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Visual search can be seen as a decision-making process
that aims to assess whether a target is present or absent
from a scene. In this perspective, eye movements collect
evidence related to target detection and verification to
guide the decision. We investigated whether, in real-
world scenes, target detection and verification are
differentially recruited in the decision-making process in
the presence of prior information (expectations about
target location) and perceptual uncertainty (noise). We
used a mouse-tracking methodology with which mouse
trajectories unveil components of decision-making and
eye-tracking measures reflect target detection and
verification. Indoor scenes were presented, including a
target in usual or unusual locations or no target, and
were degraded with additive noise (or no noise).
Participants had to respond to the target’s presence or
absence. Degrading the scene delayed the decision due

to increased verification times and reduced mouse
velocity. Targets in unusual locations delayed the
decision and deviated mouse trajectories toward the
target-absent response. Detection times played a major
role in these effects. Thus, target detection and
verification processes influence decision-making by
integrating the available sources of information
differently and lead to an accumulation of evidence
toward both the presence of a target and its absence.

Introduction

Visual scenes from everyday life can often be very
complex, including elaborate details and textures as
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well as a large number of objects, and they cannot be
fully processed in a single glance. Thus, visual
information is sampled through discrete eye fixations.
As actions can be made not only to progress toward a
goal, but also to reduce the uncertainty about the states
of the world (Bajcsy, Aloimonos, & Tsotsos, 2016;
Kirsh & Maglio, 1994), active oculomotor behavior
could be directed toward minimizing uncertainty about
the composition of the visual scene (Friston, 2012;
Friston, Adams, Perrinet, & Breakspear, 2012; Itti &
Baldi, 2009; Renninger, Verghese, & Coughlan, 2007)
or object identities (Kietzmann, Geuter, & König, 2011;
Kietzmann & König, 2015; Quinton, Volpi, Barca, &
Pezzulo, 2014). This behavior is usually driven by
particular goals, such as understanding what is
depicted, gathering action-related information, or
searching for a particular object (Ballard & Hayhoe,
2009; Land & Hayhoe, 2001; Rothkopf, Ballard, &
Hayhoe, 2007). Most real-life tasks require fast visual
processing. Therefore, efficient visual exploration has
to rely on rapidly available sources of information.
This includes both the visual information that can be
extracted directly from the current view of the
environment and prior information (e.g., knowledge
and expectations about this environment) built up as a
result of past exposures to similar situations, the effects
of which may start even before any visual stimulation
occurs.

The former was previously formalized as bottom-up
saliency maps (Borji, Tavakoli, Sihite, & Itti, 2013; Itti
& Koch, 2000; Itti, Koch, & Niebur, 1998), with which
highly conspicuous areas of the scene (the features of
which differ from surroundings) are thought to attract
attention and, ultimately, the gaze. This model
reproduces some experimental human data especially in
free viewing (Borji et al., 2013; Itti & Koch, 2000) and
predicts human gaze fixation locations better than
various random models in a scene-encoding task
(Foulsham & Underwood, 2008; Underwood & Foul-
sham, 2006). However, it predicts neither the order of
the fixations in the sequence (i.e., scanpaths; Foulsham
& Underwood, 2008; Underwood, Foulsham, &
Humphrey, 2009) nor the oculomotor behavior in
visual search tasks (Henderson, Brockmole, Castelha-
no, & Mack, 2007; Underwood & Foulsham, 2006;
Underwood, Foulsham, van Loon, Humphreys, &
Bloyce, 2006) or tasks in which the gaze supports
navigation and goal-oriented behavior (Ballard &
Hayhoe, 2009; Rothkopf et al., 2007). It has been
proposed that bottom-up saliency could reflect surprise
toward statistical outliers in space (Tatler, Hayhoe,
Land, & Ballard, 2011) and therefore attract the gaze
when relevant for the task. Considering that conspi-
cuity-based models do not fully explain eye movements
in natural behavior, other sources of information must
be considered. For instance, throughout his or her life,

an observer memorizes knowledge about what objects
look like and how they interact with each other and
uses this knowledge to guide eye movements.

Searching for a specific object in a known scene can
be made easier by memories of where this object is
usually placed (Brockmole & Henderson, 2006;
Brockmole & Le-Hoa Vo, 2010). Even in unknown
scenes, knowledge about the laws of physics, cultural
practices, or the object’s function governing the object’s
location in the environment still apply and can be
exploited. Thus, a target object located somewhere at
which there is a high probability of finding it is detected
and recognized more quickly than when it is placed
somewhere at which there is a low probability of
finding it (Malcolm & Henderson, 2010). It applies
when the target is both consistent and inconsistent with
the global layout of the scene (Castelhano & Heaven,
2011). Hence, whether the scene is a kitchen or a
bathroom, a mug would be found more easily on a sink
or washbasin than on the floor. These expectations are
built on a variety of sources of information, such as
prior knowledge about the global layout of the scene
(Castelhano & Heaven, 2010; Castelhano & Hender-
son, 2007; Pereira & Castelhano, 2014), the laws of
physics (Spotorno, Malcolm, & Tatler, 2014), or local
information based on the relationships between the
target and the other objects (Eckstein, Drescher, &
Shimozaki, 2006; Pereira & Castelhano, 2014; for
reviews, see Võ & Wolfe, 2015; Wu, Wick, & Pomplun,
2014). Computational models that integrate contextual
guidance predict eye fixations in natural scenes better
than models implementing only bottom-up saliency
(Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, 2009;
Kanan, Tong, Zhang, & Cottrell, 2009; Torralba,
Oliva, Castelhano, & Henderson, 2006).

How expectations stemming from the target’s
location influence eye movement guidance during
visual search tasks has been extensively studied.
However, the relationship between visual exploration
and the higher-level decision-making process to which
it contributes has received less attention. Although the
purpose of the process is to decide whether or not the
target is present in the environment, visual exploration
with eye movements can be seen as a process of active
evidence collection (hypothesis testing) in which each
saccade reduces perceptual uncertainty and conse-
quently enhances the quality of the choice (Friston et
al., 2012). In the field of visual identification, this idea
has recently been studied using ambiguous drawings
representing two alternative objects or animals (Kietz-
mann et al., 2011) or ambiguous schematic figures
interpolated between prototypical animals (Quinton et
al., 2014). These two studies show how active eye
behavior can disambiguate a figure with the former
using an eye-tracking approach and the later a
computational approach coupled with a mouse-track-
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ing task. More specifically, Quinton et al. (2014) used a
binary forced-choice task consisting of categorizing
(un)ambiguous prototypical animals. They showed
how the two alternative responses attracted mouse
movement trajectories produced by participants in a
way that is proportional to putative ‘‘votes’’ for the
alternative responses at each time unit and used a
computational model implementing predictive coding
principles (Rao & Ballard, 1999) to reproduce analo-
gous choice trajectories and next gaze location on the
stimulus (see also Catenacci Volpi, Quinton, & Pezzulo,
2014).

This example illustrates how, by tracking mouse
movements or hand movements during a choice, it is
possible to measure distinct aspects of the underlying
perceptual decision-making process in a binary forced-
choice task (Dale, Kehoe, & Spivey, 2007; Freeman &
Ambady, 2010; Song & Nakayama, 2009; Spivey,
Grosjean, & Knoblich, 2005). In a typical mouse-
tracking task, participants have to categorize a visual
stimulus by clicking on the response buttons located in
the top left and top right corners of the screen as mouse
trajectories are recorded. Therefore, unlike with basic
binary forced-choice tasks, the decision-making process
is not only inferred through the response times (RTs)
and error rates and also through various trajectory
measurements whereby continuous aspects of the
decision-making process can be captured (Freeman,
Dale, & Farmer, 2011; Lepora & Pezzulo, 2015).
Among the basic mouse-tracking measurements, the
degree of deviation of each trajectory, estimated as the
geometric area (area under the curve, AUC) between
the actual trajectory and ideal response movement (line
stretching from the start point to the accurate
response), can be used as a global measure of the bias
toward the alternative response in the decision-making
process (Freeman & Ambady, 2010). Furthermore,
trajectory deviation and mouse velocity can be
analyzed as a function of time, providing useful
information about how competition between alterna-
tives unfolds over time (Farmer, Cargill, Hindy, Dale,
& Spivey, 2007; Freeman & Ambady, 2011; Freeman,
Ma, Han, & Ambady, 2013).

The mouse-tracking methodology has been used
extensively with visual material, especially to study
facial recognition of gender (Freeman, Ambady, Rule,
& Johnson, 2008; Johnson, Freeman, & Pauker, 2012)
and ethnicity (Freeman & Ambady, 2011; Freeman,
Pauker, Apfelbaum, & Ambady, 2010) as well as the
influence of stereotypes on face recognition (Freeman
& Ambady, 2009; Freeman, Penner, Saperstein,
Scheutz, & Ambady, 2011). It has also been used in the
fields of numerical cognition (Faulkenberry, 2014;
Marghetis, Núñez, & Bergen, 2014), psycholinguistics
(Barca, Benedetti, & Pezzulo, 2016; Barca & Pezzulo,
2012, 2015; Farmer et al., 2007; Morett & MacWhin-

ney, 2013), and memory (Papesh & Goldinger, 2012).
In visual categorization, the effectiveness of this
methodology was assessed for discrimination of am-
biguous categories of animals (Dale et al., 2007) and
ambiguous visual stimuli representing animals (Quin-
ton et al., 2014).

In the present study, we studied visual search by
combining mouse-tracking and eye-tracking methods
in order to measure aspects of, respectively, dynamical
decision-making and collection of perceptual evidence.
Participants had to indicate whether a target was
present or absent from an indoor scene. We manipu-
lated expectations of target location by placing it at
usual or unusual locations. Noise was added to the
images in order to degrade the scene and generate
bottom-up visual uncertainty. To ensure that the noise
would not disturb the perception of the scene context,
we presented a scene preview of a smaller size (but
without the target) before the visual scene itself. This
allowed the participants to build a prior representation
of the scene that was equivalent across noise levels
(Castelhano & Henderson, 2007). We divided the visual
search into two epochs defined through eye movements.
The detection epoch stretches from the appearance of
the scene to the first saccade landing on the target’s
area of interest (AOI), and the verification epoch
includes the first sequence of fixations within the target
AOI. The total duration of the former (detection time
or target latency) and later (verification time) can be
interpreted as measurements of the time spent, respec-
tively, finding and identifying the target (Castelhano,
Pollatsek, & Cave, 2008; Malcolm & Henderson, 2009).
It is to be noted that if there is no direct fixation of the
target before the end of the detection epoch, the target
can eventually be noticed peripherally around the end
of this epoch. Despite this, detection time remains an
indicator of the time spent finding the target because
the next fixation after peripheral detection will be
directed at the target most of the time, ending the
detection epoch. Our objectives were to address the
respective roles of target detection and verification in
explaining the influence of both expectations about the
target location and scene degradation on the decision-
making process.

In a recent study, we examined how both expectation
of a specific target and visual degradation of a road
scene by fog contribute to the decision process, which
leads to target identification by affecting detection time
and verification (Quétard et al., 2015). We used
mediation analysis (Preacher & Hayes, 2008) to assess
whether the effects of expectations or fog on a
mediating eye movement variable (detection or verifi-
cation time) could account for the variations in the
mouse-tracking variables. We observed that scene
degradation caused by fog led to longer detection and
verification times, and these effects delayed the
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decision-making process and increased the deviation of
the trajectory toward the incorrect response. Expecting
the correct target led to shorter verification times,
resulting in quicker decisions with a reduced bias
toward the inaccurate response. However, we limited
our analyses to two broad measurements of mouse
responses (AUC and time when the largest mouse
deviation was reached) whereas mouse-tracking tasks
allow for a richer analysis of mouse responses.
Moreover, this previous study presented a two-alter-
native, forced-choice task (identification of the stimulus
within a visual scene). However, finding evidence that
points toward one object or category rather than
another does not involve the same cognitive processes
as accumulating evidence of the presence or absence of
a stimulus as necessary for visual search tasks. In terms
of the evidence accumulation process, the former would
require checking for distinctive features permitting the
identification or categorization whereas the latter
would require exploring the visual scene sufficiently
until the target is found or enough confidence has been
acquired that the target is not present.

At a methodological level, this new study specifically
focuses on the effects of scene degradation caused by
noise and expectations about the target location (rather
than about target identity) on eye movements and
mouse responses with a view to assessing active
collection of evidence and perceptual decision-making
in visual search. We analyzed RTs and AUC using
mediation analysis and extended the analysis of the
mouse responses to velocity and trajectory deviation
across time (Castelhano & Henderson, 2007). In line
with previous studies, we predicted that unusual target
locations would increase the target detection time and
number and duration of fixations during the detection
epoch (Castelhano & Heaven, 2010, 2011; Malcolm &
Henderson, 2010; Pereira & Castelhano, 2014; Spo-
torno et al., 2014). These studies found mixed results
for the influence of target location expectations on
verification times. Visually degraded scenes should also
increase both detection and verification times as it has
been observed that noise increases fixation durations
while reducing the number of fixations on the scene and
impairs the spatial distribution of fixations on the scene
with shorter saccades and a higher central bias
(Röhrbein, Goddard, Schneider, James, & Guo, 2015).
As the active oculomotor behavior aimed at exploring
the visual scene is seen as an evidence-collection process
(Friston et al., 2012; Kietzmann & König, 2015;
Kietzmann et al., 2011; Quinton et al., 2014), impair-
ment of target detection and verification by both noise
and targets in unusual locations should impair the
decision-making process as measured through mouse
movements. Hence, mouse movements should be
slowed and RTs longer, and there should be a bias
toward the absent response. The basis for this

hypothesis lies in the intrinsic asymmetry between
deciding whether a target is present or absent. This
choice can be fit in with the popular evidence-
accumulation framework for decision-making (Ratcliff
& McKoon, 2008) if it is assumed that accumulating
evidence for the present response rests on finding a
target with a known identity whereas the absent
response aims to build up confidence that the target is
not in the scene. Consequently, there should be
heightened competition between present and absent
responses insofar as the absent alternative has more
weight in the decision-making process over time
because the target is harder to find. As target detection
and verification permit this competition to be resolved,
they should influence this competition. One important
assumption in mouse-tracking paradigms is that
competition between the two alternative responses,
here target present or absent, unfolds parallel to the
mouse movement (Freeman, Dale et al., 2011; Song &
Nakayama, 2009). As this competition is updated as
new evidence is collected through eye movements,
studying the time course of measurements, such as
movement velocity and deviation toward the absent
response with regard to when the target is detected and
verified, should highlight the effects of target location
and noise. In other words, we should observe these
effects even before target detection and during target
verification.

Method

Participants

A total of 65 psychology students (including eight
males) from Blaise Pascal University took part in the
experiment. They received academic credits as com-
pensation for taking part and gave their written
consent. Their average age was 20.4 (SD¼ 4.1). All of
them had normal or corrected-to-normal vision (glasses
or contact lenses).

Stimuli

To build the stimuli set, we selected 60 indoor scene
pictures (from the categories bathroom, living room,
bedroom, child’s bedroom, dining room, office, and
kitchen) from the SUN database (Xiao, Hays, Ehinger,
Oliva, & Torralba, 2010) and 60 object pictures from
the POPORO database (Kovalenko, Chaumon, &
Busch, 2012). The scene pictures were scaled at a
resolution of 10243 768 pixels. Each target object was
associated with a semantically congruent scene and
placed either at a usual or an unusual location in the
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scene or were absent from the scene (see Figure 1A). To
determine the positions of each target, we controlled
the laterality of the two target positions; for example,
when the target’s usual position was in the left part of
the scene, its unusual position was in the right part and
vice versa. We balanced the laterality of the targets
across scenes by choosing usual and unusual locations
on opposite sides of each scene. In approximately half
of the scenes, the usual location was on the left side
whereas the unusual location was on the right side and
vice versa for the other half. Finally, we controlled for
the central bias (Tatler, 2007) by choosing two
approximately equidistant positions away from the
center of the picture. For each location, the targets
were the same size.

To assess the validity of the target positions, we
pretested the scenes. We asked a total of 26 participants

to rate the likelihood of finding the target at this
position in the scene (0¼ not likely, 100¼ very likely).
We presented all of the scenes one by one in the same
random order for half of the participants and in the
opposite order for the other half. This method ensured
that, for each scene, when half of the participants were
presented with the usual location version first, followed
by the unusual location, the other half saw the unusual
location version first and the usual location version
second. Targets positioned in a usual region (M ¼

85.18) were rated more likely to be found in this
position than targets positioned in an unusual region
(M ¼ 10.45) as assessed using a repeated-measures
ANOVA performed on the scenes as observations, F(1,
59)¼ 1,314.65, p , 0.001. Finally, we made sure that
the rating of usual and unusual target positions differed
within scenes by computing the confidence intervals for

Figure 1. (A) Versions of a scene in each experimental condition. The scene either includes or does not include the target. The target is

a house plant, displayed in a usual location and an unusual location. Left: without noise; right: with noise. (B) Time course of a trial.
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each scene. The usual and unusual ratings were
different for all the scenes with a confidence level of
99% except for one scene that had a 95% confidence
level.

One scene had to be removed because of an error
when building it, which we noticed after a quarter of
the participants had performed the experiment. We
used an algorithm to compute mean and maximal
saliency within the target’s AOI (Birem, Quinton,
Berry, & Mezouar, 2014, adapted to the task specifics
and derived from Frintrop, 2006; Itti et al., 1998) in
order to check that the bottom-up saliency of the
targets did not differ statistically between their two
possible locations. There was no difference between
usual and unusual locations for either mean, F(1, 58)¼
0.51, p¼0.477, or maximal saliency, F(1, 58)¼0.49, p¼
0.485.

To manipulate the visual uncertainty of the scenes,
we degraded the pictures by adding a Gaussian noise to
each pixel (independently on each RGB color compo-
nent). The noise distributions were centered with a
variance of 0.3 (for an intensity range of [0, 1]). Our
final stimuli set totaled 354 pictures (59 scenes3 3
target conditions3 2 noise levels). We added 59 scene
previews that did not include the target and were scaled
at 6003 450 pixels.

Apparatus

We used the MouseTracker software (Freeman &
Ambady, 2010) to program and run the experiment.
The stimuli were presented using a laptop with a 15.6-
in. display set at a resolution of 16003 900 pixels and a
refresh rate of 60 Hz. The participants were instructed
to maintain their head at an approximately constant
distance from the screen (61 cm). An ordinary mouse
was used, and the movements were recorded by the
MouseTracker software at a sampling rate of approx-
imately 60 Hz.

Eye movements were recorded using a SMI RED-m
head-free eye-tracker at a sampling rate of 60 Hz. We
preprocessed the data using SMI’s dispersion-based
algorithm for fixation identification based on Salvucci
and Goldberg (2000). We set the minimum fixation
duration threshold at 80 ms and the minimum
dispersion threshold at 18 (within the optimal range
tested by Blignaut, 2009).

Procedure

The experiment began with a five-point eye-tracker
calibration procedure and a four-point validation to
establish the calibration error. Participants then com-
pleted a 16-trial training block, including natural scenes

and target animals rather than indoor scenes and target
objects. Figure 1B shows the time course of a trial. To
begin each trial, participants had to click with the
mouse cursor on the start button at the bottom center
of the screen with the mouse’s cursor. The name of the
target object appeared for a total of 2400 ms. After
2000 ms, a preview of one of the scenes appeared in the
center of the screen below the target name for the
remaining duration (400 ms). Then, after a blank screen
with a 300-ms fixation cross, the same scene was
presented for 2500 ms in one of the six conditions
previously listed: degraded with noise or not, with or
without a target presented in a usual or unusual
location. The mouse cursor was locked in the middle of
the start button before the scene appeared to ensure all
the trajectories started from the same location.
Participants were instructed to click on the present or
absent response buttons in the top left and top right
corners of the screen, according to whether the target
was in the scene or not. If 1000 ms elapsed before they
moved the mouse, a message was displayed after
completion of the trial, urging them to begin their
movement earlier in the upcoming trials. A response
given after 2500 ms was invalid resulting in a ‘‘time
out’’ message.

Each participant was presented with 59 trials,
including 10 trials per experimental condition (3 target
conditions3 2 noise levels, nine trials for one
condition due to the later removal of one scene) with
only one version of each scene being presented. For
instance, a participant being presented a visual scene
depicting a specific kitchen with no target and no noise
could not be presented the same kitchen in another
experimental condition. Thus, the different versions of
each scene were counterbalanced across participants
using Latin squares, resulting in the formation of six
sets of trials each presented to a subgroup of
participants. The laterality of the response buttons
was also counterbalanced with approximately half of
the participants in each subgroup being presented with
a leftward present button and a rightward absent
button, and the other half were presented with the
opposite button positions.

Results

Data processing

Eight participants were excluded from the analysis
for the following reasons: invalid eye-tracking data due
to glasses or lenses making the calibration impossible
(five) and a high number of ‘‘time out’’ trials combined
with weak calibration (three). We analyzed only the
trials in which the target was present because our eye-
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movement variables could not be calculated in target-
absent trials. We excluded the trials with invalid eye-
tracking data: In 4.1% of the trials, gaze was directed
toward the target when the scene appeared, in 15.5%
there was no fixation on the target, and in 1.4% the
detection or verification time was less than 80 ms or
more than 2500 ms. We then discarded trials in which
the participant’s response exceeded the time limit (5.6%
of the trials with valid eye-tracking data) or in which he
or she clicked on the wrong response (8.4%). Overall,
the analyses were performed on 68% of the trials,
including a target (1,491 trials). The low percentage of
valid trials is not surprising because it was not possible
to instruct the participants to fixate the target directly
when responding because they were involved in a
dynamic motor task in which they had to control their
mouse movement.

We remapped the correct response buttons on the
right side and the alternative on the left side of the
screen, and we rescaled the x-axis between �1 and 1
and the y-axis between 0 and 1.5 in accordance with
traditional mouse-tracking literature (Freeman &
Ambady, 2010). Given the mouse-tracker time resolu-
tion, the time interval between each point on a
trajectory was 16 ms. As eye-tracking measurements,
we calculated the detection and verification times as
well as the mean duration of fixations and number of
fixations during the detection epoch. As temporal
measurements of the dynamics of mouse responses, we
calculated the RTs and velocity profiles of the
trajectories. As measurements of the spatial deviation
of the mouse toward the absent response, we calculated
the AUC and mouse deviation profiles along the x-axis.

To assess the effects of the target location (usual vs.
unusual location) and noise (no noise vs. noise) on the
eye-tracking and mouse-tracking measurements, we used
linear mixed modeling (LMM), which can take account
of the variability of the parameters across participants
and visual scenes simultaneously without having to
perform separate by-subject and by-item analyses
(Baayen, Davidson, & Bates, 2008). In our study, by-
item analysis corresponds to by-scene analysis. This is
interesting in our experiment because we used Latin
squares to distribute the trials of each condition across
both scenes and participants. Furthermore, these models
are particularly well suited to our data because they
enable efficient handling of repeated-measures data sets
with imbalanced data and missing values. When
required, we included the target location and noise as
well as their interaction as fixed factors. We recoded the
location variable as�0.5 for usual andþ0.5 for unusual
probability locations and the noise variable as�0.5
without noise andþ0.5 with noise. As random
parameters, we included the variance of the intercepts
and slopes as well as the correlations between random
parameters for both the subject and scene variables.

However, due to nonconvergence of the model testing
the RTs, we took out the slope variances for the subject
variable after ensuring they were nonsignificant. In that
way, we used the maximum random structure allowing
the models to converge (Barr, Levy, Scheepers, & Tily,
2013). To estimate the p values of the fixed effect
parameters, we used the Kenward-Rogers approxima-
tion for the degrees of freedom. The ‘‘lme4’’ R package
was used to compute the LMM and the ‘‘pbkrtest’’ R
package to estimate the p values.

Eye movement measurements

Eye movements during the detection and verification
epoch were analyzed. The detection epoch included all
the fixations on the scene (including the latency of the
first saccade) before the first saccade on the target AOI.
Three measurements were analyzed for this epoch,
namely total detection time, the number of locations
fixated, and the mean duration of the fixations. The
verification epoch spanned from the first fixation on the
target’s AOI to the first saccade ending outside the
target AOI. Following the example of Malcolm and
Henderson (2009, 2010), if the fixation following the
first fixation on the target was not on the target but was
followed by a fixation on the target, it was considered
part of the verification epoch because this fixation
could be part of a preprogrammed sequence of
saccades. Verification time was computed as the sum of
the durations of the fixations within the target AOI and
included in the verification epoch.

Detection epoch

See Table 1 for mean detection times, number of
fixations, and fixation durations by experimental
condition. Targets positioned in an unusual location
resulted in significantly longer detection times, b¼
204.59, t(62.8)¼ 8.44, p , 0.001, and more fixations
during this epoch, b¼ 0.76, t(51.9) ¼ 8.86, p , 0.001,
than when the target was in a usual location. No main
effect of noise was found on detection times, b¼ 13.03,
t(27.5)¼ 1.12, p¼ 0.27, or on the number of fixations, b
¼�0.06, t(31.9) ¼�0.52. There was no interaction
between the two variables on detection times, b ¼
�20.77, t(1308)¼�0.93, but a marginal interaction was
recorded for the number of fixations, b¼�0.22,
t(1342.2) ¼�1.92, p ¼ 0.056. Therefore, positioning a
target in an unusual location increased the number of
fixations slightly less in a scene degraded with noise
than in a scene with no noise, but the difference did not
reach the significance threshold. Finally, mean fixation
durations contrasted with these results: The only effect
found with this measure was that fixation durations
increased for a noisy scene, b¼10.60, t(36.3)¼ 2.70, p¼
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0.011, whereas there was no main effect of target
location, b¼1.45, t(42.8)¼0.58, and no interaction, b¼
�0.82, t(1321.4) ¼ 0.06.

Verification epoch

Verification time was the only measurement used to
characterize the verification epoch (see Table 1 for
means). The only effect found was an effect of noise, b
¼ 63.84, t(34.2)¼ 7.87, p , 0.001, with longer
verification times when the scene was degraded by
noise. No effect of target location, b¼�12.6, t(49.1)¼
�1.10, p ¼ 0.277, and no interaction between target
location and noise, b ¼ 7.73, t(1320.3) ¼ 0.56, were
found.

RTs and temporal dynamics of the mouse
response

In order to analyze the dynamics of the responses,
we first used mediation and moderation analyses to
investigate how target location and noise affected the
RTs and how the detection and verification times
influenced location and noise effects on the RTs.
Second, we further analyzed the dynamics of the
responses, focusing on the time course of the velocity
profiles of the mouse trajectories in relation to target
detection and target verification.

Response times

The RT spanned from the appearance of the scene to
the response click. By making the target harder to find,
both scene degradation and unusual target locations
should result in longer RTs. We used mediation and
moderation analyses to assess whether the detection
and verification times affected the effects of target
location and noise on RT. The detection or verification
times moderated the effects of the independent variable
(IV), i.e., target location or noise, on the RT when there
was an interaction between the IV and the moderator.
Thus, depending on the moderator values, the effect of
the IV on the RT will vary. On the other hand, with
mediation analyses, it is possible to estimate whether

the effect of the IV on the mediator explained part (or
all) of the effect of the IV on the RT. As there was an
effect of target location on detection time and an effect
of noise on verification time, the effect of target
location on RT should be mediated or moderated by
detection time whereas the effect of noise on RT should
be mediated or moderated by verification time.

We assessed the mediative effects of detection and
verification times using a bootstrapping procedure
(Preacher & Hayes, 2008). It consists of estimating the
indirect effect of the IV on the RT through the
mediator. This indirect effect AB is calculated as the
product of the IV’s effect on the mediator (path A)
multiplied by the mediator’s effect on the RT while
controlling for the effect of the IV (path B). The 95%
confidence interval of this effect was assessed with a
nonparametric bootstrapping procedure comprising
10,000 samples. To measure the size effect, we
estimated the mediated proportion of the IV’s total
effect (path C). This can be done by calculating the
proportion by which the IV’s effect is reduced when
controlling for the effect of the mediator (path C’).
Although this measurement is not perfect, it is a simple
way of obtaining information about the effect size (for
a short discussion, see Hayes, 2009). We estimated
these parameters using LMMs with both IVs and the
mediator (when needed) as well as all the possible
interactions as fixed effects. We specified the same
random structure for all models, i.e., the variance of the
intercept and slopes of the IVs and the correlations
between random parameters nested within the subject
and scene random factors.

Figure 2A displays the mean RT for each condition,
and Figure 2B displays in schematic form how target
detection and verification times mediate the effects of
target location and noise on RT. Our LMMs revealed a
main effect of both noise, (b¼ 71.27, t(50.9)¼ 4.7, p ,

0.001, and target location, b¼ 148.69, t(55.5)¼ 6.07, p
, 0.001, on RT. No interaction was found, b¼�28.58,
t(1361.1)¼�0.99. Responses were faster when the scene
was not degraded by noise as opposed to degraded and
when the target was placed at a usual location as
opposed to an unusual one. Detection times mediated
the effect of target location on RT. When we controlled
for the effect of detection time, the sign of the
parameter of target location expectation (direct effect

Usual location Unusual location

Without noise With noise Without noise With noise

Detection time, ms 388.9 (9.9) 406.9 (10.8) 570.4 (15.2) 557.8 (15.4)

Fixations number 1.74 (0.04) 1.78 (0.05) 2.51 (0.07) 2.31 (0.06)

Fixations duration, ms 199.6 (3.1) 210.0 (3.7) 200.8 (3.4) 211.6 (3.7)

Verification time, ms 336.9 (6.7) 387.2 (9.4) 317.3 (6.8) 374.5 (9.6)

Table 1. Means (standard errors) for each eye movement measurement by target location and noise conditions.
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C’) was reversed and lost significance, b¼�12.52,
t(61.5)¼�0.75, and the indirect effect of target location
expectation through detection time was significantly
different from 0 (AB ¼ 159.40, 95% bootstrap CI
[135.15, 185.62]). When detection times are included in
the model as a predictor, the target location effect
disappears. Conversely, when we controlled for the
effect of verification time, the direct effect of noise on
RT was reduced by 54.4% and remained significant, b¼
32.49, t(55.6) ¼ 2.19, p ¼ 0.032. The indirect effects of
noise through verification time was significant (AB¼

38.14, 95% CI [27.76, 52.17]). Finally, the indirect effect
of target location through verification times and of
noise through detection times were not significant
(respectively, AB ¼�7.60, 95% CI [�17.52, 1.21] and

AB¼10.66, 95% CI [�9.77, 28.72]). Thus detection time
mediated the effect of target location on RT whereas
verification time mediated a large part of the effect of
noise.

Velocity profiles

We further analyzed the dynamics of the competition
between responses by means of mouse velocity as a
function of time. Velocity profiles can estimate the
beginning of the response movements as well as how
the commitment toward the correct response builds up
as time unfolds (Hehman, Stolier, & Freeman, 2015).
Our underlying hypotheses are that greater difficulty
finding and identifying the target due to unusual

Figure 2. (A) Mean RTs as a function of target location and scene degradation. White bars: target in usual location; gray bars: target in

unusual location. Error bars denote the standard errors. (B) Mediation of the effects of target location and noise by the eye

movement measurements, i.e., target detection and verification times. Dashed arrows denote an effect mediated by detection or

verification times. The model parameters are estimated with LMMs (see Results).When an effect is mediated, parameters A and B are

displayed (indirect effect ¼ A3 B) as well as the direct effects C0 (effect of the independent variable when we controlled for the

effects of the mediator) and total effect C (effect of the independent variable without including the mediator in the model); L indices:

effect of target location; N indices: effect of the noise. *The parameter is significant ( p , 0.05).
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location and/or noise should reduce the commitment
toward the present response, hence reducing overall
velocity. We analyzed the time course of velocity in
relation to the moments when the target was detected
(end of the detection epoch, corresponding to the
detection time) and the end of target verification (end
of the verification epoch), thus examining how it
evolves during the detection and verification epochs.
Finally, because accumulating evidence during the
detection and verification epochs should affect the
ongoing decision, mouse movements should begin
during the detection epoch (and, thus, before the target
is properly fixated). To perform this analysis, for each
trajectory, we centered the time coordinates on the end
of the detection epoch by subtracting the detection time
from each time coordinate. Thus, the 0-ms time
indicates approximately the moment along the response
trajectory when the target was detected, referenced later
on as target detection. The interval between each time
stamp was 16 ms (;60 Hz time resolution). We
measured the velocity for each time step of each
trajectory. Then, we smoothed the velocity profiles of
each trajectory using a convolution with a triangular
kernel over a sliding window of 21 time steps. This
smoothing step is required on account of the stochas-
ticity of mouse events on most computer devices. This
method allowed us to analyze the velocity prior and
posterior to the moment when the target was detected,
and it also allows for raw time analysis on a data set in
which mouse movement onsets vary within a large time
interval (2500 ms). More commonly used alternatives
include time-normalizing the trajectories (Hehman et
al., 2015) at the cost of losing part of the time
information whereas our key objective was to study the
raw timing of the responses compared to the target
detection and target verification.

Figure 3 displays the mouse velocity as a function of
time centered on detection of the target for each
experimental condition. For each time step, the velocity
was estimated by computing one intercept-only LMM
(testing velocity against 0) per experimental condition.
These LMMs included the intercept variations across
both participants and scenes as random parameters. As
inferential statistics, we computed the 95% Wald
confidence intervals from the LMMs (shown in Figure
3). For targets in a usual location, velocity peaks
occurred, respectively, for no noise and noise condi-
tions, 528 ms and 560 ms after target detection and 191
ms and 173 ms after the end of target verification
(estimated velocity peak minus mean verification time,
shown as solid and dashed vertical lines in Figure 3A,
B). For targets in unusual locations, they occurred 480
ms after target detection (for both no noise and noise)
and, respectively, 163 ms and 106 ms after the end of
target verification. The velocity peak of the profiles was
higher when the scenes were not degraded by noise than

when they were degraded irrespective of whether the

target was in a usual (no noise: b¼ 3.58, 95% CI [3.38,

3.79]; noise: b¼3.03, 95% CI [2.71, 3.34]) or an unusual

location (no noise: b¼ 3.56, 95% CI [3.34, 3.79]; noise:

b¼ 3.22, 95% CI [2.94, 3.51]). The velocity was higher

for nondegraded scenes from 416 ms to 592 ms (12

steps) after target detection for targets in a usual

location and from 448 ms to 560 ms (eight steps) for

targets in an unusual location. However, there was no

effect of target location on the velocity around the

velocity peak. A result of the reduced velocity for

degraded scenes is that the end of the mouse movement

exhibited a significantly higher velocity than for non-

degraded scenes from 1104 ms to 1440 ms (22 steps) for

targets in usual locations and from 816 ms to 1552 ms

(47 steps) for targets in unusual locations. Finally, we

Figure 3. Mouse velocity as a function of time for scenes

nondegraded by noise (solid lines, dark gray) and scenes

degraded by noise (dashed lines, light gray). Top: target in a

usual location; bottom: target in an unusual location. The x-axis

represents time centered on detection of the target; 0

represents the moment the target was first fixated. Velocity and

the error intervals (95% Wald confidence intervals) were

estimated at each time frame using LMMs. On each plot, the

black vertical lines denote the average moments when target

verification ended (verification time). No noise: solid lines,

noise: dashed lines.
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found evidence that mouse velocity began to increase
even before target detection (0 on the x-axis of Figure
3). Overall, for targets in usual locations, velocity was
significantly greater than 0 up to 272 ms before target
detection and increasing from 0.056 units/s to 0.106
units/s once the target was detected. For targets in
unusual locations, the velocity was significantly above 0
up to 640 ms before target detection and increased from
0.069 units/s to 0.338 units/s when the target was
detected. Furthermore, when the scene was not
degraded, the velocity for targets in unusual locations
was significantly higher than for targets in usual
locations from 288 ms before target detection to 416 ms
after target detection (45 steps). When the scene was
degraded, the velocity for targets in unusual locations
was significantly higher than for targets in usual
locations from 128 ms before target detection to 496 ms
after target detection (40 steps). This indicates that, in
conditions in which target detection is harder due to
unusual target locations, thus leading to longer
detection times, the response movement was initiated
even before the first fixation on the target.

Mouse trajectory spatial deviation

Measuring the deviation of the mouse movements
from the ideal response trajectory is a way of estimating
the attraction toward the incorrect absent response in
the decision-making process. As an overall deviation
measurement, we calculated the AUC. In a similar way
as we did for RT, we used mediation and moderation
analysis to estimate the contribution of target detection
and verification to the effect of target location
expectations and noise on the AUC. Finally, we studied
spatial deviation over time centered on target detection
by analyzing the deviation on each non-normalized
time step, using a similar method to the one used for
the velocity profiles.

Area under the curve

The AUCs were calculated after time-normalizing
the trajectories into 101 time steps (as usually done in
mouse-tracking experiments; Freeman & Ambady,
2010). Making the target harder to find by means of
both scene degradation and unusual target locations
should increase the AUC. This implies that the
difficulty finding a target should increase the competi-
tion between present and absent responses, and because
target detection and verification should play parts in
resolving this competition, they should mediate or
moderate these effects. As with the RT analyses, the
effects of target location should be mediated/moderat-
ed by detection times as only target location had an
effect on detection times, and respectively, the effects of

noise should be mediated/moderated by verification
times. Figure 4A displays the mean AUC for each
condition and the averaged mouse trajectories for each
target location condition. Only the main effect of target
location on AUC was significant, b¼ 0.22, t(49.8) ¼
3.35, p ¼ 0.002. Deviation from the ideal response
trajectory was greater when the target was in an
unusual location. No noise effect nor interaction was
found, respectively, b¼0.07, t(29.6)¼1.59, p¼0.12 and
b¼�0.04, t(1339.3) ¼�0.50. Mediation and modera-
tion analyses revealed that verification time had an
effect on AUC, b¼ 0.0005, t(1151.5)¼ 3.05, p¼ 0.002,
but did not moderate or mediate the effect of target
location. On the other hand, when detection times were
included in the model, the effect of target location was
no longer significant, b ¼�0.046, t(39.3)¼�0.98, p ¼
0.333. Detection time interacted significantly with
target location, b ¼ 0.0007, t(907.7)¼ 4.13, p , 0.001.
Figure 4B displays this moderation model. Detection
times increased the deviation toward the inaccurate
response to a greater extent when the target was in an
unusual location as opposed to a usual location.

Deviation on x-axis over time

To investigate the relationship between the trajectory
deviation and the detection times further, we studied
the deviation on the x-axis (x-deviation) prior and
posterior to the moment the target was detected. Given
that only target location affected the AUC, we focused
on the x-deviation only on this variable. As the
alternative responses are spatially distinguished on the
x-axis, an analysis of x-deviations can index the
ongoing competition across time. For example, greater
deviations can indicate that the incorrect response is
considered a valid alternative. As with velocity, we
analyzed the time course of x-deviation in relation to
when the target was detected (detection time) and the
end of target verification (end of the verification
epoch). We hypothesized that an unusual location
should increase the deviation. As accumulating evi-
dence toward an absent response is aimed at accumu-
lating confidence that the target is not in the scene, the
x-deviation should accordingly begin to increase during
the detection epoch as it is during this epoch that the
target-absent response competes with the target-present
response. As we did for velocity profiles, for each
trajectory, we centered the time coordinates on the
detection time so that a 0-ms time coordinate indicates
the moment on the response trajectory when the target
was detected. The x-deviation was the difference
between the coordinate on the x-axis of each point of
the response trajectory and the x-coordinate of its
perpendicular projection point on the ideal response
trajectory (straight line from start to present button). A
positive x-deviation value denotes a deviation toward
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the absent response compared to the ideal trajectory.
We smoothed the x-deviation profiles of each trajectory
by using a convolution with a triangular kernel over a
sliding window of 21 time steps. Figure 5A displays the
x-deviation as a function of time centered on detection
of the target for usual (solid line, dark gray error) and
unusual target locations (dashed line, light gray error).
The 95% Wald confidence intervals included in Figure
5A were estimated with intercept-only LMMs for each
time step. As stated previously, these LMMs included
the intercept’s variation across both participants and
scenes as random parameters. Two observations are
relevant here. First, as with the results with the AUC,
the overall deviation was greater for targets in an
unusual location than in a usual location. This was the
case from 304 ms before target detection to 640 ms after
target detection (60 steps). For targets in an unusual
location, the x-deviation attained its maximum value (b
¼ 0.115, 95% CI [0.087, 0.143]) around 384 ms after

target detection, corresponding to the average end of
target verification (343 ms, dashed vertical line). For
targets in a usual location, the maximum x-deviation (b
¼ 0.063, 95% CI [0.045, 0.08]) occurred 560 ms after the
target detection, which corresponds to an approximate
200-ms delay after the end of target verification (360
ms, solid vertical line). This result may seem counter-
intuitive, but given that the target was detected sooner
when in a usual location and thus verified sooner,
participants had much more time to finish their
movement and validate their response before the time
granted to respond elapsed. Second, we observed a
significant deviation toward the absent response before
target detection. The trajectory deviated up to 128 ms
before target detection for targets in a usual location
and 512 ms for targets in an unusual location. As
reported previously, the deviation was significantly
greater for targets in unusual locations starting 304 ms
before target detection (Figure 5A).

Figure 4. (A) Left: mean mouse trajectories as a function of usual (solid curve) and unusual (dashed curve) target location. Right: AUCs

as a function of target location and scene degradation. White bars: target in usual location; gray bars: target in unusual location; error

bars denote the standard errors. (B) Moderation of the effects of the target location and noise by the target detection time. The line

ending with a black dot indicates a moderation effect with m being its parameter (moderation corresponds to an interaction between

target location and detection time). Parameters A and B are displayed together with the direct effect C0 (effect of the independent

variable when the moderator is included in the model) and total effect C (effect of the independent variable without including the

moderator in the model). L indices: effect of target location. *The parameter is significant ( p , 0.05).
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With mediation and moderation analysis, we previ-
ously found an interaction between detection time and

target location expectations on the AUC in which the

effect of detection time was greater for targets in

unusual locations than in usual locations. We examined

the time course of the effect of the detection times on

the x-deviation across these conditions more closely by

plotting the parameters of this effect across time steps

for usual and unusual target location (estimated using

LMM with the same random parameters as in the last

analysis). This type of analysis is similar to the

estimation of correlations across time suggested by

Hehman et al. (2015), but we aimed to obtain less
biased estimates of the relationship between detection
times and deviation by taking account of the nested
structure of our data (estimating the variance of x-
deviation across participants and scenes). This is
displayed in Figure 5B. Overall, detection times had a
greater influence on the x-deviations when the target
was in an unusual location (max effect: b¼ 0.00049,
95% CI [0.00043, 0.00054]) as opposed to a usual
location (max effect: b¼ 0.00027, 95% CI [0.00021,
0.00033]). This is consistent with the interaction
previously reported between detection times and target
location expectations on the AUC. We also observed
an effect of detection times on the x-deviation even
before the end of the detection epoch, especially for
targets in an unusual location. Hence, in the trials in
which the target was detected later, the deviation
toward the absent response was greater even in the time
steps preceding the effective detection.

Discussion

We devised a novel study of visual search and
perceptual decision-making, in which participants were
required to report on whether a target object was
present or absent from a visual scene and in which both
the predictability of target location and noise levels
were manipulated. To sum up, the main research
questions underlying this study addressed (a) how
expectations about target location and visual uncer-
tainty due to noise drive the active visual evidence
collection process through oculomotor behavior and
(b) how these two factors differentially affected the
decision about whether the target is present in the scene
or absent. Our results (summarized in Box 1) show that
targets in usual locations and nondegraded visual
information facilitated, respectively, target detection
and verification, and consequently, they highlight the
differential roles of these two processes in the
encompassing decision-making process.

Hence, both eye-movement and mouse-tracking
measurements indicate that predictable target locations
and absence of noise facilitate visual search. Increasing
noise level in the scene impaired target verification and
led to longer fixations during the detection epoch. By
contrast, placing the target in an unusual location
impaired its detection (compared to a usual location)
and increased the number of fixations required to
detect it but had no effect on target verification. The
decision-making process was also impaired by noise
and unusual target location. Both manipulations led to
lower performance on the overall RTs. Scene degra-
dation by noise reduced overall mouse velocity and
increased it in the latest parts of the response

Figure 5. (A) Estimated deviation on the x-axis as a function of

time and target location. (B) Estimated effects of target

detection times on the x-deviation as a function of time and

target location. Solid lines, dark gray: target in a usual location.

Dashed lines, light gray: target in an unusual location. The x-axis

represents the time centered on the detection of the target; 0

represents the moment the target was first fixated. X-deviations

and the effect of detection at each step were estimated using

LMMs, as well as the error intervals (95% Wald confidence

intervals). The black vertical lines denote the average moments

when target verification ended (verification time). Usual target

location: solid, unusual target location: dashed.
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movement whereas targets in unusual locations in-
creased the bias toward the incorrect absent response.
Finally, our results indicate that detection and verifi-
cation processes played a role in the decision-making
process, respectively, by mediating the effects of target
location and scene degradation on RT. Additionally,
detection times moderated the effect of target location
on response selection such that unusual target locations
impaired the AUC to a greater extent for high target
detection times. Both velocity and deviation were
significantly different from zero for several time steps
before the first fixation on the target, especially when it
was in an unusual location.

Contribution of contextual knowledge and
bottom-up visual information with respect to
eye movement

The results for eye movement measurements are
consistent with previous studies that investigated
contextual guidance. Visual noise did not impair target
detection but impaired the verification process as well
as the duration of the fixations during the detection
epoch in keeping with previous studies using degraded
or low-contrast visual scenes (Harley, Dillon, & Loftus,
2004; Röhrbein et al., 2015). In visual search, variations
in the verification time may reflect the identification of
the target whereas variations in the duration of the
fixation in the detection epoch may reflect that more
time is required to reject the fixated location as a
potential target location. Thus, in our experiment,
degraded visual information made it harder to both
reject the fixated location and identify the target.

Considering the effect of usual target locations,
previous studies (Castelhano & Heaven, 2010, 2011;
Malcolm & Henderson, 2010; Pereira & Castelhano,
2014; Spotorno et al., 2014) consistently showed a
reduction in overall detection time and the number of
fixations during the detection epoch, reflecting the
number of locations visited before finding the target.
Along with these studies, our results confirm that
expectations about target location improve target
detection (as is normally the case for targets in usual
locations). As extensively discussed in the literature
(Brockmole & Le-Hoa Vo, 2010; Ehinger et al., 2009;
Torralba et al., 2006), this may be due to contextual
knowledge guiding oculomotor behavior in visual
search. However, contrasting results have been report-
ed for the verification epoch. Some showed that
contextual information facilitated the verification
process (Castelhano & Heaven, 2011; Malcolm &
Henderson, 2010) whereas others did not (Castelhano
& Heaven, 2010; Pereira & Castelhano, 2014; Spotorno
et al., 2014) as in the present study. It is to be noted that
there were two main differences with these previous

studies due to our mouse-tracking paradigm. First,
participants were subjected to considerable time
pressure, and second, subsequent eye movements were
needed on the response buttons for mouse movement
control after the verification epoch. Thus, our study
goes against the idea that identifying a target in an
unusual location requires longer gaze allocation than a
target in a usual location, especially in situations in
which time is limited and subsequent eye movements
are needed to perform a motor task efficiently.
However, spending more time fixating the target in
order to identify it or spending more time fixating a
location in a scene before rejecting it as a potential
target location could still be a valid strategy for
reducing uncertainty about the decision in contexts in
which the speed–accuracy trade-off is not biased
toward quick responses (unlike in our task in which
participants had to respond within a specified time limit
and begin their response movement early).

Distinct contributions of detection and
verification processes upon decision-making

Our results clearly distinguish between the contri-
butions of target detection and identification to the
decision-making process, respectively, influenced by
target location and noise. Variations of RT due to
target location were explained by the effect of target
location on target detection time. Note however that
we cannot conclude that detection times mediate the
entirety of the effect because this claim relies on a null
hypothesis (Rucker, Preacher, Tormala, & Petty, 2011),
the effect of target location being nonsignificant when
controlling for detection times. Conversely, a large
proportion of RT variation (54.4%) due to degradation
of the visual scene was explained by the effect of noise
on target verification time. Thus, these results show
that wrong expectations about the target’s location and
visual uncertainty due to noise both impair decision-
making by requiring prolonged collection of evidence
at different levels (target detection and verification),
thus slowing the decision process. The results of the
present study and the fact that we found no interaction
between target location and scene degradation with our
mouse-movement measurements could indicate that the
influence of expectations and visual uncertainty on
perceptual decision-making are processed additively
and separately by influencing two distinct subprocesses:
target detection and verification. In this respect, an
analysis of the dynamics of the response movements
indicated that the movements began toward the end of
the detection epoch when the target had yet to be
fixated. As the aim of the task is to find the target, this
epoch is critical. Indeed, contrary to classic mouse-
tracking experiments using two-alternative forced
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choice, the target on which the decision has to be made
is not directly and centrally available right from the
beginning of the trial but has to be found first. On the
other hand, the moment velocity was highest was
situated around the end of the verification epoch and
shortly after, thus coincidental with fixations made
toward the response buttons after visual exploration of
the scene. At this stage, degradation of the visual scene
by noise was critical. Although we found no strong
evidence of noise delaying the velocity peak, the
maximum amplitude of the velocity profile was lower
whereas velocity was higher in the latest parts of the
response movement. This could indicate less commit-
ment to the present response with the degraded target
being harder to recognize and distinguish from the
background, thus generating uncertainty. This would
induce a more careful response with lower maximum
velocity but faster toward the end to enable the
response to be validated within the time constraints.

Relationship between expectations for target
location and target detection upon response
selection

Contrary to noise, unusual target locations did not
reduce mouse velocity compared to usual target
locations. Instead, they induced a spatial bias toward
the absent response throughout a large portion of the
response movement, starting before detection of the
target (from approximately 304 ms before target
detection to approximately 640 ms after target detec-
tion, and mean response times lasted around 1450 ms
to 1600 ms). In addition, detection times moderated the
effect of target location on the AUC. Increasing
detection times inflated the mouse trajectory deviation
toward the absent response to a larger extent for
unusual target locations than for usual target locations.
Consistent results were found for x-deviations across
time as the effect of detection times was greater for
unusual target locations during most of the response.

This indicates, first, that expectations about the
target location influence the final decision about the
presence of the target by affecting eye movements made
to detect it and, second, that the inflation of the target
location effect by detection time could be explained by
a combination of two effects: the delay of detection as a
result of unusual target location (wrong expectations)
and a mechanism whereby certainty about the target-
absent response builds up as time is spent unsuccess-
fully searching for the target through eye movements.
In our results, we found some evidence of such a
mechanism. We found that both mouse velocity and x-
deviations began to increase before the end of the
detection epoch and that the effect was larger and
occurred sooner when targets were in unusual locations

(Figure 5A). This indicates growing competition
between the absent and present alternatives beginning
before the moment the target was detected. Further-
more, trials with longer detection times showed bigger
x-deviations even before target detection, especially for
targets in unusual locations (Figure 5B). Another way
to express it would be to say that detection times
correlated with increased deviation before the actual
detection of the target. This may indicate that the
competition increases with the difficulty finding the
target but also while the target is actively searched with
eye movements. The longer the visual search is
unsuccessful, the more the target-absent alternative
competes with the accurate target-present response and
the attraction toward the target-absent alternative may
reflect an indirect accumulation of evidence stacked in
favor of this response owing to the lack of evidence in
favor of the present response. The effect of detection
time on x-deviation reached its maximum around the
end of the verification epoch, indicating that the time
spent fixating the target in order to verify its identity is
needed to counteract the evidence that has accumulated
toward the target-absent alternative and finally con-
verge toward the accurate target-present response. The
gradual increase in mouse velocity up to target
verification consistently supports this interpretation. By
extension, with this model, if the target is not found,
the gradual commitment toward the absent response
would finally lead to the decision to stop searching for
the target. This could be plausible as a mechanism
allowing for search termination (for review, see Wolfe,
2012) as a possible way an agent searching the
environment for an object in an area decides to stop
and to search in another area.

However, we need to remain careful when consid-
ering these conclusions given that, in our experiment,
the examination of how target detection and verifica-
tion relate to mouse movements is based on the
incidental measurement of detection and verification
times as invoked variables, and thus, only limited
conclusions can be drawn about causation. Further-
more, the uncertainty about the visual input was
directly manipulated with noise and top-down expec-
tations using usual and unusual target locations, and
we found that their effects on eye movements and
mouse response movements could be linked. Our study
tested how noise and target location influenced eye
movements (active collection of evidence), in turn
influencing decisions through mouse movements in a
feed-forward fashion. What our study does not cover is
how the accumulation of evidence toward each
alternative itself influences how eye movements are
directed to collect further information (see Kietzmann
et al., 2011; Kietzmann & König, 2015). Nonetheless, it
provides an interesting direction for further studies
addressing both the causal relationship between active
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vision and decision-making and the search termination
problem in visual search tasks. For instance, an
important step would be to manipulate detection times
and verification times directly in similar mouse-
tracking tasks, for instance, with designs inspired by
the scene onset delay paradigm (Henderson & Smith,
2009; Nuthmann, Smith, Engbert, & Henderson, 2010).
Comparing human data with simulated data using
computational models implementing target detection
and verification processes could also provide interesting
insights. Additionally, because expectations about
target location are linked to detection times, it would be
important to control for their effects, for instance, by
using nonmeaningful targets in real-world scenes, such
as white dots as used by Brockmole and Henderson
(2006) and Brockmole and Le-Hoa Vo (2010), or by
using artificial grids instead of natural scenes.

Conclusion

On a theoretical level, the results of our study
indicate that the two distinct visual subprocesses, i.e.,
target detection and target verification, may play
different roles in decision-making, notably contribut-
ing in the influence of noise and expected target
location on the decision process. Noise degrading
bottom-up visual information slowed down decision-
making by increasing target verification, consequently
moderating the commitment to the decision (as
reflected in the speed of the mouse movement). Target
location influenced decision-making by affecting eye
movements relating to target detection, consequently
moderating the bias toward the absent response.
Additionally, we suggested that selecting the absent
response builds up from the lack of evidence in favor
of the present response as a result of the time spent
unsuccessfully searching for the target. Importantly,
our results describe a close interaction between
bottom-up and top-down processes with which both
visual uncertainty and expectations drive the accu-
mulation of evidence during visual search. On a
behavioral level, this is an extension of existing models
of top-down recognition that suggest fast and auto-
matic interactions between bottom-up and top-down
visual streams (Bar, 2004; Beffara et al., 2015;
Kauffmann, Chauvin, Guyader, & Peyrin, 2015). This
raises important questions about bottom-up and top-
down integration within and across fixations during
scene exploration. For example, one might consider
nuanced integrative schemes in which the relative
contributions of top-down and bottom-up informa-
tion are weighted by their relative precision (or inverse
variance) and address the issue of how the time course
of integration relates to the precision of information
and confidence levels (Ambrosini, Pezzulo, & Con-

stantini, 2015; Friston et al., 2012; Pezzulo, Rigoli, &
Friston, 2015). Further psychophysical, neuroimag-
ing, and modeling studies will need to establish how
the current behavioral data could be understood
within the theoretical frameworks provided in cogni-
tive neurosciences.

At the methodological level, we think it is particu-
larly interesting to study eye guidance in real-world
scenes by considering the decision-making process
underlying the visual search task to which the eye
movements contribute. In that respect, one effective
solution is to combine mouse tracking with eye
tracking. This study provides an early experimental
account of the potential of such a method. It is a
potentially fruitful perspective for goal-oriented vision
in that it focuses on a process common to a broad
range of perceptual functions, including target identi-
fication (Trapp & Bar, 2015), face perception (Freeman
& Ambady, 2011; Freeman, Penner et al., 2011), word
reading (Barca et al., 2016; Barca & Pezzulo, 2012,
2015), and choosing between available actions for
humans (Lemonnier, Brémond, & Baccino, 2014). If
both experimental approaches were taken into account
by means, for instance, of mouse-tracking tasks and/or
signal detection theory and computational approaches
implementing decision-making with eye movements
(e.g., Friston et al., 2012; Quinton et al., 2014) as well
as fixation durations (e.g., Nuthmann et al., 2010), it
would be particularly beneficial for further under-
standing of how information is continuously and
actively collected in order to reduce the uncertainty
surrounding competing perceptual decisions in visual
search.

Box 1: Summary of the main results

Eye movement measures: Targets placed in unusual
locations led to detection time and more fixations
during the detection epoch compared to targets in usual
locations. In contrast to these results, noise increased
verification time and fixation duration during the
detection epoch.
Response time: Both targets in an unusual location and
degradation with noise increased the RT. The effect of
target location was mediated by detection time whereas
the effect of noise was mediated by verification time,
thus clearly distinguishing the influence of both on the
RT.
Mouse velocity on x-axis: The x-velocity began
increasing before the moment of target detection and
was higher for unusual target locations than for
usual from 288 ms to 128 ms before target detection
to 416 ms to 496 ms after target detection. The peak
of the x-velocity profiles occurred 106 ms to 191 ms
after the end of target verification, and their
amplitude was decreased by noise. Additionally,
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noise increased x-velocity in the latest parts of the
profile. Hence, target location influenced the early
part of the response movement whereas noise
influenced the late part.
Area under the curve (global attraction by absent
response): Although noise had no significant influence,
the AUC was higher for targets in unusual locations
than for targets in usual locations. This effect was
modulated by detection times: Higher detection times
further increased the AUC for targets in unusual
locations compared to usual locations.
Deviation on x-axis: The deviation from the ideal
trajectory (straight movement) began increasing before
the moment of target detection. It increased earlier and
overall was larger for targets in unusual locations,
indicating a competition between responses early on.
Furthermore, detection time increased x-deviation
before the moment of target detection and through
most of the mouse trajectory, and the effect was greater
for targets in unusual location.

Keywords: visual search, perceptual decision-making,
eye movements, mouse tracking, context information,
scene perception
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thank Mélanie Marcotte and Jessica Guilhe for their
contribution to the visual scene selection and data
collection. This work was funded by grants from the
French program ‘‘investissement d’avenir’’ managed by
the National Research Agency (ANR) from the
European Union (Auvergne European Regional De-
velopment Funds—ERDF—of Auvergne region) and
from the ‘‘Région Auvergne’’ in the framework of the
IMobS3 LabEx (ANR-10-LABX-16-01).

Commercial relationships: none.
Corresponding author: Marie Izaute.
Email: marie.izaute@univ-bpclermont.fr.
Address: Clermont University, Blaise Pascal Universi-
ty, LAPSCO, Clermont-Ferrand, France.

References

Ambrosini, E., Pezzulo, G., & Constantini, M. (2015).
The eye in hand: predicting others’ behavior by
integrating multiple sources of information. Journal

of Neurophysiology, 113(7), 2271–2279, doi:10.
1152/jn.00464.2014.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008).
Mixed-effects modeling with crossed random ef-
fects for subjects and items. Journal of Memory and
Language, 59(4), 390–412, doi:10.1016/j.jml.2007.
12.005.

Bajcsy, R., Aloimonos, Y., & Tsotsos, J. K. (2016).
Revisiting active perception. Perception, 1–22.

Ballard, D. H., & Hayhoe, M. M. (2009). Modelling the
role of task in the control of gaze. Visual Cognition,
17(6–7), 1185–1204, doi:10.1080/
13506280902978477.

Bar, M. (2004). Visual objects in context. Nature
Reviews Neuroscience, 5(8), 617–629, doi:10.1038/
nrn1476.

Barca, L., Benedetti, F., & Pezzulo, G. (2016). The
effects of phonological similarity on the semantic
categorisation of pictorial and lexical stimuli:
Evidence from continuous behavioural measures.
Journal of Cognitive Psychology, 28(2), 159–170,
doi:10.1080/20445911.2015.1101117.

Barca, L., & Pezzulo, G. (2012). Unfolding visual
lexical decision in time. PLoS One, 7(4), e35932,
doi:10.1371/journal.pone.0035932. [Article]

Barca, L., & Pezzulo, G. (2015). Tracking second
thoughts: Continuous and discrete revision pro-
cesses during visual lexical decision. PLoS One,
10(2), e0116193, doi:10.1371/journal.pone.0116193.
[Article]

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J.
(2013). Random effects structure for confirmatory
hypothesis testing: Keep it maximal. Journal of
Memory and Language, 68(3), 255–278, doi:10.
1016/j.jml.2012.11.001.

Beffara, B., Wicker, B., Vermeulen, N., Ouellet, M.,
Bret, A., Funes Molina, M. J., & Mermillod, M.
(2015). Reduction of interference effect by low
spatial frequency information priming in an emo-
tional Stroop task. Journal of Vision, 15(6):16, 1–9,
doi:10.1167/15.6.16. [PubMed] [Article]

Birem, M., Quinton, J.-C., Berry, F., & Mezouar, Y.
(2014). SAIL-MAP: Loop-closure detection using
saliency-based features. In 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems (pp. 4543–4548). IEEE, doi:10.1109/IROS.
2014.6943206.

Blignaut, P. (2009). Fixation identification: The opti-
mum threshold for a dispersion algorithm. Atten-
tion, Perception, & Psychophysics, 71(4), 881–895,
doi:10.3758/APP.71.4.881.

Borji, A., Tavakoli, H. R., Sihite, D. N., & Itti, L.

Journal of Vision (2016) 16(11):28, 1–21 Quétard et al. 17

Downloaded from jov.arvojournals.org on 08/21/2022

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035932
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116193
http://www.ncbi.nlm.nih.gov/pubmed/26024463
http://jov.arvojournals.org/article.aspx?articleid=2296760&resultClick=1


(2013). Analysis of scores, datasets, and models in
visual saliency prediction. In 2013 IEEE Interna-
tional Conference on Computer Vision (pp. 921–
928). IEEE, doi:10.1109/ICCV.2013.118.

Brockmole, J. R., & Henderson, J. M. (2006).
Recognition and attention guidance during con-
textual cueing in real-world scenes: Evidence from
eye movements. The Quarterly Journal of Experi-
mental Psychology, 59(7), 1177–1187, doi:10.1080/
17470210600665996.

Brockmole, J. R., & Le-Hoa Vo, M. (2010). Semantic
memory for contextual regularities within and
across scene categories: Evidence from eye move-
ments. Attention, Perception, & Psychophysics,
72(7), 1803–1813, doi:10.3758/APP.72.7.1803.

Castelhano, M. S., & Heaven, C. (2010). The relative
contribution of scene context and target features to
visual search in scenes. Attention, Perception, &
Psychophysics, 72(5), 1283–1297, doi:10.3758/APP.
72.5.1283.

Castelhano, M. S., & Heaven, C. (2011). Scene context
influences without scene gist: Eye movements
guided by spatial associations in visual search.
Psychonomic Bulletin & Review, 18(5), 890–896, doi:
10.3758/s13423-011-0107-8.

Castelhano, M. S., & Henderson, J. M. (2007). Initial
scene representations facilitate eye movement
guidance in visual search. Journal of Experimental
Psychology: Human Perception and Performance,
33(4), 753–763, doi:10.1037/0096-1523.33.4.753.

Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008).
Typicality aids search for an unspecified target, but
only in identification and not in attentional
guidance. Psychonomic Bulletin & Review, 15(4),
795–801, doi:10.3758/PBR.15.4.795.

Catenacci Volpi, N., Quinton, J. C., & Pezzulo, G.
(2014). How active perception and attractor dy-
namics shape perceptual categorization: A compu-
tational model. Neural Networks, 60, 1–16, doi:10.
1016/j.neunet.2014.06.008.

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded
motor responses in the time course of categorizing
atypical exemplars.Memory & Cognition, 35(1), 15–
28, doi:10.3758/BF03195938.

Eckstein, M. P., Drescher, B. A., & Shimozaki, S. S.
(2006). Attentional cues in real scenes, saccadic
targeting, and Bayesian priors. Psychological Sci-
ence, 17(11), 973–980, doi:10.1111/j.1467-9280.
2006.01815.x.

Ehinger, K. A., Hidalgo-Sotelo, B., Torralba, A., &
Oliva, A. (2009). Modelling search for people in 900
scenes: A combined source model of eye guidance.

Visual Cognition, 17(6–7), 945–978, doi:10.1080/
13506280902834720.

Farmer, T., Cargill, S., Hindy, N., Dale, R., & Spivey,
M. (2007). Tracking the continuity of language
comprehension: Computer mouse trajectories sug-
gest parallel syntactic processing. Cognitive Science:
A Multidisciplinary Journal, 31(5), 889–909, doi:10.
1080/03640210701530797.

Faulkenberry, T. J. (2014). Hand movements reflect
competitive processing in numerical cognition.
Canadian Journal of Experimental Psychology/
Revue Canadienne de Psychologie Expérimentale,
68(3), 147–151, doi:10.1037/cep0000021.

Foulsham, T., & Underwood, G. (2008). What can
saliency models predict about eye movements?
Spatial and sequential aspects of fixations during
encoding and recognition. Journal of Vision, 8(2):6,
1–17, doi:10.1167/8.2.6. [PubMed] [Article]

Freeman, J. B., & Ambady, N. (2009). Motions of the
hand expose the partial and parallel activation of
stereotypes. Psychological Science, 20(10), 1183–
1188, doi:10.1111/j.1467-9280.2009.02422.x.

Freeman, J. B., & Ambady, N. (2010). MouseTracker:
Software for studying real-time mental processing
using a computer mouse-tracking method. Behavior
Research Methods, 42(1), 226–241, doi:10.3758/
BRM.42.1.226.

Freeman, J. B., & Ambady, N. (2011). Hand move-
ments reveal the time-course of shape and pig-
mentation processing in face categorization.
Psychonomic Bulletin & Review, 18(4), 705–712, doi:
10.3758/s13423-011-0097-6.

Freeman, J. B., Ambady, N., Rule, N. O., & Johnson,
K. L. (2008). Will a category cue attract you?
Motor output reveals dynamic competition across
person construal. Journal of Experimental Psychol-
ogy: General, 137(4), 673–690, doi:10.1037/
a0013875.

Freeman, J. B., Dale, R., & Farmer, T. A. (2011). Hand
in motion reveals mind in motion. Frontiers in
Psychology, 2, 1–6, doi:10.3389/fpsyg.2011.00059.
[Article]

Freeman, J. B., Ma, Y., Han, S., & Ambady, N. (2013).
Influences of culture and visual context on real-
time social categorization. Journal of Experimental
Social Psychology, 49(2), 206–210, doi:10.1016/j.
jesp.2012.10.015.

Freeman, J. B., Pauker, K., Apfelbaum, E. P., &
Ambady, N. (2010). Continuous dynamics in the
real-time perception of race. Journal of Experi-
mental Social Psychology, 46(1), 179–185, doi:10.
1016/j.jesp.2009.10.002.

Freeman, J. B., Penner, A. M., Saperstein, A., Scheutz,

Journal of Vision (2016) 16(11):28, 1–21 Quétard et al. 18

Downloaded from jov.arvojournals.org on 08/21/2022

http://www.ncbi.nlm.nih.gov/pubmed/18318632
http://journalofvision.org/8/2/6/
http://journal.frontiersin.org/article/10.3389/fpsyg.2011.00059/full


M., & Ambady, N. (2011). Looking the part: Social
status cues shape race perception. PloS One, 6(9),
e25107, doi:10.1371/journal.pone.0025107. [Article]

Frintrop, S. (2006). VOCUS: A visual attention system
for object detection and goal-directed search. In J. G.
Carbonell & J. Siekmann (Eds.). Berlin Heidelberg,
New York: Springer.

Friston, K. (2012). Embodied inference and spatial
cognition. Cognitive Processing, 13(Suppl. 1), S171–
S177, doi:10.1007/s10339-012-0519-z.

Friston, K., Adams, R. A., Perrinet, L., & Breakspear,
M. (2012). Perceptions as hypotheses: Saccades as
experiments. Frontiers in Psychology, 3, 1–20, doi:
10.3389/fpsyg.2012.00151. [Article]

Harley, E. M., Dillon, A. M., & Loftus, G. R. (2004).
Why is it difficult to see in the fog? How stimulus
contrast affects visual perception and visual mem-
ory. Psychonomic Bulletin & Review, 11(2), 197–
231, doi:10.3758/BF03196564.

Hayes, A. F. (2009). Beyond Baron and Kenny:
Statistical mediation analysis in the new millenni-
um. Communication Monographs, 76(4), 408–420,
doi:10.1080/03637750903310360.

Hehman, E., Stolier, R., & Freeman, J. (2015).
Advanced mouse-tracking analytic techniques for
enhancing psychological science. Group Process &
Intergroup Relations, 8(3), 384–401, doi:10.1177/
1368430214538325.

Henderson, J. M., Brockmole, J. R., Castelhano, M. S.,
& Mack, M. (2007). Visual saliency does not
account for eye movements during visual search in
real-world scenes. In R. P. G. Van Gompel, M. H.
Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye
movements: A window on mind and brain (pp. 537–
562). Amsterdam: Elsevier.

Henderson, J. M., & Smith, T. J. (2009). How are eye
fixation durations controlled during scene viewing?
Further evidence from a scene onset delay para-
digm. Visual Cognition, 17(6–7), 1055–1082, doi:10.
1080/13506280802685552.

Itti, L., & Baldi, P. (2009). Bayesian surprise attracts
human attention. Vision Research, 49(10), 1295–
1306, doi:10.1016/j.visres.2008.09.007.

Itti, L., & Koch, C. (2000). A saliency-based search
mechanism for overt and covert shifts of visual
attention. Vision Research, 40(10–12), 1489–1506.

Itti, L., Koch, C., & Niebur, E. (1998). A model of
saliency-based visual attention for rapid scene
analysis. IEEE Transactions of Pattern Analysis and
Machine Intelligence, 20(11), 1254–1259, doi:10.
1109/34.730558.

Johnson, K. L., Freeman, J. B., & Pauker, K. (2012).

Race is gendered: How covarying phenotypes and
stereotypes bias sex categorization. Journal of
Personality and Social Psychology, 102(1), 116–131,
doi:10.1037/a0025335.

Kanan, C., Tong, M. H., Zhang, L., & Cottrell, G. W.
(2009). SUN: Top-down saliency using natural
statistics. Visual Cognition, 17(6–7), 979–1003, doi:
10.1080/13506280902771138.

Kauffmann, L., Chauvin, A., Guyader, N., & Peyrin,
C. (2015). Rapid scene categorization: Role of
spatial frequency order, accumulation mode and
luminance contrast. Vision Research, 107, 49–57,
doi:10.1016/j.visres.2014.11.013.

Kietzmann, T., Geuter, S., & König, P. (2011). Overt
visual attention as a causal factor of perceptual
awareness. PloS One, 6(7), e22614, doi:10.1371/
journal.pone.0022614. [Article]

Kietzmann, T., & König, P. (2015). Effects of
contextual information and stimulus ambiguity on
overt visual sampling behavior. Vision Research,
110, 76–86, doi:10.1016/j.visres.2015.02.023.

Kirsh, D., & Maglio, P. (1994). On distinguishing
epistemic from pragmatic action. Cognitive Science,
18(4), 513–549, doi:10.1207/s15516709cog1804_1.

Kovalenko, L. Y., Chaumon, M., & Busch, N. A.
(2012). A pool of pairs of related objects (PO-
PORO) for investigating visual semantic integra-
tion: Behavioral and electrophysiological
validation. Brain Topography, 25(3), 272–284, doi:
10.1007/s10548-011-0216-8.

Land, M. F., & Hayhoe, M. (2001). In what ways do
eye movements contribute to everyday activities?
Vision Research, 41(25–26), 3559–3565, doi:10.
1016/S0042-6989(01)00102-X.

Lemonnier, S., Brémond, R., & Baccino, T. (2014).
Discriminating cognitive processes with eye move-
ments in a decision-making driving task. Journal of
Eye Movement Research, 7(4), 1–14.

Lepora, N. F., & Pezzulo, G. (2015). Embodied choice:
How action influences perceptual decision making.
PLOS Computational Biology, 11(4), e1004110, doi:
10.1371/journal.pcbi.1004110.

Malcolm, G. L., & Henderson, J. M. (2009). The effects
of target template specificity on visual search in
real-world scenes: Evidence from eye movements.
Journal of Vision, 9(11):8, 1–13, doi:10.1167/9.11.8.
[PubMed] [Article]

Malcolm, G. L., & Henderson, J. M. (2010). Combin-
ing top-down processes to guide eye movements
during real-world scene search. Journal of Vision,
10(2):4, 1–11, doi:10.1167/10.2.4. [PubMed]
[Article]

Journal of Vision (2016) 16(11):28, 1–21 Quétard et al. 19

Downloaded from jov.arvojournals.org on 08/21/2022

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025107
http://journal.frontiersin.org/article/10.3389/fpsyg.2012.00151/full
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022614
http://www.ncbi.nlm.nih.gov/pubmed/20053071
http://journalofvision.org/9/11/8/
http://www.ncbi.nlm.nih.gov/pubmed/20462305
http://journalofvision.org/10/2/4/
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