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ABSTRACT

Aims. To demonstrate the capabilities of regularized inversion to recover differential emission measures (DEMs) from multi-
wavelength observations provided by telescopes such as Hinode and SDO.

Methods. We develop and apply an enhanced regularization algorithm, used in RHESSI X-ray spectral analysis, to constrain the
ill-posed inverse problem that is determining the DEM from solar observations. We demonstrate this computationally fast tech-
nique applied to a range of DEM models simulating broadband imaging data from SDO/AIA and high resolution line spectra from
Hinode/EIS, as well as actual active region observations with Hinode/EIS and XRT. As this regularization method naturally provides
both vertical and horizontal (temperature resolution) error bars we are able to test the role of uncertainties in the data and response
functions.

Results. The regularization method is able to successfully recover the DEM from simulated data of a variety of model DEMs (single
Gaussian, multiple Gaussians and CHIANTI DEM models). It is able to do this, at best, to over four orders of magnitude in DEM
space but typically over two orders of magnitude from peak emission. The combination of horizontal and vertical error bars and the
regularized solution matrix allows us to easily determine the accuracy and robustness of the regularized DEM. We find that the typical
range for the horizontal errors is Alog 7 ~ 0.1-0.5 and this is dependent on the observed signal to noise, uncertainty in the response
functions as well as the source model and temperature. With Hinode/EIS an uncertainty of 20% greatly broadens the regularized
DEMs for both Gaussian and CHIANTI models although information about the underlying DEMs is still recoverable. When applied
to real active region observations with Hinode/EIS and XRT the regularization method is able to recover a DEM similar to that found
via a MCMC method but in considerably less computational time.

Conclusions. Regularized inversion quickly determines the DEM from solar observations and provides reliable error estimates (both

horizontal and vertical) which allows the temperature spread of coronal plasma to be robustly quantified.

Key words. Sun: UV radiation — Sun: X-rays, gamma rays — Sun: corona — Sun: chromosphere — Sun: flares

1. Introduction

Observations of the solar atmosphere with temperature sensitive
spectral lines provide crucial information about the temperature
distribution of the emitting plasma. These are vital for trying
to resolve the question of which mechanisms heat different so-
lar phenomena. Such as whether coronal loops are heated by
a nanoflare model of magnetically reconnecting multi-braided
loop strands (e.g. Parker 1988) or chromospheric evaporation
(e.g. Hirayama 1974). Or is the hot emission observed in large
through to micro- flares (Fletcher et al. 2011; Hannah et al. 2011)
predominantly due to energetic particles or other mechanisms
such as waves. To reliably answer these questions, one needs to
know not only the uncertainties on the emission for a given tem-
perature, but also the uncertainties on the temperature itself, i.e.
the temperature resolution.

The observations made with Hinode’s X-ray Telescope
XRT (Golub et al. 2007) and EUV Imaging Spectrometer EIS
(Culhane et al. 2007) and SDO’s Atmospheric Imaging Array
AIA (Lemen et al. 2011) and EUV Variability Experiment EVE
(Woods et al. 2010) provide a wealth of information about the
solar emission over a broad range of temperatures. Assuming
this UV/EUV/X-ray emission is both optically thin and in ther-
mal equilibrium, via collisions, then the temperature distribution
of plasma emitting along the line of sight 2 can be described
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by the differential emission measure DEM, typically given by
&T) = n*dh/dT [em™ K~'] where n(h(T)) is the electron den-
sity at & and with temperature 7 (see Chap. 4 Mariska 1992, for
detailed discussion of the different DEM forms). This however,
can not be immediately inferred from such multi-wavelength ob-
servations as the DEM is convolved by the emission processes
and the instrumental response, i.e.

gi = fTKi(T)f(T)dT +0gi D

where g; is our observable for the ith filter, which has a tempera-
ture dependent response function K;(7) and dg; is the error. For
spectroscopic observations this is respectively the line intensity
and contribution function (examples shown in Fig. 1). The un-
certainties associated with these observations (counting statis-
tics, background and instrumental errors) compounds the diffi-
culty in the determination of the DEM and results in an ill-posed
inverse problem (Tikhonov 1963; Bertero et al. 1985; Craig &
Brown 1986; Schmitt et al. 1996). Any direct attempts to solve
Eq. (1) normally leads to the amplification of the uncertainties,
and hence spurious solutions.

To reconstruct the DEM additional information (i.e. con-
straints) has to be added and numerous approaches have been
developed to solve this problem (for overviews see, for instance,
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Monsignori Fossi & Landini 1991; or Chap. 5 of Phillips et al.
2008). The simplest of these is to assume that all the emission is
at a single temperature (isothermal) with £(T) o< §(T —T() where
6(x) is the Dirac delta function. The ratio of emission between
two filters is then equal to the ratio of the response functions at
the isothermal temperature (e.g. Weber et al. 2005; Reale et al.
2009). Dividing the observable by the response function g;/K;
and plotting this as a function of temperature, the intersect point
of the different curves (EM loci curves) will give the isothermal
temperature and emission measure (e.g. Schmelz et al. 2011).
Although this is a simple and computationally fast method it
does require the isothermal assumption and if the DEM is multi-
thermal this method will produce erroneous results.

Another approach is to forward fit a chosen model, min-
imising the differences in observable space. This has been im-
plemented for a discretised spline model DEM (Monsignori-
Fossi & Landini 1992; Brosius et al. 1996; Parenti et al. 2000)
and more recently using the IDL mpfit routine with SDO/AIA
and Hinode/XRT in M. Weber’s xrt_dem_iterative2.prol.
(Weber et al. 2004; Golub et al. 2004). An iterative forward fit-
ting approach has also been developed with multiple Gaussian
model DEMs using the IDL POWELL routine (Aschwanden &
Boerner 2011). To estimate the error in the DEM with these
methods a Monte Carlo approach is adopted, producing multi-
ple realisations within a given noise range. These approaches
will find parameters for the model DEM but requires an as-
sumed model and can be computationally slow when error es-
timates are required. A Bayesian approach using the Metropolis
MCMC method has been used to recover the DEM from a large
set of EUV spectral lines (Kashyap & Drake 1998), this soft-
ware available as part of the PINTofALE spectral analysis pack-
age. This will give a robust measure of the parameter probability
space but again can be computationally intensive, especially if
a large number of lines and model parameters are considered.
Bayesian formalism has also been recently used in a Bayesian
Iterative Method (BIM), successfully reconstructing DEMs from
both simulated and observed data (Goryaev et al. 2010). The iter-
ative mpfit method was compared to a maximum likelihood and
a genetic algorithm technique, finding similar results between
the approaches (Siarkowski et al. 2008). Another genetic algo-
rithm approach, which involves a preconditioning step where the
optimum subset of spectral lines are selected, was found to be
more effective (McIntosh et al. 2000). Currently a Singular Value
Decomposition (SVD) inversion approach is also under develop-
ment by Weber for SDO/AIA data.

Regularized inversion methods introduce an additional
“smoothness” to constrain the amplification of the uncertain-
ties, allowing a stable inversion to recover the DEM solution
(e.g. Craig 1977; Craig & Brown 1986). This was demonstrated
to have promise for solar observations by Craig (1977) and
subsequently tested on simulated data by Monsignori Fossi &
Landini (1991). Several forms of regularized inversion — trun-
cated (or “zeroth-order”) SVD, second-order regularization and
maximum entropy regularization — have also been tested us-
ing simulated EUV spectral line emission (Judge et al. 1997).
Although they determined that these approaches were superior
to the simple ratio method they found several problems with the
regularized inversion: the smoothness criterion used may not be
physically “appropriate”; the solutions are highly sensitive to un-
certainties in the kernel (K, response or contribution functions);
the return of negative solutions.

' Available in SolarSoftWare with the Hinode/XRT software
$SSW/hinode/xrt/idl/util/xrt_dem_iterative2.pro
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Fig. 1. Temperature response for SDO/AIA (Boerner et al. 2011) and
the contribution functions for several EUV lines from CHIANTI ob-
servable by Hinode/EIS (Landi & Young 2009).

In this paper we present a regularization method, which re-
solves some of these problems and robustly recovers the under-
lying DEM with errors”. The method not only determines the
DEM quickly, and its associated errors, but also naturally pro-
vides an estimate to the temperature resolution of the method.
The ability to quickly compute (via Generalised Singular Value
Decomposition) the DEM and its associated errors is due to the
fact this method is linear, unlike those using maximum entropy
for example. This method has already been implemented and
applied to solar data for the inversion of RHESSI (Lin et al.
2002) X-ray spectra to their source electron distribution (Kontar
et al. 2004). Several other inversion techniques have been devel-
oped to infer X-ray photon spectra and/or electron spectra from
RHESSI data (Piana et al. 2003; Massone et al. 2004; Brown
et al. 2006) however it is the regularized inversion that has be-
come the de facto approach. It has subsequently been used to in-
fer the DEM, as well as the non-thermal emission, from RHESSI
hard X-ray spectra (Prato et al. 2006).

In Sect. 2 we detail the regularization method and how the er-
rors and temperature resolution are determined. In Sects. 3 and 4
we demonstrate the capabilities of the regularization method,
in comparison to other methods, on simulated SDO/AIA and
Hinode/EIS data for a variety of model DEMs (single and multi-
ple Gaussians and the CHIANTI DEM models). In Sect. 5 we
use the regularization method to recover the DEM from ob-
servations of an active region made with Hinode/EIS and XRT
(Warren et al. 2010).

2 The code written in IDL requiring SSW is available online:
http://www.astro.gla.ac.uk/~iain/demreg/
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Fig. 2. Singular values ¢; (left), singular vectors w; (middle) and the regularized solution Eq. (6) as a function of i (right). The lines in the singular
value plot (eft) indicate the regularization parameter A that produces the solution with desired x? (dashed line) and with the additional positivity
constraint (dash dot line). These values are from the regularized solution shown in Fig. 3.

2. Regularized inversion of multi-wavelength data

To find the line of sight DEM &(T)) j=1,..,.M [cm™ K ']is to
solve the system of linear equations:

9i =K, &T)) (2)

where g; is the observable (either the imaged DN or the in-
tegrated line intensity) for the specific filter or wavelength i
(i=1,..,N)and K; ; is the corresponding temperature response
or spectral line contribution function (examples shown in Fig. 1).
Equation (2) is a generally ill-posed inverse problem and hence
the least square problem
”Kf(T) —g|P _
og -

3

min,

does not have a unique solution. In the case M = N, a formal so-
lution of Eq. (2) can always be written as £(T;) = Kl‘]1 gi, where

K~! is the inverse of matrix K. However, due to the large con-
dition number, which is the ratio of the largest to the smallest
singular values of K, such a solution is meaningless in all prac-
tical cases due to substantial noise amplification (Craig 1977;
Bertero et al. 1985). In addition, with M > N the system is
also under-determined. With inherent statistical and/or instru-
mental noise/uncertainties in the data g, the information about
the true solution &(7') is lost and cannot be recovered without
adding extra information about £(7). Therefore constraints must
be applied to obtain a unique meaningful solution. All methods
solving this system to find the DEM &(T') explicitly or implicitly
add information not present in the data to obtain the approxi-
mate solution. The simplest, but most popular way to constraint
the data is to fit a model function &(7', a;) with a number of free
parameters ¢; that minimise Eq. (3). Forward fitting is highly un-
satisfactory if the functional shape of £(7') is a priori unknown.

As any attempt to reconstruct the DEM directly leads to
substantial noise amplification in &(7), the broad approach to
achieve a solution is to add linear constraints to the DEM (e.g.
Tikhonov 1963; Bertero et al. 1985, 1988; Craig 1977; Craig &
Brown 1986). Often, so-called zero order regularization is used,
which selects the smallest norm solution out of infinitely many
possible solutions. This approach proved to be robust for various
problems and is not over restricting (Bertero et al. 1985, 1988).
Hence, we solve the least square problem

[Ke(T) ~ g]|” = min subject to [ILE(T) ~ £(T)I < const., (4)

with K = (6g)"'K and g = (6g)"'g. This can be solved using
Lagrangian multipliers, i.e.

K &) - + AL (&(T) - &(T)IP = min, (5)

where L is the constraint matrix, A is the regularization param-
eter (related to the x? of the solution), and &y(T) is the “guess”
solution, which will be explained in detail below. The L2 norm
is defined as a sum ||lx||* = xTx = ¥, x? over all filters or in-
tensities. Importantly, the solution of Eq. (5) is unique and well-
behaved. The formal solution of Eq. (5) &,(T") can be simply ex-
pressed in matrix form as a function of regularization parameter
Abut to avoid time consuming matrix manipulations Generalized

Singular Value Decomposition GSVD (Hansen 1992) is used.

The GSVD of matrices K € RMN I, ¢ RNN produces a
set of singular values vy;, 5; and singular vectors u;, v;, w;, with

i = 1,..,N which satisfy y> + g2 = 1, U'KW = diag(y)
and VILW = diag(B). These then provide the solution (Hansen
1992) to the minimization problem given in Eq. (5) as

M 2
e =y 2 ((g-ui>wi+A§O<T>

i=1 ¢? +4 Yi 71‘2 ’

(6)

with ¢; = 7y;/B:. This solution weights the contributions from
various singular vectors differently, filtering out the singular vec-
tors with i, for which ¢f < A. Hence removing un-physical oscil-
latory component of the solution (Bertero et al. 1988). Figure 2
shows typical behaviour of singular values and vectors as well
as the construction of the solution.

2.1. Regularization parameter

To find the solution &,(T) is to determine the regularization pa-
rameter A, which is done using Morozov’s discrepancy principle
(Morozov 1967), i.e.

1 i
~ K & -7 =e )

solving for A after substituting &,(7") from Eq. (6). Here « is the
regularization “tweak” value which effectively controls the re-
quired x? of the solution in observable space. The @ value has

a clear meaning when ||ﬁ ENT) - E“z are normally distributed,
with a mean of N and variance of VN. Therefore values of
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= 2
”K ENT) - T,;1| in the range N — VN < N + VN are accept-
able values and a helps choose the exact value within this range.
This also helps to put more or less weight on the data, with @ < 1
requiring a “better” agreement with the data.

2.1.1. Positively defined DEM

Using the method discussed in the previous section, it iS pos-
sible to select only positive solutions from the family of solu-
tions £,(T) by choosing an appropriate A. The method based on
Morozov’s discrepancy principle chooses the parameter A that
gives the DEM solution &,(7") with the desired @ in Eq. (7). The
intrinsic DEM from the Sun should be positive but the regu-
larization method provides no guarantee of a positive solution.
Although this appears to be a problem with this implementa-
tion of the regularization method, one should remember that the
DEM derived from observations need not be positive given the
often poorly known uncertainties, response functions and the
possibility of background subtraction.

A positive DEM solution can be achieved with an additional
criterion to the choice of regularization parameter. That is we
take the regularization parameter A that provides the smallest

”K ENT) —§1|2 — aN and &(T) > 0. This approach has the
advantage of maintaining the linear calculation of the solution
unlike those that try to implement the positivity constraint in
Eq. (6) directly, producing non-linear or iterative solutions (e.g
Piana & Bertero 1997; de Villiers et al. 1999). As « is the )(2
of the regularized solution, the ability to recover a positive so-
lution strongly depends on the error estimates on the input data
and knowledge of K. If the error used is too small the y? of
a positive solution can be erroneously high and in general, the
positivity constraint produces a larger y?, behaviour previously
demonstrated by Bertero & Dovi (1981).

2.2. Initial guess solution

The standard mode of operation of our regularization algorithm
requires no initial guess solution, i.e. &(7") = 0. However, &y(T")
is used in the calculation of the constraint matrix (either for
the higher order constraints or in the constraint weighting, see
Sect. 2.3). To avoid this problem we run our regularization al-
gorithm (solving Eq. (7) and then Eq. (6)) twice. On the first
run the guess solution is & (7)) = 0, the constraint matrix is the
identity matrix L = I and we find a weakly regularized solution
with @ = 10. The regularized solution found can then be used as
the initial guess for the second run (&y(7) = &x(T)) and in cal-
culating the chosen constraint matrix (as discussed in Sect. 2.3).
For this second run a stronger regularization is used @ = 1 to
find the final solution, then the associated errors in the DEM and
temperatures are calculated, see Sect. 2.4.

An alternative approach can be taken when working with
high resolution spectroscopic line data as we can use the min-
imum of the EM loci curves as the initial guess solution. The
EM loci curve for each spectral line is the ratio of the line in-
tensity to contribution function ~g;/K;. As this estimates the
EM based on the isothermal temperature, it provides the upper
limit to the DEM as a function of temperature. Multiple spec-
tral lines across a wide range of temperatures provides a strong
constraint to the DEM space and a useful initial guess solution.
When selected it is automatically calculated within our code and
as we are starting with a non-zero guess solution, this approach
only requires one run of the algorithm. These two approaches
to the guess solution will be demonstrated for Hinode/EIS data,
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simulated from a variety of model DEMs, in Sects. 3.2 and 4.2.
For broadband data (such as those from SDO/AIA), only the
&(T) = 0 approach is used as the minimum of the EM loci
curves provides a poor guess solution, especially when the DEM
is not isothermal.

2.3. Constraint matrix

There is a number of different choices for L. and here we con-
sider only linear constraints. Physically, the quantity f n2dh =
f &(T)dT is the total number of electrons along the line of sight,
so [lE(T)|I> < const., similar to the X-ray case (Piana et al. 2003).
This corresponds to the constraint matrix of Ly o« I, a zeroth-
order constraint. So, applying zero order regularization, we find
DEM with the smallest amount of plasma required to explain
the observational data. The source averaged &(T') results from
a combination of heating, cooling and and the physics of heat
transport in the radiating source. Therefore, when &(T) is the
solution of some differential equation, one can expect that &(7")
should be differentiable or equivalently the constraint matrix L is
the first order or second order derivative (L; ~ D' or L, ~ D?),
again similar to the X-ray case (Kontar et al. 2004). Hence higher
order regularization constraints select solutions with the smallest
variations in temperature and are more restrictive then zeroth-
order solutions. The more restrictive methods put more weight
on the a priori constraints rather than the analysed data sets,
which could be advantageous for poorly measured data.

2.4. Error and temperature resolution of DEM

Suppose the true DEM solution & (T) is given. Then we can
write

8 = Kéine(T) + 68. ®)

Any regularized solution to a linear problem can be viewed as
the replacement of the generalized inverse K* with the regu-
larized inverse R, (with lim,_,o R, = K), so that our regular-
ized solution is £z(7T') = R,g. Indeed for &y(T) = 0, Eq. (8) can
straightforwardly re-written in such form with R, expressed via
known GSVD vectors and values and exists for all linear meth-
ods (Bertero et al. 1988). On the other hand, the true solution to
Eq. (8) can be formally written K*g. Therefore, to estimate the
error we find the difference between the true solution and our
solution

0&(T) = &r(T) = &irue(T) = (RIK = Déirue(T) + R,168 ©)

Eq. (9) shows the important result that the error comes from two
parts: the last term gives us that the noise propagation (vertical
errors) and the first term gives the temperature resolution (hor-
izontal errors). This equation presents the method independent
definition of both the horizontal and vertical resolutions. While
the noise propagation is normally accounted by the DEM meth-
ods, the resulting temperature resolution is often not considered.

The error on the DEM 0&(T) (the vertical error R,0g) is cal-
culated using the standard Monte Carlo approach (Press et al.
1992; Piana et al. 2003; Kontar et al. 2004; Prato et al. 2006) with
multiple random realisations of g within the noise range 6g. Then
the one sigma spread of the regularized solutions from these re-
alisations provides the measure of the uncertainty on the DEM.
This is possible due to the linear nature of Eq. (9). In general, the
exact statistics of the errors is needed but as this distribution is
unknown, we assume a Gaussian distribution of standard devia-
tion dg for each filter. Then the vertical uncertainty on the DEM
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are calculated as the standard deviation using 300 MC Gaussian
noise realisations. However, as the probability distribution of 6g
does not need to be Gaussian, the resulting DEM uncertainties
could also be non-Gaussian.

The temperature resolution (horizontal error) of any linear
inversion method — or temperature bias of the solution — is how
much the product R, K differs from the identity matrix I. When
the regularized inverse is similar to inverse of the kernel matrix
R, = K", the temperature resolution does not degrade giving
R,K =~ I. However, for the ill-conditioned problem of DEM de-
termination, R, K is not identity matrix, but has a finite spread.
The temperature resolution is then simply the FWHM of R;K
for a given temperature bin. This represents the temperature bias
measure or the smallest temperature difference which can be
meaningfully distinguished in the solution. Conveniently, R;K
is easy to calculate from the singular values and vectors obtained

in GSVD decomposition of K and L used to find the regularized
solution. Namely, R, K = WYW-! where the column vector w;
forms matrix W and Y is a diagonal matrix with the elements
constructed with singular values Y; = y/(y* + 48?) (Kontar
et al. 2004).

When R;K = I the response is diagonal or impulse-like for
a given temperature, and therefore the true DEM & (') is not
distorted. In any practical situation, R,K is not diagonal but has
off-diagonal elements (an example is shown in Fig. 4 of a sim-
ulated DEM discussed in detail in Sect. 3.1). The off-diagonal
terms are a spread about a peak value at the diagonal (the red
example in Fig. 4), so for each temperature 7'; the row of (R;K);
has a finite width. The FWHM of this spread is then taken as
the temperature resolution for that particular temperature. When
the off-diagonal terms dominate (the blue and green examples in
Fig. 4), the FWHM can still be used to indicate the poor tem-
perature resolution. It should be noted that R, K depends on the
errors 0g, so larger errors results in a poorer temperature reso-
lution, e.g. wider row of the matrix R,K. The dependency on
og comes via the regularization parameter A given by Eq. (7).
This definition of temperature resolution is more conservative as
it does not assume a form of DEM as in Weber (2009).

2.5. Temperature response and instrument uncertainties

One of complicating factors is that the kernel (the matrix K)
of the integral equation to be inverted is only known to a lim-
ited degree. The errors come from the calibration uncertainty of
the instrument itself and the uncertainty in the dominant spec-
tral contribution of each bandpass (e.g. Aschwanden & Boerner
2011; O’Dwyer et al. 2011). Therefore, the temperature response
has an uncertainty 0K and the linear problem, Eq. (8), becomes

g = (K + 6K)&irue(T) + 68. (10)

This translates into an additional uncertainty for £(7") compared
to Eq. (9)

06(T) = (R1K = Déire(T) + R1K 68 + R1OK e (T). (1)

When the uncertainty K is dominated by a systematic error in
the intensity of the lines measured then it is not temperature de-
pendent but a constant scaling factor per filer or line (i.e. rows
of K). Since the shape of the response or contribution function
does not change as a function of temperature then this is identi-
cal to the introduction of an additional error to §g with Eq. (11)
reducing to Eq. (9). This will be investigated further in Sects. 3.2
and 4.2 with reference to Hinode/EIS.

3. Simulated data: Gaussian model

We test the regularization method on simulated SDO/AIA
(Sect. 3.1) and Hinode/EIS data (Sect. 3.2) of Gaussian model
DEMs. These have the form

No —(log 7; - log Ty)*
ex
V2ot

where log T is the centroid temperature, o is the standard de-
viation and Ny = f &(T)dT. We consider model DEMs of one to
three Gaussian components. Note that as we calculate everything
using log T instead of 7', a conversion factor of 7' In (10)dlog T
is required in Egs. (1) and (2).

&T)) = 12)

2
205

3.1. SDO/AIA simulated data

To simulate SDO/AIA data we take the model DEM from
Eq. (12) and calculate the expected observable signal in each
of AIA’s six coronal filters g; using the response functions K;
(Boerner et al. 2011), shown in the top panel of Fig. 1. From
this we calculate the associated error dg; using the readout noise
and photon counting statistics (correcting from DN s~! px~! to
photons via the electron and photon gains). Then Gaussian noise
within these dg; is added to g;. Our simulated observables g, og
and the response functions K are the inputs to the regulariza-
tion algorithm. As described in Sect. 2 we run the regularization
twice: on the first run we use @ = 10,L = I, &(T) = 0 which
provides a guess solution that can be used to calculate the de-
sired constraint matrix Lo, Ly, L, and final regularized solution
with @ = 1.

We first consider a single Gaussian model of Ny = 3.76 X
102 cm™, o7 = 0.15 and logTy = 6.5, shown in Fig. 3.
Here the regularized DEM (red error bars) was found using Ly
(zeroth-order constraint) and well matches the original model
DEM (black dashed line). In observable space (right panel in
Fig. 3) the residuals between the model and regularized solu-
tion are small with x> ~ 1.0 close to the desired value set by
« = 1. Here y? is taken as the sum of the square of the residuals
divided by N to match the version in Eq. (7). The R;K matrix
for this regularization (Fig. 4) is diagonal over approximately
logT = 6.1-6.9. The horizontal error bars (temperature resolu-
tion) at each temperature bin is taken as the standard deviation
of the FWHM of the rows of R, K. Outside this range the matrix
is clearly not diagonal, producing large horizontal errors, so the
regularized DEM is not reliable at these temperatures.

At the lowest temperatures (log7 < 6.0) some negative
DEM values are found, not shown on the log-scale, but this is
in a temperature range where the DEM contribution is minus-
cule (over 4 orders of magnitude smaller than the peak) and the
temperature response is very weak. At the highest temperature
(logT > 7.0) we have positive regularized DEM but with large
horizontal and vertical errors again due to being in a range where
the DEM component is very small. In the middle panel of Fig. 3
we show the regularized solution (blue error bars) in which the
regularization parameter has been chosen to minimise y* to the
desired value whilst forcing a positive DEM. The result is a very
slightly different DEM, particularly below log7 =~ 6.1, and is
well within the error bounds shown for both regularized solu-
tions. As expected the y? of the solution is higher (5.5 instead of
the desired 1) but within the DEM error bounds and so both are
valid solutions.

For comparison we have calculated the DEM solution using
the iterative forward fitting routine xrt_dem_iterative2.pro
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Fig.5. Effect of changing the temperature bin
Gaussian model DEM, shown in Fig. 3.

size for the single

(black histogram in left panel Fig. 3) with 75 Monte Carlo (MC)
realisations of the solution within the observable error bound
gi = 0g; (grey histograms). This also agrees well with the model
DEM and also shows a larger spread in DEM solution in the
temperature ranges where the regularized solution has large er-
rors. Again this is due to the minor contribution to the DEM
(about four orders of magnitude smaller than the peak value) in
these temperature ranges. Also for comparison we have plotted
the EM loci curves (g;/(K;Td1InT)) which do not intersect at a
single point as this is not an isothermal model DEM. The DEM
solutions are below the EM loci curves, as expected, since these
estimate the upper limit of the emission.

The error bars shown for the regularized solution are not in-
dependent of each other and map out an error boundary region.
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This can be seen in Fig. 5 where we show the regularized DEM
using a variety of temperature bin sizes. To achieve this we
need to interpolate the temperature response functions (top panel
Fig. 1) from the original binning to our chosen temperature bin
size. Increasing the number of temperature bins does not change
the shape of the regularized DEM but produces a clearer defi-
nition of the error bound, with the overlapping error bars indi-
cating that the nearby DEM bins are clearly not independent.
This does however slow down the computation of the regular-
ization process, although at worst it still only took a few seconds
to compute. Note again that the vertical errors are taken as the
variance of 300 regularized solutions found from random reali-
sations within g; + dg; and so we are explicitly assuming a simple
Gaussian spread of vertical error in the regularized solutions. In
reality the distribution of these errors will be more complicated.

A second example is shown in Fig. 6 where an additional
broad Gaussian component (Ny = 8.77 X 102 cm™, or = 0.5
and log Ty = 6.5) has been added to the model DEM shown in
Fig. 3. Immediately it is clear that the regularization produces
a R,K that is diagonal over a wider temperature range, indi-
cating that the narrow temperature range found for the single
Gaussian model (Fig. 3) was mostly due to the DEM model dom-
inating over a small temperature range. For the broader DEM
model there are still deviations from a diagonal R;K at the
ends of the temperature range chosen but this is due to the lim-
ited response of AIA at these temperatures (see Fig. 1). This
time only the solution without a positivity constraint is shown
since the regularization parameter for y> = 1 provides a posi-
tive solution. For comparison the forward fitted solutions from
xrt_dem_iterative2.pro (grey histograms) are shown and
again match the regularized solution (and model DEM) over
the majority of the temperature range but show a wider verti-
cal spread at the smallest and largest temperatures. This consis-
tent increase in error in the DEM solution from both methods
suggests the poor response at these temperature extremes is the
source of this uncertainty. The EM loci curves are also shown but
again do not intersect at a single point as this is a broad DEM.

In both examples shown so far only the zeroth-order con-
straint has been used and in Fig. 7 we show the resulting regu-
larized DEM for these cases for higher order constraint matri-
ces. For the single Gaussian the higher order constraint removes
the cluster of “noisy” data points at high temperature but also
broadens the temperature resolution at around log 7y = 6.2—6.4.
This shows that the constraint is changing the balance between
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Fig.7. Testing the effect of changing the constraint matrix order
(Lo, Ly, L,, zeroth, first and second order respectively). The fop four
panels show the different recovered DEM and resulting residuals for the
single Gaussian model shown in Fig. 3. The bottom four panels shows
the same for the broad double Gaussian model shown in Fig. 6.

these two temperature ranges and in this case the lower order
constraint is preferable as it produces a better temperature reso-
lution where the DEM is dominant. For the two Gaussian model

DEM the higher order constraints again produce a broader tem-
perature resolution which helps the regularized solution match
the model better at low temperatures. Therefore in this case the
higher order constraint is marginally preferable. As expected,
in both cases the increase in order of the constraint matrix in-
creases the “smoothing” of the regularized solution. In the sub-
sequent analysis present here the zeroth order Ly constraint ma-
trix is used throughout as it is generally sufficient to recover the
expected DEM.

We now consider the ability of the regularized inversion to
recover single Gaussian model DEMs but with different widths
and magnitudes, shown in Fig. 8. Here we do not use the pos-
itivity constraint since for narrow DEMs the possible negative
regions are from temperatures where the contribution is tiny and
consistent (within the errors) with zero and for broad DEMs the
are no negative values recovered. As we set @ = 1 the y? of the
regularized solution is also approximately 1. Firstly, we increase
the width of the Gaussian from the minimum expected of o =
0.1, the designed achievable temperature resolution of SDO/AIA
(Judge 2010), to o7 = 0.4, using a normalisation magnitude of
No/(N2ror) = 102 cm™ K~! in Eq. (12), shown in the top
panels of Fig. 8. The regularized inversion method is able to re-
cover the model DEM at the limit of SDO/AIA’s temperature
resolution. For the widest model DEMs there is some slight de-
viation but it is consistent within the error bars. Again we com-
pare the regularization method to xrt_dem_iterative2.pro
(blue histograms) and find similar solutions, with both methods
deviating from the model DEM in similar temperature ranges,
for instance below log 7 ~ 5.9 in the o7 = 0.4 model. We re-
peat the exercise but with model DEMs an order of magnitude

smaller, No/(\/ﬂ(rr) = 10%2 ¢cm™ K7', shown in the bottom
panels of Fig. 8. With the reduced signal to noise both meth-
ods produce poorer DEM solutions, particularly for the narrow-
est Gaussian model showing the expected degradation of the
resolution recoverable with increasing noise. In this case one
of the xrt_dem_iterative2.pro solutions deviates greatly
above log T =~ 6.7. For the broader DEMs the iterative forward
fitting method produces DEMs closer to the model than the reg-
ularized inversion, though the later is mostly consistent within
the indicated error bars. For the regularized inversion a better or
“smoother” solution could be achieved by using a higher order
constraint matrix however with real data there is no prior knowl-
edge to the form of the emission and therefore no indication if
such a constraint is actually better.
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In Fig. 9 we consider model DEMs constructed of sev-
eral Gaussian components of width at the temperature res-
olution of SDO/AIA, or =~ 0.1. The first panel shows
the same single Gaussian shown in Fig. 8 for comparison.
With two Gaussian components with centroid temperatures of
logT = 6.0,7.0 (second panel in Fig. 9) the regularized so-
lution closely matches the source model. The forward fitting
approach (xrt_dem_iterative2.pro) does get the general
shape correct but produces a tall spread of solutions at the ex-
tremes of the temperature range chosen and in between the two
Gaussian components. The former will be due to the reduced
SDO/AIA response in this range but for the discrepancy about
logT = 6.5 this is not the case. The situation is even worse
for xrt_dem_iterative2.pro when three Gaussian compo-
nents are considered (third panel in Fig. 9, with centroid tem-
peratures of log 7' = 6.0, 6.5,7.0) with it producing a DEM so-
lution completely different from the model. In one of the MC
realisations the forward fitting method does recover two of the
Gaussian components but still fails to recover the middle one.
The regularized inversion method also has problems in recov-
ering the model DEM but performs considerably better than
xrt_dem_iterative2.pro, producing a DEM with three dis-
tinct components. Only between log 7 = 6.4—6.8 does it deviate
from the model, failing to match the second Gaussian peak and
subsequent minima. In the final panel of Fig. 9 we again consider
three Gaussian components but this time with those of centroid
temperatures log 7 = 6.0, 7.0 an order of magnitude smaller than
the central component. This time xrt_dem_iterative2.pro
recovers the central component but completely missing the two
smaller ones. Again the regularized inversion performs far bet-
ter recovering three distinct components though slightly overes-
timates the centroid position of the hottest component.
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3.2. Hinode/EIS simulated data

Spectroscopic observations, such as those from the EUV
Imaging Spectrometer (EIS) on Hinode, can potentially recover
the DEM better than broadband multi-filter observations given
the significant number of temperature sensitive lines available.
The resulting observed line intensities and calculated contribu-
tion functions can be easily used with our regularization method
as it only requires an observable, associated error and response
as a function of temperature for a number of filters or lines. Here
we use the atlas of EUV lines (observable with Hinode/EIS)
from Landi & Young (2009) with 48 of them shown in the
bottom panel of Fig. 1. These are lines emitted at cooler tem-
peratures than observed by SDO/AIA and so we will consider
Gaussian models with centroid temperatures between log7 =
5.5t06.5.

The simulated line intensities are created as before with the
pixel intensities for SDO/AIA but this time we consider not only
the Poisson noise (6g; = +/g) but also a systematic uncertainty
that is a percentage of each line intensity. This corresponds to a
temperature independent factor per line ¢;, dg; = g;/c;. We are
using this approach as there are uncertainties in the relative (few
percent), absolute (up to 22%) and modelling (=10%) of the con-
tribution functions for each line (Young, priv. comm., and Landi
& Young 2009). Such a temperature independent systematic on
the contribution function 0K; = K;/c;, where ¢; is the factor
per line, is equivalent to the same systematic on the observable
dg; = gi/ci, as discussed in Sect. 2.5. So when calculating the er-
ror in the simulated observable for our chosen DEM we choose
either the Poisson noise or a percentage error, in the latter case
to represent this possibly dominant systematic uncertainty in the
contribution functions.
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In Fig. 10 we show the regularized inversion of Gaussian
model DEMs of different widths using a Poisson uncertainty on
the line intensity, again using the zeroth-order constraint and

= 1 (i.e. ¥* = 1). For the model DEMs used the uncertain-
ties given by dg; = +/g range from 0.2 and 11% of the line
intensities. The regularized solution very closely matches the
model DEM for the narrowest cases (top left panels), match-
ing the model down to the temperature resolution of the atomic
data used to calculated the contribution functions, i.e. o7 = 0.1.
For the wider Gaussian models (top right panels) the regularized
solution recovers the model well about the peak emission but
underestimates the emission at the lowest temperatures. These
regularized DEMs were found using the two-stage approach of
no initial guess solution &,(7) but we can also find the solutions
using the minimum of the EM loci curves (grey dashed lines) as
the guess solution (see Sect. 2.2), shown in the bottom row of
Fig. 10. For the narrowest Gaussian models there is little differ-
ence in the regularized solutions. The only improvement here is
in the time it takes to perform the computation since the regu-
larization has only been calculated once. However even with the
two-stage approach the DEM is computed in just a few seconds.
For the wider Gaussian models the regularized DEM found using
the guess solution recovers the model DEM better, particularly
at lower temperatures.

This analysis is repeated but this time the error on the line
intensities is taken to be 20% instead of the Poisson noise. With
this increased uncertainty the regularization method does not re-
cover the model DEMs as well, shown in Fig. 11. For the narrow-
est DEM (top left panel) the regularized inversion recovers the
majority of the model DEM but underestimates the peak emis-
sion and increases its width, the latter showing a reduction in
temperature resolution due to noise. The use of the minimum
of the EM loci curves as the guess solution &y(7) greatly im-
proves the recovery of the source DEMs (bottom row) but still
underestimates the peak emission in the narrowest cases. This
demonstrates that the temperature resolution had been inherently
degraded by the increase in noise.

We now consider model DEMs constructed of several
Gaussian components of width at the temperature resolution
of the atomic data, o7 =~ 0.1, shown with Poisson noise and
then 20% uncertainty in the line intensity in Figs. 12 and 13.
With the lower level of noise from the Poisson errors the reg-
ularized inversion recovers the model DEMs (top row Fig. 12),
even in the cases with three Gaussian components. The use of
the initial guess solution (bottom row Fig. 12) generally does
worse in recovering the DEMs at the extremes of the tempera-
ture ranges but produces similar results at the mid-range tem-
peratures where the DEMs peak. With a larger error in the line
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intensity the regularized inversion struggles to recover the model
DEMs (Fig. 13). In all cases it is able to recover the correct num-
ber of distinct components in the DEMs but is unable to match
the peak emission, often producing flatter solutions. The use of
the initial guess solution does help recover the model DEMs bet-
ter (bottom row Fig. 13) but it still struggles with this noisy sim-
ulated data.

4. Simulated data: CHIANTI model DEMs

To test the regularization with more physically realistic DEMs
we use those provided with the CHIANTI atomic database (Dere
etal. 1997,2009). We use the DEMs for the quiet Sun (del Zanna
1999), an active region (Andretta et al. 2003) and a M2-GOES
Class flare (Dere & Cook 1979). With SDO/AIA we test all three
of these models (see Sect. 4.1) but for the Hinode/EIS lines
we only consider the quiet Sun and active region models (see
Sect. 4.2) since these lines are sensitive to temperatures predom-
inantly below log T =~ 6.5, lower than expected in a large flare.
Again the regularized solutions were found using the zeroth-
order constraint and as @ = 1 the resulting solutions have ap-
proximately y? = 1.
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4.1. SDO/AIA simulated data

The regularized DEMs recovered from simulated SDO/AIA data
of the CHIANTI model DEMs is shown in Fig. 14. The first
DEM shown is for the quiet Sun and the regularization recov-
ers the DEM well but has very large error bars. This is under-
standable given the faint, and hence noisy, emission: the peak
emission for the quiet Sun DEM is about 10%° cm™ K~! which
is over three orders of magnitude smaller that the Gaussian ex-
amples in Sect. 3.1. In comparison, xrt_dem_iterative2.pro
poorly recovers the model DEM producing a large spread of the
MC realisations. The active region model DEM (middle panel
Fig. 14) is better recovered than the quiet Sun model which is
expected given that this DEM produces a stronger signal. Both
methods have trouble in recovering the model DEM at the lowest
temperatures (log 7 < 5.7) where the emission is smallest: the
regularization solution underestimating the emission, the itera-
tive approach overestimating. For the flare DEM (right panel
Fig. 14) both methods recover the model well about the peak
temperature (log T ~ 7.0) will small vertical uncertainties. This
is due to the large emission from the flare, about 3 to 4 orders of
magnitude larger than the quiet Sun and active region models. At
lower temperatures the regularized solution matches the model
DEM well though with a substantial horizontal spread. The
xrt_dem_iterative2.pro solutions deviate from the model


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117576&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117576&pdf_id=13

I. G. Hannah and E. P. Kontar: Regularized inversion of Hinode and SDO data

Quiet Sun

102215 1022 Active Region 1 10%| Flare J
v E=y
5 107h - 102 110%L
S el
vyl L =1
i; 5 10% 10%°
]| ISl
T—l» 1 7:7 1 1 H -l e 1 1 1 1 1 1 1 1
54 56 58 6.0 6.2 6.4 6.6 5.4 56 58 6.0 6.2 6.4 6.6 6.0 6.5 7.0
log,, T [MK] log,, T [MK] log;, T [MK]

Fig. 14. Regularized DEMs (red error bars) and xrt_dem_iterative2.

pro solution (blue histograms, with 25 MC realisations) for simulated

SDO/AIA data of CHIANTI DEM models (dashed black lines, left to right: quiet sun, active region, M-Class flare).

Quiet Sun (8g=g

1/2
)
T

Quiet Sun (6g=g/100)

Quiet Sun (8g=g/5)

1022} 10221 1021
L L L
E 102"} E. 102! f: 5‘ 102"
S e i- £
g hvg hv
RN Y 2 aE Ty =
T o o oqeo, Yo o
a == 5 a e % a
—— jAEADE
o ‘ ‘ ‘ ¥
5.0 5.5 6.0 6.5 5.0 5.5 6.0 6.5
log,,T [MK] l0g;,T [MK] l0g;,T [MK]
Quiet Sun (8g=g"?) Quiet Sun (8g=g/100) Quiet Sun (8g=g/5)
10227 . "‘_ : "“‘ o 10227 ‘i’, "‘ ‘ ,: ‘ 10227 N ": vE s . v:‘
£ ® A L
5 102+ E' 102 [— WO / 5 107!
e e N o R e
TN T 7
UE_; 20 S o j:gp UE_; 20 4.7%5_7«% &V 5 20 -
w02} =S [TV S 5 @ 10 ]
Y —+
i " g X ‘ ‘
5.0 55 6.0 6.5 5.0 5.5 6.0 6.5 5.0 5.5 6.0 6.5
log,, T [MK] l0g;,T [MK] 10g;,T [MK]

Fig. 15. Regularized DEMs (red error bars) for simulated Hinode/EIS lines of the CHIANTI quiet Sun DEM model. The error is taken as the
Poisson noise and 1% and 20% of the line intensity (left to right). In the bottom row the minimum of the EM loci curves (grey dotted lines) was

used as the guess solution &y(T').

below log T ~ 6.7 and produces a false peak about log T ~ 6.1
when in the model it is a minimum.

4.2. Hinode/EIS simulated data

The regularized DEM of the CHIANTI quiet Sun model using
the Hinode/EIS lines is shown in Fig. 15, where it has been
calculated using a variety of errors in the line intensities and
with/without the minimum of the EM loci as the initial guess so-
lution. When no initial guess solution is used (top row) the reg-
ularization method is able to recover the main peak of emission
(about log T = 6.0) for the three different error cases, Poisson
noise, 1% and 20%. Only with the 1% errors on the line intensi-
ties does the regularized solution properly recover that the emis-
sion increases with decreasing temperature but does not match it
very well (middle panel). Although it should be noted that this
model produces very weak emission and the DEM recoverable
from these multiple Hinode/EIS lines is considerably better than

with the SDO/AIA simulated data (left panel Fig. 14). When the
minimum of the EM loci curves is used as the initial guess solu-
tion (bottom row, Fig. 15) the regularized solution does recover
more of the model DEM but the problems with the low temper-
ature component persist.

In Fig. 16 we show the same analysis but this time for the
CHIANTI active region DEM model. The 1% error case again
well recovers the majority of model DEM but struggles at low
and high temperatures when higher, and more realistic, errors
in the line intensities are used. When the minimum of the EM
loci curves are used as the initial guess solution (bottom row,
Fig. 16) the regularization method does considerably better by
impressively recovering the model DEM even in the situations
with larger errors.

5. Real data: Hinode/XRT and EIS

To test the performance of the regularization on real data we use
the observations of an active region core with Hinode/EIS and
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XRT from Warren et al. (2010). This article provides the line in-
tensities, with errors (which were 20% to 23%), for 24 EIS lines
and one XRT filter (Al-thick) (see Table 1, Warren et al. 2010)
and computed the DEM (Fig. 4, red histogram, Warren et al.
2010) using the MCMC method packaged with PINTofALE
(Kashyap & Drake 1998). Using the information given we use
CHIANTI to calculate the contribution functions for the 24 EIS
lines, and with the Hinode/XRT temperature response function
for the Al-thick filter (Golub et al. 2007), and the quoted in-
tensities and errors we calculate the zeroth-order regularized
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7.0 mum was used as an initial guess solution for

the regularizations shown in the bottom row.

solutions and @ = 1 (shown in Fig. 17). Here we have the reg-
ularized solutions found both with and without the positivity
constraint (left vs. right columns) and the initial guess solution
from the minimum of the EM loci curves (top vs. bottom rows).
Shown for comparison is the MCMC solution found by Warren
et al. (2010). Note that for all the regularized solutions the re-
sulting R, K matrix was almost diagonal over log7 ~ 5.5-6.9
indicating that the regularization has successfully worked over
this temperature range. With no positivity constraint (left-hand
panels) the regularized solution is highly oscillatory between
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positive and negative values, an indication that this is an over-
regularized solution (Craig 1977; Bertero et al. 1985). Although,
the regularization does produce a maximum at the same temper-
ature as the MCMC method. The use of the initial guess solu-
tion (bottom left panel Fig. 17) results in minimal changes to
the recovered DEM. The positivity constraint produces a closer
match to the MCMC solution. When no initial guess solution
is used (top right panel) a highly oscillatory DEM is recovered
and deviates from the MCMC solution at the peak temperature
and above. When the minimum of the EM loci curves are used
as the initial guess solution (bottom right panel) a smaller y? is
achieved while still having a positive solution. This regularized
DEM is a close match to MCMC solution, even more so when
one includes the spread of the DEM found from 250 MC solu-
tions (shown in Fig. 4, Warren et al. 2010). The crucial differ-
ence though is in the computation time: the regularized solution
is found within a few seconds, the MCMC method taking orders
of magnitude longer.

6. Discussion and conclusions

In this work, we have applied a regularized inversion technique
developed for RHESSI HXR analysis to multi-filter observations
of hot solar plasma with Hinode/EIS, XRT and SDO/AIA. This
method successfully recovers a variety of model DEMs from dif-
ferent simulated broadband and spectroscopic data of varying
noise and uncertainty. It is implemented® using General Singular
Value Decomposition (GSVD) and this has several advantages
over previous approaches used to find the regularized inversion
of solar data (i.e. Craig 1977; Judge et al. 1997):

1. It reliably recovers the DEM even from noisy data and us-
ing only the weakest (yet mostly physically justifiable) con-
straint, zeroth-order L.

2. This method naturally determines the confidence interval for
the regularized solution by calculating both the vertical and
horizontal error bars allowing an objective assessment of
the quality of the data, temperature response functions and
DEM. The use of the R,K matrix also provides additional
information about the robustness of the regularized solution.

3. Itis computationally very quick, with DEMs recovered from
SDO/AIA data in about a second or less and a few seconds
when a large number of spectral lines are used, such as with
Hinode/EIS. This is crucial considering the colossal amount
of ever increasing data that is being accumulated by SDO,
Hinode and expected from future missions.

4. The recovery of a positive solution can be guaranteed though
this approach can hide issues with the data and response
functions.

Misconceptions about the problems with inversion techniques
(such as the smoothness criteria) still exist (e.g. Landi et al.
2012) but the examples shown in this paper clearly demonstrate
that these views are misplaced and our regularized inversion ap-
proach can robustly recover a variety of DEMs. Moreover the
ability to easily determine the temperature uncertainty is a ma-
jor improvement over other methods, crucial when trying to test
the possibly isothermal nature of solar plasma.

DEMs are a very useful tool for characterising the temper-
ature distribution of the corona and trying to reveal the prop-
erties of the mechanisms that are heating the plasma. However
there are several caveats to the reconstructed DEMs which mean

3 The code written in IDL requiring SSW is available online:
http://www.astro.gla.ac.uk/~iain/demreg/

they should not be over-interpreted. Any method that recovers
a DEM from a set of real data cannot guarantee that it is the
actual solution given the possible uncertainties/errors in the data
and temperature response functions (either instrumental or in the
atomic physics). The use of more than one method is highly rec-
ommended as this would highlight any issues and artifacts of a
particular approach and demonstrate the role of the uncertainty
in the data on the solution. The computational speed of our regu-
larization method makes it a minor burden to include when using
other techniques and also allows fast exploration of the effect of
the uncertainties on the DEM, as demonstrated for the simulated
data in this paper. Even if several techniques produce the same
DEM, with similar uncertainties, this still leaves the possibility
of there being errors in the temperature response functions due
to mis-calibration of the instrument or information in the atomic
data being absent or erroneous. There is a continuous effort to
improve the atomic physics data, through the sterling work of
the CHIANTI team and others. At the moment there are known
issues with the SDO/AIA response functions (e.g. Aschwanden
& Boerner 2011) and the effect of this can be tested by simulat-
ing SDO/AIA data using the “correct” response but recover the
DEM from this data using the erroneous responses. However if
the emission is not optically thin or not in thermal equilibrium
the DEM and response functions are not appropriate to describe
the temperature distribution of the plasma.

All these problems are compounded by the vast quantities
of solar data now available resulting in the current need for a
variety of tools to investigate DEMs quickly, transparently and
easily. The use of simulated data is a vital approach to investi-
gate the role of each of these issues and combined with a com-
putationally fast algorithm that provides error estimates, such as
our regularization method, should provide a quicker determina-
tion of the reliability of DEMs and what can be interpreted from
them.
Acknowledgements. This work is supported by a STFC grant (IGH, EPK).
Financial support by the European Commission through the FP7 HESPE

Network is gratefully acknowledged. We would like to thank the referee for their
constructive criticisms that helped us greatly improve this paper.

References

Andretta, V., Del Zanna, G., & Jordan, S. D. 2003, A&A, 400, 737

Aschwanden, M. J., & Boerner, P. 2011, ApJ, 732, 81

Bertero, M., & Dovi, V. 1981, Opt. Acta, 28, 1635

Bertero, M., DeMol, C., & Pike, E. R. 1985, Inverse Problems, 1, 301

Bertero, M., DeMol, C., & Pike, E. R. 1988, Inverse Problems, 4, 573

Boerner, P., Edwards, C., Lemen, J., et al. 2011, Sol. Phys., 193

Brosius, J. W., Davila, J. M., Thomas, R. J., & Monsignori-Fossi, B. C. 1996,
ApJS, 106, 143

Brown, J. C., Emslie, A. G., Holman, G. D., et al. 2006, ApJ, 643, 523

Craig, I. J. D. 1977, A&A, 61, 575

Craig, I. J. D., & Brown, J. C. 1986, Inverse problems in astronomy (Bristol:
Hilger)

Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, Sol. Phys., 243, 19

de Villiers, G. D., McNally, B., & Pike, E. R. 1999, Inverse Problems, 15, 615

del Zanna, G. 1999, Ph.D. Thesis, Univ. of Central Lancashire

Dere, K. P., & Cook, J. W. 1979, ApJ, 229, 772

Dere, K. P, Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young, P. R.
1997, A&AS, 125, 149

Dere, K. P, Landi, E., Young, P. R., et al. 2009, A&A, 498, 915

Fletcher, L., Dennis, B. R., Hudson, H. S., et al. 2011, Space Sci. Rev., 159, 19

Golub, L., Deluca, E. E., Sette, A., & Weber, M. 2004, in The Solar-B Mission
and the Forefront of Solar Physics, ed. T. Sakurai, & T. Sekii, ASP Conf. Ser.,
325,217

Golub, L., Deluca, E., Austin, G., et al. 2007, Sol. Phys., 243, 63

Goryaev, F. F, Parenti, S., Urnov, A. M., et al. 2010, A&A, 523, A44

Hannah, I. G., Hudson, H. S., Battaglia, M., et al. 2011, Space Sci. Rev., 159,
263

Hansen, P. C. 1992, Inverse Problems, 8, 849

Hirayama, T. 1974, Sol. Phys., 34, 323

A146, page 13 of 14


http://www.astro.gla.ac.uk/~iain/demreg/

A&A 539, A146 (2012)

Judge, P. G. 2010, ApJ, 708, 1238

Judge, P. G., Hubeny, V., & Brown, J. C. 1997, AplJ, 475, 275

Kashyap, V., & Drake, J. J. 1998, Apl, 503, 450

Kontar, E. P., Piana, M., Massone, A. M., Emslie, A. G., & Brown, J. C. 2004,
Sol. Phys., 225, 293

Landi, E., & Young, P. R. 2009, ApJ, 706, 1

Landi, E., Reale, F., & Testa, P. 2012, A&A, 538, Al111

Lemen, J. R., Title, A. M., Akin, D. J., et al. 2011, Sol. Phys., 172

Lin, R. P, Dennis, B. R., Hurford, G. J., et al. 2002, Sol. Phys., 210, 3

Mariska, J. T. 1992, The solar transition region, ed. J. T. Mariska

Massone, A. M., Emslie, A. G., Kontar, E. P, et al. 2004, ApJ, 613, 1233

Mclntosh, S. W., Charbonneau, P., & Brown, J. C. 2000, ApJ, 529, 1115

Monsignori Fossi, B. C., & Landini, M. 1991, Adv. Space Res., 11, 281

Monsignori-Fossi, B. C., & Landini, M. 1992, Mem. Soc. Astron. Ital., 63, 767

Morozov, V. 1967, Doklady Akademii Nauk SSSR, 175, 1225

O’Dwyer, B., Del Zanna, G., Mason, H. E., et al. 2011, A&A, 525, A137

Parenti, S., Bromage, B. J. L., Poletto, G., et al. 2000, A&A, 363, 800

Parker, E. N. 1988, ApJ, 330, 474

Phillips, K. J. H., Feldman, U., & Landi, E. 2008, Ultraviolet and X-ray
Spectroscopy of the Solar Atmosphere, ed. K. J. H. Phillips, U. Feldman,
& E. Landi (Cambridge University Press)

Piana, M., & Bertero, M. 1997, Inverse Problems, 13, 441

A146, page 14 of 14

Piana, M., Massone, A. M., Kontar, E. P, et al. 2003, ApJ, 595, L127

Prato, M., Piana, M., Brown, J. C., et al. 2006, Sol. Phys., 237, 61

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,
Numerical recipes in C, The art of scientific computing, ed. W. H. Press,
S. A. Teukolsky, W. T. Vetterling, & B. P. Flannery

Reale, F., Testa, P., Klimchuk, J. A., & Parenti, S. 2009, ApJ, 698, 756

Schmelz, J. T., Jenkins, B. S., Worley, B. T, et al. 2011, ApJ, 731, 49

Schmitt, J. H. M. M., Drake, J. J., Stern, R. A., & Haisch, B. M. 1996, AplJ, 457,
882

Siarkowski, M., Falewicz, R., Kepa, A., & Rudawy, P. 2008, Annales
Geophysicae, 26, 2999

Tikhonov, A. N. 1963, Soviet Math. Dokl., 4, 1035

Warren, H. P., Winebarger, A. R., & Brooks, D. H. 2010, ApJ, 711, 228

Weber, M. 2009, in The Second Hinode Science Meeting: Beyond Discovery-
Toward Understanding, ed. B. Lites, M. Cheung, T. Magara, J. Mariska, &
K. Reeves, ASP Conf. Ser., 415, 32

Weber, M. A., Deluca, E. E., Golub, L., & Sette, A. L. 2004, in Multi-Wavelength
Investigations of Solar Activity, ed. A. V. Stepanov, E. E. Benevolenskaya, &
A. G. Kosovichev, IAU Symp., 223, 321

Weber, M. A., Schmelz, J. T., DeLuca, E. E., & Roames, J. K. 2005, ApJ, 635,
L101

Woods, T. N., Eparvier, F. G., Hock, R., et al. 2010, Sol. Phys., 3



	Introduction
	Regularized inversion of multi-wavelength data
	Regularization parameter
	Positively defined DEM

	Initial guess solution
	Constraint matrix
	Error and temperature resolution of DEM 
	Temperature response and instrument uncertainties

	Simulated data: Gaussian model
	SDO/AIA simulated data
	Hinode/EIS simulated data

	Simulated data: CHIANTI model DEMs
	SDO/AIA simulated data
	Hinode/EIS simulated data

	Real data: Hinode/XRT and EIS
	Discussion and conclusions
	References

