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Differential Edit Distance: A metric for scene

segmentation evaluation
Panagiotis Sidiropoulos, Vasileios Mezaris, Member, IEEE, Ioannis Kompatsiaris, Senior Member, IEEE,

and Josef Kittler Member, IEEE

Abstract—In this work a novel approach to evaluating video
temporal decomposition algorithms is presented. The evaluation
measures typically used to this end are non-linear combinations
of Precision-Recall or Coverage-Overflow, which are not metrics
and additionally possess undesirable properties, such as non-
symmetricity. To alleviate these drawbacks we introduce a novel
uni-dimensional measure that is proven to be metric and satisfies
a number of qualitative prerequisites that previous measures do
not. This measure is named Differential Edit Distance (DED),
since it can be seen as a variation of the well-known edit
distance. After defining DED, we further introduce an algorithm
that computes it in less than cubic time. Finally, DED is
extensively compared with state of the art measures, namely
the harmonic means (F-Score) of Precision-Recall and Coverage-
Overflow. The experiments include comparisons of qualitative
properties, the time required for optimizing the parameters of
scene segmentation algorithms with the help of these measures,
and a user study gauging the agreement of these measures with
the users’ assessment of the segmentation results. The results
confirm that the proposed measure is a uni-dimensional metric
that is effective in evaluating scene segmentation techniques and
in helping to optimize their parameters.

I. INTRODUCTION

Video decomposition into elementary temporal units is

an essential preprocessing task for a wide range of video

manipulation applications, such as video indexing, non-linear

browsing, classification etc. The video decomposition tech-

niques focus either on shot or scene segmentation, according

to the structural or semantic criteria employed.

Shots are defined as sequences of images taken without

interruption by a single camera [1]. On the other hand, scenes

are longer temporal segments that are usually defined as

Logical Story Units (LSU): a series of temporally contiguous

shots characterized by overlapping links that connect shots
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with similar content [2]. The video scene should not be

confused with the meaning of the term “scene” in the context

of still image processing and interpretation, which relates to

the physical environment information that is captured by the

image.

Automatic video segmentation to shots and scenes is as-

sociated with different degrees of difficulty. State-of-the-art

shot segmentation techniques have been shown to reach good

performance on a variety of datasets in experiments such

as the annual TRECVID benchmarking exercise, particularly

when it comes to detecting abrupt shot transitions (cuts)

[3]. On the other hand, scene segmentation is still an open

research problem. Among the shortcomings of the relevant

scene segmentation literature is the lack of an efficient scene

segmentation evaluation measure.

Automatic scene segmentation techniques generate a list

of scene boundaries that identify the time-points dividing the

video stream into different scenes. In order to estimate their

performance, the resulting scene boundary list is contrasted

with a manually generated one (ground truth). The similarity

of the two scene boundary lists is measured either in terms of

Precision-Recall [4] of Coverage-Overflow [5]. In [6], editing

strategies common to film industry are exploited to extract

the scene boundaries and the results are evaluated by using

Precision-Recall (and a linear combination of them), as well

as the required computation time. In [7] a visual bag-of-

words approach is proposed for decomposing the video into

scenes, which for the purpose of evaluation are compared to

the ground-truth using the Coverage and Overflow measures.

The authors of [8] present a graph-based scene segmentation

approach, which uses normalized cuts; evaluation is conducted

with the help of the Precision-Recall measures. [9] proposes

a probabilistic technique that aims to maximize the Precision-

Recall values of the estimated scene boundaries, by train-

ing a number of independent descriptors based on various

modalities, with Precision-Recall again being used for its

evaluation. Similarly, the authors of [10] train a SVM, which

takes as input descriptor values from different modalities,

to maximize the Precision-Recall measures. Finally, a multi-

modal probabilistic technique that uses both high-level and

low-level audio-visual features (including visual concepts and

audio events, automatically detected with the use of a plurality

of machine-learning-based concept and event detectors) is

proposed in [11]. Its evaluation is carried out using Coverage

and Overflow.

For most of the aforementioned methods, as well as other

techniques of the relevant literature, when a straightforward,
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uni-dimensional comparison is required, for example to op-

timize the value of a system parameter, the harmonic mean
1(F-Score) of either the one or the other of these two pairs

of measures is typically estimated. However, this evaluation

approach suffers from a number of evaluation flaws, which

are partially induced by the fact that the generated problem

space (i.e., the evaluation space) is not a metric space.

In this work we present a novel uni-dimensional measure for

scene segmentation evaluation, along with an implementation

of it that features lower-than-cubic complexity. We prove that

this measure is a metric and we compare it with the two afore-

mentioned harmonic means commonly used in the literature,

to demonstrate its desirable properties and its increased agree-

ment with the users’ evaluation of segmentation results. We

also experimentally show that the tuning of scene segmentation

system parameters using the new measure requires less time,

since it allows for a more sparse sampling of the parameter

space.

The rest of the paper is organized as follows: The concept

of scene segmentation as a label assignment problem, which

is a prerequisite for the development of the metric proposed

in this work, is discussed in Section II. The Differential Edit

Distance metric and its estimation algorithm are presented and

discussed in Section III, followed in Section IV by experimen-

tal evaluation and comparison with two other uni-dimensional

evaluation measures. Finally, conclusions are drawn in Section

V.

II. SCENE SEGMENTATION AS A LABEL ASSIGNMENT

PROBLEM

Mathematically speaking, a video sequence V can be seen

as a well-ordered set of structural elements such as frames,

shots, scenes. That is, considering only one of the afore-

mentioned possible types of elements at each time, their set

has a binary relation ℜ that is total (for all xi, xj ∈ V ,

xiℜxj or xjℜxi), antisymmetric (if xiℜxj and xjℜxi, then

xi = xj) and transitive (if xiℜxj and xjℜxk, then xiℜxk).

This binary relation is the temporal position of the video’s

structural elements.

Video temporal decomposition techniques generate a parti-

tion of video sequence V into convex sub-sets vi, since the

resulting temporal segments (regardless of whether they are

shots or scenes) by definition satisfy the following principles:

•

⋃

vi = V
• vi

⋂

vj = ∅, ∀i 6= j
• ∀vi if x1, x2 ∈ vi then all x, x1 ≤ x ≤ x2 also belong

to vi

The first two principles signify that each and every video

element is assigned into one of non-overlapping sub-sets

(considering, of course, only the appropriate types of elements

for each task). For example there are no frames that do not

belong to some shot, scene etc. Finally, the third one is

associated with the sub-set convexity, since it postulates that

if two elements belong to the same sub-set then all elements

that lie between them also belong to it.

1It is reminded that the harmonic mean FQ1,Q2
of two quantities Q1 and

Q2 is FQ1,Q2
=

2Q1Q2

Q1+Q2

.

When shot segmentation is conducted, the video elements

considered are the frames of the video. On the other hand,

when scene segmentation is conducted, the video elements

considered are usually the video shots. This reflects a common

assumption behind almost all scene segmentation techniques

in the literature, namely that each shot belongs to exactly

one scene [11], [12], [13], [14], [15]. Under this assumption

scene segmentation is typically performed through a two-

step temporal decomposition process: first the video frames

are used to partition the video sequence into shots, and then

the shots are further grouped to form scenes. In the second

step of this approach, each shot is assigned to an appropriate

scene. We can assume that this is performed through a labeling

process: each shot receives a label that identifies the scene that

it belongs to, so that:

• If two shots belong to the same scene, they are assigned

the same label.

• If two shots belong to different scenes, they are assigned

different labels.

For example, a video sequence that includes 5 shots may be

labeled “a, a, b, b, c”, “1, 1, 1, 1, 1”, etc. On the other hand, the

label sequences “a, b, b, c” and “a, a, b, b, a” do not represent

possible decompositions of this video into scenes: in the first

case one shot is not assigned to any scene, while in the second

case the decomposition is not a convex one.

So, scene segmentation can be generally viewed as a label

assignment problem, where one is interested in estimating a

label sequence that corresponds to the grouping of the video’s

shots into scenes. This scene segmentation approach is in line

with the point of view of an expert user, who is charged with

the generation of a manual segmentation of a video stream

(e.g. a video librarian [5]). Such a user would assign labels

into scenes and would discriminate one scene from another

by moving from shot to shot while changing the assigned

description label only when the scene changes.

III. DIFFERENTIAL EDIT DISTANCE METRIC

A. Differential Edit Distance

In any objective scene segmentation evaluation setup, the

ground-truth scene segmentation and the experimentally esti-

mated scene segmentation results provide two different par-

titions of the well-ordered set of shots. The similarity of

these partitions may be used as a measure of accuracy of the

experimentally estimated scene segmentation. We propose to

express this similarity through a minimum distance approach

that resembles the Earth Movers’ Distance; the latter was

recently used, among others, for visual event recognition and

near-duplicate video detection [16], [17]. More specifically, we

define the distance between two partitions of a well-ordered set

as the minimum number of set elements that need to move to

another sub-set in order to transform the one partition into the

other. Using the scene segmentation terminology, the distance

between two scene segmentation partitions is the minimum

number of shots that need to change scene label in order

to transform the experimentally estimated partition into the

ground truth one.
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It can be proven that this measure is also a metric. Indeed, if

d(V1, V2) denotes the distance between two partitions V1 and

V2 then it is obvious that d(V1, V1) = 0 and d(V1, V2) =
d(V2, V1). Furthermore, let us suppose that Xij is the set

of elements giving rise to d(Vi, Vj) (set of elements that

need to change sub-set). Then, if X12 and X23 are two such

sets, by changing a sub-set of all elements that belong to

X12

⋃

X23 the partition V1 can be transformed into partition

V3. Since the distance d(V1, V3) is the minimum number of

elements that need to change subset, d(V1, V3) ≤ |X12

⋃

X23|
(where |.| denotes the cardinality of a set). Moreover, each

element that belongs to X12

⋃

X23 must change subset in

order to transform either V1 into V2 or V2 into V3 or both.

Consequently:

d(V1, V3) ≤ |X12

⋃

X23| ≤ d(V1, V2) + d(V2, V3) (1)

We name this metric Differential Edit Distance (DED) due

to the fact that when video partitioning is modeled as a label

assignment problem, then this distance expresses the minimum

number of labels that need to change in order to transform

the first label sequence into another that achieves an identical

partitioning with the second. It can be seen from this definition

that DED resembles the well-known edit distance [18]. The

edit distance differs from DED in that it additionally requires

the identical partitioning to be expressed with identical labels.

In order to give a definition that is tailored to label assignment,

we first introduce Differential Equivalence:

Definition 1: Two label sequences are differentially equiva-

lent when each pair of elements in the two sequences satisfies

the following conditions:

• If the two elements of the pair share the same label in

the first sequence (i.e., if label of xi = label of xj

according to the first label sequence), they will also have a

common label in the second sequence (i.e., label of xi =
label of xj also according to the second label sequence.

The latter common label may of course be different from

the one that the two elements shared according to the first

label sequence.)

• If they do not share the same label in the first sequence

(i.e. if label of xi 6= label of xj according to the first

label sequence), they will also have different labels in the

second sequence (i.e., label of xi 6= label of xj also

according to the second label sequence).

For example label strings “a, a, b, b, c, c”, “1, 1, 2, 2, 3, 3”,

“2, 2, 1, 1, 3, 3”, “B, B, 1, 1, A,A”, “+, +,−,−, ∗, ∗” are all

differentially equivalent. Differentially equivalent label se-

quences correspond to identical set partitions.

DED is then defined as the minimum number of label

modifications that are required to transform the first label

sequence into a sequence that is differentially equivalent to

the second one.

As discussed above, DED is a metric measure. It is assumed

here that evaluating scene segmentation methods with a metric

measure can be advantageous in comparison to using non-

metric ones. One of the reasons for this is that when a metric

measure is used for guiding an optimization process (as will be

examined in section IV-D), it is intuitively expected to result

in an error signal of lower bandwidth. Thus, estimation of

the measure values at fewer points of the parameter space

is sufficient for finding a good solution to the optimization

problem. While the validity of this assumption is not guar-

anteed, the experimental results of section IV-D indicate that

the proposed metric measure indeed results in most cases in

an error signal of lower bandwidth, in comparison to non-

metric measures FPR, FCO. Furthermore, if one needed to

process the samples of this error signal in a more elaborate way

than what is done in this work, e.g. if one wanted to perform

some kind of machine learning or dimensionality reduction

involving these samples, the fact that they define a metric

space allows for the use of techniques such as SVM, PCA

or isometrical embedding [19], [20], [21], which are designed

specifically for use in metric spaces.

B. DED Estimation Algorithm

The DED algorithm computes the minimum number of

labels that need to change in order to transform one label

sequence into another. As will be subsequently demonstrated,

this problem can be solved in less than cubic time by modeling

it as a job assignment problem. The final resulting algorithm

is summarized in Algorithm 1.

Let us suppose that the alphabet (i.e. the set of labels) of the

experimentally estimated label sequence and the ground truth

one is AE and AG respectively and that the number of labels

in each alphabet is |AE | and |AG|. Since DED is symmetric,

the experimentally estimated label sequence and the ground

truth one can switch places without changing the final DED

outcome. Consequently, we can assume that |AE | is larger

than |AG| without loss of generality.

Each symbol ag
i , i ∈ {1, 2, ..., |AG|} of the ground truth

label sequence is used to label the shots that belong to a

ground truth scene (i.e., label ag
i is the one assigned to the

shots of ground truth scene vg
i ; both labels and scenes are

ordered according to the temporal order of the scenes in the

video, so that ag
1 is the label of the first scene (vg

1 ), ag
2 of

the second one, etc.). The shots assigned to ag
i according to

the ground truth label sequence are also assigned to labels

ae
j , a

e
j+1, ..., a

e
j+k in the experimental label sequence. It is

obvious that from all k + 1 labels ae
j , ..., a

e
j+k, at most one

can be considered to correspond to ground truth label ag
i . If

this is ae
j′ , we say that label ae

j′ is a match to label ag
i . Each

symbol in the experimental sequence can match at most with

one symbol of the ground truth sequence and vice versa (the

exact way that this matching is performed is explained in the

sequel).

Following the label matching, all shots that belong to a

scene labeled ag
i and whose experimentally assigned label

belongs to set {ae
j , ..., a

e
j+k} − {ae

j′} need to change their

label. In case there is no match for label ag
i , all shots

belonging to this ground truth scene need to change their label.

Consequently, for all i, if ag
i is matched with a label belonging

to the experimental label set, the number of shots that need

to change label is equal or less than the respective number

of shots that would need to change label if ag
i had not been
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Algorithm 1 DED Algorithm Summary

1: If BE and BG are the ordered sets (in ascending order) of

experimentally estimated scene boundaries and ground truth

scene boundaries respectively, ordered set B = {0, BE ∩
BG, N} is formed, where N is the number of shots in the

video. It should be noted that in sets BE , BG, a scene

boundary is represented by the index of the last video

shot that is part of the first of the two scenes defining the

boundary.

2: The video is decomposed into sub-videos SVb, b =
1, 2, ...|B|−1, where |B| is the cardinality of B. Each sub-

video starts at shot B(b) + 1 and lasts until the end of shot

B(b + 1). The way that this decomposition is performed is

discussed in section III-C.

3: Initialize: b = 1, NW = 0.

4: For the sub-video SVb, a co-occurrence matrix, CMb, is

constructed. Each element CMb(i, j) of the co-occurrence

matrix is equal to the number of shots that belong to both

ground truth scene vg
i and experimental scene ve

j .

5: Cost matrix CCb is computed as CCb(i, j) = ˆCM b −
CMb(i, j), where ˆCM b = max

i,j
(CMb(i, j)).

6: The cost matrix is zero-padded in order to become square.

7: The Hungarian algorithm is used to estimate the element

combination that leads to the minimum cumulative cost

when choosing only one element of each row and each

column of the cost matrix CCb. This combination deter-

mines the optimal matching Wb between ground truth and

experimentally estimated scenes of the sub-video SVb.

8: The number of shots NWb
=

∑

(vg

i
,ve

j
)∈Wb

CMb(i, j) that do

not need to change scene label is estimated.

9: NW = NW + NWb
.

10: If b = |B| − 1, DED = (N − NW )/N . Else b = b + 1
and the algorithm continues from step 4.

matched with any label from AE . As a result, in the minimum

label modification case, all ag
i are matched to exactly one label

from AE .

Accordingly, we construct a co-occurrence matrix CM
of dimensions |AG| × |AE |. Element CM(i, j) contains the

number of shots that are assigned the i− th label of alphabet

AG in the ground truth label sequence and the j − th label of

alphabet AE in the experimental label sequence. The value of

each element of the co-occurrence matrix is therefore equal

to the number of labels that would not require changing if

the corresponding symbols ag
i , ae

j were considered to match.

Consequently, the minimization of the number of transforma-

tions is equivalent to the selection of |AG| matching pairs of

symbols maximizing the number of labels that would not need

to be changed. This selection is constrained by the fact that

each symbol of the one alphabet can be matched at most to

one symbol of the other.

Thus, DED estimation leads to the dual problem of job

assignment. Let us recall that in the job assignment problem

a number of employees need to be assigned to a number of

jobs in order to minimize the total cost, with the constrain that

each employee can be assigned to no more than one job. The

optimal job assignment can be estimated by the Hungarian

algorithm [22]. This algorithm takes as input a square matrix

with positive elements and estimates with cubic complexity

the minimum sum that can be achieved when from each row

and each column exactly one element is added. In our case

the co-occurrence matrix is transformed into a cost matrix by

replacing all values CM(i, j) with ˆCM − CM(i, j), where
ˆCM = max

i,j
(CM(i, j)) (step 5 of Algorithm 1). Then, the

optimal set of symbol matchings is revealed by the element

combination that achieves the minimum score according to

[22], and is used to estimate the actual DED value from the

co-occurrence matrix:

DED =
N − NW

N
(2)

where N is the total number of video shots and NW is the

number of video shots that are assigned labels which are

matched correctly.

C. DED Computational Optimization

The job assignment problem solved by the Hungarian al-

gorithm has cubic computational complexity, determined by

the minimum number of actual and experimentally estimated

scenes. Since the number of scenes is not expected to surpass

the order of hundreds, the computational cost is usually not

expected to reach extreme levels. However, there may be cases,

e.g. when tuning the parameters of a scene segmentation sys-

tem, that this computational complexity makes the use of DED

troublesome. We have found that the DED computational cost

can be significantly reduced if the block-diagonal structure of

the co-occurrence matrix is exploited.

The co-occurrence matrix structure is induced by “splitting”

shot boundaries, i.e. shot boundaries that both in the exper-

imental and the ground truth segmentation are identified as

scene boundaries (Fig. 1). It can be proven that all the labels

on the left side of a “splitting” boundary do not co-occur with

the labels on the right side of it, due to the scene convexity.

Consequently, the video stream can be decomposed into sub-

videos. This is done by checking the sets of ground truth

and experimentally estimated scene boundaries for common

boundaries, i.e, we find the scene boundaries that belong to

the intersection of these two sets. The latter scene boundaries

are used as splitting points for decomposing the video into sub-

videos: each such boundary marks the end of a sub-video. The

resulting decomposition is illustrated for an example video in

Fig. 1.

Consequently, if the scene labels are sorted by their first

appearance, the co-occurrence matrix CM takes the following

block-diagonal form, where SVb, b = 1, 2, ...|B|−1 is the b−th

sub-video, |B|−1 is the total number of sub-videos (see steps

1 and 2 of Algorithm 1 for a definition of |B|) and each sub-

video boundary is determined by a corresponding “splitting”

boundary.

In this case, the optimal job assignment can be estimated by

decomposing the co-occurrence matrix into the block-matrices

found on its main diagonal, computing the optimal solution for
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Fig. 1. An example of a video stream decomposition into sub-videos, using
the common scene boundaries of ground truth and experimental segmentation.
It should be noted that this figure does not depict a co-occurrence matrix, since
its axis indicate shot indices rather than scenes. The vertical and horizontal
lines signify the shots that define the ground truth and experimentally
estimated scene boundaries respectively. The video is decomposed in points
where a vertical and a horizontal line intersect on the main diagonal. Each
sub-video is drawn hatched.

CM =







SV1 0 0 ... 0

0 SV2 0 ... 0

... ... ... ... ...
0 0 0 ... SV|B|−1







each SVb, b = {1, 2, ...|B| − 1} matrix, and summing all the

partial solutions.

It should be noted that the technique presented in this

section is used for evaluating the segmentation similarity when

the cost of a shot re-assignment is assumed identical and

equal to 1. However, the same analysis stands if the shot re-

assignment cost is determined by specific shot-related criteria,

such as the shot duration in frames or seconds. In this case,

only the co-occurrence matrix calculation (step 5 of Algorithm

1) needs to be modified in order to represent these costs,

counted in e.g. seconds rather than in number of shots.

IV. COMPARISON OF SCENE SEGMENTATION EVALUATION

MEASURES

In the early scene segmentation literature, the evaluation

of segmentation results was either subjective (e.g. in [23] it

was left to the reader) or was based on evaluation criteria for

shot boundary segmentation. The latter boils down to counting

false negatives and false positives (e.g. in [2]) that leads to a

Precision-Recall approach. In some recent publications, (e.g.

in [11]), instead of Precision-Recall, Coverage and Overflow

measures [5] are employed.

However, when the performance is evaluated by two distinct

measures, the inherent problem of combining them needs to

be addressed. In both Precision-Recall and Coverage-Overflow

based approaches, their harmonic mean has been proposed as a

uni-dimensional measure combining the two. In the following

sub-section, the DED is comparatively evaluated against the

harmonic mean of Precision-Recall (FPR) and Coverage-

Overflow (FCO).

A. Other Scene Segmentation Evaluation Measures

1) Precision-Recall: Precision and Recall [4] are two

widely used performance measures (e.g. see [12], [13], [24]).

They require a set of ground truth instances and a set of

experimentally estimated instances. For scene segmentation

purposes, we have chosen to relate the set of ground truth and

experimentally estimated instances with the pairs of shots that

belong to the same scene, since each video scene segmentation

explicitly determines the shot pairs that belong to the same

scene.

It should be noted that in the relevant literature, Precision

and Recall are commonly estimated by counting false positives

and false negatives in the experimentally retrieved set of scene

boundaries, rather than pairs of shots that belong to the same

scene. However, this approach can not correctly gauge scene

segmentation performance, since the number of errors does

not communicate error magnitude [5]. Misidentified scene

boundaries represent errors of different magnitude, which are

expected to play a different role to the system performance.

By defining Precision and Recall with the help of pairs of

shots that belong to the same scene, cases such as the above

can be handled successfully. However, as will be discussed in

the following subsection, even when using such a definition

the harmonic mean of these two measures continues to present

both theoretic and experimental shortcomings in comparison

to the DED.

2) Coverage-Overflow: Vendrig et. al. [5] developed two

novel measures that manage to express over-segmentation

and under-segmentation rates, referred to as Coverage and

Overflow ratio. Coverage (C) measures to what extent frames

belonging to the same scene are correctly grouped together,

while Overflow (OV) evaluates the quantity of frames that,

although not belonging to the same scene, are erroneously

grouped together. More specifically, the Coverage and Over-

flow of a video is the average Coverage and Overflow ratios

of its ground truth scenes. In order to estimate the Coverage

and Overflow of a ground truth scene vg
i , the experimentally

estimated scenes ve
j , v

e
j+1, ..., v

e
j+k that overlap with it are

taken into account. Then, if operator ||.|| denotes the duration

of a video segment (counted in shots), the Coverage C equals

the maximum overlap divided by the total scene duration:

Ci =
max(||ve

j ∩ vg
i ||, ||v

e
j+1 ∩ vg

i ||, ..., ||v
e
j+k ∩ vg

i ||)

||vg
i ||

(3)

On the other hand, in order to compute the Overflow

rate, the total overlap of ve
j , v

e
j+1, ..., v

e
j+k with the scenes

neighboring to vg
i (i.e. vg

i+1 and vg
i−1) is estimated and is

divided by the duration of these scenes:

OVi =
||ve

j ∩ vg
i+1|| + ||ve

j ∩ vg
i−1|| + ...||ve

j+k ∩ vg
i−1||

||vg
i+1|| + ||vg

i−1||
(4)

It should be noted that Coverage and Overflow optimal

values are 100% and 0% respectively. In order to account for

0 being the optimal Overflow value, in the F-score estimation

formula the quantity 1 − OV is used instead of OV .
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B. Evaluation setting

Assessing an evaluation method, such as the one proposed

here, is by no means a straightforward process. In the relevant

literature there are neither detailed qualitative explanations nor

experimental results that would provide supporting evidence

for the superiority of one or the other measure [5]. We have

chosen to address this problem by following an evaluation

setting that involves both qualitative and experimental com-

parison. The former is performed by identifying a number

of qualitative properties that a good measure is intuitively

expected to satisfy and checking whether they are exhibited by

the proposed method (and the other methods in the literature),

while the latter revolves around examining the processing time

that is required for tuning the parameters of a scene segmen-

tation system when one of the aforementioned measures is

used for guiding the parameter selection process. A user study

involving 6 non-expert users was also conducted.

In order to compare the three measures, we implemented

four different scene segmentation techniques, and used them

on three datasets. The scene segmentation techniques include

the original STG technique [23], an STG variation that em-

ploys high-level audio event descriptors instead of low-level

visual descriptors, as described in [11], and two multi-modal

scene segmentation techniques [25], [26]. The video datasets

are a documentary, a movie and a news one. The first is made

of 15 documentaries (513 minutes in total) from the collection

of the Netherlands Institute for Sound & Vision, also used

as part of the TRECVID dataset in 2009. The second one is

made of six movies (643 minutes in total). Finally, the news

dataset consists of 3 hour-long news videos. These datasets

include 3459, 6665 and 1763 automatically detected shots,

and 525, 357 and 57 manually identified ground truth scenes,

respectively. It should be noted that in the news and movie

datasets the ground truth scenes usually include many more

shots than in the documentary one.

All experiments reported in the sequel were carried out on a

PC with an Intel Core 2 Quad Q9300 CPU and 4GB of RAM.

C. Analysis of qualitative properties of evaluation measures

In this subsection the comparison of DED, FCO and FPR

according to certain qualitative properties is conducted. It

should be noted that since DED is a dissimilarity measure,

while FCO and FPR are similarity measures, 1 − DED is

employed instead in the comparisons.

1) Symmetry in scene boundary misidentification errors:

An example of a misidentification error is demonstrated in Fig.

2. The scene boundary which exists at the end of shot S1 is

misplaced by e shots, being detected either at the end of shot

S1 − e or at the end of shot S1 + e. It is reasonable to expect

that a good evaluation measure does not discriminate between

these two cases, i.e. that it generates identical results without

taking into account whether the estimated scene boundary is

found before or after the actual one. As a matter of fact, there

is no rationale that could support any differentiation of the two

cases.

It can be proven that if a scene boundary that exists at the

end of shot S1 is erroneously detected at the end of shot S1−e,

the harmonic mean of Coverage and Overflow, FCO(v1, v2, e),
is:

FCO =
2

||v1|| + ||v2||
·

||v2||(||v1|| + ||v2|| − e)(||v1|| − e)

(||v1||2 + 2||v1||||v2|| − e(||v1|| + ||v2||))
(5)

where ||v1|| and ||v2|| is the duration, counted in shots, of

the scene to the left and to the right of the scene boundary,

respectively. Based on the above equation, FCO(v2, v1, e)
gives the harmonic mean if the scene boundary is detected

at the end of shot S1 + e instead. Since this formula is

not symmetric, FCO generates different scores for equivalent

errors, e.g. for the case of ||v1|| = 30, ||v2|| = 70 and e = 3,

FCO(v1, v2, e) = 0.7323 and FCO(v2, v1, e) = 0.4388.

Symmetry in scene boundary misidentification errors is also

not satisfied by measure FPR. When a scene boundary that

exists at the end of shot S1 is erroneously detected at the end

of shot S1 − e, the harmonic mean of Precision and Recall,

FPR, is:

FPR(v1, v2, e) =
Q(v1, v2, e)

Q(v1, v2, e) + e(||v1|| + ||v2|| − 1)
(6)

where Q(v1, v2, e) = ||v1||
2 + ||v2||

2 + e2 − (2e + 1)||v1|| −
||v2|| + e. In the above equation FPR(v2, v1, e) gives the

harmonic mean if the scene boundary is detected at the end of

shot S1 + e. Equation (6) is not symmetric, because quantity

Q is not symmetric. Consequently, the FPR measure also

generates different distance scores for equivalent errors.

On the other hand, DED by definition does not discriminate

between these types of errors and produces in both cases a

similarity value proportional to the error magnitude:

DED(v1, v2, e) = DED(v2, v1, e) =
e

(||v1|| + ||v2||)
(7)

In order to quantify the expected asymmetry, for all videos

belonging to the 3 datasets that we use in this work, pairs

of synthetic segmentations were constructed by introducing

symmetric misplacements of each ground truth scene bound-

ary. Specifically, starting from the ground truth segmentation

and considering one scene boundary at a time, this boundary

was misplaced by e and −e shots, respectively, where e was

selected randomly from the integer values that are smaller

than the minimum distance of that particular scene boundary

from its two adjacent scene boundaries (so that the introduced

misplacement would not lead to a violation of the scene

convexity restriction). A single value of e was of course used

for each pair of scene boundary misplacements, to ensure their

symmetry. Then, DED, FPR and FCO values were estimated

(always in the range 0 to 100%) by comparing each synthetic

segmentation with the ground truth one, and subsequently the

DED, FPR and FCO differences were calculated for each

pair of synthetic segmentations that present symmetric errors.

The mean and standard deviation of these differences, post-

processed so as to simulate the case where 25% of the true

scene boundaries of each video are misplaced in this way, are

reported separately for each video dataset in Table I.
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Dataset DED Diff. FPR Diff. FCO Diff.
(µ ± σ) (µ ± σ) (µ ± σ)

Documentary 0 ± 0 0.83% ± 1.62% 6.81% ± 7.92%

Movie 0 ± 0 0.61% ± 1.17% 5.17% ± 5.4%

News 0 ± 0 0.34% ± 0.47% 2.78% ± 2.21%

TABLE I
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR

SEGMENTATION PAIRS THAT PRESENT SYMMETRIC SCENE BOUNDARY

MISIDENTIFICATION ERRORS.

S
1
 S
2

S
1
 +
 e
S
1
 -
e


30
 100


27
 100


F
CO
 = 0.7323


33
 100


F
CO
 = 0.4388


Ground Truth


Method 1


Method 2


F
PR
 = 0.949


F
PR
 = 0.9468


DED
 = 0.97


DED
 = 0.97


Shot Index


Shot Index


Shot Index


Shot Index


Fig. 2. An example of a misidentification error evaluation with FCO , FPR

and DED. Vertical bars denote scene boundaries; the dotted vertical bars
represent erroneously detected ones. Quantities S1 and S2 denote the shot
indices of the last shot of the first and second scene, respectively. While both
scene segmentation methods 1 and 2 misidentify the scene boundary by 3

shots, only DED generates symmetric results.

2) Symmetry of errors located at the beginning and the end

of a scene: This property is similar to the one discussed above.

A scene segmentation technique should not be evaluated

differently if it “crops” the beginning or the end of a specific

scene. An example of this is shown in Fig. 3.

In order to quantify the expected asymmetry magnitude

between errors taking place at the beginning and the end of

a scene, an experimental strategy analogous to the previous

subsection was followed, where symmetric errors were simi-

larly introduced to each pair of adjacent scene boundaries. The

mean and standard deviation of the resulting DED, FPR and

FCO differences, as in the previous experiment, are reported

separately for each video dataset in Table II.

Dataset DED Diff. FPR Diff. FCO Diff.
(µ ± σ) (µ ± σ) (µ ± σ)

Documentary 0 ± 0 7.17% ± 8.39% 18.8% ± 14.36%

Movie 0 ± 0 9.2% ± 12.87% 18.97% ± 16.33%

News 0 ± 0 2.94% ± 3.59% 9.92% ± 11.25%

TABLE II
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR

SEGMENTATION PAIRS THAT PRESENT SYMMETRIC ERRORS AT THE

BEGINNING AND AT THE END OF A SCENE.

As demonstrated by the results of Table II and also the

example of Fig. 3, only DED satisfies this property. Employing

FCO or FPR leads to different (non-symmetric) performance

estimates, induced by the different lengths of the adjacent

scenes.

S
1
 S
3
S
1
+
e
 S
2


Ground Truth


100
 250


Method 1


125
 300
250


300


F
CO
 = 0.7333


S
2
-
e


Method 2


100
 300
225


F
CO
 = 0.8575


F
PR
 = 0.8906


F
PR
 = 0.8298


DED
 = 0.9167


DED
 = 0.9167


Shot Index


Shot Index


Shot Index


Shot Index


Fig. 3. An example of a misidentification error evaluation with FCO , FPR

and DED. Vertical bars denote scene boundaries; the dotted vertical bars
represent erroneously detected ones. Quantities S1, S2 and S3 denote the
shot indices of the last shot of the first, second and third scene, respectively.
Method 1 misplaced the beginning of the second scene by 25 shots, while
method 2 misplaced the same scene’s end by 25 shots. The two methods are
evaluated differently by FCO and FPR.

3) Satisfaction of metric property: In section III-A it was

proven that the DED measure is a metric. On the contrary,

FCO is not a metric, since it is not symmetric. For example,

if a video stream consists of 100 shots and one scene and the

experimental segmentation identifies two equally-long scenes,

then FCO = 0.667. In the opposite case, i.e. when a video

stream includes two scenes of 50 shots each and a scene seg-

mentation technique retrieves only one scene, then FCO = 0.

So, generally

FCO(V1, V2) 6= FCO(V2, V1) (8)

where V1 and V2 are two segmentations of the same video

stream.

On the other hand, measure FPR satisfies the symmetry

property. This is proven by considering the definition of Recall

and Precision as the ratio of the intersection of the sets of

ground truth and experimental shot pairs belonging to the same

scene over the ground truth VG and the experimental set VE ,

respectively:

R(VG, VE) =
|VG ∩ VE |

|VG|
, P (VG, VE) =

|VG ∩ VE |

|VE |
(9)

FPR is defined as the harmonic mean of Recall R and

Precision P :

FPR(VG, VE) =
2

1
R

+ 1
P

=
2|VE ∩ VG|

|VE ∪ VG| + |VE ∩ VG|
(10)

FPR(VE , VG) estimates the similarity of the two segmenta-

tions. The corresponding distance DPR(VE , VG) is given by

the following equation:

DPR = 1 − FPR =
|VE ∪ VG| − |VE ∩ VG|

|VE ∪ VG| + |VE ∩ VG|
(11)
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It is straightforwardly understood that DPR(VG, VE) =
DPR(VE , VG) and as a result the measure exhibits the sym-

metry property. However, the distance DPR does not generally

satisfy the triangular inequality. For example, let us suppose

that a video stream consists of four shots, and three different

segmentations V1, V2 and V3 have been defined for it:

V1 = {1, 2}, {3}, {4}

V2 = {1, 2}, {3, 4}

V3 = {1}, {2}, {3, 4}

In the above equations, the brackets denote scene bound-

aries. For segmentations V1 and V3, the intersection of shot

pairs that belong to the same scene is void. Consequently

DPR(V1, V3) = 1. On the other hand |V1∩V2| = |V2∩V3| = 1
while |V1 ∪ V2| = |V2 ∪ V3| = 2. As a result DPR(V1, V2) =
DPR(V2, V3) = 1/3 and DPR(V1, V2) + DPR(V2, V3) <
DPR(V1, V3). So, the implicit solution spaces employed when

using FPR, as well as FCO, are non-metric spaces.

D. Further experimental comparison of performance mea-

sures

1) Computational complexity: It can be deduced from the

FPR definition that the performance evaluation of a video

segmentation involving N shots requires O(N2) operations.

Note that these operations can be no more complex than

a summation and a logical AND. On the other hand, in

order to compute either FCO or DED, the construction of

the co-occurrence matrix is required. This matrix is built by

sequentially browsing all shots of the video and thus requiring

O(N) operations. The co-occurrence matrix has a size of

|AG| × |AE |, where |AG| and |AE | is the number of scenes

in the ground truth and the experimental segmentation, re-

spectively. After its estimation, FCO computation involves all

co-occurrence matrix elements, but only linear combinations

of them. So, the overall computational complexity of FCO is

O(N) + O(|AG| · |AE |).
Finally, DED also employs the co-occurrence matrix, which

is decomposed into sub-videos using splitting boundaries.

Consequently, the overall complexity is of O(N)+O(DED)
where O(DED) is the complexity related to the total sub-

video DED estimation. The theoretical determination of this

computational complexity is not a trivial task, since it depends

on the number of splitting boundaries, as well as the number

of ground truth and experimentally estimated scenes. More

specifically, if the |AG| ground truth boundaries are experi-

mentally estimated with a Recall rate R and a Precision rate

P , then the video will be divided into R · |AG| + 1 sub-

videos. These sub-videos will include, in total, (1−R) · |AG|
ground truth scene boundaries and (1−P ) · |AE | experimental

scene boundaries that are not sub-video boundaries as well.

Typical values of Recall and Precision, as those given in [24],

are significantly over 50%. If this baseline performance is

assumed and |AE | and |AG| are assumed both equal to 40,

then each sub-video would contain on average less than 1
ground truth and less than 1 experimentally estimated scene

boundaries. So, in practical situations the DED algorithm

computational complexity is expected not to be significantly

higher than O(N). But, it should be mentioned that the worse

case complexity is higher than the one related to FCO, since

the job assignment complexity is cubic.

An experimental evaluation of the computational complexity

of DED, FPR and FCO was carried out on the datasets

of section IV-B, and the results (expressed as the ratio of

FPR or FCO computation time over DEDs computation time)

are given in Tables III, IV and V. These tables demonstrate

the higher efficiency of the DED measure. The observed

differences between the three datasets are explained by the

fact that in the news and the movie datasets, the video streams

comprise more shots, but are decomposed into fewer and

longer ground truth scenes. Consequently, the FPR computa-

tional cost, which is fully determined by the number of shots,

increases, while the computational cost associated with the

browsing of the co-occurrence matrix remains unaffected.

Method [23] [11] [25] [26]

FPR / DED 1.1959 1.1229 1.2156 1.0506

FCO / DED 9.6109 9.1970 6.9088 7.577

TABLE III
COMPUTATIONAL COST OF FPR AND FCO OVER DED IN THE

DOCUMENTARY DATASET.

Method [23] [11] [25] [26]

FPR / DED 5.133 3.1586 2.6934 2.8256

FCO / DED 4.0909 2.5779 3.2347 3.3698

TABLE IV
COMPUTATIONAL COST OF FPR AND FCO OVER DED IN THE MOVIE

DATASET.

Method [23] [11] [25] [26]

FPR / DED 8.6751 8.34 8.6081 8.9471

FCO / DED 2.9818 2.8892 2.557 2.6029

TABLE V
COMPUTATIONAL COST OF FPR AND FCO OVER DED IN THE NEWS

DATASET.

The efficiency of DED is to a great extent due to the

decomposition of the video to sub-videos (according to the

method of section III-C). This can be demonstrated if DED’s

computation time is contrasted with the computation time of a

DED variant that does not decompose the video to sub-videos.

The corresponding results are shown in Table VI. As will be

discussed in the next subsection, the computational complexity

that is associated with the evaluation of the measure plays a

critical role in the overall computation time that the parameter

tuning of a scene segmentation technique would require.

2) Parameter sampling density: The parameters of a scene

segmentation system, when no specific guidelines are avail-

able, are typically determined by search in the parameter

space; this involves a uniform sampling of the parameter

space [11]. This parameter tuning is conducted by varying

a parameter value that generates an error signal, where the

domain of the error signal is the parameter value space and
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Dataset Documentary Movie News

Non-optimized computation
time / Optimized 2.4964 11.9849 34.439
computation time

TABLE VI
COMPUTATION TIME WITHOUT DECOMPOSING THE VIDEO TO SUB-VIDEOS

DIVIDED BY COMPUTATION TIME WHEN DECOMPOSING THE VIDEO TO

SUB-VIDEOS ACCORDING TO SECTION III-C.

the values of the error signal are the distances of the resulting

segmentations from the ground truth one. The latter distance

is calculated using a segmentation evaluation measure. The

computation time required for this process is affected not only

by the computational complexity of the evaluation measures

but also by the required parameter sampling density.

The minimum sampling density is determined by the

Nyquist-Shannon sampling theorem as being proportional to

the spectrum bandwidth of the error signal (i.e., assuming that

it is a bandlimited signal, to its highest frequency). It should

be noted that when a signal is multi-dimensional, i.e. more

than one parameters are tuned at the same time, then the

Nyquist-Shannon sampling theorem is applied separately in

each different dimension. In order to determine the highest

frequency, a thresholding is required, since in theory the

spectrum of any signal limited in time is not limited in

frequency. Instead of employing a strict, arbitrarily chosen

threshold, we selected 20 different thresholds, varying from

0.1% of the total spectrum power to 2%, and averaged the

results.

Furthermore, when conducting the experimental analysis, it

is not the analog error signal that is taken into account but

inevitably a digital approximation of it, which is generated

using a manually chosen sampling rate. In order to prevent

error signal aliasing, the sampling rate used to generate it

should exceed the Nyquist-Shannon rate. This can not be

theoretically guaranteed, since it would require a priori knowl-

edge of the signal spectrum under examination. However, this

problem may be circumvented by relying on the fact that

when sampling exceeds the Nyquist-Shannon rate then the

bandlimited spectrum is identical and independent from the

sampling frequency. So, the adopted strategy was to double

the sampling points until the spectra of all three approximate

error signals ePR, eCO, eDED stabilized. This strategy is

summarized in Algorithm 2. It should be noted that the number

of samples doubles (Step 5) before the termination control

(Step 6) in order to provide extra accuracy to the spectra

estimation.

The experimental setup was identical to the one employed

for computational complexity, i.e. it included the four scene

segmentation techniques and the three different datasets. The

results (comparing the highest frequency of the error signal

spectrum when using DED, FPR and FCO) are shown in Ta-

bles VII, VIII and IX. These tables show that the FPR/DED
or FCO/DED bandwidth ratio is not so much dependent on

the dataset, but rather on the employed scene segmentation

technique. However, it can be seen that in all experiments,

only on two occasions the sampling rate of the DED error

signal was required to be greater than that of FCO, while

Algorithm 2 Sampling Rate Estimation Summary

1: The error signals ePR, eCO, eDED are estimated for the 3
different distance measures and for parameter values from 0
to a maximum value T . The sampling rate is fixed to T/R0.

Quantity R0, which determines the initial sampling rate, is

a constant.

2: Initialization: S = 1, fPR = FFT (ePR), fCO =
FFT (eCO), fDED = FFT (eDED).

3: λ = T/(2S · R0)
4: The error signals are recomputed by estimating their values

for the additional parameter values (T · i)/(2S−1 ·R0) + λ,

i = 0, 1, 2, ..., 2S−1 · R0 − 1.

5: S = S + 1.

6: The FFTs of the error signals are re-estimated and com-

pared to the corresponding f variables. If all of them are

similar to the corresponding fs, the algorithm terminates

and the sampling is performed with rate T/(2S ·R0). Else,

the estimated FFTs become the new fs and the algorithm

continues from Step 3.

DED outperforms FPR for all examined methods and datasets.

Consequently, it can be concluded that by employing DED, the

sampling required to tune the system parameters is more sparse

than if FPR or FCO were employed. The total computational

gain is estimated by multiplying the corresponding gain values

from Tables III to IX. It can be seen that through the use of

DED the scene segmentation tuning becomes much faster, with

a speed up factor that reaches up to 10 − 15 times.

Method [23] [11] [25] [26]

FPR / DED 1.3511 1.1244 1.3173 1.5475

FCO / DED 1.023 1.6635 1.7217 2.0594

TABLE VII
BANDWIDTH OF FPR AND FCO OVER DED IN THE DOCUMENTARY

DATASET.

Method [23] [11] [25] [26]

FPR / DED 1.2605 1.0671 1.089 1.431

FCO / DED 0.923 1.7809 1.7685 1.7534

TABLE VIII
BANDWIDTH OF FPR AND FCO OVER DED IN THE MOVIE DATASET.

Method [23] [11] [25] [26]

FPR/DED 1.0582 1.0653 1.0608 1.109

FCO /DED 0.8438 1.1794 1.2316 1.3993

TABLE IX
BANDWIDTH OF FPR AND FCO OVER DED IN THE NEWS DATASET.

E. User Study

In addition to the above experiments, we conducted a user

study involving 6 non-expert users in order to further assess

how well the results of the proposed DED measure match the

expectations of human evaluators. For the needs of this study
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we randomly produced triplets of synthetic segmentations for

a subset of the videos of our datasets, and then selected 20

of those triplets for which the three considered evaluation

measures disagree in the ranking of each triplet’s segmen-

tations (e.g. segmentation triplets for which DED suggests

that the first segmentation is the most similar to the manually-

created ground-truth one, while FPR and FCO suggest that

the second and the third one are most similar to the ground

truth, respectively). The 20 triples were shown one by one

to a set of 6 non-expert users, who independently viewed the

(segmented) videos and ranked each of them, without having

any knowledge of the corresponding DED, FPR and FCO

values. The agreement of the user rankings with the rankings

generated by each measure was evaluated using normalized

inversion count [27] and the results are shown in Table X.

It can be seen that DED has significantly better (i.e., lower)

scores than FPR and FCO.

Segmentation Evaluation Measure DED FPR FCO

Normalized Inversion Count 0.16 0.37 0.53

TABLE X
RESULTS OF THE CONDUCTED USER STUDY. NORMALIZED INVERSION

COUNT EXPRESSES HOW WELL THE OUTPUT OF EACH EVALUATION

MEASURE AGREES WITH THE RESULTS OF HUMAN EVALUATORS (LOWER

SCORES INDICATE BETTER AGREEMENT).

Finally, a few qualitative examples of scene segmentation

evaluation are given in Fig. 4, illustrating the values of the

FPR, FCO and DED measures in realistic scene segmentation

cases. These examples further emphasize the superiority of

the DED metric in producing evaluation results which are in

better agreement with the human perception of segmentation

goodness, compared to FPR and FCO.

V. CONCLUSION

In this work a novel scene segmentation evaluation measure

was presented. Furthermore, an implementation that computes

this measure with less than cubic complexity was introduced.

For testing the metric’s ability to model efficiently the human

performance rating, a number of required measure properties

were introduced. The proposed measure and two baseline per-

formance measures were comparatively evaluated with respect

to their compliance with these properties. Furthermore, an

experimental setup was used to examine the computational

cost that is associated with the parameter tuning of a scene

segmentation system, when this process is guided by one

of these evaluation measures. These results, together with

the results of a small user study that was also conducted,

demonstrate that the presented measure outperforms those

currently employed in the literature and provides an effi-

cient approach to comparing automatic scene segmentation

techniques and to guiding the optimization of their param-

eters. The software implementation of DED is available at

http://mklab.iti.gr/project/ded.
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