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Abstract: The classic view that neural populations in sensory cortices preferentially en-
code responses to incoming stimuli has been strongly challenged by recent experimental
studies. Despite the fact that a large fraction of variance of visual responses in rodents can
be attributed to behavioral state and movements, trial-history, and salience, the effects of
contextual modulations and expectations on sensory-evoked responses in visual and associ-
ation areas remain elusive. Here, we present a comprehensive experimental and theoretical
study showing that hierarchically connected visual and association areas differentially en-
code the temporal context and expectation of naturalistic visual stimuli, consistent with
the theory of hierarchical predictive coding. We measured neural responses to expected
and unexpected sequences of natural scenes in the primary visual cortex (V1), the poste-
rior medial higher order visual area (PM), and retrosplenial cortex (RSP) using 2-photon
imaging in behaving mice collected through the Allen Institute Mindscope’s OpenScope
program. We found that information about image identity in neural population activity
depended on the temporal context of transitions preceding each scene, and decreased along
the hierarchy. Furthermore, our analyses revealed that the conjunctive encoding of tem-
poral context and image identity was modulated by expectations of sequential events. In
V1 and PM, we found enhanced and specific responses to unexpected oddball images, sig-
naling stimulus-specific expectation violation. In contrast, in RSP the population response
to oddball presentation recapitulated the missing expected image rather than the oddball
image. These differential responses along the hierarchy are consistent with classic theories
of hierarchical predictive coding whereby higher areas encode predictions and lower areas
encode deviations from expectation. We further found evidence for drift in visual responses
on the timescale of minutes. Although activity drift was present in all areas, population
responses in V1 and PM, but not in RSP, maintained stable encoding of visual information
and representational geometry. Instead we found that RSP drift was independent of stim-
ulus information, suggesting a role in generating an internal model of the environment in
the temporal domain. Overall, our results establish temporal context and expectation as
substantial encoding dimensions in the visual cortex subject to fast representational drift
and suggest that hierarchically connected areas instantiate a predictive coding mechanism.
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1 Introduction

Neural populations in the visual cortical hierarchy encode specific features of visual stimuli,
such as orientation, spatial frequency, and direction of movement [Hubel and Wiesel, 1959,
1962, Siegle et al., 2019, de Vries et al., 2020]. Recent studies have also shown more diverse
encoding capacities of the visual cortex. For example, activity in visual cortex exhibits
strong modulation by changes in behavioral state [Niell and Stryker, 2010, Stringer et al.,
2018, Musall et al., 2019, Salkoff et al., 2020, Nestvogel and McCormick, 2022, Poort et al.,
2015], arousal [McGinley et al., 2015], and attention [Ito and Gilbert, 1999, Thiele et al.,
2009, True, 2001, McAdams and Reid, 2005, Poort et al., 2021]. Trial and reward history
have also been shown to influence visual responses [McMahon and Olson, 2007, Meyer
et al., 2014, Nikolić et al., 2009, Shuler and Bear, 2006, Ramadan et al., 2022, Gillon
et al., 2021], indicating that sensory coding is influenced not only by current state but
also prior experience and expectations. Neurons in primary visual cortex (V1) learn short
spatiotemporal sequences of stimuli upon repeated presentation [Gavornik and Bear, 2014],
and enhance their activity for unexpected oddball images, as well as at the start of a novel
sequence [Homann et al., 2022, Kim et al., 2019b].

Predictive coding has been proposed as a theory that can account for contextual mod-
ulation of sensory responses [Khan et al., 2018, Keller and Mrsic-Flogel, 2018], framing
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sensory perception as a process of active inference. The predictive coding framework pro-
poses that connections between hierarchically organized areas operate to construct a model
of the environment by comparing bottom-up sensory inputs with top-down prior experi-
ence and expectations to continually update the representation of the environment [Rao
and Ballard, 1999, Bastos et al., 2012, Friston, 2005]. Accordingly, areas providing feed-
back to sensory regions should represent learned expectations, while early sensory areas
should encode deviations from these expectations.

Retrosplenial cortex is an association area providing feedback input to the visual cortex
[Harris et al., 2019, Van Groen and Wyss, 2003, Wyss and Van Groen, 1992], and in turn re-
ceives input from visual cortex [Sit and Goard, 2022, Murakami et al., 2015, Van Groen and
Wyss, 2003] as well as the hippocampus and other medial temporal areas [Sugar et al., 2011,
Wyss and Van Groen, 1992], serving as a bridge between sensory and cognitive representa-
tions. The retrosplenial cortex is involved in memory, spatial navigation, and prospective
thinking [Vann et al., 2009, Alexander and Nitz, 2015]. It was recently proposed that the
diverse functions ascribed to retrosplenial cortex could be unified under a theory such as the
predictive coding framework, based on its ability to generate predictions through integra-
tion of sequences of stimuli experienced in time [Alexander et al., 2022]. In support of this
idea, [Makino and Komiyama, 2015] showed that top-down projections from retrosplenial
cortex to V1 are strengthened with experience, and develop a ramping profile predictive of
a learned event.

One potential challenge to studying the mechanisms of predictive coding is the presence
of representational drift, a gradual change in neural representations which has been found in
multiple brain regions [Schoonover et al., 2021b, Driscoll et al., 2017], including V1 [Deitch
et al., 2021, Aitken et al., 2022]. Predictive coding relies on the accuracy of bottom up
sensory representations, such that internal models can be updated when the environment
deviates from expectations. Accordingly, instability in representations may interfere with
accurate updating. However, the presence of drift is not incompatible with predictive
coding, and instead may be critically related. Representational drift has been proposed
as a substrate for continual learning [Aitken et al., 2022, Rule et al., 2019, Driscoll et al.,
2022], which is critical to updating in predictive coding. Even in primary visual cortex,
drift in representations may reflect meaningful contextual differences between repeated
presentations of the same stimulus that need to be incorporated into internal models, or be
reflective of plasticity in other parts of the network [Rule et al., 2020].

The effects of temporal context, expectation, and drift have been investigated so far in
different experimental setups. Here, we perform a comprehensive experimental and com-
putational analysis uncovering the interaction between temporal context, expectation and
representational drift on visual responses along three hierarchically connected areas: the
primary visual cortex (V1), the posterior medial higher order visual area (PM), and retros-
plenial cortex (RSP). Area PM sits between V1 and RSP and is highly interconnected with
both areas [Wang et al., 2012, Harris et al., 2019, Van Groen and Wyss, 2003], raising the
possibility that PM relays information about natural scene statistics to RSP and informa-
tion about learned expectations back to V1, and may display intermediate characteristics
between the two. We recorded neural activity in these areas as mice viewed repeated natural
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image sequences, image sequence violations, and image pairs outside the repeated sequence
order. We found that visual responses encoded three main effects: temporal context (re-
cent scene transition history), expectation (sequence violation), and representational drift.
The features exhibited by such contextual effects were strongly area-specific and revealed
complex interactions, consistent with the theory of hierarchial predictive coding.

First, we found that natural image encoding depended on the history of transitions
preceding each image (temporal context) and cortical regions. Decodability of images iden-
tities decreased along the cortical hierarchy. Specifically, neurons in V1 and PM could
clearly encode image identity in any temporal contexts, while in RSP, decodability of im-
age identity decreased significantly. Generally, within the same region, information about
image identity was enhanced when images were presented in pairs or in longer sequences,
compared to when they were presented in randomized order in V1 and PM. The contri-
bution of temporal context to encoding of image identity, however, varied across cortical
regions.

Second, we found that visual responses were strongly affected by expectations. In the
main sequence block, a decoder trained on visual responses in V1 and PM could robustly
distinguish expected from unexpected images when the expected image was replaced with
an unexpected oddball one, and oddball responses were strongly enhanced compared to ex-
pected ones. However, population responses to oddballs in RSP recapitulated the expected
image that was replaced. These results are consistent with predictive coding, with sensory
areas (V1 and PM) signaling deviations from expectation, and higher order areas (RSP)
recapitulating predictions based on expectations and on past history.

Third, we found a strong drift of population activity on the timescale of minutes within
the recording session, whose features differed along the hierarchy. In V1 and PM, we
found that drift, defined by a significant encoding of elapsed time within the session, also
preserved the representational geometry of the evoked responses, consistent with previous
experimental and modeling studies [Deitch et al., 2021, Aitken et al., 2021, Qin et al., 2023].
On the other hand, RSP showed significant encoding of elapsed time within a session, but
the representational geometry of evoked responses to sensory stimuli did not generalize
across epochs, suggesting that relevant dimensions for RSP activity may not be stimulus
specific, but potentially more related to overall environmental context. Importantly, we
found that drift could not be explained away by behavioral measures in any of the three
areas.

Together, these results provide evidence that temporal context and expectation are
differentially represented across hierarchically connected areas in a manner consistent with
the predictive coding framework, with V1 and PM encoding image identities and transitions
as well as image sequence violations and RSP encoding expected stimuli. The hierarchical
features of representational drift were also consistent with predictive coding, maintaining
stable encoding of bottom-up sensory representations. The complex pattern of coding we
observed across V1, PM, and RSP, provides a more complete picture of the interactions
between temporal context, expectation, and representational drift at different levels of a
hierarchically connected circuit.

– 3 –

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2023. ; https://doi.org/10.1101/2023.06.02.543483doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.02.543483
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Results

We set out to investigate how neural responses to natural images depend on temporal con-
text and expectation, and whether the effects of temporal context differ across levels of an
interconnected hierarchy. We defined temporal context as the set of transitions preceding
each presented image, representing the short-term history of stimulus presentation. We de-
signed a stimulus protocol in which four natural images were presented in different temporal
contexts (250ms stimulus with no interleaving gray screen): either in random order (‘ran-
domized control’), or in a four image main sequence (ABCD, denoted ‘sequence’ hereafter),
or in randomized pairs of images, recapitulating the transitions between images in the main
sequence (‘transition control,’ with AB, BC, CD, DA, CXi, XiA pairs randomly interleaved,
for i = 1, . . . , 10 oddballs). In the "sequence" block, ten rare, “oddball” images randomly
replaced the fourth image of the set to form an unexpected sequence (ABCX; Fig. 1b).
In contrast to previous studies investigating the effects of stimulus history on responses in
visual cortex [Kim et al., 2019a], we used natural images instead of gabor patches. Each
session featured four blocks, where randomized control occurred both as the first and the
last block, and sequence and transition control blocks as second and third, respectively.
Experiments using this stimulus protocol were conducted through the OpenScope program
at the Allen Institute using a standardized pipeline for in vivo 2-photon calcium imaging
(Fig. 1a).

Figure 1 (next page). Presenting images in a variety of stimulus blocks de-
termines single cell activity along the visual hierarchy a) Experimental pipeline
from developing transgenic mice, to recording population responses in the visual cortex, to
finally an open dataset available to the public in the DANDI archive.b) Mice passively view
natural images in different stimulus blocks while neural activity is recorded from V1, PM,
or RSP. Images are either presented in random order (yellow and green) or in common,
expected sequences with the occasional oddball interleaved (red), or in transition control
(blue) which only preserves pairwise transitions. c) Single cell PSTHs to natural images in
each stimulus blocks. Each row shows a representative average response from each recorded
area, with the shaded area showing the variance across trials. i-ii: Superficial V1 neurons.
iii- iv: Deep V1 neurons. v: Superficial PM neuron. vi: Deep PM neuron. vii: Superficial
RSP neuron. viii: Deep RSP neuron. d) One-way ANCOVA results, accounting for the
locomotion of the animal. Left: A small fraction of cells in V1, PM, and RSP are selective
to expected images in all stimulus blocks. Right: A larger fraction of cells in V1 and PM are
selective to unexpected images in the sequence and transition control blocks as compared
to the randomized control ones. Error bars indicate standard deviation across depths. e)
Using responses to expected images (ABCD) and unexpected images (X), we can assess
whether a cell is selective to the stimulus blocks in which the image was presented. Error
bars indicate standard deviation across different images. f) Histogram of Oddball Response
Indices calculated for each cell in the 3 areas.
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Figure 1.

2.1 Mixed selectivity in single-cell responses

Populations of excitatory neurons were measured across multiple depths (range: 125 - 450
µm), with a total of 2299 neurons in V1, 2071 neurons in PM, and 1628 neurons in RSP.
We defined the ‘stimulus block’ as one of the four blocks within each session, presented in
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the following order: randomized ctrl pre, main sequence, transition ctrl, randomized ctrl
post (Fig. 1b). Single cell responses across all areas and conditions were highly hetero-
geneous (Fig. 1c and d). Interestingly, we found hints of temporal context dependence
and expectation in evoked responses already at the single cell level, suggesting complex
mixed selectivity to multiple aspects of the experiment. In V1 and PM, we found cells
that responded strongly to the presentation of a preferred ’main sequence’ image (Fig. 1c
rows i-vii) and/or to the unexpected ’oddball’ image Xi (for i = 1, . . . , 10; Fig. 1c rows
iv,v). Whereas in RSP we found some cells that were selective to main sequence images,
but not oddball ones (row vii), as well as cells that were not selective to any image but were
selective to the block in which the image was presented in. This block selectivity extended
to all areas for both during expected and unexpected images (Fig. 1e). Overall, a small
fraction of cells were selective to expected images in all stimulus blocks (Fig. 1d). More-
over, in V1 and PM but not in RSP, larger fractions of cells were selective to unexpected
images and responses to unexpected images were stronger than those to expected images
(Fig. 1f), consistent with a bottom-up prediction error in the hierarchical predictive coding
theory. Neurons in RSP were the least selective to expected and unexpected images among
the areas. Interestingly, we found a large fraction of neurons across all 3 areas that were
selective to the block in which the image was presented in (Fig. 1e). To understand how
the interactions between expectation and temporal context shape visual representations,
we further performed a series of population analyses based on cross-validated classification,
described in the sections below.

2.2 Natural scene encoding varies with the transition history along the cortical
hierarchy

First we set out to investigate how natural scenes are encoded across the visual hierarchy.
We constructed cross-validated linear classifiers to decode image identity using population
responses within each stimulus block (randomized control pre and post, transition control,
main sequence). We used a linear classifier as it can be interpreted as representing the
activity of a downstream neuron receiving projections from the observed populations; al-
though all our results were confirmed using nonlinear classifiers. Crucially, here and in
all subsequent decoding analyses, when comparing classification accuracy between condi-
tions, we always matched the sample sizes of the respective training sets. Furthermore, we
controlled for an animal’s behavioral state by comparing resting and running epochs.

We first focused on decoding the expected main sequence images within each stimulus
blocks (ABCD; Fig. 2a). We found significant decoding of natural image identity during
all of the stimulus blocks (sequence, transition control, and randomized control blocks) for
all depths of V1 (Fig. 2b,d) and PM (Fig. 2d). However, in RSP, only supragranular
(Fig. 2c) layers, but not infragranular layers significantly encoded the identity of expected
images during the sequence and transition control stimulus blocks (Fig. 2d). During the
randomized control blocks, we were not able to decode expected image identity in RSP
across all depths. We show the full encoding accuracies across all stimulus blocks in both
superficial and deep layers of V1, PM, and RSP in (Fig. S2).

Overall, we found that the decoding performance in all of the stimulus blocks decreased
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along the visual processing hierarchy (Fig. 2d). While decoding of natural scenes was mod-
ulated by behavior, this general trend was preserved (Fig. S3). A series of control analysis
on publicly available datasets from V1 and PM [de Vries et al., 2020, Siegle et al., 2021]
further confirmed the significant encoding of natural images in both V1 and PM with de-
creased accuracy in PM. However, we also observed an overall decrease in image encoding
accuracy in datasets obtained by calcium imaging compared to eletrophysiological record-
ings, suggesting limitations of the calcium imaging technique compared to electrophysiology
(Fig. S1).

Interestingly, even within the same region, decoding accuracy of image identities varied
significantly with ‘temporal context’ immediately preceding the presented image, defined
by the transitions between consecutive images. Generally, image encoding was more pro-
nounced in the main sequence and transition blocks, compared to the randomized control
blocks. In V1 and superficial RSP, both the sequence and transition blocks showed sig-
nificantly higher image decodability than the randomized controls, while in PM, only the
transition control produced significantly higher decodability compared to the randomized
controls. In infragranular layers of RSP, the encoding accuracy was very low for all stimu-
lus blocks. Note that in the transition control block, the transition preceding each decoded
image is fixed and image-specific (i.e., A always precedes B, B always precedes C, and so on;
Fig. 1b). In the main sequence block, on the other hand, not only the transition immediately
preceding the decoded image, but all transitions were fixed and image-specific. Therefore,
the comparable encoding accuracy levels during the transition control and sequence blocks
across all regions, along with the significant coding differences between transition control
and randomized control, suggests that temporal context immediately preceding the pre-
sented image has a higher impact on encoding of natural scenes than extended temporal
contexts (more than one image transition preceding the presented image). However, the
significantly accurate identification of natural scenes in the randomized control block in V1
and PM emphasizes that the identity of present images is clearly encoded in V1 and PM
responses without the temporal context of the preceding images, which only strengthens
the present image representations in the neural activity.

Next, we asked whether encoding of natural image identity differed between expected
and unexpected (oddball) images. We used cross-validated linear classifiers to decode odd-
ball image identity from population responses within each stimulus block (Fig. 2e). We
found that V1 (Fig. 2f) and PM, but not RSP (Fig. 2g), displayed significant encoding of
oddball image identity in all stimulus blocks, with similar decoding accuracies compared to
the decoding of main sequence image identity ABCD. Unlike in the case for the expected
images, for oddball images, the decodability was not significantly higher than the chance
level even in superficial RSP (Fig. 2h).

Contrary to decoding expected main sequence images ABCD from each other, where
the temporal context of each decoded image (i.e., all preceding transitions) is fixed and
image-specific, all oddball images Xi were preceded by the same image C, thus eliminating
the image-specificity of the transitions. Therefore, the relative improvement (Fig. 2d) in
decoding accuracy of images ABCD from randomized control to transition control may be
ascribed to the fixed image-specific transitions preceding each image. On the other hand,
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Figure 2. Decoding of natural images across different stimulus blocks. a) Schematic
showing linearly separable population responses to natural images presented in the main-sequence.
b & c) Example confusion matrices show significant decoding of main-sequence images using super-
ficial V1 or RSP population responses during the sequence stimulus block. d) Significant decoding,
denoted by the gray asterisk (t-test compared to shuffle distribution, p < 0.05), of expected images
along the visual hierarchy in different stimulus blocks. All depths of V1 and superficial RSP, show
an increase in decoding performance for the sequence and transition control blocks relative to ran-
domized control (black asterisk, Wilcoxon signed-rank test, p < 0.05). In PM, only the transition
control block was significantly different compared to randomized control. Deep RSP remains at
chance level for all stimulus blocks. Randomized control pre not shown for clarity. e) Schematic
showing linearly separable population responses to unexpected natural images. f & g) Example
confusion matrices show significant decoding of unexpected oddball images using V1 population
responses during the sequence stimulus block, but not for RSP population responses. h) V1 and
PM show significant decoding of unexpected natural images in all stimulus blocks (gray asterisk).
V1 shows an increase of decoding performance when unexpected images disrupt 2-image sequences
and even more so to 4 image sequences, as compared to randomized control. In PM, decoding
performance of unexpected images is larger for the sequence block compared to transition control
and randomized control, which are statistically insignificant from each other. Superficial RSP shows
slight decoding performance to oddball images in the sequence block, but no others. Deep RSP
remains at chance level.

encoding of the oddball image identity cannot depend on the image-specific transitions
preceding oddballs, since all oddballs were preceded by the same image C. Indeed, in V1 and
PM, we observed that oddball identity can be decoded significantly better in the sequence
blocks compared not only to the randomized control, but also to the transition control block
(Fig. 2h), consistent with the increased single-cell selectivities observed in V1 and PM in
(Fig. 1d). We thus hypothesized that the increased decodability of oddball identities in the
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lower cortical areas V1 and PM during the sequence block may be due to their unexpected
presentations in a learned sequences. We explore the potential relation of image encoding
to disruptions in expectation in section 2.3 and in Figure 3.

2.3 Unexpected events disrupt encoding of natural scenes in RSP

In V1 and PM, single-cell image selectivity was larger for oddball responses Xi compared
to main sequence images ABCD (Fig. 1d), suggesting the presence of a surprise signal; on
the other hand, RSP cells did not exhibit significant selectivity for oddball identity. We
performed a series of population classification analysis to further characterize responses to
unexpected images across areas and stimulus blocks (Fig. 2e-h). In V1 and PM, we found
significant encoding of oddball images in all of the stimulus blocks (Fig. 2f). Stronger en-
coding during the sequence block compared to transition control shows that the temporal
context of transitions preceding the decoded image enhance image encoding for unexpected
images (Fig. 2h). On the contrary, we found that information about oddball image identity
was not present in RSP population responses (Fig. 2g). Comparing to the small but sig-
nificant decoding of expected images ABCD in RSP during the sequence block (Fig. 2c-d),
the lack of information about unexpected oddball image identity suggests that expectations
might affect RSP responses in a complex and different way, compared to V1 and PM.

We hypothesized that the decrease in unexpected image decoding compared to expected
images in RSP could be due to predictive coding effects, whereas during the presentation of
the unexpected sequence ABCX, the RSP population evokes a representation of the missing
expected image D, in place of the unexpected Xi. We first compared the representational
geometry of the population responses to expected ABCD sequences vs. unexpected ABCX
sequences across areas. In V1, we found that population responses encoded a unique rep-
resentation of the oddball X, distinct from that of the missing expected image D (Fig. 3b;
similar representations exist in PM, not shown). However, in RSP, the oddball represen-
tation was entirely overlapping with that of the missing image D (Fig 3c), suggesting that
RSP might encode for the missing image D when presented the oddball during the sequence
block.

To investigate the origin of this difference within the visual processing hierarchy, we
simultaneously decoded both main sequence and oddball images within the sequence stim-
ulus block. We hypothesized that, if oddball X evoked a representation of the missing D,
the false positive rate of a decoder trained to classify Xi from main sequence images ABCD
would be larger for D than for the other ABC images, and indistinguishable from the D
and X hit rates Jezzini et al. [2013]. We constructed a classifier using population responses
to images that directly preceded an unexpected oddball image (..ABCDABCXABCD...;
Fig. 3a). The qualitative picture from the PCA analysis (Fig. 3b-c) was confirmed by
our decoding results. Population responses in V1 and PM were able to discriminate be-
tween expected and unexpected images (Fig. 3d, e, f, V1 and PM). In superficial RSP,
we found that the false positive rate of misclassifying oddball Xi as the missing D was
larger than misclassification with ABC (Fig. 3e, f, RSP). We performed a more granular
pairwise analysis where we tested binary classification of each expected image (A, B, C,
or D) vs oddballs X, and found that, while responses to images A, B, and C could be
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Figure 3. Decoding responses to expected and unexpected natural images reveals
possible predictive coding mechanism in RSP a) Schematic showing the task of classifier.
b) PCA of V1 PSTHs for the sequences immediately preceding and following an unexpected event
(Xi). Oddball representation in PCA is distinct from expected image D. c) PCA of superficial RSP
PSTHs for the sequences immediately preceding and following an unexpected event (X). Oddball
representation in PCA space overlaps that of the expected image D. d) Significant decoding of
main-sequence and oddball images along the visual hierarchy in the sequence. Hash pattern for
RSP denotes deep layers (> 350 µm) e) Example confusion matrices from superficial V1, superficial
PM, and superficial/deep RSP. f) Histograms per area of the relative miss rates of main sequence
images (A instead of B, B instead of C, etc) compared to that misclassifying images D and X.
Superficial RSP reveals a significant increase in the DX miss-rate relative to the ABCD miss-rate.

discriminated from responses to the oddballs, responses to image D was indistinguishable
from the oddballs in RSP (Fig. S4). We concluded that in RSP, the unexpected oddball
image Xi evoked a representation that is indistinguishable from the missing image D. These
results are consistent with an interpretation whereby RSP instantiates a predictive coding
mechanism by evoking information about expected, but missing, visual signals (Fig 3c).

2.4 Population activity encodes information about stimulus blocks

The differential encoding of natural images across stimulus blocks naturally led us to ask
whether there is contextual information on top of the representation of natural image iden-
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tity or transition identity. We first tested whether single-cell responses could discriminate
whether the same image was presented in different blocks (‘randomized control pre’,‘main
sequence’,‘transition control’,‘randomized control post’). We found that single cells in all
areas exhibited very pronounced selectivity for stimulus blocks, comparable to the selec-
tivity for main sequence image identity (Fig. 1d and e). Remarkably, whereas RSP single
cell responses were not selective for image identity (Fig. 1d), they strongly encoded the
stimulus block each image was presented in (Fig. 1e).

To further quantify this, cross-validated linear classifiers were constructed based on
population responses to the same image in each of six epochs that were constructed from
the four stimulus blocks by splitting the sequence block into three epochs (‘early seq’,
‘middle seq’, ‘late seq’) (Fig. 4a). Using population responses to each of the main-sequence
and oddball images, we were able to discriminate the stimulus block in which an image
was presented in. This contextual information was present across all layers and depths
recorded in V1 and PM (Fig. 4b) and was encoded on the comparable level for main
sequence (expected) vs oddball (unexpected) images (Fig. S5a-d). In RSP, the contextual
information is present in superficial layers but not in deep layers (Fig. 4b).

2.5 Representational drift and within-sequence generalization

What is the origin of the strong encoding of information about stimulus blocks? We noticed
that randomized control pre and post blocks were discriminable from each other, yet, they
consisted in identical experimental protocols (i.e., images presented in the same randomized
order), their only difference being the time within the session where they occurred (begin-
ning and end of each session, respectively). This suggested that the information about
stimulus blocks was not related to a difference in image transition history, but rather to a
representation of the elapsed time within the session. We investigated this effect on a faster
timescales by testing whether information about the passing of time was present within the
sequence block, by constructing a cross-validated classifiers to decode which epoch within
the sequence block an image was presented in (Fig. 4a). In all three areas (except for deep
RSP), we observed significant decoding of the epoch in which an image was presented, which
we interpreted as evidence of a consistent activity drift within a session on the timescales of
minutes (Fig. 4a). We thus hypothesized that the encoding of stimulus block information
may be partially due to activity drift occurring over the course of the recording session
[Aitken et al., 2021]. While previous examples of drift showed changes over the course of
days and weeks [Aitken et al., 2021, Schoonover et al., 2021a, Marks and Goard, 2021], here
we investigated whether drift occurred rapidly within a single 33-minute session [Deitch
et al., 2021].

We thus found the consistent presence of activity drift in V1, PM, and superficial RSP,
defined as a significant discriminability of the epoch within a session where the same stimuli
were presented. We then investigated the relationship between this activity drift and the
representational geometry of image identity. We hypothesized the following two alternative
scenarios for this interaction. We denoted representational drift the case where a drift in
activity maintained the representational geometry of image identity(Fig. 4c), and a simple
activity drift the case where changes occurred that disrupted the representational geometry.
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Figure 4. Generalization performance under representational drift. a) Schematic showing
linearly separable population responses to the same natural image presented in different stimulus
blocks. Decoding the time or stimulus block in which the same image is presented is our measure
of representational drift. b) Example confusion matrices showing significant decoding of stimulus
block using population responses from V1, PM, and superficial RSP. Representations from Deep
RSP are unable to perform the decoding task. Epochs include the four main stimulus blocks, plus
2 additional epochs from early and late in the sequence block. c) Schematic showing population
responses to main sequence images in different epochs of the session, with training and testing
occurring using data from different stimulus blocks (epochs). d) Matrices show the generalization
performance between epochs of the same sessions as panel b. Each element in the matrix represents
a diagonal of a confusion matrix. In V1, representations of main sequence images generalize across
stimulus blocks, while in PM, this phenomenon is less persistent. For superfical and deep RSP,
generalization does not manifest. e) Example representational similarity matrices for V1, PM, and
RSP show the correlation structure within and between stimulus blocks. Trials of main-sequence
images are reordered to show correlations between images. V1 & PM reveal a strong correlational
structure of within-epoch population responses, with comparable correlations for between-epoch
blocks. Representational similarity from superficial RSP reveals a strong correlation of within-
epoch population responses, with little to no correlation between-epoch blocks. Deep RSP shows
little correlation between trials. All example confusion matrices, generalization matrices, and rep-
resentational similarity matrices are of the same session per area.
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We found evidence for representational drift in V1 and PM; while superficial RSP exhibited
a simple activity drift which did not preserve representations (Fig. 4d). Let us examine
more in details these findings (Fig. 4).

We investigated the evolution of the representational geometry of expected natural im-
ages under drift. Two alternative scenarios may arise: In the first scenario, the drift may
occur in directions orthogonal to the stimulus-encoding ones, leading to a stable represen-
tation of image identity which can generalize across different epochs and be consistently
read out by a downstream neuron, represented by a linear classifier. In the second scenario,
the drift direction may overlap with the stimulus-coding axis, thus leading to epoch-specific
representations which cannot generalize across epochs. We compared these two scenarios
in PCA space, where we found that the representational geometry of the main sequence,
defined as the relative position of responses to the ABCD images, is preserved across epochs
in V1 (Fig. S6 c) and PM, but not in RSP (Fig. S6 f). This result is also replicated in
the representational similarity plots of V1 and PM vs RSP, where large correlations on
the off-diagonal blocks in V1 and PM suggest generalization across epochs, while the weak
correlation in off-diagonal blocks in RSP suggests lack of generalization across epochs (Fig.
4e).

To quantify the difference between the two scenarios we trained linear classifiers on trials
from one epoch and test their generalization performance on trials from a different epoch
Bernardi et al. [2020]. We found that linearly separable image identity representations in
V1 and PM, but not in RSP, generalized across epochs (Fig. 4d, Fig. S5e-h). These results
show that visual representations in V1 and PM, but not RSP, maintain a consistent linear
readout available to downstream neurons, providing a stable representational drift occurring
on the timescale of minutes, consistent with recent studies [Aitken et al., 2021]. Visual
responses in RSP, although they significantly encoded information about main sequence
image identity, did not maintain the representational geometry and thus were subject to
simple activity drift. Critically, these results did not depend on whether the animal was
running or at rest. We performed the same decoding analyses but conditioning on trials
where the animal was at rest and found the same stable representational drift in V1 and
PM, but activity drift in RSP (Fig. S6).

3 Discussion

We found that encoding of natural scenes varies along the cortical hierarchy as well as its
temporal context, namely, on the history of image-specific transitions preceding each scene
(Fig. 2). Image encoding was strongly modulated by expectations, consistent with theo-
ries of hierarchical predictive coding, with increased responses to unexpected compared to
expected scenes in V1 and PM at the bottom of the visual hierarchy (feedforward error
propagation); while in RSP, at the top of the hierarchy, responses to unexpected scenes
recapitulated the missing image (feedback predictions). Finally, we found evidence for
representational drift in V1 and PM, where evoked responses maintained a faithful rep-
resentational geometry despite changes in activity; but not in RSP, where activity drifts
disrupted the geometry of responses. Taken together, these results suggest that visual re-
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sponses in the cortical hierarchy are affected by the interaction between temporal context,
representational drift, and expectations, in a way consistent with predictive coding.

We found that the stimulus block in which an image was presented in (randomized
control pre and post vs early, middle, and late phases of sequence vs transition control)
was encoded strongly in the neural populations of V1, PM, and even RSP (Fig. 1e, Fig.
4), the latter having similar context-dependent decoding accuracy as the other areas, de-
spite much lower decoding performance of identities of expected images and chance-level
decoding performance to unexpected images. One interpretation of this finding is that of
fast representational drift occurring on the timescales of minutes, consistent with recent
studies [Deitch et al., 2021]. The difference in visual representations across stimulus blocks
may include other effects beyond representational drift. In particular, different blocks differ
in how many images a sequence comprised (1 image in the randomized control, 2 images
in the transition control, and 4 in the main sequence). History effects extending beyond
pairwise transitions may thus explain the discriminability of sequence vs transition control.
This was observed in sequences of randomized gabor patches [Kim et al., 2019a], but not
for extended sequences of natural images. A recent study suggested that representational
drift might be explained away by changes in an animal’s behavioral state (e.g., running vs.
resting) occurring within a single recording session Sadeh and Clopath [2022]. However, we
found that representational drift persisted even after controlling for changes in an animal’s
behavioral state (Fig. S6), suggesting that it may represent an important feature of cortical
dynamics.

The transition between successive flashed images is an essential part of the encoding of
naturalistic stimuli in 2-photon datasets. Past studies from the Allen Institute have reported
responses to naturalistic images that are presented in random order [de Vries et al., 2020,
Siegle et al., 2021]. Although the decoding of image identity was significantly stronger
in electrophysiological recordings, we showed that our results are consistent with calcium
imaging recordings from those publicly available datasets (Fig. S1). Other studies have
reported responses to naturalistic images that are presented with an interleaving gray screen
[Kowalewski et al., 2021], thus neglecting information about transitions between scenes
encoding stimulus responses dynamics. Previous studies suggested that only the preceding
image matters for distinguishing between sequential image presentations [Nikolić et al.,
2009]. However, in V1 and PM, we found a significant increase in decoding performance
of unexpected images in the four-image sequence compared to randomized control and
two-image transition control blocks, highlighting the potential role of longer sequences in
enhancing encoding of visual stimuli.

Our results on representational drift are consistent with previous studies in V1 and
PM [Deitch et al., 2021, Marks and Goard, 2021, Aitken et al., 2021], and extend them to
RSP. Our measure of representational drift - time decoding and cross-epoch generalization
performance - allows us to simultaneously observe whether drift is occurring, but it also
allows us to test for generalization in the population response. This idea is fundamentally
linked to the problem of representational drift: Can neural populations faithfully encode
for persistent representations while being subject to drift in activity? We found that rep-
resentations of expected natural images in V1 and PM generalize despite drift, while RSP
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does not, suggesting that representational drift features may be area-specific.
We found that visual responses along the hierarchy were strongly affected by expec-

tations in a way that is consistent with the classic theory of hierarchical predictive coding
[Rao and Ballard, 1999]. We investigated this effect by examining differences in decoding
performances of expected vs unexpected natural scenes along the visual hierarchy. First,
we found that population responses in V1 and PM, but not RSP, significantly encoded
unexpected (oddball) images identity across all stimulus blocks (Fig. 2h). Moreover, single
cell selectivity for oddball images was stronger than for the main sequence images ABCD in
V1 and PM (Fig. 1d). Furthermore, unexpected stimuli were encoded significantly better
in the sequence block than in both the transition ctrl and the randomized ctrl for both
V1 and PM (Fig. 2h). We interpret this finding within the paradigm of predictive cod-
ing, following recent experimental evidence in [Gillon et al., 2021]. In the sequence block,
violations of the expected image D cause prediction error signals that are not present in
the transition control block, which shuffles the expected sequence of images into a random
set of pairwise images. No expectation can be formed in the transition control beyond the
pairwise transition.

Combining expected and unexpected stimuli paradigms into one classification task (Fig.
3), we found that V1 and PM significantly encoded information about both expected (main-
sequence) vs unexpected (oddball) images. In RSP, population responses to the unexpected
oddball images were indistinguishable from responses to the expected, but missing, image
D (Fig. 3c). One interpretation of this finding is that RSP encodes for the expectation
of the missing image, rather than what was actually shown. Indeed, we found that RSP
responses do not encode for distinct oddball representations at all (Fig. 2g) but rather
confound oddball responses with the missing D, but not A,B, or C. Our results suggest
that expectation may play a role in RSP, consistent with hierarchical predictive coding
theory which posits higher cortical areas to encode prediction [Rao and Ballard, 1999,
Keller et al., 2012].

4 Methods

4.1 Experimental data

All experiments and procedures were performed in accordance with protocols approved by
the Allen Institute Animal Care and Use Committee. The dataset used in this paper was
collected as part of the Allen Institute for Brain Science’s OpenScope initiative. Data were
collected and processed using the Allen Brain Observatory data collection and processing
pipelines [de Vries et al., 2020]. Here we include a brief description on experimental proce-
dure. The full details on the data collection and process are described in [de Vries et al.,
2020].

Transgenic mice expressing GCaMP6f in excitatory cells were used (Slc17a7-IRES2-Cre
x CaMk2-tTA x Ai93(GCaMP6f). Only sessions that pass quality control criteria described
in [de Vries et al., 2020] were included in our analyses, resulting in total N = 14 mice, with 16
sessions from V1 (2299 neurons), 23 sessions from PM (2071 neurons), and 12 sessions from
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RSP (1628 neurons). Two-photon calcium imaging was performed a Nikon A1R MP+, with
imaging depths ranging 125 - 450µm to capture neuronal activities across cortical layers.

Mice were injected with a retrograde tracer (AAVRetro.CAG.mRuby3) in either V1 or
RSP, however this data was not used in our study. No differences were observed in labeled
vs unlabeled cells for any of the quantifications in this manuscript. Information on the
identity of retrogradely labeled cells is available upon request.

Each mouse experienced 4 imaging sessions, each with the same stimulus protocol.
Two sessions were recorded in one cortical area (ex: V1, PM, or RSP) at 2 cortical depths,
typically around 175µm (approximately layer 2/3) and 375µm (approximately layer 5),
and two sessions were recorded at similar depths in a different cortical area. Depth was
chosen based on cre-line analysis performed in [de Vries et al., 2020] and takes into account
brain compression due to implant and off-normal imaging axis. Areas were chosen such that
the injection site for retrograde labeling was never imaged. For the full details on on animal
surgery, habituation, quality control, data collection, and post-collection data processing,
please see [de Vries et al., 2020].

The dataset along with the code for analyses included in this paper is available at
https://github.com/AllenInstitute/openscope_temporal_context, and the full dataset
is publicly available in Neurodata Without Borders (NWB) format in the DANDI Archive
Lecoq et al. [2023].

4.2 Stimulus protocol

Visual stimuli consisted of a subset of the natural images publicly available Allen Brain Ob-
servatory dataset (https://observatory.brain-map.org/visualcoding/;[de Vries et al.,
2020]). The images were presented in grayscale, contrast normalized, matched to have equal
mean luminance, and resized to 1,174 × 918 pixels. Four natural images (Brain Observa-
tory image IDs: im013, im026, im068, im078) were used to form a familiar sequence of four
images (ABCD), and ten additional images served as unexpected oddball images (im06,
im017, im022, im051, im071, im089, im103, im110, im111, im112).

Stimuli were presented in 4 distinct blocks over the course of a 1 hour imaging session
(64 minutes). Individual stimuli were presented for 250ms with no intervening gray period
(i.e. one image after the other) in all blocks. Blocks were separated by 60 seconds of gray
screen in which spontaneous activity could be measured. A schematic of the stimulus design
is shown in Fig. 1b .

In the Randomized Control blocks, the 14 images (4 sequence images and 10 oddball
images) were presented in random order. Each image was shown for 250ms with no inter-
vening gray screen. Each image was presented 30 times. The randomized control stimulus
block was presented once at the beginning of the session and once at the end of the session
and lasted 0.25s x 30 repeats = 105 seconds each time.

In the Sequence block, the series of expected sequence images ABCD was repeated 20
times per cycle, with an oddball image randomly taking the place of image D after 10-19
repeats of the sequence in that cycle. The number of sequence repeats between oddball
image occurrences was random and not predictable. Each oddball image was presented a
total of 10 times throughout the sequence block, for a total of 100 cycles (10 images x 10
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cycles each). Each main sequence image ABCD was presented 20 times per cycle x 100
cycles = 2000 times. The entire block lasted 33.33 minutes.

In the Transition Control block, the image transitions shown in the Sequence block were
preserved as pairs (AB, BC, CD, DA, CXi, XiA, with i = 1, . . . , 10 oddball images, giving
a total of 24 pairs), but the global sequence was not preserved. Each image transition pair
was treated as a distinct stimulus (lasting 0.5 seconds) and presented in random order. Each
image pair was shown 30 times, for a total of 24 pairs x 30 repeats = 720 pair presentations.
The Transition Control block was 6 minutes in duration (720 pair presentations x 0.5 seconds
per pair = 360 seconds).

Two additional stimuli not used in this study were also shown. The occlusion stimulus,
consisted of the 10 oddball images with 6 differing levels of spatial occlusion. Each occlusion
image was presented for 0.5 seconds, with 0.5 seconds of gray screen between stimuli. Each
occlusion image was presented 10 times, for a total of 10 images x 6 occlusion levels x 10
repeats = 600 individual stimulus presentations, for a total of 600 seconds = 6 minutes.
A 30 second natural movie clip (Brain Observatory stimulus set Natural Movie 1) was
repeated 10 times at the end of the session.

4.3 Decoding analysis

We decoded stimulus block, image identity, and time within a session from single-trial pop-
ulation response vectors. To construct these response vectors, we performed deconvolution
[Jewell et al., 2019, de Vries et al., 2020] on the delta fluorescence traces and took the
deconvolved events within a circumscribed response window of 50ms to 250ms relative to
stimulus onset. These response vectors were first flattened and passed through principle
components analysis before being used in the decoding analysis. Specifically, we trained
multi-class linear support vector machine (SVM) classifiers to decode the above categorical
variables from the single-trial population response vectors. Stratified 5-fold cross-validation
was used for decoding expected images (Fig. 2d), block and "time" (Fig. 4), ensuring equal
number of trials for each class. When performing classification with oddball images (Fig.
2h and Fig. 3), 10-fold stratified cross-validation was performed, as each oddball was only
presented 10 times during the sequence stimulus block.

To calculate the statistical significance of decoding accuracies, we performed an iterative
shuffle procedure on each fold of the cross-validation. In each shuffle, the training labels
which the classifer was trained to decode were shuffled randomly across trials of the training
set, and the classifer’s accuracy was evaluated on the unshuffled test data-set. This shuffle
was performed 100 times to create a shuffle distribution of decoding accuracies for each
fold of the cross-validation. From these distributions we calculated the z-score of decoding
accuracy for each class in each cross-validation fold. These z-scores were then averaged
across the folds of cross-validation and used to calculate the overall p-value of the decoding
accuracy obtained on the original data.

4.4 Validation

To examine issues of stimulus design or recording methodology, we performed the same
decoding analysis on three independent datasets where natural images were presented in
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random order. First we compared decoding performances evaluated on data from the pub-
licly available Allen Brain Observatory Visual Coding (“ophys”) and Neuropixels (“ephys”)
datasets [de Vries et al., 2020, Siegle et al., 2019]. Both experiments consisted of 118
natural image stimuli from the same dataset as ours with identical presentation protocol.
We confirmed significant decoding accuracy across all 118 images using electrophysiological
population responses reliably across experiments (Fig. S1g). Using population responses
extracted from 2-photon imaging data also showed significant decoding performance on
image identification, but at a much reduced level (Fig. S1h). Restricting ourselves to the
14 images presented in our experiment (4 main-sequence and 10 oddball images) increased
decoding performance for 2-photon data.

4.5 Single-cell selectivity

To assess single cell selectivity to particular natural images and stimulus block, we per-
formed simple one-way anovas using the open source python software pingouin [Vallat,
2018]. For each stimulus block, we determined if a cell was selective to one of the four
main-sequence images or to one of the 10 oddball images by using the population response
vectors for those trials in which the images were presented (Fig. 1d). We ensured each
group had an equal number of trials. For each image, we determined if a cell was selective
to the block in which it was presented in by using population response vectors for the trials
in which the same image was presented in different blocks (Fig. 1e). P-values were calcu-
lated from the F-distribution and were considered significant (selective) if below a threshold
of 0.05.
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Figure S1. Validation of decoding results with electrophysiological [Siegle et al., 2021]
and two-photon [de Vries et al., 2020] functional datasets from mouse V1 and PM a)
Example confusion matrix from one session of V1 e-phys data trained to classify the four main-
sequence images within our study. b) Example confusion matrix from one session of V1 two-photon
data trained to classify the four main-sequence images within our study. c) Summary boxplot over
32 sessions of e-phys and 39 sessions of 2-photon data. d - f) Same as a-c, but for the 10 oddball
images. g - i) Same as a-c, but for all 118 images within the Berkeley Segmentation Dataset
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Figure S2. Decoding of natural images across different stimulus blocks, separated by
area and depth. a & b) Summary boxplots show the decoding performance of main sequence
images (in a) and unexpected oddball images (in b) across all stimulus blocks for each unique area
and depth.
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all trials (1900 trials per image) in the sequence block. The decoding accuracy of such classifiers
varied significantly in all areas.
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Figure S4. Decoding responses to expected and unexpected natural images reveals
possible predictive coding mechanism in RSP a) Four separate classifiers constructed to
decode each expected main sequence image from the unexpected oddball images. This first row is
for superficial V1, which recapitulates the main Fig. 3e results. b) Histogram of the relative miss
rates of main sequence images (A instead of X, B instead of X, C instead of X) compared to that
misclassifying images D and X. Superficial V1 shows no significant difference in the DX miss-rate
relative to the ABCD miss-rate. c-d) Same as first row, but for superficial PM. e-f) Same as first
row, but for superficial RSP. f) Superficial RSP reveals a significant increase in the DX miss-rate
relative to the ABCD miss-rate. g-h) Same as first row, but for deep RSP.
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Figure S5. Generalization under representational drift, separated by area and depth a)
Schematic showing linearly separable population responses to the same main sequence natural image
presented in different stimulus blocks. b) Summary boxplots show significant representational drift
of main sequence images across areas. c - d) Same as a & b, but for unexpected oddball images. e)
Schematic showing population responses to main sequence images in different epochs of the session,
with training and testing occurring using data from different stimulus blocks (epochs). f) Summary
boxplots show significant generalizability of main sequence images in V1 and PM, but not in RSP.
g - h) Same as e & f, but for unexpected oddball images.
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Figure S6. Generalization performance under representational drift, whilst controlling
for behavioral state. a) Example running speed trace of an animal, where the early, middle, and
late epochs are defined by gray highlights. The first 30 trials per image where the animal was at
rest were taken to perform the decoding analysis. Rest is defined as less than 1 cm/s. b) Confusion
matrix from RSP shows that only within-epoch decoding is possible (main diagonal). c) PCA of
main sequence PSTHs from RSP show epochs cluster apart. d) Representational similarity from
RSP reveals a strong correlation of within-epoch population responses, with little to no correlation
between-epoch blocks. e) Confusion matrix from V1 shows that both within-epoch decoding (main
diagonal) and between-epoch decoding (off-diagonal) is possible. f) PCA of main sequence PSTHs
from V1 shows conservation of geometry between epochs. g) Representational similarity from V1
reveals a strong correlation of within-epoch population responses, with comparable correlations for
between-epoch blocks. h) Generalization decoding results over single sessions.
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