θn〉φ.
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Proof For the second conjecture, let 〈I〉 abbreviate 〈x1 := θ1, . . . xn := θn〉. We prefix each
formula in the proof of φ with 〈I〉 and show that this gives a proof of 〈I〉φ. F6 is not needed
in the proof due to the absence of free logical variables. As an intermediate step, we first show
that prefixing with 〈I〉 gives an (extended) proof with rule applications generalised to allowing
for nested jump prefixes 〈I〉〈J 〉: By the argument in Theorem 1, it is easy to see for discrete
jump sets I and J that the dL rules remain sound with nested jump prefix 〈I〉〈J 〉 in place of
only a single prefix 〈J 〉 from Def. 8. Applicability conditions of rules do not depend on jump
prefixes, as Def. 8 allows adding any jump prefix. Thus, we obtain a sound (extended) proof
of 〈I〉φ when replacing—with arbitrary unchanged context Γ,∆, 〈J 〉—every rule application
of the form

Γ, 〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ, 〈J 〉Φn ` 〈J 〉Ψn,∆
Γ, 〈J 〉Φ0 ` 〈J 〉Ψ0,∆

in the proof of φ by a rule application with additional unchanged prefix 〈I〉 for correspond-
ing Γ,∆, 〈J 〉:

Γ, 〈I〉〈J 〉Φ1 ` 〈I〉〈J 〉Ψ1,∆ . . . Γ, 〈I〉〈J 〉Φn ` 〈I〉〈J 〉Ψn,∆
Γ, 〈I〉〈J 〉Φ0 ` 〈I〉〈J 〉Ψ0,∆

(5)

Next, we show that these nested jump prefixes can be reduced to a single jump prefix as Def. 8
allows for: Let 〈IJ 〉 denote the discrete jump set obtained by merging 〈I〉 and 〈J 〉 using D9
as in Section 4.1. We replace each rule application (with nested prefixes) of the form (5) by
the following derivation with only a single prefix (assuming n = 1 for notational convenience):

. . .
Γ, 〈I〉〈J 〉Φ1 ` 〈IJ 〉Ψ1,∆

∗
P9Γ, 〈IJ 〉Φ1 ` 〈IJ 〉Φ1,∆
D9Γ, 〈IJ 〉Φ1 ` 〈I〉〈J 〉Φ1,∆

P10 Γ, 〈IJ 〉Φ1 ` 〈IJ 〉Ψ1,∆
Γ, 〈IJ 〉Φ0 ` 〈IJ 〉Ψ0,∆

D9,D9 Γ, 〈I〉〈J 〉Φ0 ` 〈I〉〈J 〉Ψ0,∆

The bottom-most D9 applications merge 〈I〉 into 〈J 〉 in the antecedent and succedent, respec-
tively. The unmarked rule applies the same rule that has been used in (5), which is applicable
on Φ0 ` Ψ0 for any context by Def. 8, including Γ,∆, 〈IJ 〉. The subsequent cut with 〈I〉〈J 〉Φ1

restores the form of the premiss in (5). The left branch continues using a dual argument to
turn succedent 〈IJ 〉Ψ1 into 〈I〉〈J 〉Ψ1, thereby yielding a set of non-extended rule applications
with the same conclusions and premisses as the extended rule application (5):

Γ, 〈I〉〈J 〉Φ1 ` 〈I〉〈J 〉Ψ1,∆

∗
P9 Γ, 〈IJ 〉Ψ1 ` 〈IJ 〉Ψ1,∆
D9Γ, 〈I〉〈J 〉Ψ1 ` 〈IJ 〉Ψ1,∆

P10 Γ, 〈I〉〈J 〉Φ1 ` 〈IJ 〉Ψ1,∆

For reducing the first conjecture of this lemma to the second, let s be a Skolem constant
for state variable x. By the above proof, we derive `D 〈x := s〉φ. Using F1, we continue this
derivation to a proof of ∀X 〈x :=X〉φ, which we abbreviate as ∀xφ (see text below Def. 6).
Rule F1 is applicable for Skolem constant s as no free logical variables occur in the proof. ut

Proposition 1 (Relative completeness of first-order safety) For every hybrid program
α ∈ HP(Σ, V ) and each F,G ∈ FmlFOL(Σ, V ) of first-order logic

� F → [α]G implies `D F → [α]G (and F `D [α]G by Lemma 7) .

Proof We generalise the relative completeness proof by Cook [17] to dL and follow an induction
on the structure of program α. In the following, IH is short for the induction hypothesis.

1. The cases where α is of the form x1 := θ1, . . . , xn := θn, ?χ, β ∪ γ, or β; γ are consequences
of the soundness of the symmetric rules D2, D4, and D8–D10. Since these rules are sym-
metric, they perform equivalent transformations. Consequently, whenever their conclusion
is valid, their premiss is valid and of smaller complexity (the programs get simpler), hence
derivable by IH. Thus, we can derive F → [α]G by applying the respective rule. We ex-
plicitly show the proof for β; γ as it contains an extra twist.
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2. � F → [β; γ]G, which implies � F → [β][γ]G. By Lemma 6, there is a FOD-formula G#

such that � G# ↔ [γ]G. From the validity of � F → [β]G#, we can conclude by IH that
F `D [β]G# is derivable. Similarly, because of � G# → [γ]G, we conclude `D G# → [γ]G
by IH. Using Lemma 8, we conclude `D ∀β(G# → [γ]G). With an application of G1, the
latter derivation can be extended to a derivation of [β]G# `D [β][γ]G. Combining the
above derivations propositionally by a cut with [β]G#, we can derive F `D [β][γ]G, from
which D2 yields F `D [β; γ]G as desired (and Lemma 7 or P7 yield `D F → [β; γ]G).

3. � F → [x′1 = θ1, . . . , x′n = θn]G is a FOD-formula and hence derivable as a D axiom. Con-
tinuous evolution x′1 = θ1, . . . , x′n = θn &χ with invariant regions is definable in FOD by
Lemma 5, which we consider as an abbreviation in this proof.

4. � F → [β∗]G can be derived by induction. For this, we define the invariant as a FOD en-
coding of the statement that all potential poststates of β∗ satisfy G according to Lemma 6:

φ ≡ ([β∗]G)# ≡ ∀v (Sβ∗ (x,v)→ Gv
x) .

Since F → φ and φ→ G are valid FOD-formulas, they are derivable by D; so is F `D φ by
Lemma 7. By Lemma 8 and G1, [β∗]φ `D [β∗]G is derivable. Likewise, φ→ [β]φ is valid
according to the semantics of repetition, thus derivable by IH, since β is less complex. Using
Lemma 8, we can derive `D ∀β(φ→ [β]φ), from which G3 yields φ `D [β∗]φ. Combining
the above derivations propositionally by a cut with [β∗]φ and φ yields F `D [β∗]G. ut

Proposition 2 (Relative completeness of first-order liveness) For each hybrid program
α ∈ HP(Σ, V ) and each F,G ∈ FmlFOL(Σ, V ) of first-order logic

� F → 〈α〉G implies `D F → 〈α〉G (and F `D 〈α〉G by Lemma 7) .

Proof We generalise the arithmetic completeness proof by Harel [34] to the hybrid case.
Most cases of the proof are simple adaptations of the corresponding cases in Proposition 1.
What remains to be shown is the case of repetitions. Assume that � F → 〈β∗〉G. To derive
this formula by G4, we use a FOD-formula ϕ(n) as a variant expressing that, after n it-
erations, β can lead to a state satisfying G. This formula is obtained from Lemma 5-6 as
(〈β∗〉G)# ≡ ∃v (Sβ∗ (x,v) ∧Gv

x), except that the quantifier on the repetition count n is re-
moved such that n becomes a free variable (plus index shifting to count repetitions):

ϕ(n− 1) ≡ ∃v ∃Z
`
Z

(n)
1 = x ∧ Z(n)

n = v ∧ ∀i : N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1)) ∧Gv

x

´
.

By Lemma 4, ϕ(n) can only hold true if n is a natural number.
According to the loop semantics, � n > 0 ∧ ϕ(n)→ 〈β〉ϕ(n− 1) is valid by construction:

If n > 0 is a natural number then so is n− 1, and if β reaches G after n repetitions, then, after
executing β once, n− 1 repetitions of β reach G. By IH, this formula is derivable, since β con-
tains less loops. By Lemma 8, we extend this derivation to `D ∀β∀n>0 (ϕ(n)→ 〈β〉ϕ(n− 1)).
Thus ∃v ϕ(v) `D 〈β∗〉∃v≤0ϕ(v) by G4. It only remains to show that the antecedent is deriv-
able from F and 〈β∗〉G is derivable from the succedent. From our assumption, we conclude
that the following are valid FOD-formulas, hence D-axioms:

– � F → ∃v ϕ(v), because � F → 〈β∗〉G, and
– � (∃v≤0ϕ(v))→ G, because v≤0 and the fact, that, by Lemma 4, ϕ(v) only holds true for

natural numbers, imply ϕ(0). Further, ϕ(0) entails G, because zero repetitions of β have
no effect.

From the latter we derive `D ∀β(∃v≤0ϕ(v)→ G) by Lemma 8 and extend the derivation to
〈β∗〉∃v≤0ϕ(v) `D 〈β∗〉G by G2. From `D F → ∃v ϕ(v) we conclude F `D ∃v ϕ(v) by Lemma 7.
Now, the above derivations can be combined propositionally by a cut with 〈β∗〉∃v≤0ϕ(v) and
with ∃v ϕ(v) to yield F `D 〈β∗〉G. ut

A.4 Relative Completeness of the Differential Logic Calculus

Having succeeded with the proofs of the above statements we can finish the proof of the
Theorem 3, which is the central result of this work.
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Proof (of Theorem 3) The proof follows a basic structure analogous to that of Harel’s proof
for the discrete case [34, Theorem 3.1]. We have to show that every valid dL formula φ can
be proven from FOD axioms within the dL calculus: from � φ we have to prove `D φ. The
proof proceeds as follows: By propositional recombination, we inductively identify fragments
of φ that correspond to φ1 → [α]φ2 or φ1 → 〈α〉φ2 logically. Next, we express subformulas φi
equivalently in FOD by Lemma 6, and use Proposition 1 and 2 to resolve these first-order
safety or liveness assertions. Finally, we prove that the original dL formula can be re-derived
from the subproofs.

We can assume φ to be given in conjunctive normal form by appropriate propositional
reasoning. In particular, we assume that negations are pushed inside over modalities using the
dualities ¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ. The remainder of the proof follows an induction
on a measure |φ| defined as the number of modalities in φ. For a simple and uniform proof, we
assume quantifiers to be abbreviations for modal formulas by ∃xφ ≡ 〈x′ = 1〉φ ∨ 〈x′ = −1〉φ
and ∀xφ ≡ [x′ = 1]φ ∧ [x′ = −1]φ.

0. |φ| = 0 then φ is a first-order formula, hence derivable by D.
1. φ is of the form ¬φ1, then φ1 is first-order, as we assumed negations to be pushed inside.

Hence, |φ| = 0 and Case 0 applies.
2. φ is of the form φ1 ∧ φ2, then individually deduce the simpler proofs for `D φ1 and `D φ2

by IH, which can be combined by P5.
3. φ is a disjunction and—without loss of generality—has one of the following forms (other-

wise use associativity and commutativity to select a different order for the disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

As a unified notation for those cases we use φ1 ∨ 〈[α]〉φ2. Then, |φ2| < |φ|, since φ2 has less
modalities. Likewise, |φ1| < |φ| because 〈[α]〉φ2 contributes one modality to |φ| that is not
part of φ1.

According to Lemma 6 there are equivalent FOD-formulas φ#
1 , φ

#
2 with � φi ↔ φ#

i for

i = 1, 2. By congruence, the validity � φ yields that � φ#
1 ∨ 〈[α]〉φ#

2 , which directly implies

� ¬φ#
1 → 〈[α]〉φ#

2 . Then by Proposition 1 or 2, respectively, we can derive

¬φ#
1 `D 〈[α]〉φ#

2 . (6)

Further � φ1 ↔ φ#
1 implies � ¬φ1 → ¬φ#

1 , which is derivable by IH, because |φ1| < |φ|.
By Lemma 7, we obtain ¬φ1 `D ¬φ#

1 , which we combine with (6) by a cut with ¬φ#
1 to

¬φ1 `D 〈[α]〉φ#
2 . (7)

Likewise � φ2 ↔ φ#
2 implies � φ#

2 → φ2, which is derivable by IH, as |φ2| < |φ|. We can

extend the derivation of `D φ#
2 → φ2 to one of `D ∀α(φ#

2 → φ2) by Lemma 8 and conclude

〈[α]〉φ#
2 `D 〈[α]〉φ2 by G1–G2. Finally we combine the latter propositionally with (7) by a

cut with 〈[α]〉φ#
2 to derive ¬φ1 `D 〈[α]〉φ2, from which `D φ1 ∨ 〈[α]〉φ2 can be obtained,

again using P10, to complete the proof. ut

B Relative Semidecidability Proof

As an auxiliary result for proving Theorem 4, we show that, in dL proofs, Skolem symbols
occur in a uniform way, i.e., a Skolem symbol s always occurs with the same list of arguments.

Lemma 9 (Uniform Skolem symbols) Let φ be a dL formula without Skolem symbols. In
any derivation of φ, Skolem symbols only occur with a unique list of free logical variables as
arguments, provided that the formulas in cuts (P10) obey this restriction.

Proof The proof is by induction on the structure of proofs in the dL calculus. For derivations
of length zero, the conjecture holds, because φ does not contain Skolem symbols. We show
that the conjectured Skolem occurrence property is preserved in all sub-goals when applying
a rule to a goal that satisfies the conjecture.
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F1 The symbols s(X1, . . . , Xn) introduced by rules F1–F2 are of the required form as the Xi
are precisely the free logical variables. In addition, the symbol s(X1, . . . , Xn) does not occur
nested in other Skolem terms, because, by induction hypothesis, the bound variable x does
not occur in Skolem terms of the goal.

F3 Rules F3 and F6 are only applicable to instances of first-order real arithmetic (Lemma 2),
for which the equivalence transformations of quantifier elimination preserve the Skolem
occurrence property, because they never introduce quantifiers to bind free variables.

D11 Rule D11 preserves the property, as it only substitutes state variables xi ∈ Σ not logical
variables Xi ∈ V .

P10 Cuts preserve the Skolem occurrence property, as we assumed the formulas that P10
introduces to adhere to the Skolem occurrence property.

– The other rules of the dL calculus preserve the property as they never replace arguments
of Skolem function symbols (which are free variables by induction hypothesis). ut

Proof (of Theorem 4) The proof is by well-founded induction. We prove that there is a well-
founded strict partial order ≺ such that:

IH: For all non-atomic formulas occurring in the sequents during a proof, there is an applicable
series of dL rules such that all resulting sub-goals are simpler with respect to ≺, have no
additional free variables or function symbols, and their conjunction is equivalent to the
conclusion (for suitable oracle choices).

By applying these dL rules exhaustively, we obtain a decision procedure relative to the or-
acle, because the sub-goals descend along the well-founded order ≺, which has no infinite
descending chain. Finally, validity of the remaining sequents with atomic formulas is decidable
by evaluating ground instances (Def. 7), because, by IH, the resulting formulas have no free
variables when the initial formula is closed (open formulas, instead, yield equivalent parame-
ter constraints as results). We use the derived rules G3’ and G4’ in place of G3 and G4, see
Section 4.1. To obtain a backtracking-free procedure, we remove rules D5–D6 and G1–G4 and
P10 from the calculus: If a calculus with less rules gives a decision procedure, then so does the
full calculus.

We define the order ≺ as the lexicographical order of, respectively, the numbers of: loops,
differential equations, sequential compositions, choices, modalities, quantifiers, number of dif-
ferent variables and Skolem function symbols, and the number of logical connectives. As a
lexicographical order of natural numbers, ≺ is well-founded [22]. It lifts to sequents in rule
applications (Def. 8) when all sub-goals of all rule schemata are simpler than their goals with
respect to ≺, which can be shown to retain well-foundedness as a multiset ordering [22].

Now the proof of IH is by induction along ≺. Let φ be a non-atomic formula of a sequent
in an open branch of the proof. We assume φ to occur in the succedent; the respective proofs
for the antecedent are dual. Hence, we consider the sequent to be of the form Γ ` φ,∆.

1. If φ is of the form ψ1 ∧ ψ2, then P6 is applicable, yielding smaller sequents (with less
logical connectives) that are equivalent. Other logical connectives are handled likewise
using P1–P7, respectively.

2. If φ is of the form [α]ψ or 〈α〉ψ and α is of the form ?χ, β; γ, or β ∪ γ the corresponding
rule D1–D4 or D7–D8 is applicable, yielding a simpler yet equivalent formula.

3. If φ is of the form [x′1 = θ1, . . . , x′n = θn &χ]ψ, then D12 is applicable, as we assumed
differential equations to have first-order definable flows. The resulting formula is equivalent
and simpler, because it contains less differential equations. It involves additional bound
variables but not free variables. Case 〈x′1 = θ1, . . . , x′n = θn &χ〉ψ is similar, by D11.

4. If φ is of the form [α∗]ψ, then G3’ is applicable with a first-order invariant F obtained
from the oracle. The resulting sub-goals are is simpler according to ≺, because they contain
less loops (F does not contain loops). The resulting sub-goals do not have additional free
variables as all bound variables of α∗ remain bound by the universal closure ∀α in the
respective premisses. Finally, we assume the oracle to give an invariant such that the
conjunction of the resulting sub-goals is equivalent to the goal (otherwise we have nothing
to show for inadequate choices by the oracle). The case 〈α∗〉ψ is similar, using G4’ instead.

5. If φ is of the form 〈x1 := θ1, . . . , xn := θn〉ψ, there are two cases. If D9 is applicable,
it yields equivalent simpler sequents. Otherwise, we have ψ ≺ 〈x1 := θ1, . . . , xn := θn〉ψ.
Thus, by IH, there is a finite sequence of rule applications on ψ yielding equivalent se-
quents with atomic formulas. Prefixing the resulting proof with 〈x1 := θ1, . . . , xn := θn〉,
yields a corresponding proof for Γ ` φ,∆ by Lemma 8. The formulas of its open branches
resulting from φ are of the form 〈x1 := θ1, . . . , xn := θn〉G for atomic formulas G, where,



43

at the latest, D9 is applicable, as substitutions are admissible on atomic formulas. Case
[x1 := θ1, . . . , xn := θn]ψ is similar, using D10 first.

6. If φ is of the form ∀xψ(x), we can apply F1 giving ψ(s(X1, . . . , Xn)). Now, we have
ψ(s(X1, . . . , Xn)) ≺ ∀xψ(x), hence, by IH, ψ(s(X1, . . . , Xn)) can be transformed equiva-
lently to a set of sequents of the form Φi(s(X1, . . . , Xn)) ` Ψi(s(X1, . . . , Xn)) with atomic
formulas (without loss of generality, we can assume s(X1, . . . , Xn) to occur in all branches).
Hence, QE is defined for these atomic formulas and F3 can be applied on each branch, yield-
ing QE(∀s (Φi(s) ` Ψi(s))). Consequently, the original sequent Γ ` ∀xψ(x),∆ is equiva-
lent to

V
i QE(∀s (Φi(s) ` Ψi(s))), for the following reason: Γ ` ψ(s(X1, . . . , Xn)),∆ is

equivalent to
V
i(Φi(s(X1, . . . , Xn)) ` Ψi(s(X1, . . . , Xn))) by IH, using the equivalence

QE(∀s (F ∧G)) ≡ QE(∀s F ) ∧QE(∀sG) and that s does not occur in Γ,∆. After apply-
ing F3, the result has no additional free symbols, although intermediate formulas do.

7. If φ is of the form ∃xψ(x), then F4 is applicable giving ψ(X) for a fresh logical variable X.
Then ψ(X) ≺ ∃xψ(x), hence, by IH, ψ(X) can be transformed equivalently to a set of
sequents Φi ` Ψi with atomic formulas. If no Skolem dependency on X occurs in Φi ` Ψi,
then QE is defined and F6 applicable, giving QE(∃X (

V
i(Φi ` Ψi))), which is equivalent to

∃X (
V
i(Φi ` Ψi)). By IH, this is equivalent to Γ ` ∃X ψ(X),∆, because X does not occur

in Γ,∆. Otherwise, if a Skolem term s(X1, . . . , X, . . . , Xn) occurs in a Φi ` Ψi, then, by
IH, the Skolem function s already occurred in ψ(X). By Lemma 9, s(X1, . . . , X, . . . , Xn)
itself must already have occurred in ψ(X), which contradicts the fact that X is fresh and
that bound variable x does not occur in Skolem terms of ∃xψ(x), again by Lemma 9. After
applying F6 the additional free variable X disappears. ut


