
Open Research Online
The Open University’s repository of research publications
and other research outputs

Differential effects of hydrocortisone and TNFalpha on
tight junction proteins in an in vitro model of the
human blood-brain barrier

Journal Item

How to cite:

Förster, C.; Burek, M.; Romero, I. A.; Weksler, B.; Couraud, P. O. and Drenckhahn, D. (2008). Differential
effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain
barrier. Journal of Physiology, 586(7) pp. 1937–1949.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1113/jphysiol.2007.146852

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1113/jphysiol.2007.146852
http://oro.open.ac.uk/policies.html


Carola Förster, Hydrocortisone induction of BBB properties in human adult brain endothelial cell 

 

1

1

Differential effects of hydrocortisone and TNFα on tight junction proteins in an in 

vitro model of the human blood-brain barrier 

 

CAROLA FÖRSTER‡§, MALGORZATA BUREK‡, IGNACIO A. ROMERO , 

BABETTE WEKSLER||, PIERRE-OLIVIER COURAUD* AND DETLEV 

DRENCKHAHN‡  

‡University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, D-

97070 Würzburg, Germany.  

*Institut Cochin, Centre National de la Recherche Scientifique UMR 8104, Institut 

National de la Santé et de la Recherche Médicale (INSERM) U567, Université René 

Descartes, Paris, France 

Immunology and Cell Biology Group, Department of Biological Sciences, The Open 

University Walton Hall, Milton Keynes MK7 6AA, United Kingdom 

|| Weill Medical College of Cornell University, New York, NY 10021 

 

Running title:  

Hydrocortisone induction of BBB properties in human adult brain endothelial cell line 

 

§ address of correspondence: 

PD Dr. Carola Förster 

Institute of Anatomy and Cell Biology 

University of Würzburg 

Koellikerstrasse 6 

D-97070 Würzburg 

Tel. + 49-931-312706 

 Physiology in Press; published online on February 7, 2008 as 10.1113/jphysiol.2007.146852



Carola Förster, Hydrocortisone induction of BBB properties in human adult brain endothelial cell 

 

2

2

Fax. + 49-931-312712 

e-mail: carola.foerster@mail.uni-wuerzburg.de 



Carola Förster, Hydrocortisone induction of BBB properties in human adult brain endothelial cell 

 

3

3

 

Abstract 

Homeostasis of the central nervous system (CNS) microenvironment is maintained by 

the blood-brain barrier (BBB) which regulates the transport of molecules from blood 

into brain and backwards. Many disorders change the functionality and integrity of the 

BBB. Glucocorticoids are being used sucessfully in the treatment of some disorders 

while their effects on others are questionnable. In addition, conflicting results between 

clinical and experimental experience using animal models arose, so that the results of 

molecular studies in animal models need to be revisited in an appropriate in vitro model 

of the human BBB for more effective treatment strategies. Using the human brain 

microvascular endothelial cell line hCMEC/D3, the influence of glucocorticoids on the 

expression of barrier constituting adherens junction and tight junction transmembrane 

proteins (VE-cadherin, occludin, claudins) was investigated and compared to other 

established BBB models. In hCMEC/D3 cells the administration of glucocorticoids 

induced expression of the targets occludin 2.75+0.04-fold and claudin-5 up to 2.32+ 

0.11-fold, which is likely to contribute to the more than threefold enhancement of 

transendothelial electrical resistance reflecting barrier tightness. Our analyses further 

provide direct evidence that the GC hydrocortisone prevents endothelial barrier 

breakdown in response to pro-inflammatory stimuli (TNFα administration), which 

could be demonstrated to be partly based on maintainance of occludin levels. Our 

studies strongly suggest stabilisation of BBB function as a mode of GC action on a 

molecular level in the human brain vasculature. 
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Introduction  

Homeostasis of the central nervous system (CNS) microenvironment is essential for 

its normal function and is maintained by the blood-brain barrier (BBB) (Pardridge, 

1988; Risau & Wolburg, 1990). The cell types composing the BBB are endothelial 

cells, pericytes and the end-feet of astrocytes. Among them, several recent studies 

have highlighted the importance of the brain endothelial cells to form the 

morphological correlative of the BBB in this modular organization: the permeability 

properties of the BBB reflect, to a major degree, the tightness of the intercellular 

junctions between brain microvascular endothelial cells (Rubin et al., 1991). Tight 

junctions (TJ) seal the endothelial cell layer and are especially well developed in 

endothelia of the BBB, in contrast to blood vessels outside the CNS, the TJs of which 

are less elaborate and facilitate exchange of solutes and macromolecules and allow 

leukocyte trafficking (Simionescu & Simionescu, 1991). Two different classes of 

integral membrane proteins constitute the TJ strands, occludin and members of the 

claudin protein family (D'Atri & Citi, 2002). The claudins, which have been identified 

in brain microvascular endothelial cells include claudin-5, claudin-12 (Matter & 

Balda, 2003), claudin-1 (Liebner et al., 2000)  and claudin-3 (Wolburg et al., 2003; 

Coisne et al., 2005). Moreover, numerous studies have demonstrated conclusively 

that TJ formation depends very much on the VE-cadherin-based adherens junctions 

(Lampugnani et al., 1995; Gumbiner, 1996).  

Disruption of the blood-brain barrier (BBB) has been described as a crucial step of 

neuroinflammatory conditions including brain tumors, cerebral ischemia, meningitis, 

encephalitis, and multiple sclerosis (MS). Therapeutic strategies for several of these 

diseases include treatment with GC (Engelhardt, 2000; Qizilbash et al., 2002) but a 

detailed understanding of their mechanism of action is still outstanding. GCs exert a 
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variety of beneficial effects under neuroinflammatory conditions by acting on immune 

cells, the microglia and the blood-brain barrier, but they do fail to improve cerebral 

edema following stroke or even show adverse effects like the induction of 

hypertension in chronical administration, so that there is a clear need to further 

elucidate their molecular mode of actions  (Reichardt et al., 2006). Effects of GCs like 

hydrocortisone (HC) are known to be mediated by the glucocorticoid receptor (GR) 

(Beato, 1989). GR can bind to specific DNA sequences (glucocorticoid-responsive 

element, GRE) in the 5’-flanking region of target genes and transactivate gene 

transcription (Beato, 1989). Despite great progress in the field, many questions 

concerning the mechanism of GCs remain unanswered, for example the contribution 

of genomic and non-genomic effects or the cell-type specificity of their action.  

Barrier-tightening effects of GC treatment has been demonstrated for cerebral 

endothelial cells in vitro (Hoheisel et al., 1998; Romero et al., 2003; Förster et al., 

2005; Weksler et al., 2005). Matching data supporting an important role for GC-

mediated tightening of the BBB by junctional protein induction have been 

demonstrated in vivo in the mouse (Förster et al., 2006). GCs have further been 

shown to effectively restore barrier in a rat model of MS (Paul & Bolton, 1995; 

Schmidt et al., 2003). Moreover, using serial MRI recordings, a reduction in the 

number of enhancing lesions has been observed in patients suffering from optic 

neuritis and MS after high-dose GC treatment and in clinical studies (Grauer et al., 

2001).  

 

Based on these effects, researchers have begun to use diverse GCs for the in vitro-

differentiation of in vitro models of the BBB (Hoheisel et al., 1998; Romero et al., 
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2003; Förster et al., 2005; Weksler et al., 2005). In vitro BBB models are isolated 

endothelial cell culture systems from brain capillaries that allow for the study of BBB 

functionality, e.g. GC action, separated from feedback or indirect systems that operate 

in vivo. Several in vitro BBB systems have been developed and various procedures 

have been applied to isolate and culture brain microvascular endothelial cells. They 

differ with respect to e.g. isolation procedure, culture conditions, cell type and origin 

(tissue and species) and culture system. Such a diversity leads to in vitro BBB 

systems with different characteristics, which makes the comparison and transference 

of results between these systems problematic.  

For the transference of results to therapy, it is a necessary step to characterize human 

brain endothelial cell features in response to GCs versus those from animal origin and 

to delineate the molecular targets of GC action also in the human system. There was 

no established immortalized human brain endothelial cell line so far that could be 

used as an adequate in vitro-model to investigate the effects of GCs on the 

differentiation and regulation of the blood brain barrier in humans. Due to this 

shortcoming, a transference of molecular mechanisms induced by GC administration 

in animal models to the human system has not yet been achieved. After establishing 

hCMEC/D3 as an immortalized validated human model of the blood brain barrier 

(Weksler et al., 2005; Cucullo et al., 2007) we can now focus onto analysing 

molecular mechanisms of GC action at the human blood brain barrier. In the present 

study, the in vitro expression of the GR and the cellular response to the pro-

inflammatory cytokine TNFα and the GC HC was examined in hCMEC/D3 cells. 

Data are then compared to established GC-responsive brain endothelial cell lines from 

murine, rat or porcine origin characterised previously, and qualitative and quantitative 

differences are discussed. The future use of the cell culture model hCMEC/D3 might 



Carola Förster, Hydrocortisone induction of BBB properties in human adult brain endothelial cell 

 

7

7

help to understand and hopefully even treat neurological disease in a more effective 

way. 
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Methods 

 

Chemicals. Hydrocortisone was purchased from Sigma, Taufkirchen, Germany. 

Collagen IV was purchased from Fluka, Taufkirchen, Germany. 

 

Isolation and culture of cerebral endothelial cells. The immortalised human brain 

microvascular endothelial cell line hCMEC was generated as described (Weksler et 

al., 2005). The human brain microvessel endothelial cell line hCMEC/D3 retains the 

morphological characteristics of primary brain endothelial cells and expresses specific 

brain endothelial markers and cell surface adhesion molecules (Weksler et al., 2005). 

Moreover, it was recently demonstrated that, when cultured under flow conditions, 

these cells maintain in vitro the physiological permeability barrier properties of the 

BBB in situ even in the absence of abluminal astrocytes (Cucullo et al., 2007):  

hCMEC/D3 cells do retain the expression of endothelial and BBB markers (Weksler 

et al., 2005), hCMEC/D3 cells retain an aerobic metabolic pathway and exhibit an 

inflammatory response, i.e. barrier failure, extravasation of leukocytes of these cells 

(Cucullo et al., 2007). 

 

Cell Cultures. hCMEC/D3 were cultivated as described by Weksler et al (Weksler et 

al., 2005) with modifications: until confluence, cells were grown on collagen IV-

coated flasks in EGM-2 medium from Clonetics (Cambrex BioScience, Workingham, 

UK) consisting of EBM-2 basal medium amended with 2.5 % FCS and the growth 

factors VEGF, IGF-1, EGF, basic FGF, heparin as well as ascorbate and gentamycin 

from the EGM-2 BulletKit according to the manufacturers recommendation as 
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previously described (Weksler et al., 2005). Briefly, for EGM-2 preparation, 500 µl 

bFBF single aliquots and 125 µl of each, IGF1, ascorbic acid, VEGF, EGF, Heparin 

single aliquots were added to 500 ml EBM-2 basal medium as described in the 

manufacturers recommendation. As important modification to this protocol, no HC 

supplementation from the EGM-2 bullet kit was added to the growth medium. After 

reaching confluence, the medium was changed to a serum-reduced but hormone-

supplemented cell differentiation medium:  consisting of EBM-2 basal medium 

containing  0.25 % FCS and 100 nM HC, but  without  other added growth factors 

described for the growth medium. 

All cultures were supplemented with 100 IU/ml penicillin and 100 mg/ml 

streptomycin (1% PEST). Cells were maintained in an atmosphere of 5.0% CO2 / 95 

% air and at 37 °C. 

 

Electrophoresis and immunoblotting.  

Cells were plated at a density of 2.5*104 cells/cm2 in collagen IV-coated (Fluka, 

Taufkirchen, Germany) petri dishes and grown to confluence. At confluence, cells 

were maintained in FCS-reduced differentiation medium (see above) and treated with 

TNFα and HCs as indicated in the figure legends.  

For western blot analyses, cells were then dissolved in Laemmli sample buffer 

(Laemmli, 1970) and subjected to sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE, 15 % gels).  

Protein contents were quantified by protein estimation directly from SDS-PAGE 

loading buffer using 0.1 % (w/v) Amidoschwarz (AppliChem, Darmstadt, Germany) 

in 25 % (v/v) Methanol/ 5 % (v/v) acetic acid. For immunoblotting, proteins were 

transferred in Kyhse-Andersen transfer buffer (Kyhse-Andersen, 1984) to Hybond 
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nitrocellulose membranes (Amersham, Braunschweig, Germany) which were blocked 

with 10 % (w/v) low fat milk in phosphate buffered saline (PBS, pH 7.4) and 

incubated overnight at 4 °C with the respective primary antibody (in PBS plus 10 % 

low fat milk). The polyclonal rabbit antibodies against occludin, claudin-5 and 

claudin-1 were were purchased from Zymed Laboratories, California, USA. The 

polyclonal rabbit antibody sc-8992 against hGR was purchased from Santa Cruz 

Biotechnologies, California, USA. The polyclonal rabbit antibodies against occludin, 

claudin-5, hGR and VE-cadherin were used at a dilution of 1:1000. As secondary 

antibody, horseradish peroxidase-labelled goat anti-rabbit IgG (Jackson Immuno Res. 

Lab., West Grove, PA, USA) was used diluted 1:3000 with PBS. The polyclonal goat 

antibody sc-6458 against VE-cadherin was purchased from Santa Cruz 

Biotechnologies, California, USA. As secondary antibody, horseradish peroxidase-

labelled donkey anti-goat IgG (Jackson Immuno Res. Lab., West Grove, PA, USA) 

was used diluted 1:3000 with PBS.  Bound immunoglobulins were visualised by the 

enhanced chemiluminescence technique (ECL, Amersham). Densitometric analysis 

using Scion Image Beta 4.02 (Scion Corp., MD, USA) was performed for 

quantitation.  

 

Quantitative real-time RT-PCR 

For real-time RT-PCR, cDNA was synthesized using iSCRIPT cDNA synthesis kit 

(BioRad) and 1 µg of RNA from hCMEC/D3 cells treated or untreated with TNFα 

and HC. Human occludin, claudin-1, claudin-3, claudin-5, VE-cadherin, and GAPDH 

primers were designed using the Primer Express Software (Applied Biosystems) and 

obtained from MWG Biotech. Real-time RT-PCR was performed using the 

SYBR®Green PCR Master Mix (Applied Biosystems). Primers occludin forward (5’- 
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TCC ATT GGC AAA GTG AAT GA-3’), occludin reverse (5’ AGA GGT GCT CTT 

TTT GAA GG-3’), GAPDH forward (5’- GAG TCA ACG GAT TTG GTC GT-3’), 

GAPDH reverse (5’- GAT CTC GCT CCT GGA AGA TG-3’), claudin-1 forward (5’- 

CCG TTG GCA TGA AGT GTA TG-3’), claudin-1 reverse (5’- AAG GCA GAG 

AGA AGC AGC AG-3’), claudin-3 forward (5’- AAG GTG TAC GAC TCG CTG 

CT-3’), claudin-3 reverse (5’- AGT CCC GGA TAA TGG TGT TG-3’), claudin-5 

forward (5’- GAG GCG TGC TCT ACC TGT TT-3’), claudin-5 reverse (5’- GCC 

AGG TAT GAG ATC GTG GT-3’), VE-cadherin forward (5’- GCC AGG TAT GAG 

ATC GTG GT-3’), VE-cadherin reverse (5’- GTG TCT TCA GGC ACG ACA AA-

3’). The ABI PRISM 7300 SDS software (Relative quantification study) was used to 

determine the cycle threshold (Ct) for each reaction and gene expression was 

normalized to expression of the endogenous housekeeping gene, glyceraldehyde 

phosphate dehydrogenase (GAPDH) based on the the 2^[ -delta delta Ct ] method (where 

Ct means threshold cycle).  

 

Bioelectric and permeability assessments. Cells were plated on top of collagen IV-

coated transwell chambers for 6-well plates (24 mm diameter, membrane material: 

polyethylene terephthalate (PET), 0.4 µm pores, pore density/cm2 1.6 x 106) (Falcon, 

Heidelberg, Germany) at densities of 2.5 x 104/ cm2 cells per well. When they had 

reached confluence at day 5, the different experimental sets of cells were transferred 

to differentiation medium containing reduced amounts of FCS (see above) and treated 

with TNFα or HC as indicated.  

Resistance measurement: 

Transendothelial electrical resistance (TER) was measured using an assembly 

containing current-passing and voltage-measuring electrodes (volt ohm meter EVOM, 
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equipped with a STX2 "chopstick" electrode set, World-Precision Instruments Inc., 

New Haven, CT, USA). Resistances of blank filters were subtracted from those of 

filters with cells before final resistances (in Ω*cm2) were calculated. All experiments 

were repeated at least 6 times. 

FITC-dextran and fluorescein flux measurement: Confluent monolayers treated or 

untreated with HC (see figure legends) were washed in prewarmed HEPES buffer (10 

mM HEPES, pH 7.2, 0,1 % BSA, 4.5 % glucose) and subsequently preincubated for 5 

min in HEPES buffer at 37 °C. FITC-dextrans (Sigma) were purified from 

unconjugated FITC by size exclusion chromatography (Biogel P2 Polyacryamide gel, 

BioRad, München, Germany). Paracellular flux measurement was started by adding to 

the upper chamber of the Transwell system 100 µl of 50 mg/ml of 4, 10, 70 or 150 

kDa FITC-dextran or 100 µl of 5 mg/ml fluorescein, respectively, in HEPES buffer to 

a final concentration of 1 mg/ml FITC-dextrans or 0.1 mg/ ml fluorescein, to the 

upper chamber. Paracellular flux was assessed by taking 100 µl aliquots from the 

outer chamber every 15 min during the first 90 min of incubation. (FITC-dextran and 

fluorescein fluxes had initially been monitored over a duration of 360 min, however, 

at incubation times longer than 90 min, cytotoxic effects of the labeled compounds on 

hCMEC/D3 cells were occasionally observed by brightfield microscopy in 

preliminary experiments). Fluorescence was measured using a Wallac Victor2 

fluorescence spectrophotometer (Perkin-Elmer, Überlingen, Germany) with excitation 

and emission at 485 nm and 535 nm, respectively. The fluorescein and FITC-dextran 

clearance through the monolayer was compared to control clearance of uncoated wells 

and the volume cleared was plotted against time and the slopes of the curves were 

fitted using linear least square regression to calculate the permeability coefficients 

(Pe) of the endothelial monolayer according to the method of van Bree (van Bree et 
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al., 1988) . Blank filters coated with collagen IV were shown to not significantly 

restrict the permeation of the larger dextranes. 

 

 

Analysis and Statistics. Values for TER and gene expression were averaged to 

establish a single value for hCMEC/D3 cells under different experimental conditions. 

Throughout, averaged values were reported as means + standard error (SE). The 

indicated statistical test (Mann-Whitney U-test) was performed assuming significance 

for P < 0.05  (*), high statistical significance at p < 0.001 (**).
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Results 

 

HC responsivity of hCMEC/D3 cells 

In an effort to investigate HC-sensitivity of hCMEC/D3 cells we examined GC 

receptor (GR) expression in this cell line by RT-PCR analysis, Western blot and 

immunocytochemistry (Fig. 1). RT-PCR analysis showed a dose-dependent 

downregulation of GR transcript to 0.81 + 0.06-fold after after 48 hours of treatment 

with 50 nM HC, and to 0.63 + 0.1-fold after 48 hours of treatment with 100 nM HC, 

respectively, in hCMEC/D3 cells (n=6) (Fig. 1A). In cell lysates from untreated 

hCMEC/D3 cells, there was a strong signal for GR protein detectable by Western blot 

analysis (Fig. 1B). HC supplementation for 48 hours at physiological concentration 

(100 nM) led to a ligand-dependent reduction in detectable GR protein to 83 + 0.6 % 

of untreated cells as evaluated by densitometric analysis of Western blots (n = 3) (Fig. 

1B). HC treatment further stimulated GR translocation from the cytosol to the nucleus 

as evaluated by immunocytochemistry of treated and untreated hCMEC/D3-cells (Fig. 

1C): in untreated hCMEC/D3 cells, GR protein (green) was weakly detected as 

cytoplasmic staining (Fig 1C). Upon HC treatment, nuclear concentration of GR 

(green) was confirmed, visualised by propidium iodide nuclear counterstaining (red) 

(Fig. 1C): after HC treatment, fluorescence was concentrated in the nucleus in 

hCMEC/D3 cells as confirmed by the use of computer imaging software (Adobe 

Photoshop CS, Seattle, WA, USA) to merge the individual images for FITC-GR and 

propidium iodide counterstain to assess similarity of staining pattern. 

Summarising protein expression data collected by western blot analysis and 

immunocytochemistry, we show that ligand-bound GR is translocated to the nucleus 
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in human BBB endothelial cells hCMEC/D3 as reported for classical GC-responsive 

cells (Beato & Klug, 2000). 

 

 

Effects of HC on brain EC resistance and permeabililty 

We were able to develop a serum-reduced but hormone-supplemented cell 

differentiation medium based on the media previously described for murine cEND 

brain microvascular endothelial cells (Förster et al., 2005) and hCMEC/D3 cells 

(Weksler et al., 2005): until confluence, cells were grown in EGM-2 medium from 

Clonetics (Cambrex BioScience, Workingham, UK) in the presence of 2.5 % FCS and 

the growth factors VEGF, IGF-1, EGF, basic FGF, heparin as well as ascorbate and 

gentamycin from the EGM-2 BulletKit as previously described (Weksler et al., 2005) 

but without HC supplementation used in this reference. The amounts of growth factor 

single aliquots used for this study are detailed in the method section. After reaching 

confluency, the medium was changed to the following serum-reduced but hormone-

supplemented cell differentiation medium: medium contained 0.25 % FCS and 100 

nM HC, but was lacking other added growth factors. 

HC supplementation of the serum-reduced cell differentiation medium led to a 

significant increase in TER across the hCMEC/D3 monolayer. TER in the absence of 

HC was 69 + 19.3 Ω x cm2 while HC administration caused a significant increase of 

TER to the range of 199 + 5 Ω x cm2 (Fig. 2A).  

 

To further validate the hCMEC/D3 BBB model, the paracellular permeability of 

macromolecules like non-charged  FITC-dextrans of molecular masses 4 kDa, 10 

kDa, 70 kDa, and 150 kDa and of fluorescein (Mr = 300 Da) was tested by assessing 
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flux across the hCMEC/D3 monolayer after removal of unconjugated FITC from the 

uptake mix by size exclusion chromatography as previously described (Romero et al., 

2003; Förster et al., 2005) (Table 1). For this, we determined the permeability 

coefficients using the slopes of the curves representing cleared volume versus time 

according to van Bree (van Bree et al., 1988). The permeability of small 

macromolecules across the monolayer of hCMEC/D3 cells in differentiation medium 

(0.25 % FCS) supplemented with 100 nM HC was significantly decreased over 90 

min for fluorescein (by 48 + 6 %) and the for the smallest FITC-dextran (4-kDa) (by 

37 + 4%) comparative to control cells maintained in HC-free medium containing 0.25 

% FCS (n = 6-8 filters, 3 independent assays). No significant decrease versus 

untreated cells was observed for the FITC-dextrans 10-kDa, 70-kDa and 150-kDa 

(Table 1). According to the classical pore theory (van Bree et al., 1988), one can 

relate the molecullar radius of the solutes assessed (R) with their free diffusion 

coefficients (D) and the permeability coefficient Pe (Table 1). The calculation of the 

apparent pore size of the paracellular pathway revealed the existence of cylindrical 

pores of two apparent sizes, a large pore population with a radius of 92 + 9 Å and a 

small pore population with a radius of 12.47 + 0.45 Å within the hCMEC/D3 

monolayer. Hydrocortisone treatment reduced the apparent pore size of the small 

pores to a radius of 7.9 + 0.3 Å consistent with the reduced permeability of the 

monolayers following HC treatment. The calculation of the fractional porous area/ 

path length as through the cell monolayer, i.e. Ap/dx, was calculated as a measure of 

steric hindrance through the pores in the D3 monolayer (Table 1). Results show that 

steric hindrance appears to be significantly reduced by hydrocortisone treatment for 

all the molecules tested as compared to untreated cells.  
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The presented data underline that HC-induced enhanced resistance to electrical 

current appears to be mainly caused by closure of small-sized pores, responsible for 

the passage of fluorescein and the smallest of the dextrans tested (4 kDa), but that 

other effects independent of the tight junction molecules seem to be additionally 

induced by HC treatment. Taken together, bioelectric and paracellular flux 

measurements demonstrate that these cells are an appropriate HC-responsive model to 

test HC effects on the human BBB. 

 

Junctional protein expression in response to HC treatment in hCMEC/D3 cells 

TJ and adherens junction proteins are known to be key mediators of blood brain 

barrier sealing and maintenance. In order to identify potential mechanisms of HC 

preservation of the blood brain barrier we therefore assessed changes in junctional 

protein levels (Fig. 3) and gene expression (Tab. 1). A positive effect of HC on barrier 

molecule expression of the cells could be verified for occludin and claudin-5. 

Claudin-5 contents were increased by 62 + 22 % as compared to the untreated control, 

as assessed by western blot analysis and and densitometric quantitation. Occludin 

contents were increased by 16 + 7 % as compared to the untreated control. No effects 

were detected in the case of claudin-1 and VE-cadherin (Fig. 3). 

 

Also by real time-RT-PCR analysis we could show that treatment with HC influenced 

gene expression of junctional protein encoding genes differently in a concentration-

dependent manner (Table 2). As described previously for murine brain microvascular 

endothelial cells (Förster et al., 2005; Förster et al., 2006), treatment with HC induced 

occludin gene expression: control and HC-treated endothelial cells studied expressed 

occludin, occludin levels were however significantly increased in response to HC 
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treatment, with the effect being most pronounced at concentrations between 50 – 100 

nM HC.  

The claudins -1, -3, and -5 showed different responses to the HC treatment regimens: 

while claudin-5 gene expression showed a strong induction in response to 100 and 

500 nM HC treatment, HC treatment did not lead to an increase in claudin-1 or 

claudin-3 levels as compared to untreated cells. For VE-cadherin, an upregulation of 

gene expression in response to HC was equally not observed, while treatment with the 

highest concentration (1000 nM) of HC even reduced gene expression in the case of 

claudin-1, claudin-3, claudin-5 and VE-cadherin, presumably due to cytotoxic effects 

of this supraphysiological concentration. The influence of HC on hCMEC/D3 cells 

was observed from 0.5 till 24 hours after the beginning of the treatment. We received 

most pronounced differences in gene expression after a duration of eight hours, a 

longer treatment did not lead to any differences.  

 

HC preservation of the endothelial barrier in response to TNFα treatment  

 

MS is a very common chronic neurological disease which is characterized by the 

infiltration of the central nervous system by T-cells reactive against myelin across a 

compromised BBB (Schwartz & Kipnis, 2005). The inflammatory mediator TNFα 

seems to play a key role within the pathological processes of MS and experimental 

autoimmune encephalomyelitis (EAE) as an animal model of MS (Weber & 

Rieckmann, 1995; Korner & Sedgwick, 1996; Pan et al., 1996). In order to identify 

functional changes in the brain endothelium, we assessed TER and barrier 

constituting junctional protein and mRNA levels in response to treatment with the 

pro-inflammatory cytokine TNFα and a combination of TNFα and HC treatment (Fig. 
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4, Table 3). In order to test whether HC treatment prevents a compromise of BBB 

function in response TNFα administration, we assessed TER of untreated monolayers 

kept in differentiation medium (0.25 % FCS) for 48 h, of monolayers treated for 48 h 

with HC in differentiation medium, and compared the values with monolayers kept in 

differentiation medium (0.25 % FCS) for 48 h and then additionally treated for 8h 

with TNFα or monolayers kept in HC-supplemented differentiation medium for 48 h 

and then additionally treated for 8h with TNFα  (Fig. 4A). We were able to show that 

8 hours TNFα treatment led to a reduction in TER from 74 + 12 Ω*cm2  in control 

cells, to 42 + 7 Ω*cm2 in TNFα−treated cells, while treatment with HC increased 

TER values to 324 + 33 Ω*cm2. Pretreatment with HC before TNFα administration 

effectively prevented barrier breakdown, TER values amounted to 157 + 27 

Ω*cm2(Fig. 4A). 

 

In order to identify potential mechanisms of HC preservation of the blood brain 

barrier under pro-inflammatory conditions we assessed changes in junctional protein 

levels and gene expression (Fig. 4B, Table 3). A significant reduction in levels of the 

TJ proteins occludin and claudin-5 was observed by Western Blot and densitometric 

quantitation (Fig. 4B,C) which could contribute to the negative effect of TNFα on 

barrier properties. 8 h of TNFα-treatment caused a decrease in occludin protein to 75 

+ 1 % of untreated cells. Pretreatment with HC before TNFα administration prevented 

occludin loss, we were able to detect 110 + 1.5 % of occludin protein levels as 

compared to untreated cells. When treated with HC alone, occludin contents were 

significantly increased to 139 + 4 % of control values. Comparably, 8 h of TNFα-

treatment caused a decrease in claudin-5 protein to 57 + 1 % as compared to the 

untreated control. Simultaneous administration of TNFα and HC did however not 
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prevent claudin-5 loss as effectively as in the case of occludin, we were still able to 

detect claudin-5 protein levels reduced to 79 + 2 % of untreated cells. When treated 

with HC alone, claudin-5 contents changed significantly as compared to untreated 

cells (increased to 110 + 1.5 % of control) (Fig. 4B). We also assessed whether the 

inflammatory cytokine or the HC would influence levels of the adherens junction 

protein VE-cadherin could however not detect significant changes under most 

treatments. Surprisingly, only HC treatment concomitant with TNFα-treatment led to 

an increase in detectable VE-cadherin protein (118 + 5 % of control) 8 h after 

treatment (Fig. 4B,C). 

 

Also by real time-RT-PCR analysis we could show that treatment with the 

inflammatory mediator TNFα alone or simultaneous treatment with HC influenced 

gene expression of junctional components differently (Table 3).  

All the endothelial cells studied expressed occludin. Occludin mRNA levels were not 

reduced in response to 8 hours TNFα treatment. Co-treatment with TNFα/ HC 

maintained occludin gene expression at the control level. As described previously 

(Förster et al., 2005; Förster et al., 2006), treatment with HC alone even stronger 

induced occludin gene expression. In contrast, the expression of claudin-5 and VE-

cadherin was affected discordantly by 8 hours of TNFα treatment. While claudin-5 

gene expression decreased in response to TNFα treatment, HC treatment led to a 

strong increase in claudin-5 levels as compared to untreated cells. Concommitant 

TNFα/ HC treatment prevented a downregulation of gene expression and the amounts 

of claudin-5 transcript did significantly  exceed the levels measured in control cells. 

The situation differed from observations in the case of VE-cadherin: a downregulation 

of gene expression in response to TNFα was equally observed and could be prevented 
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with simultaneous HC treatment while treatment with the GC HC alone did not 

significantly increase gene expression levels (Table 3).  

The influence of TNFα on hCMEC/D3 cells was observed from 0.5 till 24 hours after 

the beginning of the treatment. We observed most pronounced differences in gene 

expression after a period of eight hours, a longer treatment did not lead to any 

differences.  



Carola Förster, Hydrocortisone induction of BBB properties in human adult brain endothelial cell 

 

22

22

 

Discussion:  

Breakdown of the BBB is a key feature of neuroinflammatory conditions, such as MS, 

encephalitis, meningitis, brain tumors and cerebral ischemia (Hamann et al., 1995; 

Rosenberg, 2002; Sellner & Leib, 2006). Therapeutic strategies for such diseases with 

impaired BBB function include treatment with GCs (Engelhardt, 2000) although the 

mechanism of GC action is still not precisely determined. Barrier tightening effects of 

GC treatment have so far been demonstrated in clinical studies (Grauer et al., 2001), 

in vivo in animal models (Paul & Bolton, 1995; Schmidt et al., 2003; Förster et al., 

2006), and in isolated cerebral endothelial cells from murine (Förster et al., 2005) or 

rat (Romero et al., 2003) origin identifying molecular targets for GC action at the 

cellular level. The verification of identified molecular GC targets in human cells has 

however not yet been achieved although necessary in order to apply  results from 

diverse animal models to man and  to further prospective therapeutic exploitation. 

For the characterisation of hCMEC/D3 GC responsivity, we considered it appropriate 

to initially examine GR receptor status and barrier induction in this cell line. Our 

results indicated that human hCMEC/D3 cells express the GR. Our data further 

showed that GR message and protein in the presence of ligand is reduced in a 

concentration dependent manner. Remaining GR protein is translocated from the 

cytosol to the nucleus in hCMEC/D3 cells, as described for classical GC-responsive 

cells (Beato, 1989). Hormone-dependent down-regulation of steroid receptors, i.e. GR 

and the related progesterone receptor (PR), has been demonstrated in the past (Beato 

& Klug, 2000; Lange et al., 2000) and might be necessary for the attenuation of 

transcriptional responses in tissues continually exposed to ligand (Shen et al., 2001), a 

situation occuring precisely in the blood vessel-lining endothelial cells. 
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The GC HC was found to significantly induce barrier properties in the hCMEC/D3 

BBB model. The maximal effect of HC was reached at a concentration of 100 nM or 

above, which is well in the physiological concentration range of HC in mammalian 

blood between 70 - 550 nM (Karlson et al., 1994). GC treatment nearly tripled TER 

values across hCMEC/D3 monolayers up to 200 Ω*cm2. Treatment with HC further 

lowered the permeability of monolayers of hCMEC/D3 cells for fluorescein to 48 + 6 

% of untreated cells and for the smallest uncharged macromolecule (FITC-dextran 4 

kDa) to 37 + 4 % of untreated cells, while the permeability of higher molecular 

weight dextrans remained unaltered. The calculation of the apparent pore size of the 

paracellular pathway had revealed the existence of cylindrical pores of two apparent 

sizes, a large pore population with a radius of 92 + 9 Å and a small pore population 

with a radius of 12.47 + 0.45 Å within the hCMEC/D3 monolayer. Hydrocortisone 

treatment reduced the apparent pore size of the small pores to a radius of 7.9 + 0.3 Å 

consistent with the reduced permeability of the monolayers following HC treatment. 

Results further showed that steric hindrance as represented by the permeability to 

diffusion coefficient (P/D) appears to be significantly reduced by hydrocortisone 

treatment for all the molecules tested as compared to untreated cells. The values 

obtained for HC-treated cells hereby very closely match the data of van Bree who 

described the existence of longitudinal pores in brain endothelial cell monolayers 

from bovine origin (van Bree et al., 1988). As an explanation, one might have to 

consider potential effects of HC on the endothelial cell glycocalyx in addition to the 

tight junction itself. Interestingly, Chappel et al. only recently reported such effects of 

hydrocortisone on the endothelial glycocalyx, the diminution of which increases 

capillary permeability, suggesting that the glycocalyx contributes to endothelial 
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permeability barrier formation and is yet another target for hydrocortisone action 

(Chappell et al., 2007). Effects on the endothelial glycocalyx of D3 monolayers might 

thus have occured independently of effects on tight junction molecules. 

Future investigation will thus have to clarify the degree of pore size reduction and a 

possible reduction in pore number by HC treatment and have moreover to address so 

far unacknowledged effects on the endothelial glycocalyx. 

Comparable effects on barrier tightness have been previously reported under HC 

treatment for the murine brain microvascular endothelial cell line cEND (Förster et 

al., 2005; Förster et al., 2006), primary porcine BCECs (Hoheisel et al., 1998), rat 

brain microvascular endothelial cells (Romero et al., 2003) and for cells of epithelial 

origin (Nguyen & Neville, 1998; Woo et al., 2000). The data are further  concordant 

with clinical reports describing the barrier closing effects of GCs on MRI gadolinium 

enhancement in acute demyelinating lesions (Burnham et al., 1991) or in optical 

nerve neuritis (Grauer et al., 2001).  

 

In an attempt to elucidate the molecular targets of GC-induced tightening of the 

barrier, we were able to show that GC signals can directly act at the transcriptional 

level on human occludin and claudin-5 gene expression in a dose-dependent manner. 

This induction of gene expression was further reflected in increased occludin and 

claudin-5 protein synthesis, identifying them as molecular targets of GC action in 

human brain microvascular endothelial cells. Levels of another TJ protein, claudin-1, 

and the adherens junction protein, VE-cadherin remained unchanged by GC 

treatment.  

These data are partly consistent and partly disparate from observations in animal 

models of the BBB, pointing to inter-species differences in GC responsivity: in the 
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mouse BBB model cEND, occludin could similarly be identified as a GR target 

(Förster et al., 2005), while an effect on claudin-5 gene expression by GCs was not 

observed (Förster et al., 2007). Induction of claudin-5 protein by GCs has however 

previously been described in other species than mouse: in rat brain microvessel 

endothelial cells (BMEC, GPNT), addition of HC to the cultures resulted in fewer 

frayed junctions and a more uniform distribution of the TJ protein claudin-5 at the cell 

borders as compared with cultures without GC treatment (Romero et al., 2003; 

Calabria et al., 2006). A recent screen of gene expression by human alveolar 

epithelial cells indicated that claudin-5 is one of the major genes upregulated during 

differentiation in culture (Gonzales et al., 2002; Daugherty et al., 2004). On the other 

hand, responsivity of the human VE-cadherin gene to GCs could not be observed in 

hCMEC/D3 cells, while it represents a GC target in the mouse (Blecharz et al., 2007). 

Reports on GC effects on VE-cadherin in other species or tissues could not be found, 

while the epithelial adherens protein, E-cadherin was reported to be strongly induced 

by GC in human lung epithelial cell lines promoting the formation of an alveolo-

capillary barrier in vitro (Hermanns et al., 2004). In contrast to this, GCs did not 

modulate the production or location of the epithelial cell adhesion protein E-cadherin 

in mouse mammary epithelial cells in vitro (Zettl et al., 1992). Whether this 

differential responsivity of the human, rat and mouse claudin-5 and VE-cadherin 

genes to GCs is based on different temporal gene expression patterns, the diverse GCs 

used or on different inter-species responsivity of the respective gene promoters to 

GCs remains to be investigated in the future. The discrepancy observed is however a 

strong indication to treat the transferability of results obtained in animal models to the 

human system with caution. 
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The contribution of individual TJ proteins on the development or progression of 

neurological conditions is varied. In some cases, TJ alterations and subsequent 

increased BBB permeability are an effect of the underlying pathology; alternatively, 

these changes can be causative and mediating event in disease development. For 

example, TJ disruptions and subsequent BBB perturbations are involved in the 

development of MS (Neuwelt, 2004; Brooks et al., 2006), while ischemic stroke and 

traumatic brain injury lead to BBB perturbations (Ilzecka, 1996). There are many 

diseases, such as Alzheimer's disease, where the direct correlation is not yet known, 

but is currently being investigated (Wardlaw et al., 2003). We thus attempted further 

to validate the hCMEC/D3 cell culture model suitable to study the barrier-preserving 

effects of HC under inflammatory conditions, and were able to demonstrate that 

TNFα treatment leads to divergent down-regulation of the different TJ proteins.  

However, our study demonstrates that the simultaneous administration of HC with 

TNFα preserves the functional integrity of the TJs under inflammatory conditions 

(TNFα exposure). The selective down-regulation of the TJ proteins occludin and 

claudin-5 detected is congruent with other research and clinical reports concerning 

endothelial cells of the BBB (Brooks et al., 2005; Förster et al., 2005; Brooks et al., 

2006; Silwedel & Förster, 2006; Schreibelt et al., 2007) and non-neural endothelium 

(Zeissig et al., 2007). Pre-treatment with HC maintained the TJ component occludin 

while it did not prevent the loss of claudin-5 and VE-cadherin as effectively. The 

observed effects suggest a vulnerability especially of claudin-5 protein to the pro-

inflammatory cytokine. While the TJ transmembrane protein occludin seems to play a 

regulatory role in the control of vascular permeability, since tissue expression and 

content of occludin correlate well with barrier properties (Hirase et al., 1997), the role 

of the different claudins appears to be strand and pore formation (Matter & Balda, 
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2003). Remarkably, differential effects of simultaneaous HC/TNFα-administration on 

gene expression and protein levels of claudin-5 were observed: while no restoration of 

the claudin-5 protein levels could be observed, simultaneous HC/TNFα− treatment 

nevertheless led to increased claudin-5 gene expressin. As an explanation, one might 

refer to previous observations, describing the upregulation of matrix 

metalloproteinases during inflammation in endothelial cells which demonstratably 

leads to the degradation of tight junction transmembrane proteins (MunBryce & 

Rosenberg, 1998) and could chiefly affect the claudin-5 based tight junction structural 

integrity at the protein level. In line with this hypothesis, Nitta et al. reported the 

identification of especially claudin-5 as a critical regulator of brain microvascular 

endothelial cell permeability (Nitta et al., 2003). In retinal microvascular endothelial 

cells, Koto et al. could recently demonstrate that claudin-5 is a target molecule of 

hypoxia leading to the disruption of the barrier function (Koto et al., 2007), while in a 

rat rat cortical cold injury model, Nag et al. were able to demonstrate decreased 

expression of both, occludin and claudin-5 at the site of injury (Nag et al., 2007). 

TNFα and HC thus seem to act in a differential manner on the expression of different 

TJ components in microvascular cells of the BBB. Attention should however also be 

directed to the possibility that exposure to high levels of the proinflammatory 

cytokine TNFα can lead to increased amounts of locally produced VEGF from the 

endothelial cells, which will contribute to the downregulation of TJ proteins and 

increase leakiness of the barrier. HC effects could therefore also be indirect in nature 

by reducing VEGF secretion (Neuwelt, 2004). Future studies will thus have to adress 

the nature of the opposed effects of HC and TNFα or other pro-inflammatory 

cytokines on TJ properties in brain microvascular endothelial cells, i.e. effects on TJ 

transcription, protein synthesis, intracellular localisation, phosphorylation status, on 
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the dynamics of junctional protein interactions, and on the secretion of signalling 

proteins and peptidases, in line with investigations in other cellular systems (Poritz et 

al., 2004; Bruewer et al., 2005; Prasad et al., 2005; Abbott et al., 2006; Förster et al., 

2007).  

Taken together, our observations support the hypothesis that the secretion of pro-

inflammatory cytokines during inflammation in endothelial cells leads to the 

degradation of chiefly claudin-5 and, to a minor extent, occludin, at the human BBB 

and could affect TJ structural integrity, while HC treatment is an effective way to 

prevent this. To the best of our knowledge, this is the first report describing a possible 

role of GCs like HC in direct regulation of the expression of TJ components in human 

brain microvascular endothelial cells. These observations might be of clinical and 

pharmacological significance, since it could open up new specific routes of treatment 

of CNS  inflammatory diseases: at present, high dose GC therapy is used successfully 

in MS relapses. The prevailing opinion on the mode of GC action is that it induces the 

inhibition of cytokine-induced barrier reduction and expression of CAMs (VCAM-1, 

ICAM-1, E-selectin and PECAM-1) which mediate T cell/ BBB interaction and 

consequently chronic leukocyte recruitment across the BBB. In contrast, our 

observations open up a new lead for an understanding of the beneficial effects of GC 

action in a therapeutic regime: An  additional mode of GC action on brain 

microvascular endothelium appears to consist of tightening of the barrier which is 

likely to diminish  leukocyte recruitment across the BBB. After a future identification 

of the recruited transcriptional co-regulator proteins for GR (Beato & Klug, 2000), the 

design of cell- or tissue-specific steroidal drugs might be attempted to treat MS 

patients without the severe side effects of classical GC therapy.” 
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Figure legends. 

Fig. 1.  

(A) After reaching confluence, hCMEC/D3 cells were treated with 50 nM and 100 

nM hydrocortisone (HC) for 48 hours and GR mRNA expression was assessed. 

Treatment was repeated every 24 h. A downregulation of GR transcript to 0.81 + 0.06-

fold after after 48 hours of treatment with 50 nM HC, and to 0.63 + 0.1-fold after 48 

hours of treatment with 100 nM HC, respectively, was observed in hCMEC/D3 cells. 

(B) Confluent monolayers of hCMEC/D3 cells were grown in collagen-IV coated cell 

culture flasks in the presence of 100 nM HC as indicated. Cell lysates were analysed 

by western blot for GR protein contents. After 48 h of HC treatment of hCMEC/D3, a 

downregulation of GR protein to an estimated protein content of 83 + 0.6 % of that in  

untreated cells occurred, (n = 3).  

(C) Immunocytochemistry visualising the cellular localisation of GR protein in 

hCMEC/D3 endothelial cells maintained in serum-reduced medium (0.25 % FCS) 

“control” as compared to cells maintained in differentiation medium (0.25 % FCS, 

110 nM HC) “HC”. GR stain (FITC = green), propidium iodide nuclear counterstain 

(red), and merged images (GR/PI) of GR immunofluorescence (green) and nuclei 

counterstained by propium iodide (red). After 48 h of HC  treatment a nuclear 

concentration of GR (green) in hCMEC/D3 cells  was observed, visualised by 

propidium iodide nuclear counterstaining (red). The nuclear concentration of GR 

could be confirmed for HC treated hCMEC/D3 cells by the use of computer imaging 

software to merge the individual images for FITC-GR and propidium iodide 

counterstain to assess similarity of staining pattern. 
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The slides were analysed using a Zeiss Axioscop2 microscope. All pictures within each 

experiment were captured and manipulated identically with SpotAdvanced software and 

Adobe Photoshop. Bar in the lower panels indicates 20 µm for all panels. 

 

Fig. 2.  

HC induces barrier properties in hCMEC/D3 cells.  

Influence of the addition of HC on the electrical barrier properties (TER) of hCMEC/D3 

monolayers. Growth medium (2.5 % FCS) was changed after 5 days in culture to 

differentiation medium (0.25 % FCS, + additions) and analysis of the TER was 

performed after additional 48 h in vitro, while treatment was repeated every 24 h. 

Incubation medium: (control) with 0.25 % (v/v) FCS, without hydrocortisone; (HC) 

with 0.25 % (v/v) FCS, 100 nM HC; Data are given as mean + sd (n = 6). 

 

Fig. 3. HC effects on junctional protein levels. 

The influence of HC treatment on the junctional proteins occludin, claudin-1, claudin-

5 and VE-cadherin was assessed by Western Blot and densitometric analysis: for this, 

cells were seeded on plastic cell culture flasks coated with collagen IV, treated for 48 

h as as described above and indicated and subjected to SDS-gel electrophoresis and 

Western blotting. An increase in protein levels could be verified for occludin and 

claudin-5. Claudin-5 contents were increased by 62 + 22 % as compared to the 

untreated control, as assessed by western blot analysis and and densitometric 

quantitation. Occludin contents were increased by 16 + 7 % as compared to the 

untreated control. No treatment-related changeswere detected in the cases of claudin-1 

and VE-cadherin (Fig. 3). 
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Fig. 4: HC preservation of hCMEC/D3 barrier function under pro-inflammatory 

conditions 

(A) GC treatment prevents a compromise of BBB function in response to TNFα 

administration for 8 hours: TER drops from 74 + 12 Ω*cm2  in control cells to 42 + 7 

Ω*cm2 in TNFα−treated cells, while treatment with HC increased TER values to 324 

+ 33 Ω*cm2. Simultaneous administration of TNFα with HC effectively prevented 

barrier breakdown, TER values amounted to 157 + 27 Ω*cm2. 

(B) hCMEC/D3 cells were grown in collagen IV-coated cell culture flasks to 

confluence for 5 d and therafter maintained in differentiation medium containing 

various additions for an additional 8 h: 0.25 % FCS; 0.25 % FCS + 100 nM HC; 0.25 

% FCS + 10 nM TNFα; 0.25 % FCS + 100 nM HC + 10 nM TNFα. After 8 h, cell 

lysates were prepared. Cell lysates were analysed by western blot for occludin, 

claudin-5, and VE-cadherin. 8 h of TNFα-treatment decreased occludin protein to 75 

+ 1 % of untreated cells. Pretreatment with HC before TNFα administration increased 

occludin to  110 + 1.5 % of untreated cells and prevented occludin loss. When treated 

with HC alone, occludin was significantly increased to 139 + 4 % of control values. In 

contrast, 8 h of TNFα-treatment decreased claudin-5 protein to 57 + 1 % of untreated 

cells. Simultaneous administration of TNFα and HC yielded reduced levels of 

claudin-5 to 79 + 2 % of untreated cells. When treated with HC alone, claudin-5 

increased to 110 + 1.5 % of control (Fig. 4B). Levels of the adherens junction protein 

VE-cadherin did not show significant changes under most treatment regimes. 

However, HC treatment concomitant with TNFa-treatment led to an increase in 

detectable VE-cadherin protein (118 + 5 % of control) 8 h after treatment. 

(C) Densitometric evaluation of (B) 
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Table 1 
Permeability coefficients (Pe) for fluorescein and FITC-dextrans (4,10, 70 and 
150) of control and HC-treated hCMEC/D3 cells (n = 6-8 filters, 3 independent 
assays). 
 
 

Ap/dx 
(1/cm) 

Solute MW Pe 
(10-3 cm/min) 

control 

Pe 
(10-3 cm/min) 

HC 

Radius 
(Å) 

D 
(10-5 

cm2/min)   control HC 

Fluorescei
n 

389 5.53 + 0.07 3.43 + 0.02 5.5 35.8 15.45 9.58 

FD4 4000 0.83 + 0.03 0.53 + 0.02 14 14 5.93 3.79 
FD10 10000 0.32 + 0.02 0.28 + 0.022 22 8.9 3.6 3.15 
FD70 70000 0.017 + 0.004 0.014 + 0.004 60 3.3 0.52 0.42 
FD150 150000 0.018 + 0.006 0.014 + 

0.0035 
80 2.5 0.72 0.56 

FD, number = FITC dextran, molecular weight in kDa 
D = Diffusion coefficient of the solute 
A = Area 
Pe = Permeability coefficient 

 
 
 
 
 
 
Table 2 
 
Modulation of TJ gene expression in hCMEC/D3 cells by the GC HC.  

 
 
Gene/  statistical significance n = 5 
[nM HC] occludin  claudin-5  claudin-1 

 
 claudin-3 

 
 VE-

cadherin 
 

 

 

10 1.585+0.01 * 1.11+0.21 ns 0.89+0.14 ns 0.89+0.04 ns 0.87+0.03 ns 

50 2.07+0.07 ** 0.84+0.13 ns 0.81+0.04 ns 0.81+0.14 ns 0.98+0.14 ns 

100 2.75+0.04 * 2.32+0.11 ** 0.9+0.06 ns 0.9+0.27 ns 1.06+0.17 ns 

500 1.79+0.54 ** 1.88+0.06 * 0.77+0.01 * 0.77+0.31 ns 0.93+0.1 ns 

1000 1.35+0.28 * 0.43+0.23 ns 0.64+0.07 * 0.635+0.2 * 0.75+0.2 ns 

 
Fold expression versus untreated cells (means + s.d.), followed by statistical 
significance. *P<0.05, **P<0.001. ns, not significant. Values for untreated cells are 
set = 1. HC, hydrocortisone. 
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Table 3 
 
 
Modulation of TJ gene expression in hCMEC/D3 cells by the inflammatory mediator 

TNFα and HC. Values for untreated cells are set = 1. n = 5. 
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