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Abstract

Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied exten-

sively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides

remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and

alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene Calca.

Here, we studied the role of Calca-derived peptides in diet-induced obesity (DIO) by chal-

lenging Calcr−/− (encoding the calcitonin receptor, CTR), Calca−/−, and αCGRP−/−mice and

their respective littermates with high-fat diet (HFD) feeding for 16 weeks. HFD-induced

pathologies were assessed by glucose tolerance, plasma cytokine and lipid markers,

expression studies and histology. We found that DIO in mice lacking the CTR resulted in

impaired glucose tolerance, features of enhanced nonalcoholic steatohepatitis (NASH) and

adipose tissue inflammation compared to wildtype littermates. Furthermore, CTR-deficient

mice were characterized by dyslipidemia and elevated HDL levels. In contrast, mice lacking

Calca were protected from DIO, NASH and adipose tissue inflammation, and displayed

improved glucose tolerance. Mice exclusively lacking αCGRP displayed a significantly less

improved DIO phenotype compared to Calca-deficient mice. In summary, we demonstrate

that the CT/CTR axis is involved in regulating plasma cholesterol levels while Calca, pre-

sumably through PCT, seems to have a detrimental effect in the context of metabolic dis-

ease. Our study provides the first comparative analyses of the roles of Calca-derived

peptides and the CTR in metabolic disease.
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Introduction

It is well established that obesity is linked to components of the metabolic syndrome including

insulin resistance, dyslipidemia and a low-grade pro-inflammatory state [1,2,3,4]. Aberrant

lipid metabolism in obese adipose and liver tissue is linked to insulin resistance and lipotoxicity.

In this context, inflammatory and lipid metabolism gene expression profiles in liver and adipose

tissue are strong predictors of metabolic health in humans [5]. Accumulation of excess choles-

terol in plasma, in particular as LDL or lipoprotein remnants is linked to the development of

atherosclerosis [6]. In the investigation of molecules that may be involved in the regulation of

metabolic health in obesity, there is still uncertainty regarding the roles of several circulating

hormones such as the calcitonin family of peptides. These include calcitonin (CT) and its pre-

cursor procalcitonin (PCT), as well as calcitonin-gene related peptide (αCGRP) all of which are
encoded by the Calca gene in mice and have been linked to metabolic regulation in mice and

humans. Under normal conditions, the primary transcript of the Calca gene is subjected to

extensive post-transcriptional and post-translational modifications. It is processed into two dif-

ferent mRNAs by alternative splicing, resulting in the synthesis of αCGRP in the central and

peripheral nervous system, and PCT in the thyroid gland [7]. Thyroidal PCT is further pro-

cessed into mature calcitonin (CT) by proteolytic cleavage. Importantly, systemic inflammation

as observed in sepsis annihilates tissue specificity and results in ubiquitous Calca expression,

leading to PCT release frommany cell types, including adipocytes and hepatocytes [8,9].

CT is primarily known for its regulatory effects on osteoclast function, while αCGRP was

shown to control vascular tone and the activity of bone forming osteoblasts. In contrast, PCT

was shown to modulate leukocyte function and survival in experimental sepsis [8,9]. All three

peptides derived from the Calca gene bind to either the calcitonin receptor (Calcr, CTR) or the

calcitonin receptor-like receptor (CTRL), two G-protein coupled receptors whose ligand speci-

ficity is determined by complexing with three different receptor-activity modifying proteins

(RAMPs). Whereas the CTR mediates the biological effects of CT and Amylin (AMY), a pep-

tide co-secreted with insulin and involved in glucose handling, αCGRP and PCT have been

shown to exert their biological effects through the CTRL, displaying high levels of expression

in the lung and the gastrointestinal tract [10,11]. Despite their pleiotropic effects within the

organism, Calca-derived peptides have recently been linked to glucose, fat and lipid metabo-

lism: First, salmon CT, exhibiting a much higher pharmacologic potency than mammalian

CT, was reported to decrease cholesterol and triglyceride levels, improve energy and glucose

homeostasis and attenuate diabetic progression in obese rats [12,13,14]. Second, αCGRP-defi-
cient mice were reported to display increased energy expenditure [15], which is supported by

clinical findings showing circulating αCGRP levels to positively correlate with obesity [16,17].

Finally, PCT and αCGRP were both found to be expressed in human adipocytes under various

conditions including lipopolysaccharide and glucose-dependent insulinotropic polypeptide

stimulation [18,19,20,21]. In this context, a hitherto unknown association of PCT, represent-

ing one of the most specific and sensitive markers of bacterial infection and sepsis, with body

mass index (BMI), waist circumference, and indices of lipid and glucose metabolism was

recently reported [22].

Taken together, these observations point towards a significant role of Calca-derived pep-

tides in metabolic regulation. In order to test whether Calca-derived peptides are involved in

the pathogenesis of obesity and metabolic dysfunction, we performed a comparative study

employing three different mouse models that display global CTR-, αCGRP-, or Calca-defi-

ciency. These mice were subjected to high-fat diet (HFD) feeding for 16 weeks, followed by the

analyses of dynamic glucose tolerance, plasma cytokine and lipid markers, expression studies

and histology for assessing metabolic disease.

Calca and diet-induced obesity
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Methods

Mouse studies

Calca-, αCGRP- and CTR-deficient mice were generated and genotyped as described previ-

ously [23,24,25]. All mice were kept on a C57BL/6 background (backcrossed at least 6 times)

and housed in the animal facility of the University Medical Center Hamburg-Eppendorf at

22˚C with ad libitum access to water and standard laboratory chow diet (Lasvendi). Diet-

induced obesity (DIO) was induced in single-caged male mice by feeding a high-fat diet (HFD;

Bio-Serv F3282, 35 wt. % lard) ad libitum, beginning at 4 weeks of age as described previously

[26,27]. For each strain, respective WT (wildtype, C57BL/6 background) littermates were fed

at the same time. Standardized necropsies were performed after 4 h fasting around noon. Mice

were anesthetized with a lethal dose of Ketamine/Xylazine, blood was withdrawn by cardiac

puncture and animals were perfused with PBS (phosphate-buffered saline). Organs were har-

vested and immediately conserved in TRIzol (Invitrogen), formalin or snap-frozen in liquid

N2 and stored at -80˚C. Throughout all experiments, 8–10 mice were analyzed per group. All

experiments were approved by the institutional board at the University Medical Center Ham-

burg-Eppendorf.

Plasma parameters

Plasma triglycerides and cholesterol were determined using commercial kits (Roche) that were

adapted to microtiter plates. ADM, PCT and CT levels were determined by ELISA (abbexa,

Cusabio and Phoenix pharmaceuticals, respectively). For fast performance liquid chromatog-

raphy (FPLC), pooled plasma was separated using S6-superose columns (GE Healthcare) and

lipid levels were analyzed in each fraction as described above. Leptin (R&D), adiponectin

(R&D) and insulin (CrystalChem) ELISAs were conducted according to the manufacturer’s

instructions. Oral glucose tolerance was assessed after a 4 h fasting period by a gavage of 1 g/kg

glucose (Sigma) diluted in 0.9% NaCl (Braun). Blood glucose levels were measured using

AccuCheck Aviva sticks (Roche).

Expression analysis

Tissues in TRIzol1 (Invitrogen) were disrupted using a TissueLyser (Qiagen). Total RNA

was isolated using NucleoSpin RNA II kit (Macherey & Nagel). Complementary DNA

was synthesized using SuperScript1 III Reverse Transcriptase (Invitrogen). Quantitative

real-time PCR reactions were performed on a 7900HT sequence detection system

(Applied Biosystems) using TaqMan Assay-on-Demand primer sets supplied by Applied

Biosystems (Adipoq: Mm00456425_m1, Cd68: Mm03047340_m1, Emr1: Mm00802530_m1,

Fasn: Mm00662319_m1, Hmgcr: Mm01282499_m1, Hmgcs1: Mm00524111_m1, Hmgcs2:

Mm00550050_m1, Il6: Mm00446190_m1, Scd1: Mm00772290_m1, Srebf2: Mm01306292_m1,

Tbp: Mm00446973_m1, Tnfa: Mm00443258_m1). Gene expression was calculated as copy

number per housekeeper gene TATA box-binding protein (Tbp) by the ΔΔCTmethod and

expressed as relative expression to wild-type controls.

Histology

After sacrifice, mouse organs were fixed in 4% buffered formaldehyde for 24 h, rinsed with

PBS, dehydrated in a series of graded ethanol and embedded in paraffin. Sections of 5 μm

thickness were cut and stained with haematoxylin and eosin. For immunohistochemistry 5 μm

thick sections were cut, dewaxed, microwaved in Target Retrieval Solution (DAKO) for 2 x 4

min and cooled down to room temperature for 40 min. After washing with Tris-buffered

Calca and diet-induced obesity
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saline (TBS), non-specific binding was blocked by incubating sections in 10% normal swine

serum (DAKO) for 30 min at room temperature. Slides were incubated with anti-CD68 anti-

body (ABCAM ab955) at a dilution of 1 μg/ml for 60 min (RT), followed by a biotinylated rab-

bit anti mouse antibody (DakoCytomation) at a dilution of 1:200 for 30 min. After careful

washes in TBS, an incubation with an avidin-alkaline phosphatase complex (ABC kit, Vectas-

tain, Vector) for 30 min followed and thereafter, additional washes in TBS were performed.

Alkaline phosphatase activity was visualized using Liquid Permanent Red (LPR) Substrate-

Chromogen (DAKO) for 15 min. After washing with water, slides were counterstained with

Mayer’s hemalum diluted 1:1 in water for ten seconds, blued under water and mounted with

Eukitt1 (Sigma).

Liver lipids

For lipid quantification, 50 mg pieces of frozen liver were homogenized in lysis buffer (2 mM

CaCl2, 80 mMNaCl, 1% TritonX-100, 50 mM Tris/HCl, pH 8.0). Triglycerides and cholesterol

were determined using commercial kits (Roche/Hitachi, Mannheim, Germany). Protein con-

centrations were measured by a Lowry method, which was modified for lipid containing sam-

ples by addition of 0.1% SDS.

Statistics

Two-tailed, unpaired Student’s T-test was used for comparison of groups except in experi-

ments with multiple groups, which were assessed by one-way ANOVA. P<0.05 was consid-

ered statistically significant, as indicated by asterisks.

Results

In order to study the role of Calca-derived peptides in metabolic dysfunction, we first investi-

gated mice lacking the CTR globally. As basic metabolic parameters including body weight,

blood glucose, and total cholesterol levels are not altered in CTR-deficient mice under stan-

dard conditions [23], we fed CTR-deficient mice and controls a HFD for 16 weeks, starting at

the age of 4 weeks in order to induce obesity and associated metabolic disturbances. After the

feeding regimen, mice lacking CTR displayed no alteration in final body weight (Fig 1a). Anal-

yses of organ weights at the end of the study revealed no alteration in the weights of liver and

epididymal white adipose tissue (WAT) (Fig 1b). Although CTR-deficient mice showed nor-

mal glucose levels at baseline, they demonstrated a significantly impaired glucose tolerance

beginning 30 minutes after glucose challenge (Fig 1c). The impaired glucose handling was

accompanied by increased insulin levels in CTR-deficient animals while no alterations in lep-

tin or adiponectin concentrations were found (Fig 1d). Furthermore, total cholesterol and tri-

glyceride levels were significantly elevated in CTR-deficient animals (Fig 1e). FPLC of plasma

samples revealed a peak in the concentration of HDL-cholesterol in CTR-deficient mice,

whereas analysis of triglyceride fractions did not reveal any major abnormalities (Fig 1f). To

analyze these differences on the tissue level, cholesterol and triglycerides were measured in liv-

ers after 16 weeks of feeding. Here, while no alterations in triglyceride concentrations were

found, CTR-deficient mice exhibited increased hepatic cholesterol content (Fig 1g).

In order to investigate whether these effects can be observed not only in the case of CTR-,

but also CT-deficiency, mice lacking Calca, encoding CT as well as PCT and αCGRP and

exhibiting normal body weights under standard conditions [24], were fed a HFD and analyzed

for phenotypic differences following the same experimental protocol as for CTR-deficient

mice. At the end of the feeding regimen, Calca-deficient mice displayed significantly reduced

body weight compared to WT controls, resulting in a weight difference of 7.9 g (WT 45.9 g vs.

Calca and diet-induced obesity
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Calca 38.0 g, Fig 2a). Furthermore, a significant reduction in the weights of liver andWAT in

Calca-deficient mice compared to WT controls was detected at the end of the feeding period

(Fig 2b). In sharp contrast to CTR-deficient mice, Calca-deficient mice did not only show sig-

nificantly reduced blood glucose at baseline, they also displayed a significantly improved glu-

cose tolerance at all time points after oral glucose challenge (Fig 2c). Analyses of plasma

parameters revealed significantly reduced insulin and leptin levels, while adiponectin levels

Fig 1. Effects of DIO onmetabolic parameters in mice lacking CTR (Calcr). (a) Body weight in CTR-deficient mice and controls fed HFD for 16 weeks.
(b) Organ weights (epididymal WAT, white adipose tissue) after 16 weeks of feeding. (c) Plasma glucose concentrations during OGTT (1 g/kg) following a
4h fasting period inCTR-deficient mice and controls after 16 weeks of feeding. (d) Plasma levels of insulin, leptin and adiponectin in the samemice. (e)
Total plasma cholesterol and triglycerides concentrations in the samemice. (f) Cholesterol and triglycerides FPLC profile from pooled plasma (n>8) in
CTR-deficient mice and controls fed HFD for 16 weeks. (g) Total hepatic cholesterol and triglycerides concentrations in CTR-deficient mice and controls
fed HFD for 16 weeks. Results are shown as means ± SEM (n = 8–10). *P < 0.05.

https://doi.org/10.1371/journal.pone.0180547.g001
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were unchanged (Fig 2d). Furthermore, total plasma cholesterol and triglyceride levels were

unaltered in Calca-deficient mice (Fig 2e). Interestingly, the increase in HDL cholesterol

observed in CTR-deficient mice was also present in mice lacking Calca (Fig 2f). In contrast,

hepatic cholesterol and triglyceride content was significantly reduced compared to controls

(Fig 2g).

Fig 2. Effects of DIO onmetabolic parameters in mice lackingCalca. (a) Body weight inCalca-deficient mice and controls fed HFD for 16 weeks. (b)
Organ weights (epididymal WAT, white adipose tissue) after 16 weeks of feeding. (c) Plasma glucose concentrations during OGTT (1 g/kg) following a 4h
fasting period inCalca-deficient mice and controls after 16 weeks of feeding. (d) Plasma levels of insulin, leptin and adiponectin in the samemice. (e) Total
plasma cholesterol and triglycerides concentrations in the samemice. (f) Cholesterol and triglycerides FPLC profile from pooled plasma (n>8) inCalca-
deficient mice and controls fed HFD for 16 weeks. (g) Total hepatic cholesterol and triglycerides concentrations inCalca-deficient mice and controls fed
HFD for 16 weeks. Results are shown as means ± SEM (n = 8–10). *P < 0.05.

https://doi.org/10.1371/journal.pone.0180547.g002
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As a previous study suggested a beneficial effect of αCGRP in DIO [15] and a mouse model

with exclusive PCT-deficiency is not available to date, we used mice specifically lacking

hCGRP to investigate any involvement of this peptide in the metabolic phenotype of Calca-

deficient mice. In this particular mouse model, a stop codon is placed upstream of the hCGRP

alternative splice transcript, disabling hCGRP synthesis yet allowing intact expression of PCT

and CT [25]. The respective mice show no alteration in mean body weight under standard

conditions [15]. αCGRP-deficiency was associated with a mild however significant reduction

in body weight-gain (Fig 3a), similarly to what was reported previously [15]. Moreover,

αCGRP-deficient mice displayed only a slight reduction in the weight of WAT, which was not

accompanied by any changes in liver weights, as observed in Calca- or CTR-deficient animals,

respectively (Fig 3b). In contrast to the marked improvement in glucose tolerance observed in

Calca-deficient mice, αCGRP-deficient mice were characterized by only a slight reduction in

blood glucose at baseline and 120 minutes after glucose challenge (Fig 3c). In contrast,

αCGRP-deficient mice exhibited similar plasma parameters of glucose metabolism as mea-

sured in Calca-deficient mice, including decreased levels of insulin and leptin accompanied by

unaltered concentrations of adiponectin (Fig 3d). Again differing from Calca- and CTR-defi-

cient mice, no changes in HDL levels and plasma or hepatic concentrations of cholesterol and

triglycerides were detectable (Fig 3e–3g).

In order to investigate whether these observations could be explained by molecular differ-

ences on the tissue level, we performed gene expression analyses of selected surrogate markers

for lipid metabolism and inflammation, which correlate tightly with insulin resistance [27,28]

using qRT-PCR after 16 weeks of feeding. Here we found decreased expression of Fasn, encod-

ing fatty acid synthase, in the livers of Calca- and αCGRP-deficient mice, which was not the

case in mice lacking CTR (Fig 4a). In line with this, a significantly decreased hepatic expression

of stearoyl CoA desaturase (Scd1), associated with the metabolic syndrome as well as regulation

of inflammation [29,30], was measured in Calca- and αCGRP-deficient mice while it was over-

expressed in liver tissue derived from CTR-deficient mice. In agreement, the expression of the

macrophage markers Cd68 and EGF-like module-containing mucin-like hormone receptor-like 1

(Emr1) were decreased in Calca- and αCGRP-deficient mice and increased in CTR-deficient

mice, indicating a more pronounced steatohepatitis in the latter group. Reduced levels of

tumor necrosis factor alpha (Tnf) expression could be identified as a potential mediator of

decreased liver inflammation in Calca-deficient mice whereas expression of interleukin-6 (Il6)

was not altered in any group. To confirm the increased features of NASH in mice lacking

Calcr, we performed Cd68 immunohistochemistry staining of liver samples and found

increased numbers of Cd68-positive macrophages in mice lacking CTR (Fig 4b). The gene

expression profiles in liver are usually contrasted in adipose tissue, where markers of lipid

metabolism are decreased on the context of obesity-induced metabolic disease [27,28]. Gene

expression analyses of WAT demonstrated reduced levels of Scd1 in CTR-deficient mice, in

line with adipose and liver Scd1 as a strong indicator of metabolic deterioration [28]. In con-

trast, increased levels of Scd1 and reduced levels of Cd68, Emr1, and Tnf were measured (Fig

4c), overall indicating limited tissue inflammation and retrograde fatty acid transport in

Calca-deficient mice. Altogether, our study indicates that loss of CTR has detrimental effects

for metabolic homeostasis in the context of obesity and mice lacking Calca are protected from

HFD-induced weight gain and metabolic deterioration. αCGRP seems to play only a minor

role in this scenario, even though, similar to Calca-deficient mice, mice lacking αCGRP were

characterized by a mild improvement of metabolic parameters after HFD feeding.

Calca and diet-induced obesity
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Discussion

The results of the present study provide genetic evidence for a pathophysiologic role of Calca-

derived peptides in metabolic disease. In particular, we found that genetic inactivation of the

CTR in DIO results in impaired glucose tolerance, features of enhanced NASH and adipose

tissue inflammation. In addition, we show that the CT/CTR axis is involved in regulating

Fig 3. Effects of DIO onmetabolic parameters in mice lacking αCGRP. (a) Body weight in αCGRP-deficient mice and controls fed HFD for 16 weeks.
(b) Organ weights (epididymal WAT, white adipose tissue) after 16 weeks of feeding. (c) Plasma glucose concentrations during OGTT (1 g/kg) following a
4h fasting period in αCGRP-deficient mice and controls after 16 weeks of feeding. (d) Plasma levels of insulin, leptin and adiponectin in the samemice. (e)
Total plasma cholesterol and triglycerides concentrations in the samemice. (f) Cholesterol and triglycerides FPLC profile from pooled plasma (n>8) in
αCGRP-deficient mice and controls fed HFD for 16 weeks. (g) Total hepatic cholesterol and triglycerides concentrations in αCGRP-deficient mice and
controls fed HFD for 16 weeks. Results are shown as means ± SEM (n = 8–10). *P < 0.05.

https://doi.org/10.1371/journal.pone.0180547.g003

Calca and diet-induced obesity
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cholesterol levels, and Calca, presumably through PCT, may play a deleterious role in meta-

bolic disease.

Although the peptides derived from the Calca gene are known for decades, their roles in dif-

ferent physiologic processes and pathologic conditions, in particular in the context of obesity,

Fig 4. Effects of DIO on the tissue level in mice lackingCalca-derived peptides. (a) Hepatic expression
of selected genes (Fasn, fatty acid synthase; Scd1, Stearoyl-CoA desaturase-1;Cd68, cluster of
differentiation 68; Emr1, EGF-like module-containing mucin-like hormone receptor-like 1; Tnfa, tumor
necrosis factor alpha; Il6, interleukin 6) of the indicated genotypes after 16 weeks of HFD feeding. (b)
Representative immunohistochemistry of liver tissue using a Cd68-sepcific monoclonal antibody. Arrows
indicate Cd68-positive macrophages. Scale bars 50 m. (c) Epididymal WAT expression of selected genes
(Adipoq, adiponectin) of mice of the indicated genotypes after 16 weeks of HFD feeding. Results are shown
as means ± SEM (n = 8–10). *P < 0.05.

https://doi.org/10.1371/journal.pone.0180547.g004
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which is a medical condition reaching worldwide pandemic magnitude, remains unclear.

While the roles of CT and αCGRP in bone remodeling and regulation of vascular tone have

been studied extensively, their functions in DIO are still ill defined. Furthermore, although

representing the most sensitive and specific marker for bacterial sepsis with widespread clini-

cal use, a potential biologic action of PCT remains unclear to date [31,32]. Although we did

not detect significant alterations in serum levels of Calca-derived peptides during DIO (S1a

Fig), this study for the first time provides a comparative analysis regarding the roles of PCT,

CT and αCGRP in obesity and metabolic disease using mouse models deficient in Calca, CTR,

and αCGRP.
With respect to CT, few studies have analyzed its role in DIO so far. This is primarily based

on the fact that a suitable mouse model lacking CT signaling has not been available to date. In

this study we utilized our recently established mouse model lacking the CTR [23], which does

not exhibit the previously reported embryonic lethality of that respective CTR-deficiency

model [33,34]. While several recent studies relying on pharmacological approaches demon-

strated a beneficial effect of oral salmon CT on body weight, fasting glycaemia and glucose tol-

erance in rats [12,13,14], our results confirm a potential physiological role of CT in glucose

metabolism, as obese CTR-deficient animals displayed features of enhanced NASH, impaired

glucose tolerance and hyperinsulinemia in vivo. However, while apparently CTR-deficiency

did not influence the rate of body weight gain, a more prominent finding was dyslipidemia

due to increased cholesterol and triglyceride concentrations, supporting the concept that sig-

naling through the CTR regulates plasma lipid homeostasis independent of weight gain in

DIO. As most of the cholesterol change was observed in the HDL fraction it remains to be eval-

uated how much of this HDL is actually functional or dysfunctional as it has recently been

shown that HDL metabolic flux rather than absolute levels determine reverse cholesterol trans-

port [35]. Interestingly, despite the increased cholesterol levels in the liver of CTR-deficient

mice we did not observe changes in gene expression of surrogate markers of the SREBP2 cho-

lesterol-sensing pathway [36], neither in the liver nor in WAT (S1b Fig). As we also observed

increased plasma lipids and increased hepatic immune infiltrates in CTR-deficient mice, these

data may suggest that Kupffer cells and/or other infiltrating immune cells play a role in the

pathophysiology in this model. On the other hand, in line with a decrease in body weight on

HFD as observed here, mice deficient in Calca and αCGRP also showed lower expression of

hepatic inflammation markers.

In general our findings partially confirm a recent study demonstrating a beneficial effect of

the dual amylin and calcitonin receptor agonist, KBP-089, on weight loss and metabolic

parameters in obese rats [37]. Mice lacking the CTR are characterized by increased bone for-

mation and a subsequent increase in circulating osteocalcin [23], an osteoblast-derived peptide

increasing secretion of and sensitivity to insulin [38]. While we cannot exclude a potential

influence on the metabolic phenotype in our model, a possible beneficial effect of osteocalcin

seems to be overridden by the effects of global CTR-deficiency in DIO.

As the CTR not only serves as a receptor for CT, but reportedly also for AMY, CTR-defi-

cient mice additionally serve as a valuable tool to study the role of endogenous AMY in DIO

[39]. Although AMY has been implicated in the pathogenesis of diabetes and obesity, leading

to the clinical use of its pharmaceutical analogue, pramlintide, as an FDA-approved anti-dia-

betic drug lowering body weight and hyperglycemia [39], our findings in mice can only con-

firm CTR signaling role in glucose handling and moreover extend these observations to

plasma lipid levels. In particular the effect on HDL levels was pronounced and needs to be

explored in more detail towards HDL function and atherosclerosis development. The lack of

effect on the rates of body weight gain is in line with previous studies reporting AMY-deficient

mice to display only modest or no alteration in body weight [40,41]. The differences between

Calca and diet-induced obesity

PLOSONE | https://doi.org/10.1371/journal.pone.0180547 June 30, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0180547


endogenous AMY and its pharmacological actions might be explained by the fact that pram-

lintide represents a conjunct of human and rat AMY to avoid the highly amyloidogenic effects

of the human form. Likewise, it is possible that, apart from the CTR, AMY binds to another

hitherto unrecognized receptor other than CTR, as originally suggested by Daquin et al. [33].

In this context, we explored the levels of adrenomedullin, which is thought to bind CTRL but

might also act on CTR and exert beneficial effects on HFD-induced metabolic disease [42,43].

However, neither plasma concentrations in lean compared to obese mice, nor gene expression

in liver andWAT of CTR-deficient mice showed any differences (S1a and S1b Fig), making it

unlikely that adrenomedullin is implicated here.

Based on the receptor pharmacology of the CTR, we additionally monitored the effects of

DIO in mice lacking Calca. Strikingly, these mice showed a markedly reduced rate of weight

gain compared toWT controls, which was in sharp contrast to what we observed in CTR-defi-

cient mice. As Calca encodes not only CT, but also PCT and αCGRP, one possibility was that
the observed phenotype is caused by the absence of the latter two hormones [7]. To rule out an

involvement of αCGRP in the observed phenotype, αCGRP-deficient mice were used as con-

trols. A previous study investigating the role of αCGRP in DIO found αCGRP-deficient mice

to exhibit a lower body weight, improved glucose handling and insulin sensitivity which was

accompanied by reduced hyperinsulinemia and adiposity compared to controls [15]. Likewise,

Riera et al. showed that pharmacologic antagonism of CGRP signaling improved metabolic

parameters and potentially inhibits metabolic decline in aged mice (23 months) [44]. In con-

trast, a recent study demonstrated a beneficial effect of a long acting αCGRP agonist on food

intake and body weight in DIO rats [45]. While it is known that pharmacologic agonists may

exert different biologic effects, a phenomenon also observed in the case of parathyroid hor-

mone or CT [23] and potentially explaining the findings by Nilsson et al, our study principally

confirms the negative effect of endogenous αCGRP on metabolic parameters during DIO. The

fact that we observed a less pronounced metabolic phenotype in DIO αCGRP-deficient mice

compared to Walker e al. is most likely explained by specific differences in the experimental

setup. Walker et al. employed diets with a different fat content 10%, 45%, and 60% compared

to 35% in the present study) and fed αCGRP-deficient mice andWT controls for a longer

duration (26 weeks of feeding compared to 8 weeks of feeding in the present study). A recent

study corroborates the role of αCGRP in obesity as the authors also found that mice lacking

αCGRP were partially protected from weight gain on HFD and displayed improved metabolic

parameters [46]. In this study, the authors suggest that rather than regulating food intake,

αCGRP plays a role in sympathetic output, which warrants further investigation of adaptive

thermogenesis and brown adipose tissue activity in this model [47]. As we found αCGRP-defi-
cient mice to exhibit a less pronounced phenotype compared to mice lacking Calca with our

study protocol, it is reasonable to speculate that the metabolic phenotype of Calca-deficient

mice is, in part, caused by the absence of PCT, pointing towards a hitherto unknown biologic

role of PCT in DIO. This is especially interesting in the context of a recent study demonstrat-

ing a positive and significant association of PCT with body mass index (BMI), waist circumfer-

ence, and indices of lipid and glucose metabolism in humans [22]. Although we cannot

provide direct evidence for a detrimental role of PCT in metabolic health, our results may indi-

cate an important impact of PCT signaling during DIO, warranting further mechanistic stud-

ies of the underlying molecular pathways.

We are aware of the fact that our study exhibits at least one major limitation. In fact, due to

the complex regulation of Calca gene expression, we had to use 3 different models including

Calca-, CTR-, and αCGRP-deficient mice to provide a first comparative analyses on the roles

of Calca-derived peptides in DIO. Thus, additive or interregulatory effects of the respective

peptides cannot be completely excluded, and further studies are required to address the
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question how the observed phenotypes can be explained mechanistically. Specifically, even

though we did not find Calca-derived peptides to be regulated in obesity, the individual levels

of CT, PCT and αCGRP in the three mouse models studied here might share some mechanis-

tic insight in future. Despite this limitation, our study may prove valuable for future diabetes

and atherosclerosis research, as it provides the first comparative characterization of the func-

tions of Calca-derived peptides in DIO and associated metabolic disturbances. Our results

demonstrate a critical role for CT-CTR signaling for metabolic health. Moreover, these find-

ings point towards a deleterious role of PCT in the pathogenesis of DIO, suggesting PCT as a

potential novel molecular target for the treatment of obesity and associated metabolic

disorders.

Supporting information

S1 Fig. Systemic and hepatic effects of DIO. (a) Serum levels of the indicated peptides in WT

mice with DIO (16 weeks of feeding) compared to control fed mice (Adm: adrenomedullin).

(b) Hepatic and epididymal WAT expression of selected genes (Srebf2, Sterol-regulatory ele-

ment binding factor 2; Hmgcr, 3-Hydroxy-3-Methylglutaryl-CoA Reductase; Hmgcs1,

3-Hydroxy-3-Methylglutaryl-CoA Synthase 1; Hmgcs2, 3-Hydroxy-3-Methylglutaryl-CoA

Synthase 2; Adm, Adrenomedullin) of WT and Calcr-deficient mice after 16 weeks of HFD

feeding.
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