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Abstract— EEG-based emotion recognition has been studied
for a long time. In this paper, a new effective EEG feature
named differential entropy is proposed to represent the char-
acteristics associated with emotional states. Differential entropy
(DE) and its combination on symmetrical electrodes (Differen-
tial asymmetry, DASM; and rational asymmetry, RASM) are
compared with traditional frequency domain feature (energy
spectrum, ES). The average classification accuracies using
features DE, DASM, RASM, and ES on EEG data collected
in our experiment are 84.22%, 80.96%, 83.28%, and 76.56%,
respectively. This result indicates that DE is more suited
for emotion recognition than traditional feature, ES. It is
also confirmed that EEG signals on frequency band Gamma
relates to emotional states more closely than other frequency
bands. Feature smoothing method - linear dynamical system
(LDS), and feature selection algorithm - minimal-redundancy-
maximal-relevance (MRMR) algorithm also help to increase the
accuracies and efficiencies of EEG-based emotion classifiers.

I. INTRODUCTION

Emotion is an overall performance of human’s conscious-
ness and behavior. It largely reflects human’s perception
and attitudes. Emotion always plays a critical role in our
daily life, especially in human-human interaction. Further-
more, in the area of human-machine interaction, the emotion
recognition which is based on the computer system has also
become a key part of the advanced brain-machine interaction
system [1]. Thus, as its great significance and wide usage,
the emotion recognition has been a popular focus in the field
of modern neuroscience, psychology, neural engineering, and
computer science as well.

Emotion recognition can be divided into two categories:
one is based on non-physiological signals while the other
is based on physiological signals. Many previous studies
of emotion recognition are based on non-physiological sig-
nals, such as facial-expression-based [2] and voice-based [3]
emotion recognition. However, facial expressions and tone
of voice can be deliberately hidden so that the method
based on them is obviously not reliable. In contrast, the
method based on physiological signals, which refer to
the electroencephalography (EEG), electromyogram (EMG),
electrocardiogram (ECG), skin resistance (SC), pulse rate
and respiration signals, are seem to be more effective and
reliable because humans cannot control them intentionally.
Among these methods, the EEG-based emotion recognition
has become quite common nowadays. There are also many
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research projects focusing on EEG-based emotion recog-
nition recently. Li et al. indicated that gamma band EEG
signals are suitable to classify happiness and sadness with
high time resolution [4]. Nie et al. found that the emotion
associated EEG is mainly produced in the right occipital
lobe and parietal lobe for the alpha band, the central site for
beta band, and the left frontal lobe and right temporal lobe
for gamma band [5]. Wang et al. used Isomap to estimate
the emotion state, and the trajectory of emotion obtained by
Isomap is almost consistent with the change of emotional
states [6].

In this paper, we focused on the different performance of
subjects’ EEG when they were watching movies that were
designed for eliciting positive or negative emotional states.
After collecting EEG data, we extracted energy spectrum
(ES), differential entropy (DE), rational asymmetry (RASM),
and differential asymmetry (DASM) as features and com-
pared their classification accuracy in five frequency bands.
We also chose the linear dynamical system (LDS) to smooth
the features before classifying and adopted the linear SVM
as the classifier. Finally, we applied the principal component
analysis (PCA) and the minimal redundancy maximal rele-
vance (MRMR) algorithm to reduce the feature dimension
to save the storage space and speed up the classification
procedure.

II. EXPERIMENTS

A. Stimuli

In the experiment, movie clips were chosen to elicit the
positive or negative emotional states. There were totally
twelve clips in one experiment, six of which were designed
for eliciting the positive emotion and six were for negative
emotion. All the movie clips used were in English, and each
of them lasted for about 4 minutes long. Only classical and
popular movies that were regarded impressive were used as
stimuli, such as Schindler’s List, High School Musical, and
The Day After Tomorrow.

A pressure-sensing steering wheel was employed to record
the response from the subjects who were asked to squeeze
the steering wheel tightly when he/she felt intense emotion.

B. Subjects

Three men and three women participated in the exper-
iments, who were aged between 22 and 24. They were all
healthy and right-handed, with adequate sleep the day before
experiment. Each of them participated the experiment twice
at intervals of one week or longer. All of them were informed
of the harmlessness of the equipment.
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C. Procedure
The experiments were conducted in the morning or early in

the afternoon. A 62-channel electrode cap was used to collect
the EEG signals of the subject during the experiment, and
ESI NeuroScan System was applied to record the data with
the sample rate 1000Hz synchronously. The movie clips were
played in random order, and there was a 10s hint before each
clip to ask the subject to focus on the following movie clip
and a 20s rest after each clip. Figure 1 shows the procedure
of the stimuli playing.

Fig. 1. Procedure of the stimuli playing

III. METHODS
A. Preprocessing

According to the pressure response from the subjects, only
the data collected when the target emotion was elicited were
used. EEG data were down-sampled with sampling frequency
200Hz in order to speed up the computation, and artifacts
were removed manually.

B. Feature Extraction
Frequency domain features and their combinations were

employed in this study. A 512-point short-time Fourier
transform with a non-overlapped Hanning window of 1s was
used to calculate the frequency domain features. Four kinds
of features were compared, which were ES, DE, DASM, and
RASM.

ES was the average energy of EEG signals in five fre-
quency bands (delta: 1-3Hz, theta: 4-7Hz, alpha: 8-13Hz,
beta: 14-30Hz, gamma: 31-50Hz).

DE was defined as

h(X) = −
∫∞
−∞

1√
2πσ2

e−
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2σ2 log( 1√
2πσ2

e−
(x−µ)2

2σ2 )dx

= 1
2 log(2πeσ

2),
(1)

where the time series X obeys the Gauss distribution
N(µ, σ2). It has been proven that, for a fixed length EEG
sequence, DE is equivalent to the logarithm ES in a certain
frequency band [7]. DE was employed to construct features
in five frequency bands mentioned above.

DASM and RASM were the differences and ratios between
DE of 27 pairs of hemispheric asymmetry electrodes. The
detail of the 27 pairs of electrodes is shown in Table I. DASM
and RASM can be, respectively, expressed as

DASM = h(X left
i )− h(Xright

i ), and (2)

RASM = h(X left
i )/h(Xright

i ), (3)

where h(X) is defined in Eq. 1, and i is the pair number.

TABLE I
27 PAIRS OF HEMISPHERIC ASYMMETRY ELECTRODES

Pair No. 1 2 3 4 5 6 7 8 9
Left Fp1 F7 F3 FT7 FC3 T7 P7 C3 TP7

Right Fp2 F8 F4 FT8 FC4 T8 P8 C4 TP8
Pair No. 10 11 12 13 14 15 16 17 18

Left CP3 P3 O1 AF3 F5 F7 FC5 FC1 C5
Right CP4 P4 O2 AF4 F6 F8 FC6 FC2 C6

Pair No. 19 20 21 22 23 24 25 26 27
Left C1 CP5 CP1 P5 P1 PO7 PO5 PO3 CB1

Right C2 CP6 CP2 P6 P2 PO8 PO6 PO4 CB2

C. Feature Smoothing

In order to remove the component which has nothing to do
with the emotional states, the moving average filter and linear
dynamic system (LDS) approach [8] with window length 20s
were applied to smooth the feature sequence, respectively.

D. Classification and Classifiers Combination

In this study, two different training and test data partition
strategies are used. 1) data from the first eight sessions of
one experiment were used to train the model, and data from
the rest four sessions in the same experiment were used to
test it; 2) data from one experiment of a subject were used
to train the model, and data from the other one experiment
of the same subject were used to test it.

Two kinds of classifiers were employed, which were
linear-kernal support vector machine (SVM) and k-nearest
neighbors (kNN) algorithm.

In order to make full use of the advantages of different
features, combination of classifiers was used to improve the
performance of classifiers. Simple arithmetic combination
methods were applied to combine the three classifiers trained
by DE, DASM, and RASM in gamma frequency bands,
respectively. Maximum, sum, and product rules are simplest
rules for combination, which classify the instance into the
class with the maximal probability that is the maximum, sum,
or product of probabilities from different classifiers in this
class.

E. Dimensionality Reduction

Dimensionality reduction could help to increase the speed
and stability of the computation. Principal component anal-
ysis (PCA) algorithm and minimal-redundancy-maximal-
relevance (MRMR) [9] algorithm helped to reduce the di-
mensionality in this study.

IV. RESULTS AND DISCUSSION

A. Classification

The performance of different kinds of features on Delta,
Theta, Alpha, Beta, and Gamma frequency bands is shown
in Table II. ASM stands for asymmetry feature that is the
combination of DASM and RASM. Total frequency band
means that features in all the five frequency bands are used
to train and test the model. The training data and the test
data are from the different sessions of the same experiment.
Experiments 1 - 6 refer to the first experiment of subject 1 -
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6, and experiments 7 - 12 refer to the second experiment
of subject 1 - 6, respectively (the same below). All the
features used here had been smoothed by LDS, and SVM
models were applied as classifiers. As we can see from the
table, Gamma frequency bands perform better than other
frequency bands. And it is obvious that the accuracies of
classifiers trained with features calculated using DE (DE,
DASM, RASM, and ASM) are higher than those trained with
traditional ES features.

This result confirms that the emotional states related to
EEG in Gamma frequency band more closely than other
frequency bands. It can be implied from this result that DE
is more suited for EEG-based emotion classification than
traditional ES features.

We also used the data from one’s first/second experiment
to train a model, and the data from his/her second/first
experiment to test it. The features employed here were the
DE of all the five frequency bands after LDS smoothing.
Performance of SVM and kNN models is also compared
in this task. The results are described in Table III, which
shows that SVM models increase the accuracies on this data
set. The average accuracy of the SVM classifiers trained and
tested using data from different experiments reaches 74.10%
and 71.79%. This result implies that the relation between the
variation of emotional states and the EEG signal is stable for
one person with the passage of time. It may be noticed that
the accuracy of subject 1’s model using training data and
test data from different experiments is much lower than the
average level, which is caused by the difference of stimuli
set between the two experiments subject 1 participated.

The results of combination of classifiers are depicted in
Fig. 2. For the reason that EEG signals on Gamma frequency
band correlate to emotional states closely, SVM classifiers
trained with features DE, DASM, and RASM on Gamma
frequency band are adopted to show the performance of
maximum, sum, and product rules. From this figure, we can
tell that the combination of three classifiers will increase
the performance for the classifiers that are with terribly
low accuracies when working alone, such as classifiers in
experiment 3. And for classifiers that perform relatively well,
the combination of classifiers helps to increase the stability
of the classifier, and to raise the accuracies slightly.
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Fig. 2. Performance of combination of classifiers

TABLE II
CLASSIFICATION ACCURACIES USING DIFFERENT KINDS OF FEATURES

Exp. Feature δ θ α β γ Total

1

ES 38.94 50.42 44.26 58.72 79.57 64.47
DE 45.32 44.26 45.74 60.85 75.32 77.66

DASM 45.11 44.26 44.26 69.36 76.17 76.17
RASM 44.26 44.26 44.26 44.26 74.68 79.15
ASM 43.40 33.83 44.26 68.51 75.32 76.38

2

ES 55.47 46.61 72.92 96.35 95.83 82.55
DE 54.69 42.45 88.02 96.61 95.05 88.02

DASM 61.97 55.73 72.40 96.61 86.98 89.06
RASM 58.33 58.33 68.75 96.61 91.67 92.71
ASM 61.97 55.73 71.88 95.05 90.10 89.06

3

ES 53.62 63.83 56.17 60.64 42.76 54.47
DE 53.83 65.96 60.21 67.87 47.02 65.53

DASM 61.28 57.02 47.66 62.98 49.15 67.02
RASM 54.89 54.90 47.23 58.94 48.30 62.98
ASM 66.17 54.04 47.23 67.23 50.00 66.81

4

ES 55.47 59.11 64.32 82.03 59.64 75.00
DE 41.93 48.44 48.44 89.84 95.05 77.60

DASM 50.00 57.55 45.57 86.19 91.40 68.75
RASM 54.47 59.38 45.31 85.94 88.54 67.45
ASM 55.47 59.90 53.91 87.50 91.40 67.19

5

ES 76.17 70.43 89.79 90.21 95.32 97.45
DE 62.55 68.72 93.62 97.45 97.45 97.45

DASM 41.91 63.83 97.45 97.23 97.45 97.45
RASM 44.26 68.30 95.75 97.87 98.30 97.45
ASM 42.34 65.53 97.45 97.45 97.45 97.45

6

ES 72.13 72.55 75.53 69.15 71.91 81.06
DE 64.89 60.85 63.83 79.15 79.57 84.26

DASM 58.09 57.87 53.62 65.75 77.01 81.70
RASM 68.09 60.43 55.75 65.96 74.89 88.72
ASM 60.43 56.60 54.26 65.96 77.02 81.70

7

ES 54.17 55.47 56.77 62.76 81.77 64.06
DE 47.92 53.39 55.47 63.02 84.38 77.08

DASM 58.33 57.81 54.43 56.51 78.91 73.44
RASM 60.15 50.26 55.47 58.85 86.20 74.22
ASM 59.64 58.08 55.47 57.03 92.19 73.70

8

ES 67.17 63.80 94.27 91.41 91.41 87.50
DE 54.17 77.34 91.93 96.61 91.93 90.89

DASM 60.42 55.47 85.16 91.67 97.14 91.41
RASM 61.46 55.21 77.86 91.67 92.18 96.09
ASM 60.42 55.47 85.42 95.31 93.23 91.41

9

ES 47.45 75.74 61.91 58.30 66.60 76.81
DE 47.87 66.17 54.89 65.11 75.53 78.30

DASM 47.23 60.00 55.74 73.20 55.96 78.94
RASM 44.89 57.87 55.74 78.94 55.96 72.77
ASM 52.34 58.51 55.74 76.17 56.17 78.72

10

ES 66.93 67.19 57.55 80.99 74.74 81.25
DE 63.54 66.93 60.68 90.88 91.41 94.27

DASM 45.05 55.73 77.60 83.85 94.27 77.60
RASM 55.47 55.73 67.97 80.21 94.53 90.10
ASM 55.47 55.47 81.77 82.55 94.27 78.39

11

ES 76.17 70.43 89.78 95.75 95.31 97.02
DE 62.55 68.72 93.62 97.45 97.45 97.45

DASM 63.19 64.89 65.96 91.06 88.94 91.70
RASM 59.79 70.64 65.32 93.19 90.21 94.47
ASM 63.19 66.81 65.53 91.49 91.49 94.26

12

ES 60.00 50.00 50.00 67.66 69.36 57.02
DE 56.38 54.68 51.06 72.98 80.85 82.13

DASM 50.85 51.70 49.36 74.89 78.51 78.30
RASM 56.81 58.30 44.26 71.49 87.02 83.20
ASM 52.77 57.23 50.43 75.32 85.96 78.30

Ave.

ES 60.31 62.13 67.77 76.16 77.02 76.56
DE 54.64 59.83 67.29 81.49 84.25 84.22

DASM 53.62 56.82 62.43 79.11 80.99 80.96
RASM 55.32 57.80 60.31 76.99 81.87 83.28
ASM 56.13 56.43 63.61 79.96 82.88 81.11

B. Feature Smoothing
The rapid fluctuations in the feature sequence should be

removed, because emotional state varies smoothly. The accu-
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TABLE III
CLASSIFICATION ACCURACIES WITH DATA FROM DIFFERENT

EXPERIMENTS USING TWO KINDS OF CLASSIFIERS

Data Clsfr. Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6 Ave.Train Test

First First SVM 77.66 88.02 65.53 77.60 97.45 84.26 81.75
KNN 48.94 72.40 48.30 62.50 95.32 74.68 67.02

Sec. Sec. SVM 77.08 90.89 78.30 94.27 97.45 82.13 86.69
KNN 38.80 90.89 55.74 83.07 95.32 60.00 70.64

First Sec. SVM 55.06 81.20 69.24 77.97 99.39 61.76 74.10
KNN 48.44 73.28 61.45 66.82 99.24 55.11 67.39

Sec. First SVM 58.07 78.47 57.40 76.32 99.39 61.07 71.79
KNN 57.44 73.01 61.83 67.63 99.24 56.30 69.24

racies of SVM classifiers trained by features with no smooth-
ing method, moving average method, and linear dynamical
system smoothing method are compaired in Table IV. The
training data and test data are from the different sessions of
the same experiment, and the table shows the average results.
The table shows that for subject 1, 3, 4, and 6, the smoothing
methods help to improve the performance of classifiers in
the emotion classification task. And the LDS method is
more effective when smoothing the feature sequence. But
for subject 2 and 5, the smoothed feature sequence decreases
the accuracies of classifiers for the reason that the smoothing
causes information lost in some degree.

TABLE IV
PERFORMANCE OF DIFFERENT FEATURE SMOOTHING METHODS

Smooth Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6 Ave.
No 62.02 92.06 63.83 83.72 98.62 78.41 79.78

Mv. Ave. 73.72 90.24 67.56 87.11 98.19 83.94 83.46
LDS 77.37 89.46 71.92 85.94 97.45 83.20 84.22

C. Dimensionality Reduction

Figure 3 demonstrates the performance of PCA and
MRMR methods in dimensionality reduction. The training
data and test data are from different experiments on the same
subject, and the SVM classifiers trained by LDS smoothed
features are employed here. The original features we use are
the combination of DE, DASM, and RASM features in all the
five frequency bands, which means that the original feature
dimensionality is as high as 580. The figure reveals that
the accuracy changes slightly after dimensionality reduction
using PCA when the dimensionality is higher than 100. And
the MRMR algorithm helps to increase the accuracy of the
classifier when dimensionality of the feature decreases.

It can be indicated that most of the feature values we
employ are not necessary for the task. Some of them are
irrelevant to emotion recognition, and some are redundant in
this task. This discovery helps us to reduce the computations
of features and the complexity of the classification models.

V. CONCLUSION

In this paper, a series of experiments were conducted
to collect the EEG signals during the subject was watch-
ing movie clips. A new EEG feature named differential
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Fig. 3. Average performance of different dimensionality reduction methods

entropy (DE) was proposed and compared with the tra-
ditional frequency domain feature named energy spectrum
(ES). According to the result, DE and its combination on
symmetrical electrodes perform better than ES feature. And
the combination of classifiers increases the stability and the
accuracy of classifier. At the same time, it is confirmed that
the relation between the variation of emotional states and the
EEG signals does not change for one person during a period
of one week.
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