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DIFFERENTIAL EQUATIONS INVOLVING 
CIRCULANT MATRICES 

ALAN C. WILDE 

1. Introduction. This paper develops a theory for the solution of ordi
nary and partial differential equations whose structure involves the 
algebra of circulants. Recent interest of circulants is evident in a book 
by Davis [1]. This paper shows how the algebra of 2 x 2 circulants 
relates to the study of the harmonic oscillator, the Cauchy-Riemann 
equations, Laplace's equation, the Lorentz transformation, and the wave 
equation. It then uses n x n circulants to suggest natural generalizations 
of these equations to higher dimensions. 

2. The algebra of circulants. An n x n circulant is a matrix of the form 

X » 

Note that X has arbitrary entries x0, xh . . . , xn_x in the top row and the 
entries are moved over one place to the right in each succeeding row. Let 
K denote the circulant with xx = 1 and jcy = 0 for all j' ^ 1. Then the 
arbitrary circulant Xequals £g=J xhK

h, and Kn = /. [K° = /also.] 
Define complex circulants EQ, EÌ9 . . . , En_x by 

XQ 

Xn-1 

X2 

Xl 

xl 

* 0 

* 3 

* 2 

x2 

* 1 

* 4 

* 3 

* 3 " 

%2 * ' 

* 5 * 

* 4 • 

• Xn_2 * „ - l 

* Xn-S Xn-2 

• • XQ XI 

• • Xn_i XQ 

(1) Eh = (1/") E C " * * ' for 0 g h g n- 1, 

where Ç = e2*'7». Then {E0, Eu ..., E„^} is an idempotent basis for 
complex circulants since 

(2.1) E\ = £ A fo rO^ h g « - l ; 

(2.2) EhEj = 0ifh #y;and 

(2.3) Ef, + Ex+ ••• + £•„_! = /. (See Davis [1]). 

Received by the editors on June 1,1981. 
Copyright © 1983 Rocky Mountain Mathematics Consortium 

1 



A.C. WILDE 

One can easily express the basis {K°, K\ ..., K"'1} in terms of the basis 
{E0, . . . ,ÊB_i}by 

(3) K* 
M-l 

= E^EjforO^h gn-l. 

Important properties of circulants are that one can easily express the 
eigenvalues of a circulant in terms of its entries and that all circulants 
have the same eigenvectors. 

The eigenvalues XQ, XI, . . . , X„-i of a circulant H%ZoXhKhare given by 

»-1 
(4) h = SC*''*/for 0 ^ A ^ n - 1 , (see Muir [2]), i.e. 

X = Vx where V is the Vandermonde matrix : 

V = 

1 1 

l C 

1 C2 

1 

C2 

c4 

l C3 Z6 

1 'n-\ "2(n-D 

1 

c3 

c6 

C9 

c3 <»-l) 

1 

c « - l 

£2<»-l) 

r3(»-D 

r(»- i) 2 

It follows that the rows of V are the eigenvectors of X, with row h the 
eigenvector for eigenvalue Xh. One can also invert (4) and express the 
entries of X as linear combinations of its eigenvalues : 

(5) xh = (l/n) Jrfc~*y Ay for 0 g A £ n - 1 . 

Combining (1), (3), (4), and (5) yields 

(6) 2>ÂKÂ = ZhEh. 
h=0 h=0 

There is a natural extension from entire functions on C to entire functions 
on matrices defined as follows: i f / is an entire function with Taylor series 
E£%ahXh, then f(A) is defined to be the matrix J^ahAk. With circulant 
matrices, one can avoid the use of infinite series; the following formula 
holds : 

(7) fÇElkEk) = ntf(h)Eh, (see Davis, [1]). 

In terms of the more direct basis {Kh}, (7) becomes 

/»-l \ n-\ r »-1 / n-1 \ 1 

(8) Aä****)= M ( 1 / n ) 5 ^h/f\ fi c"*>)_r-
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EXAMPLE FOR n = 2. 

Thus # 2 = /. In this case, 

*-[ìgìgH*-[_ìg-ìg} 
Then 

[i]-G -ÌK1 
Also, if x0, JCI, Ao, ^i, e C such that 

[*]-[i -115} 
then x0 / + xiAT = ^o^o + X\Ei. These formulas are developed and used 
in Leisenring [3]. 

3. First-order, linear systems involving circulants. One can easily solve 
a system of first-order, linear differential equations when the matrix has 
constant entries. In general, a system with variable entries in the matrix 
is not so easily solved. However, if the matrix is an n x n circulant with 
variable entries, the solution can be written explicitly. 

We first investigate the case for 2 x 2 circulant matrices and solve the 
system : 

(9) r*i = r/C) s(ty 
L*(0 At)] 

X 

First, note that this equation is equivalent to the following: 

U> *J~L*/. 
x y 
y * 

Using the information of Section 2, we can rewrite this in the form xl + 
yK = ( / / + gK)(xf + yK). Changing to eigenvalues and idempotents, 
one finds 

(x + y)E0 + (x - y)E1 

= [ ( / + g)E0 + ( / - g)E1][(x + y)E0 + (x - y)Ex] 

= ( / + gXx + y)E0 + ( / - g)(x - y)E1. 

When we equate components, we derive first x + y = ( / + g)(x + y), 
which has as its solution x -f y = c0e

F+G where c0 is a constant, F = f, 
and G = g. The other equation is x — y = ( / — g)(x — y) which has 
as its solution x — y = C\eF~G where c\ is a constant. Thus we get 
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(10) 

The solution vectors 

x = (l/2)(co^+c + cxeF-G), 

y = (IßXcoeF+c - Ci^-c). 

are linearly independent for all t, and so they are a fundamental solution 
set for equation (9). 

The same method can be employed to solve the system 

(11) m_r/(0s(0Y*]. r«(oi 
LJJ~U(O/(OIJJ+LV(OJ 

Equation (10) is the general solution of the homogeneous system (9), and 
a particular solution of the system (11) is 

x = (1/2) [ V ^ f (w + v)e<-F-a dt + e&-G> f (M - v)e<-F+c> dt\ 

02) r f f 1 
y = (1/2) e*-«» J (u + v>(-^-G) A - e(^G> J (w - v)e<-^> <ft L 

In an analogous manner, using the formulae in the previous section, 
one can solve explicitly linear n x n differential systems whose matrix 
is a circulant. 

THEOREM 1. The system of equations 

(13) 

XQ 

*1 
= (if ah(t)K^ 

x0 

Xl 

_ * * - i _ 

+ 

~b0(t) -
h(t) 

_*>„-i(0_ - Xn-l J 

has as its general solution 

(14) xh = (l/n)gÇ*'-e*v(cy + ^g/r^dt) 

for 0 g h g n — 1 wAere Ç = e2*»7», ant/ 

A = gC*%(0^Ä^«-i); 

^ = Çr*^(o^A^«-i); 
Fy = /y (0 g j | n - l ) ; anrf c0, cx, . . . , cB_! are constants. The expression 

(15) x* = (1/«) §C* V ' (0 g A ^ «-1) 
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is the general solution of the homogeneous system, and 

»-1 
(16) xh^(l/n)n^eF^gje-FJdt 

(0 ^ h ^ n— 1) is a particular solution of the nonhomogeneous system. 

4. The equation dnx/dtw — x = 0. As a special case of equation (13), 
note that the companion matrix form of the equation x{n) — x = 0 is 

" x(1> " 
,<» 

X<3> 

. 

_ xw _ 

*""" 

0 1 0 0 0 . . . 0 
0 0 1 0 0 . . . 0 
0 0 0 1 0 . . . 0 

0 0 0 0 0 . . . 1 
1 0 0 0 0 . . . 0 

r(0) 

r<D 

r(2) 

r(n-l) 

i.e., it contains the matrix K. Therefore, exp tK = 25ö) (expÄf)£Ä is a 
Wronskian of solution of the equation x{n) — x = 0, where 

»-1 
expÄ / = (l//i) j g C"Ä/exp Ç'/ = g /*-h.y/(A + «/)! 

for0 ^ A ^ w-1 . (See Rubel and Stolarsky [4].) 

5. Generalization of the Lorenz transformation and of the wave equation. 
In his study of the geometry of relativity, Leisenring [3] used the equation 

(17) expP ^1 = [~cosh ^ s i n h ^1 L^ OJ Lsinh (J) cosh^J 

and showed that the matrix on the right is a Lorentz transformation, 
i.e., it preserves the quadratic form 

X* - y2 = det[* J ] 

Indeed, in the physical Lorentz transformations 

X = (X' + «O/Vi-«2 /*2 , / = (f + «x'/c2)/Vl-«2/C2 

let u = c tanh $ and c = 1. Then, the equations become 

[ j c l f c h ^ sh^~irV~| 
L ' J Lsh^ c h ^ J L ' ' i 

and it follows that x2 — t2 = x'2 — t'2. The latter fact can also be shown 
using circulants. If 
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then 

so 

[xlTchiP shfi[x'l 
L* J Lsh^ ch^JL' ' j 

[x f] = [ch</> shf] Yx' t'~] 
[t x\ Lsh^ ch^J \t' *'} 

det x t 
t x —e**flH?# 

o r x 2 - t2= l - ( x ' 2 - / '2). 
By the chain rule, it also follows that 

'dldx'l _ [ch 0 s h ^ l [9/3x1. 
a/3/'J Lsh^ ch^J 1.3/3* J 

so the above circulant linear transformation also preserves the wave 
operator 

32/3x2 - 32/3/2 = det 3/3* 3/3/" 
3/3/ d/dx 

There are natural generalizations of these properties of 2-dimensional 
relativity to n dimensions. If j l 5 s2, . . . , sn_i e C, then by equation (8) 

K"; (18) e x p f r ^ t f * ) = " ^ [ ( l / ^ L C ^ e x p f i ; 1 ^ . ) 
\/j=i / Ä=oL /=o \y=i /-

and det exp(2Ä=l ^A^*) = 1- SO the linear transformation exp(Hh=lshKh) 
preserves the «th order form 

(19) 

/n-1 \ n-1 /n-1 \ 

det(S*»A:*)=nteC*>*/) 
n-1 

= n (*<>+c**i + C2Â 2̂ + • • • + c ^ ^ ) . 
A=0 

By the above method, it also leaves invariant the linear partial differential 
operator 

detfy (3/3*,)**) = nWc*>(3/3*,)) 

(20) -g{k+z'à + ^à+-
+ £<»-l)A_3 ) 

3*»-l A 

where the product denotes composition. 
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6. Solutions of a homogeneous, partial differential equation. The method 

of circulants which led to the formation of the partial differential equation 

(21) [ g ( g C*'0/3*/))] («) = 0, where Ç = 

also leads to solutions of this equation. This is a natural generaliza
tion of the homogeneous wave equation, since for n = 2 (21) becomes 
d2u/dx% - d2u/dxl = 0. Let z0, z b . . . , zw_x be new variables given by 
zh = (I/«) 2j=JC~*''xy (0 ^ * = n—1). [These formulas are like equa
tion (5) in Section 2.] Then xh = SjdC* '* / (0 ^ A £ i t - 1 ) ; and, by 
chain rule, 3/3zÄ = Z%1 Q' (3/3*/) (0 ^ h ^ n-1). Thus equation (21) 
takes the form (I1A=O(3/3^))(") = 0. Now let F0, Fh . . . , F„_x be n C°° 
functions : Cw_1 ~> C and let 

w(z0, zx, . . . , zM_i) = F0(zh z2, . . . , z„_i) 
»-2 

(22) + 2 FA(z0, zx , . . . , zÄ_i, z Ä + 1 , . . . , zn_x) 
Ä=l 

+ ^»-l(z0> zl> • • • » z»-2) 

i.e., for each h, Fh is independent of zÄ. It is easy to verify that u given 
by (22) is a solution of equation (21). It is a reasonable conjecture that 
this method constructs all solutions, as it does for n = 2. 

If in equation (22), the conditions 

F0(an-h an-2, ...,ai) = F0(ah a2, . • •, an-i) 

and 

Fh(a0, an-2, äw_3, . . . , äi) = Fn_h(a0, ah . . . , an-2) 0 è h ^ n-\) 

hold for all complex numbers a0, a\, . . . , a„_i, then w as a function of 
x0, *b • • • > xn-i maps Rw into R. 

7. A generalization of the Cauchy-Riemann conditions. Recall that if the 
Jacobian matrix of functions u(x, y) and v(x, y), namely 

is of the form 

fUX Uy\ 

{the usual representation of C), that is ux = vy and uy = - vx, then u and 
v satisfy Laplace's equation (d2/dx2 + d2jdy2) ( /) = 0. Note too that 

d e t [ 9/3*3/3/1 32 32 

An analogous property holds for 2 x 2 circulants. If the Jacobian 



A.C. WILDE 

YUX Uyl 

is a 2 x 2 circulant, then ux = vy and uy = v,. If two C°° functions w 
and v satisfy these equations, then there exist two analytic functions / 
and g such that u and v are of the form 

u = (l/2)[/(x + y) + g(x - y)]9 

v = (l/2)[/(* + y) - g(x - y)l 

Also w and v satisfy the wave equation (32/3JC2 - d2/dy2)(F) = 0. We 
notice here too that 

det 3/3/1 32 _ 32 

d/dx] dx2 dy2 

These facts can be generalized to Cn using circulants. 
If w0, wls . . . , w„_! are entire functions mapping Cw into C, their Jaco-

bian is 

du0/dx0 du0/dx1 

duildx0 duijdxi 

3w0/9*»-i 

3wi/3^_i 

_3w„_i/3*0 dun_ljdxl . . . S W ^ / S X ^ L 

This matrix is a circulant if and only if 

(i) 3w0/3*o = 3wi/3*i = . . . = 3ww_!/3xn_i 

and 

(ii) 3W0/9*A = duildXh+i = • • • = du^^jdx^ 

= 3ww_Ä/3x0 = 3ww_Ä+i/3xi = . . . = du^ldx^ 

for 1 ^ A ^ yi-1. 

THEOREM 2. Lef w0, wl5 . . . , wn_x fee e/zf/re functions mapping Cn into 
C swcA /Aaf /Aez> Jacobian is a circulant. Then 

(1) w0, wl9 . . . , w„_i satisfy the partial differential equation 

\S!$FT$[* - "• 
(2) fAere ^ / enf/re functions gQ, gh . . . , g„_i mapping C into C such 

thatUQ, ul9 . . . , un_i are of the form 

uj = (i/n) 2 c-'/g,(2c*/**); 
/=0 \A=0 / 
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(3) if go(¥) = g0(z) and gJJ) = g^Az) for I £ /£ n-l, then i/0, uh 

. . . , un-i all map Rn into R. 

PROOF OF (1). If the Jacobian of (t/0, wl5 . . . , un_i) is a circulant, then 
conditions (i) and (ii) hold. It then follows that 

ZQ(dUjldxh)K>> = & • (£Q(duoldxh)K^ 

forO gj g AI— 1. Let 

L(") = E(S^'Ì7)] ( M ) 'a n d 

letzA = (1/«) SJ=J C-*/xy for 0 £ A £ n -1 . Then x» = Z£K*>zy 

and dldzh = 2JÖ Ç*/ 0/9x,-) f o r O g A g n - 1 . Thus L = FIO (3/9**). 
Using the relationship between the entries and eigenvalues of a circulant 
matrix as shown in §2, 

So 
»-1 

£@«//9**)**-E0«//fr*)£* 
*^0 *=0 

forO ^y ^ «- l .But 

"t^idujldx,) K" = tf/g(9w0/9xA)K> 

= (gc*^Ä)(g(at/0/3zÄ)^) 

Since the isA's form a basis, duj/dzh = CÄ/(3WO/3ZÄ) for 0 ^ A ^ w - 1 and 

Now let v* = 2 £ j Ç-*>i/y for 0 g A: g " - 1. Then 

3v*/3z* = (3/3z,)(gÇ-*'-M/) = g r ^ ( 3 « / / 3 ^ ) 

= §V*' ' Cw(3«o/3zA) = S C(-*+*"(3«O/3ZA). 
j3> J=Q 

If * * A, then 9v,/9zA = VLU C*-"*"] O«o/3z*) = 0. Thus ( n U (3/3zA)) 
(v„) = 0 = Uvk). 

So, 
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L(vk) = L(Sç-w«y) - 2C-"X(«/) = 0, 
\y=o / y=o 

for 0 ^ k ^ « — 1. Since the matrix of coefficients of the L(wy)'s is non-
singular, L(u0) = L(wj) = . . . = L(w„_!) = 0. 

PROOF OF (2). In the proof of (1), we showed that dvk/dzh = 0 if k ^ h. 
Thus there exists an entire function fk mapping C into C such that vk = 
fk(zk). Therefore, ny = (l/n) ZU £*>/*(**) for 0 £ 7 £ * - 1. Now write 
w0, MX, . . . , un_i as entries of a circulant, i.e., take Sy=o wy^y- Then 

S « y » = / o ( Z o ) £ o + ntfn-&n-k)Ek 

y=o *=i 

- /o ((V«) § *,) ̂ 0 + g/»-*((i/") § e%) **. 
Now let g0(z) = /o((l/")z) and g„{z) = /„_*(( l/n)z) for 1 ^ À: ^ « - 1 . Then 

n-1 n-1 /n-1 \ 

y=0 £=0 \ / = 0 / 

Note also that 

for 0 ^ j g rc — 1. Since g0, gl5 . . . , g„_i are entire functions mapping C 
into C, part (2) follows. 

PROOF OF (3). The conditions imply that 

Wy(x0, X l 5 . . . , X„_i) = UJ(XQ, XI, . . . , Xf l - i ) . 

Now we discuss the concept of derivative of a function on n x n 
circulants. To repeat what we said earlier, a complex function f(x + iy) = 
u(x9 y) + iv(x,y) has a derivative (i.e., is analytic) if the Cauchy-Riemann 
conditions, ux = vy and uy = — vx, hold ; and these conditions hold if 
and only if the Jacobian matrix 

\Ux Uy] 

is of the form of a matrix representation of C, i.e., 

[-i 3 
Similarly, a function on circulants has a derivative which is a function 
on circulants if the Jacobian matrix of the original function is in the form 
of a circulant. 

If u = (w0, Wx, . . . , w„_i) is a function from O into O , « can be ex-
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tended to a function ü sending complex circulants into complex circulants 
via 

Ö (E xhKh) = S uh(xo, xl9 . . . , x„_i)#Ä. 

The difference quotient of ü in the direction of the complex axis Kh is 

l i m ß [ V + • - - + (*& + Axh)K» + - * • +xw_1^-1]~t/(x0/+ - • * +s<B_1JP»-1). 
AxÄ-K) A x A # A 

[This definition is well-defined because since Kn = 7, 7/^A = Kn~h.] u can 
be called differentiable if ti is the same in the directions of all the axes 7, 
K9 . . . , K»-h Then it follows that 

*' = 'SOi'jIdxdK' = *ï* Quj+ddxùKi 4- g (di4j-n+hldxh)K* 

for 0 ;g A ^ « — 1. Note that for all these quotients to be equal, conditions 
(i) and (ii) hold. Also, ü is the transpose of the Jacobian matrix of u = 
(uQ, ui, wn_x) and it is a circulant. (The transpose of a circulant is a 
circulant.) 

Theorem 2 shows that w0, "i, . . . , w»-i are entire functions: Cn -* C 
and satisfy conditions (i) and (ii) if and only if there exist entire functions 
So» Si» • • •» S»-i- C -• C such that 

«y = (l/i)Sc-y/fc(Sc^) 

for 0 g y ^ n — 1. One can show that by changing basis, 

n—lr »—1 fn—\ \" 

7^0 L /=0 \A=0 / . 

-a f t(s c à 0 c 'K 
# • 

i.e., w is decomposed into a sum of entire functions on the idempotent 
axes. Then too, 

» - i 
at = £o(du,idx0)& 

n-ir n-l /n-1 \~\ 

= g,[tf/») 5o c~Mä ^ . r 

»—i /»—i \ 

i.e., if ü satisfies hypothesis of Theorem 2, one can differentiate ü by 
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differentiating the above entire functions g0, . . . , gn_i on their respective 
idempotent axes. 

In particular, the function 

is its own derivative. 
Skew-circulants (defined in Davis [1]) also have these differentiation 

properties. A skew-circulant has entries positioned like those of a cir
culant except with minus signs below the main diagonal, i.e., for n = 3, 

\ —X2 XQ XI . 

L "~ xl ~~x2 ^OJ 

If v is the skew-circulant with xt = 1 and xj = 0 for j' ^ 1, then vn = 
— I and the skew-circulant can be expressed in the form 2A=O*AVA- This 
algebra is isomorphic over C to regular circulants via the correspondence 
v •-> ccK where a = e*i/n(an = — 1). 

If the Jacobian matrix of u = (w0, uh . . . , un_t) [where w0, uh . . . , 
un_i'. O -• C] is a skew-circulant matrix, then 

(iii) duQ/dx0 = du1/dx1 = . - • = 3w„_1/9^w_1 

and 

(iv) du0/dxh = duxldxh+1 = . . . = 3wn_Ä_i/a*„_i 

= -dun_h/dxQ = -dun_h+ljdxl = . . . = -du^/dx^ 

for 1 £ A £ /i - 1. 
For « = 2, these are exactly the Cauchy-Riemann equations. Using a 

method similar to the proof of Theorem 2, one can show the following 

THEOREM 3. Let £ = e2ici/n and a = eni/n. Let w0, w1? . . . , un_x be entire 
functions'. O -* C swcA fAaf conditions (iii) a/2 J (iv) AoW. jTAe/z there exist 
entire functions g0, gx, . . . , gn_i: C -* C swcA fAaf w0,

 wi> • • •> wn-i a r e 

of the form 

uy = tf-'O/n) S C""*/ (S C*W) 

/orO ^ 7 ^ / i - 1. 

Since in the algebra of skew-circulants, Eh = (l/rì) Sy=J CA/ QT'V for 
0 ^ A :g w — 1 is an idempotent basis, 

»—1 »—1 /»—1 \ 
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Thus differentiation properties here are similar to those of circulants. 
See Leisenring [3] for an application of this type of differentiation to 

the geometry of the bicomplex plane C x C. 
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