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Melatonin, the predominant product of the pineal
gland, is involved in the maintenance of diurnal
rhythms. Nocturnal blood concentrations of mela-
tonin have been shown to be enhanced by fluvox-
amine, but not by other serotonin reuptake in-
hibitors. Because fluvoxamine is an inhibitor of
several cytochrome P450 (CYP) enzymes, the au-
thors studied the biotransformation of melatonin
and the effects of fluvoxamine on the metabolism of
melatonin in vitro using human liver microsomes
and recombinant human CYP isoenzymes. Mela-
tonin was found to be almost exclusively metabo-
lized by CYP1A2 to 6-hydroxymelatonin and N-
acetylserotonin with a minimal contribution of
CYP2C19. Both reactions were potently inhibited
by fluvoxamine, with a K

i
of 0.02 !M for the forma-

tion of 6-hydroxymelatonin and 0.05 !M for the for-
mation of N-acetylserotonin. Other than fluvoxam-
ine, fluoxetine, paroxetine, citalopram, imipramine,
and desipramine were also tested at 2 and 20 !M.
Among the other antidepressants, only paroxetine
was able to affect the metabolism of melatonin at
supratherapeutic concentrations of 20 !M, which
did not reach by far the magnitude of the inhibitory
potency of fluvoxamine. The authors concluded that
fluvoxamine is a potent inhibitor of melatonin deg-
radation. Because this inhibitory action is also
found in vivo, fluvoxamine might be used as an en-
hancer of melatonin, which might offer new thera-
peutic possibilities of fluvoxamine. (J Clin Psy-
chopharmacol 2001;21:167–174)

THE PINEAL HORMONE melatonin plays an impor-
tant role in the maintenance of the light/dark cycle

of vertebrates.1 The enhanced secretion of melatonin at
night is caused by increased activity of the key enzyme

in the melatonin formation, serotonin N-acetyl trans-
ferase.2 The enzyme activity is regulated by the light/
dark cycle via an adrenergic cAMP control of transcrip-
tion and proteasomal proteolysis.3 Other than synchro-
nization of biological functions, melatonin has been
suggested to play a role in neurodegenerative diseases
such as dementia,4 in cancer,5 in the regulation of the
immune system,6 and in some forms of mental illness,
especially affective disorders.7, 8 Although most of the
proposed protective effects of melatonin are still ques-
tionable, the decrease in the melatonin serum concen-
tration in depressed patients has been proven conclu-
sively by several studies.7–9 Accordingly, the influence of
antidepressant drugs on the melatonin serum levels has
been studied intensively.10–12 A stimulating effect on the
melatonin secretion was primarily found for desipra-
mine12 and (!)-oxaprotiline,13 both inhibiting predomi-
nantly the norepinephrine (NA) reuptake. Because the
nocturnal increase of melatonin is triggered by an adre-
nergic-cAMP mechanism, the effect of the NA-reuptake
blockers was attributed to an elevated NA stimulus on
NA receptors in the pineal gland.13

The interpretation of reported effects of the selective
serotonin reuptake inhibitors (SSRIs) was difficult be-
cause of conflicting results. Fluoxetine was found to neg-
atively affect the melatonin secretion,14 but fluvoxamine
markedly increases the melatonin blood concentra-
tions.10, 12, 15 Although for the former, a reduced availabil-
ity of the melatonin precursor serotonin in the cytoplasm
was suggested,14 the positive effect of fluvoxamine re-
mained poorly understood, so far.15, 16 Because fluvoxa-
mine is known to inhibit several drug-metabolizing cy-
tochrome P450 (CYP) isoenzymes, mainly CYP1A217 and
CYP2C19,18 a pharmacokinetic effect was discussed.12

This suggestion was supported by the recent observa-
tions that the bioavailability of orally given melatonin
was significantly increased by concomitant administra-
tion of fluvoxamine.19
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Melatonin is rapidly cleared after secretion by hepatic
metabolism leading to its two main metabolites 6-
hydroxymelatonin and N-acetylserotonin (Fig. 1).20 Re-
cent evidence showed that melatonin is almost exclu-
sively metabolized by the CYP1A subfamily,21 which
indicates a pharmacokinetic interaction between mela-
tonin and fluvoxamine. Therefore, the aim of our study
was to characterize the effects of fluvoxamine on the 6-
hydroxylation and O-demethylation of melatonin in

vitro in comparison to other antidepressants and the se-
lective CYP1A2 inhibitor furafylline.

Methods

Chemicals

Melatonin, 6-hydroxymelatonin, and N-acetylserotonin
were purchased from Sigma Chemical Company (St.
Louis, MO), furafylline from RBI (Natick, MA), and nicoti-
namide adenine dinucleotide phosphate (reduced form)
from Roche (Mannheim, Germany). All other chemicals
were at least of analytical grade and were obtained from
Merck (Darmstadt, Germany). Fluvoxamine was kindly
provided by Solvay-Duphar (Hannover, Germany), parox-
etine by SmithKline Beechham (Munich, Germany), flu-
oxetine by Lilly (Gie"en, Germany), citalopram by
Promonta-Lundbeck (Hamburg, Germany), and imipra-
mine and desipramine by Novartis (Basel, Switzerland).

Human liver samples and preparation of

microsomes

Liver samples were obtained from three organ donors
(HL1–HL3) who had given their consent for the scientific
use of their livers. The use of the liver samples was ap-
proved by the local ethics committee. Microsomes were
prepared by differential ultracentrifugation as reported
elsewhere for the preparation of rat liver microsomes.22

For kinetic analyses and inhibition experiments with flu-
voxamine, we used microsomes from all three livers sam-
ples. To study inhibitory properties of different anti-
depressants on the melatonin metabolism under
comparable conditions, we used only microsomes pre-
pared from the first liver, HL1. The microsomes were
tested for possible CYP2C19 or CYP2D6 deficiencies by
use of diazepam N-demethylation and dextromethor-
phan O-demethylation as probe reaction. All three livers
were able to form remarkable amounts of nordiazepam
and dextrorphan. The formation of nordiazepam was fur-
ther inhibited to more than 70% by 50 #M tranyl-
cypromine (CYP2C19 inhibitor), whereas the formation
of temazepam remained unaffected. The formation of
dextrorphan was completely abolished by 10 #M quini-
dine (CYP2D6 inhibitor). Thus, there were obviously no
phenotypic CYP2C19 and CYP2D6 deficiencies in our
liver samples.

Well-characterized pooled microsomes from six dif-
ferent livers (Cat. No. H161, Lot 4;Gentest Corporation,
Woburn, MA) were used to ensure the enzymatic activ-
ity of our microsomal preparation with regard to the
melatonin 6-hydroxylation and O-demethylation.

Recombinant Human Cytochrome P450s

Recombinant human CYP1A2 and CYP3A4 were pre-
pared at the Biomedical Research Center at Ninewells
Hospital (Dundee, Scotland). CYPs were coexpressed
with human reductase (reductase activity between 300
and 1000 nmol of cytochrome c reduced/min $ mg-pro-
tein) in Escherichia coli using the 17%-expression con-
struct for 3A4.23 Catalytic activity of these recombinant hu-
man CYPs is reported elsewhere.24 Recombinant
CYP2C19 plus P450 reductase (activity: 650 nmol of
cytochrome c reduced/min $ mg-protein) Supersomes™
were purchased from Gentest Corporation (Woburn, MA).
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FIG. 1. Metabolic fate of melatonin to its main metabolites 6-hydroxymelatonin and N-acetylserotonin and involved cytochrome P450 enzymes
suggested from data of this study. The predominant metabolic route (6-hydroxylation) is depicted by the boldfaced arrow.



Protein and cytochrome P450 concentration

Total CYP concentration in human liver and recom-
binant CYP microsomes was measured by the method
used by Omura and Sato.25 The protein concentration
was estimated by the method described by Bradford26

using bovine serum albumin as standard (Bio-Rad, Mu-
nich, Germany).

Microsomal incubations, extraction procedure, and

high-performance liquid chromatography

The formation of 6-hydroxymelatonin and N-acetyl-
serotonin showed a linear increase with time for up to
30 minutes and up to 0.5 mg/mL of human liver micro-
somal protein. Incubations were performed at 37&C in a
total volume of 0.5 mL of a 0.1 M phosphate buffer (pH
7.4) containing 5 mM NADPH, 0.5 mg/mL of human liver
microsomal protein, and different concentrations of
melatonin (0.5–10 #M). Each concentration was as-
sayed in duplicate. After a 2-minute preincubation, the
reaction was started by the addition of the microsomes
and stopped after 30 minutes by the addition of 0.5 mL
of ethylacetate and rapid cooling on ice.

The mixture was vigorously shaken for 2 minutes, cen-
trifuged for 5 minutes at 10,000 g, and transferred to an
ice bath consisting of solid CO2 and methanol. The or-
ganic supernatant was evaporated to dryness, and the
residue was dissolved in 250 #L of the high-performance
liquid chromatography (HPLC) eluent. Each series was
accompanied by five calibration samples in a concentra-
tion ranging between 2 and 100 ng/mL for 6-hydroxy-
melatonin and between 1 and 30 ng/mL for N-acetylsero-
tonin. Calibration samples were prepared and processed
exactly the same way as the incubations, but no substrate
was added and the reaction was stopped using ethylac-
etate and transferred on ice immediately after the addi-
tion of the microsomes.

The concentration of the metabolites 6-hydroxymela-
tonin and N-acetylserotonin was assayed by means of a
slightly modified reversed-phase HPLC method with
electrochemical detection.27 In brief, the analytical eluent
consisted of 11.5% acetonitrile in a phosphate-citrate
buffer (pH 7.4) and was delivered by a flow rate of 0.6
mL/min. Separation of the analytes were performed on a
Hypersil ODS column (125 $ 3 mm) with a particle size
of 3 #m (MZ Analyventechnik, Mainz, Germany). Ana-
lytes were detected using an ESA Coulochem (Bischoff,
Leonberg, Germany) detector with detector 1 set at
'0.05 V, detector 2 set at !0.4 V, and the guard cell set at
1.0 V. The quantification limit was found to be 2 ng/mL (8
nM) for 6-hydroxymelatonin and 1 ng/mL (4 nM) for N-
acetylserotonin.

Calibration curves were constructed by unweighted
linear regression of the calibration points. The correla-

tion coefficient (R2) was always greater than 0.99. The
mean coefficient of variation (from 10 different days)
for the calibration points in the range between 2 and 100
ng/mL for 6-hydroxymelatonin and 1 to 30 ng/mL for N-
acetylserotonin amounted to 20.9% for 6-hydroxymela-
tonin and 19.6% for N-acetylserotonin, respectively.

Inhibition experiments

Furafylline was used in a final concentration of 20
#M. When the mechanism-based inhibitor furafylline
was applied, a 10-minute preincubation was carried out,
and the reaction was started by the addition of the sub-
strate (1 #M). Fluvoxamine was used either at five dif-
ferent concentrations between 0.01 and 0.2 #M or at five
different concentrations between 0.2 and 10 #M. Citalo-
pram, fluoxetine, desipramine, and imipramine were
used at two different concentrations, 2 and 20 #M. All
inhibition experiments were performed using either 1
or 10 #M melatonin.

Incubations using recombinant CYP2C19 

and CYP3A4

Because the formation of melatonin metabolites was
not always linear within 30 minutes of incubation for all
recombinant CYPs, recombinant CYPs were incubated
for only 10 minutes. During this time, the reaction was
found to be in the linear range. Based on the amount of
total P450 determined in the microsomes of the liver
used (250 pmol/mg-protein ( 125 pmol per assay), the
respective amounts of the recombinant CYPs were used
according to their abundance in human livers.28 The
amount of P450 per assay was 4 pmol for CYP2C19 and
36 pmol for CYP3A4. Thus, we were able to directly
compare the formation rates by use of either human
liver microsomes or recombinant CYPs.

Analysis of kinetic data

The velocities of the enzyme reactions (v) were de-
termined from the time-dependent formation of the
products 6-hydroxymelatonin and N-acetylserotonin af-
ter incubation of melatonin in a concentration ranging
between 0.5 and 10 #M. The substrate concentration at
half maximal velocity (Km) and the maximal velocity
(Vmax) were determined by means of a nonlinear regres-
sion analysis using the GraFit program (version 4.03,
Erithacus Software Ltd., Staines, United Kingdom).

Data were transformed by use of the Eadie-Hofstee
plot. Curved linear plots that pointed to the involvement
of multiple enzymes were further analyzed assuming
two distinct enzymes as follows:

v ( Vmax1
$ [S]/(Km1

! [S]) ! Vmax2
$ [S]/(Km2

! [S])
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either graphically using the method of Rosenthal29 or by
use of the GraFit program.

Km and Vmax were calculated from the mean formation
rates of five replicated incubations; each substrate con-
centration was analyzed in duplicate. Using pooled mi-
crosomes, kinetic analyses were conducted once for
each substrate concentration in duplicate.

The inhibition constants were estimated from Dixon
plots and from the secondary plots of the slope or y-axis
intercept obtained from Lineweaver-Burk plots versus
the inhibitor concentration. The x-axis intercept of each
graph gives the Ki. 

IC50 values were calculated by use of the GraFit pro-
gram applying a two parameter equation:

y ( 100%/(1![$ IC50
'1]s)

with s indicating the slope factor and x indicating the in-
hibitor concentration.

Results

Kinetic analysis

Melatonin was converted in vitro by human liver mi-
crosomes to 6-hydroxymelatonin and, to a minor extent,
to N-acetylserotonin. From inspection of the Eadie-Hof-
stee plot constructed from the mean formation rates 
of five independent experiments, the formation of 6-
hydroxymelatonin seemed to be catalyzed by a single en-
zyme at the concentration range applied (Fig. 2A). A lin-
ear regression analysis revealed a correlation coefficient
(R2) of 0.92, and the residuals were randomly distributed
around zero. Assuming a two-enzyme Michaelis-Menten
equation, the F-test showed a significant ( p ) 0.05) re-
duction in the *2 value, where *2 is calculated as:

*2 ( + (,yn $ -n'1)2

where ,yn is the residual of the nth data point and -n is
the variance of the nth data point. The mean (. SD) Km

and Vmax were 6.3 . 3.6 #M and 15.98 . 8.9 pmol/
min–1/mg-protein–1, respectively (N ( 5 incubations using
three different livers) for the single enzyme model.

The O-demethylation revealed biphasic kinetics (Fig.
2B) indicating at least two different enzymes catalyzing
the formation of N-acetylserotonin. The mean Km1

and
Vmax1

for the high-affinity enzyme were 0.47 . 0.1 #M and
1.0 . 0.22 pmol/min–1/mg-protein–1, respectively, and for
the low-affinity enzyme, Km2

and Vmax2
were 8.8 . 3.2 #M

and 3.5 . 1.0 pmol/min–1/mg-protein–1, respectively. Us-
ing pooled liver microsomes, similar Km and Vmax values
were found. For the formation of 6-hydroxymelatonin,
also best described by single-enzyme Michaelis-Menten
kinetics, the Km and Vmax values were 4.0 #M and 18.2

pmol/min–1/mg-protein–1, respectively. The formation of
N-acetylserotonin followed a two-enzyme Michaelis-
Menten equation with Km and Vmax of the high-affinity
enzyme amounting to 0.16 #M and 0.81 pmol/min–1/mg-
protein–1 and 3.2 #M and 2.9 pmol/min–1/mg-protein–1 for
the low-affinity enzyme, respectively.

Inhibition by fluvoxamine

At fluvoxamine concentrations exceeding 0.2 #M, a
formation of 6-hydroxymelatonin could no longer be
found after incubation of either 1 or 10 #M melatonin.
The formation of N-acetylserotonin was also reduced
by more than 90% at fluvoxamine concentrations of 1.0
#M. However, even at 2 #M fluvoxamine, N-acetylsero-
tonin was still detectable, using either 1 or 10 #M mela-
tonin.

For assessing the Ki and IC50, lower fluvoxamine con-
centrations (0.01–0.2 #M) were applied. The resulting Ki

values were 0.02 #M fluvoxamine for the inhibition of 6-
hydroxymelatonin formation and 0.05 #M for the inhi-
bition of N-acetylserotonin formation (Fig. 3A and B).
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FIG. 2. Eadie-Hofstee plots for the formation of 6-hydroxymelatonin
(A) and N-acetylserotonin (B) after a 30-minute incubation of micro-
somes (0.5 mg-protein/mL) with different concentrations of mela-
tonin (0.5–10 #M). Given are the means . SD of five different series
using three different livers. Each concentration was performed in du-
plicate for each series.



From the construction of IC50 curves, a complete in-
hibition of 6-hydroxylation at fluvoxamine concentra-
tions greater than 0.1 #M could be shown (resulting IC50

( 0.035 and 0.087 #M at 1 or 10 #M melatonin, respec-
tively). In contrast, the IC50 curves uncovered partial in-
hibition of the O-demethylation by fluvoxamine with
IC50 of 0.039 and 0.047 #M (Fig. 4A–D).

Inhibition by furafylline and incubations using

recombinant CYPs

When 1 #M melatonin was coincubated with 20 #M
furafylline, a selective mechanism-based inhibitor of
CYP1A2 activity, the formation of 6-hydroxymelatonin
was completely blocked. The formation of N-acetyl-
serotonin was reduced to approximately 10% of the con-
trol without addition of furafylline. Neither recombi-
nant CYP2C19 nor CYP3A4 was able to hydroxylate
melatonin. On the other hand, remarkable amounts 
of N-acetylserotonin were found when recombinant

CYP2C19 was used. At the low melatonin concentration
of 1 #M, only approximately 14% of the total N-acetyl-
serotonin formation rate in microsomes were found,
but at 10 #M melatonin, the N-acetylserotonin found af-
ter incubation with recombinant CYP2C19 amounted to
approximately 50% of N-acetylserotonin formed when
human liver microsomes were applied.

Effects of other antidepressants

Paroxetine was the only antidepressant tested, with
which effects on either the 6-hydroxylation and the O-
demethylation were found. However, the significant ef-
fects were restricted to the high concentration of parox-
etine, resulting in approximately 90% decrease in the
formation of 6-hydroxymelatonin and approximately 75%
reduction in the formation of N-acetylserotonin (Fig. 5A
and B). Besides paroxetine, 6-hydroxylation was only af-
fected ('47%) by imipramine, but only when 20 #M imip-
ramine and 1 #M melatonin were coincubated (Fig. 5A).

Discussion

This study confirmed and extended previous results
concerning the biotransformation of melatonin and the
effect of fluvoxamine on the metabolism of melatonin.
As suggested recently, melatonin is almost exclusively
metabolized by CYP1A2.21 Because that study did not dif-
ferentiate between the two main metabolites 6-hydroxy-
melatonin and N-acetylserotonin, the authors missed the
influence of another enzyme on the O-demethylation of
melatonin, CYP2C19, which became visible in our study.
It cannot be excluded that other CYPs contribute to
melatonin O-demethylation. Other enzymes besides
CYP1A2, however, are unlikely to play a major role in the
degradation of melatonin because the formation of N-
acetylserotonin amounted to only 10% of the metabolite
formation and was blocked to approximately 90% by fur-
afylline. Melatonin seems therefore likely to be a rather
selective substrate of CYP1A2.

Consistent with the suggested predominant role of
CYP1A2 in the metabolism of melatonin, this study
demonstrated a powerful blockade of the melatonin me-
tabolism by the addition of fluvoxamine. Although flu-
voxamine is already known as a potent inhibitor of
CYP1A2,17 the Ki and IC50 reported here are approxi-
mately a magnitude lower than those reported for inhibi-
tion of the metabolism of phenacetin,30 theophylline,31 or
imipramine.32 Assuming therapeutic fluvoxamine blood
concentrations ranging between 0.1 and 1 #M,32 the bio-
transformation of melatonin should be markedly inhib-
ited in vivo.

In this regard, none of the other tested antidepres-
sants was similar to fluvoxamine. Only paroxetine at a
concentration of 20 #M affected the 6-hydroxylation
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FIG. 3. Dixon plots representing the inhibition of the formation of 6-
hydroxymelatonin (A) and N-acetylserotonin (B) after concomitant
incubation of 1 (� ) or 10 (� ) #M melatonin with fluvoxamine in five
(A) or six (B) different concentrations between 0 and 0.2 #M. Values
given are the means . SD of four different series using three different
livers. Each concentration was assayed in duplicate for each series.



and O-demethylation of melatonin. This concentration,
however, far exceeds the paroxetine blood concentra-
tions in patients receiving common therapeutic dosages
of paroxetine, and no effect on melatonin serum con-
centrations was found in patients treated with 20 mg of
paroxetine.33 Despite the inhibitory effect of high parox-
etine concentrations in vitro, the effect of fluvoxamine
on the metabolism of the endogenous substrate mela-
tonin seems unique among the SSRIs and even among
other psychotropic drugs. This finding indicates that a
psychotropic drug interacts not only with the metabo-
lism of other xenobiotics, but also with the biotransfor-
mation of an endogenous substrate.

The pharmacodynamic consequences of these effects
are not fully clear. However, it should be emphasized that
fluvoxamine was efficiently used to increase the bioavail-
ability of orally administered melatonin, resulting in suffi-
cient sleep induction in a patient with therapy-resistant
sleep disturbances.34 The therapeutic use of melatonin is
compromised so far partially because of its low oral
bioavailability and rapid metabolism.35 Interactions with
fluvoxamine might be used as an enhancer strategy to im-
prove the therapeutic effectiveness of melatonin. Be-
cause CYP1A2 significantly contributes to the hydroxyla-
tion of estrogens,36 fluvoxamine probably interferes with
the metabolism of several endogenous compound.
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FIG. 4. IC50 curves representing the inhibition of the formation of 6-hydroxymelatonin after incubation of at least six different concentrations of
fluvoxamine (0–0.2 #M) with 1 #M melatonin (A) and 10 #M melatonin (B). Inhibition of the formation of N-acetylserotonin after coincubation
of fluvoxamine with 1 and 10 #M melatonin is shown in the lower plots (C) and (D), respectively. Given are the means . SD of four different se-
ries using three different livers. Each concentration was assayed in duplicate for each series. The y-axis (% of control activity) indicates the per-
centage of control activity of either noninhibited 6-hydroxymelatonin or N-acetylserotonin formation.
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