Differential Equations, Dynamical Systems, and Linear Algebra

-MORRIS W. HIRSCH AND STEPHEN SMALE

University of California, Berkeley

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
San Diego New York Boston
London Sydney Tokyo Toronto

Contents

	Preface	ix	
CHAPTER 1	FIRST EXAMPLES		
	1. The Simplest Examples	1	
	2. Linear Systems with Constant Coefficients	g	
	Notes	13	
CHAPTER 2	NEWTON'S EQUATION AND KEPLER'S LAW		
	1. Harmonic Oscillators	15	
	2. Some Calculus Background	16	
	3. Conservative Force Fields	17	
	4. Central Force Fields	19	
	5. States	22	
	6. Elliptical Planetary Orbits	23	
	Notes	27	
CHAPTER 3	LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS AND REAL EIGENVALUES		
	1. Basic Linear Algebra	29	
	2. Real Eigenvalues	42	
	3. Differential Equations with Real, Distinct Eigenvalues	47	
	4. Complex Eigenvalues	55	
CHAPTER 4	LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS AND COMPLEX EIGENVALUES		
	1. Complex Vector Spaces	62	
	2. Real Operators with Complex Eigenvalues	66	
	3. Application of Complex Linear Algebra to Differential Equations	69	
CHAPTER 5	LINEAR SYSTEMS AND EXPONENTIALS OF OPERATORS		
	1. Review of Topology in R ⁿ	75	
	2. New Norms for Old	77	
	3. Exponentials of Operators	82	
	4. Homogeneous Linear Systems	89	
	5. A Nonhomogeneous Equation	99	
	6. Higher Order Systems	102	
	Notes	108	

vi Contents

CHAPTER 6	LINEAR SYSTEMS AND CANONICAL FORMS OF OPERATORS		
	1. The Primary Decomposition	110	
	2. The $S + N$ Decomposition	116	
	3. Nilpotent Canonical Forms	122	
	4. Jordan and Real Canonical Forms	126	
	5. Canonical Forms and Differential Equations	133	
	6. Higher Order Linear Equations	138	
	7. Operators on Function Spaces	142	
CHAPTER 7	CONTRACTIONS AND GENERIC PROPERTIES OF OPERATORS		
	1. Sinks and Sources	144	
	2. Hyperbolic Flows	150	
	3. Generic Properties of Operators	153	
	4. The Significance of Genericity	158	
CHAPTER 8	FUNDAMENTAL THEORY		
	1. Dynamical Systems and Vector Fields	159	
	2. The Fundamental Theorem	161	
	3. Existence and Uniqueness	163	
	4. Continuity of Solutions in Initial Conditions	169	
	5. On Extending Solutions	171	
	6. Global Solutions	173	
	7. The Flow of a Differential Equation	174	
	Notes	178	
CHAPTER 9	STABILITY OF EQUILIBRIA		
	1. Nonlinear Sinks	180	
	2. Stability	185	
	3. Liapunov Functions	192	
	4. Gradient Systems	199	
	5. Gradients and Inner Products	204	
	Notes	209	
CHAPTER 10	DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS		
	1. An RLC Circuit	211	
	2. Analysis of the Circuit Equations	215	
	3. Van der Pol's Equation	217	
	4. Hopf Bifurcation	227	
	5. More General Circuit Equations	228	
	Notes	238	
CHAPTER 11	THE POINCARÉ-BENDIXSON THEOREM		
	1. Limit Sets	239	
	2. Local Sections and Flow Boxes	242	
	3. Monotone Sequences in Planar Dynamical Systems	244	

CONTENTS		vii
	4. The Poincaré-Bendixson Theorem	248
	5. Applications of the Poincaré-Bendixson Theorem	250
	Notes	254
CHAPTER 12	ECOLOGY	
	1. One Species	255
	2. Predator and Prey	258
	3. Competing Species	265
	Notes	274
CHAPTER 13	PERIODIC ATTRACTORS	
	1. Asymptotic Stability of Closed Orbits	276
	2. Discrete Dynamical Systems	278
	3. Stability and Closed Orbits	281
CHAPTER 14	CLASSICAL MECHANICS	
	1. The <i>n</i> -Body Problem	287
	2. Hamiltonian Mechanics	290
	Notes	295
CHAPTER 15	NONAUTONOMOUS EQUATIONS AND DIFFERENTIABILIT OF FLOWS	Y
	1. Existence, Uniqueness, and Continuity for Nonautonomous	
	Differential Equations	296
	2. Differentiability of the Flow of Autonomous Equations	298
CHAPTER 16	PERTURBATION THEORY AND STRUCTURAL STABILITY	
	1. Persistence of Equilibria	304
	2. Persistence of Closed Orbits	309
	3. Structural Stability	312
AFTERWORD		319
APPENDIX I	ELEMENTARY FACTS	
	1. Set Theoretic Conventions	322
	2. Complex Numbers	323
	3. Determinants	324
	4. Two Propositions on Linear Algebra	325
APPENDIX II	POLYNOMIALS	
	1. The Fundamental Theorem of Algebra	328
APPENDIX III	ON CANONICAL FORMS	
	1. A Decomposition Theorem	331
	2. Uniqueness of S and N	333
	3. Canonical Forms for Nilpotent Operators	334

viii		CONTENTS
APPENDIX IV	THE INVERSE FUNCTION THEOREM	337
	REFERENCES	340
	ANSWERS TO SELECTED PROBLEMS	343
	Subject Index	355